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A-posteriori error estimation of discrete POD
models for PDE-constrained optimal control

Martin Gubisch, Ira Neitzel, and Stefan Volkwein

Abstract In this work a-posteriori error estimates for linear-quadratic optimal con-
trol problems governed by parabolic equations are considered. Different error esti-
mation techniques for finite element discretizations and model-order reduction are
combined to validate suboptimal control solutions from low-order models which are
constructed by Galerkin discretization and application of proper orthogonal decom-
position (POD). The theoretical findings are used to design an efficient updating
algorithm for the reduced-order models; the efficiency and accuracy is illustrated by
numerical experiments.

1 Introduction

Many optimal control problems with partial differential equations (PDEs), espe-
cially those in higher dimensions, are challenging to be solved numerically because
their discretization leads to very high-dimensional problems. This is the reason why
model reduction techniques, such as the method of proper orthogonal decomposi-
tion (POD), are subject to active research.

The method of POD approximates a high-dimensional problem by a smaller,
tractable problem by means of projections of the dynamical system onto subspaces
that inherit characteristics of the expected solution. Regarding convergence results
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for POD solutions to parabolic PDEs we refer, for instance, to [15, 16]. In [10], an
overview over the topic of POD model order reduction is provided.

Recently, some effort has been made to derive a-priori and a-posteriori error anal-
ysis for the reduced control problems. We refer to [12] for a-priori error estimates for
POD approximations to control problems, and to [29] for first results on a-posteriori
error estimates for linear-quadratic problems. These results are extended to non-
convex problems in [14], and to problems with mixed control-state constraints in
[9]. The numerical analysis of POD a-posteriori error estimation for optimal control
problems is investigated in [28].

However, the available results in the literature on POD a-posteriori error esti-
mates so far do not account for the fact that the subspace for the reduced model
is generated from snapshots of the full order model, which, in the setting of PDE
constrained optimization, is typically a finite element discretization of a continuous
model problem. Thus, what is commonly referred to as the true solution in the con-
text of reduced order models (ROM) is itself in fact an approximation of the real
solution.

For the finite element approximation of the real solution of parabolic problems,
there exists a range of results on a-priori and a-posteriori error estimates. Concern-
ing a-priori estimates, we refer to [23] and references therein, where error estimates
are provided for a space-time finite element discretization of PDE-constrained op-
timal control problems without further control or state constraints. This approach
has been extended to problems with additional control constraints in [24], that –
after minor modifications to the simplified structure of the control space – covers
the model problem to be discussed in our paper. The discretization therein includes
a (discontinuous Galerkin type) variant of the implicit Euler scheme for the time
discretization and usual H1-conforming finite element discretization in space. We
will heavily rely on this Galerkin structure of the discretization in Sec. 4, where we
derive our main result. We note in passing that finite element discretization error
estimates for parabolic problems are available also for certain types of state con-
straints, see [25] or [8], or semilinear parabolic problems with pointwise-in-time
state constraints, cf. [20], or control constraints, see e.g. [27]. Cf. also results on
plain convergence without any rates in [2].

However, standard a-priori estimates are in general not a good indicator for en-
larging or updating the reduced-order models since they usually tend to overesti-
mate the effective errors significantly. Instead, a-posteriori error estimates may be
applied; [1] provides such methods for uncontrolled parabolic PDEs, focussing on
adaptive time and spatial grid selection. In [13], a detailled discussion about the dis-
cretization and regularization of optimal control problems is presented. For adaptive
discretization strategies based on a-posteriori error estimates for parabolic optimal
control without additional inequality constraints we refer to e.g. [22] and [26] and
the references therein. In [17], the authors introduce a POD basis updating strategy
which includes the POD eigenvalue problem (and hence also the high-order state
equation) into the ROM framework and applies a variable splitting technique to de-
vide the resulting mixed optimality system into its high- and low-dimensional part.
A strategy to locate optimal snapshots of some PDE solution can be found in [18].
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In this paper, we are concerned with the following model problem with state y
and control u in spaces to be specified,

Minimize J(y,u) :=
1
2

T∫
0

∫
Ω

(y(t,x)− yd(t,x))2dxdt +
ν

2

Nu

∑
i=1

T∫
0

ui(t)2 dt (1a)

subject to

∂ty−∆y =
Nu

∑
i=1

uiχi + f in (0,T )×Ω , y(0, ·) = y0 in Ω , (1b)

y = 0 in (0,T )×∂Ω , ua ≤ u(t)≤ ub almost everywhere in (0,T ) (1c)

where the last inequality is to be understood componentwise. Note that the functions
χi : Ω → R, i = 1, . . . ,Nu, are given, fixed data. The exact setting of the model
problem will be described in the next section.

We are interested in discussing how the discretization error on the one hand and
the model order reduction error on the other hand relate and can possibly be bal-
anced, motivated by the following two questions:

1. Since a reduced-order model is based on the snapshots of a high-dimensional
approximative PDE solution, the model already includes the finite element dis-
cretization errors and it does not make sense to decrease the POD residual below
the order of the finite element discretization error.

2. If, however, the error of the POD approximation does not reflect the order of the
discretization error even when increasing the POD basis rank, i.e. the size of the
reduced order model, the current POD basis may not reflect the dynamics of the
optimal POD basis ψ̄ refering to the optimal state solution ȳ. In this case, an
update of the POD basis may be required to improve the results.

The paper is organized as follows: In Sec. 2, we summarize available results for
the continuous optimal control problem, such as existence and regularity results as
well as optimality conditions. Then, in Sec. 3, we briefly describe the finite ele-
ment discretization along the lines of [24], and state an a-priori error estimate for
the finite element discretization from [24]. In short, the discretization is utilized by
discretizing the state and adjoint equations by the so-called dG(0)cG(1) method, cf.
for instance [5, 6]. That is, the time-discretization of the PDEs is done by piecewise
constant functions, whereas usual H1-conforming finite elements in space are used.
The time-dependent controls are discretized implicitly via the optimality conditions,
cf. also the variational discretization approach in [11]. For convenience of the reader,
we summarize existence and regularity results for the solution of the semidiscrete
and fully discrete state equations, as well as existence of unique solutions to the
optimal control problems and optimality conditions on each discretization level. For
our main result in the subsequent section, we will use in particular the optimality
conditions from Sec. 3.2 as well as the error estimate from [24], which we state in
Sec. 3.3. Our main result, the a-posteriori error analysis for a suboptimal discrete
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solution, where we have in mind the discrete POD solution, follows in Sec. 4. The
main step in our analysis is to extend the a-posteriori error analysis technique from
[29], which is related to the one in [21] for ordinary differential equations, to esti-
mate the error between the full-order finite element solution and the (discrete) solu-
tion of the reduced model. Here, we readily make use of the fact that the dG(0)cG(1)
discretization is a Galerkin scheme. We eventually obtain an a-posteriori error es-
timator along the lines of [29], but in contrast to the latter paper, the estimator is
computable in the strict sense since it only depends on the computed, finite element
solution rather than the true unknown continuous solution. Comparing this error
to the finite element error can be an indication if for instance a POD basis update
is usefull. Then, Sec. 5 finally describes the method of model order reduction via
proper orthogonal decomposition. We end this paper by numerical experiments in
Sec. 6, where we also address some aspects of implementation, such as estimating
the constants in the a-priori error estimates.

Let us remark that for future analysis, it seems also reasonable to include the
discussion of a-posteriori finite element error analysis. However, the focus of our
paper is on a computable a-posteriori error estimate for the solution of the reduced-
order model. Since we clearly separate the influence of discretization and model-
order reduction errors, these results may readily be extended to balance this error
with any type of available a-posteriori discretization error estimate.

2 Optimization problem

In the following, we lay out the principle assumptions on the data in (1) and summa-
rize known results on existence and regularity of solutions to the underlying PDE,
the control problem itself, as well as first-order necessary and, due to convexity, also
sufficient optimality conditions.

Assumption 2.1 Let Ω ⊂ Rn, n = 1,2,3, be a convex polygonal or polyhedral do-
main with boundary ∂Ω for n = 2,3, or an open interval in R. Moreover, let T > 0
be a given real number that defines the time interval I := (0,T ). In addition, ν ∈ R
is a positive, fixed parameter, and the bounds ua,ub ∈ RNu are vectors of real num-
bers that fulfill ua < ub componentwise. The desired state yd is a function from
L2(I×Ω) and the initial state y0 is a function from H1

0 (Ω). For the shape functions
χi : Ω → R, i = 1, . . . ,Nu, we require χi ∈ H1

0 (Ω).

We introduce the following short notation for inner products and norms on the
spaces L2(Ω) and L2(I×Ω), as well as L2(I;RNu):

(v,w) := (v,w)L2(Ω), (v,w)I := (v,w)L2(I×Ω), 〈v,w〉I := 〈v,w〉L2(I;RNu )

‖v‖ := ‖v‖L2(Ω), ‖v‖I := ‖v‖L2(I×Ω), |v|I := ‖v‖L2(I;RNu ).

Throughout the paper we abbreviate V := H1
0 (Ω); c > 0 will denote generic auxil-

iary constants. Moreover, in order to find a weak formulation of the state equation
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(1b) and the optimal control problem (1), we introduce the state space Y , the control
space U , and the set of admissible controls Uad,

Y :=W (0,T ) = {v | v ∈ L2(I,V ) and ∂tv ∈ L2(I,V ∗)}, U := L2(I,RNu),

Uad := {u ∈U | ua ≤ u(t)≤ ub for a.a. t ∈ I componentwise},

as well as the control operator

B : U → L2(I×Ω), u 7→
Nu

∑
i=1

ui(t)χi(x).

A weak formulation of the state equation (1b) for a fixed control u ∈U and fixed
initial state y0 ∈V as well as source term f ∈ L2(I×Ω) is to find a state y ∈ Y that
satisfies

T∫
0

(∂ty,ϕ)V ∗,V dt +(∇y,∇ϕ)I = (Bu,ϕ)I +( f ,ϕ)I ∀ϕ ∈ L2(I,V ), y(0, ·) = y0. (2)

The following existence and regularity result is readily available from [7].

Proposition 1. For fixed control u ∈U, fixed source term f ∈ L2(I×Ω), and fixed
initial state y0 ∈ V there exists a unique solution y ∈ Y of the weak state equation
(2). Moreover, the solution exhibits the improved regularity

y ∈ L2(I,H2(Ω)∩V )∩H1(I,L2(Ω)) ↪→C(Ī,V )

and the stability estimate

‖∂ty‖I +‖y‖I +‖∇y‖I +‖∇2y‖I ≤C(|u|I +‖ f‖I +‖∇y0‖) (3)

is satisfied for a constant C > 0.

By the regularity y ∈ H1(0,T ;L2(Ω)) it is justified to use the bilinear form

b(y,ϕ) := (∂ty,ϕ)I +(∇y,∇ϕ)I ,

and use the weak formulation

b(y,ϕ) = (Bu,ϕ)I +( f ,ϕ)I ∀ϕ ∈ Y, y(0, ·) = y0. (4)

Note that due to the linearity of the state equation, (1) can be reformulated equiv-
alently into a setting with homogeneous initial condition and without additional
source term f by splitting the solution of (4) into two parts y = ŷ+ yu, which fulfill
the PDEs

∂t ŷ−∆ ŷ = f in I×Ω , ŷ(0, ·) = y0 in Ω , ŷ = 0 in I×∂Ω , (5)

as well as
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∂tyu−∆yu =
Nu

∑
i=1

ui(t)χi(x) in I×Ω , yu(0, ·) = 0 in Ω , yu = 0 in I×∂Ω (6)

in the weak sense. The fixed term ŷ is independent of the controls and can be incor-
porated into the desired state yd . For ease of presentation, we will therefore assume
without loss of generality: y0 = 0 as well as f = 0.

In the following we will, however, state more general results from [23, 24] for
nonhomogeneous initial conditions and additional source terms.

Next we introduce the linear control-to-state mapping S : U→Y , Su = yu, which
leads to the reduced objective function Ĵ : U → R+

0 with u 7→ J(S(u),u). Note that
here and in the following, we tacitly use the operator S also if we interpret the state
y as a function in L2(I×Ω). This makes the optimal control problem (1) equivalent
to

Minimize Ĵ(u) subject to u ∈Uad. (P)

The following existence and uniqueness result is obtained by standard arguments,
cf. for instance [30], since the set of admissible controls is not empty by Ass. 2.1.

Lemma 1. Let Assumption 2.1 be satisfied. Then the optimal control problem (P)
admits a unique optimal control ū ∈Uad with associated optimal state ȳ = Sū.

Let us refer to [30] for a detailed proof. We proceed by discussing standard first
order necessary optimality conditions for the optimal control problem with the help
of a variational inequality. Due to convexity, these conditions are also sufficient for
optimality.

Lemma 2. A control ū is the unique solution of (P) if and only if ū ∈Uad and the
following variational inequality holds:

Ĵ′(ū)(u− ū)≥ 0 ∀u ∈Uad. (7)

For a proof, we refer again to e. g., [30]. In order to express the optimality conditions
in a more convenient way we define for any control u∈Uad the adjoint state variable
p = p(u) ∈ Y , which is the solution of

−∂t p−∆ p = yd− y(u) in I×Ω , p(T, ·) = 0 in Ω , p = 0 in I×∂Ω (8)

with y(u) = Su. A weak solution of this adjoint problem can be defined by means
of the already introduced bilinear form b, since elements of Y can be integrated by
parts in time. We obtain

b(ϕ, p) = (ϕ,yd− y(u))I ∀ϕ ∈ Y, p(T, ·) = 0. (9)

Note that Prop. 1 is applicable to (9) after a time transformation τ = T − t. We then
rewrite the first-order optimality conditions from Prop. 2 in the form

〈ν ū−B∗p(ū),u− ū〉I ≥ 0 ∀u ∈Uad,
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where B∗ : L2(I×Ω)→U denotes the Hilbert space adjoint operator of B satisfying
the formula (Bu,v)I = 〈u,B∗v〉I for all u,v ∈U . The following identity for B∗ can
easily be verified by means of the above definition. For any ϕ ∈ L2(I×Ω), we find

B∗ϕ = u, ui(t) :=
∫
Ω

ϕ(t,x)χi(x)dx, i = 1, . . . ,Nu and t ∈ I.

Then, using the pointwise projection on the admissible set,

Pad : U →Uad, Pad(u)i(t) := max(ua,min(ub,ui(t))), i = 1, . . . ,Nu,

the optimality condition simplifies further to

ū = Pad

(
1
ν

B∗p(ū)
)
. (10)

We refer to [30] for the technique of proof. From Prop. 1 and the projection formula,
we deduce the following regularity result, which is a direct consequence of Prop. 2.3
in [24] taking into account that the controls depend only on the time variable.

Proposition 2. Let ū be the solution of the optimization problem (P) with associated
state ȳ = y(ū) and let p̄ := p(ū) denote the corresponding adjoint state. Then ū, ȳ, p̄
achieve the following regularities:

ȳ, p̄ ∈ L2(I,H2(Ω)∩V )∩H1(I,L2(Ω)) ↪→C(Ī,V ), ū ∈ H1(I;RNu) ↪→C(Ī;RNu)

3 Discretization of the problem

This section is devoted to the finite element discretization of the optimal control
problem under consideration. We review the discretization procedure as well as re-
sults on e.g. stability of discrete solutions, and an a-priori error estimate for the con-
trols on the continuous and discrete level from e.g. [24] for linear-quadratic prob-
lems with controls varying in space and time, or [27], where the state equation is
nonlinear, but the setting of only time-dependent controls is addressed explicitely.
More precisely, we first give a brief overview about semidiscretization of the state
(and adjoint) equation in time by piecewise constant functions, with values in V .
Note that the resulting scheme is a variant of the implicit Euler method. Even though
the control functions themselves will not be discretized explicitely, we will obtain,
by means of the semidiscrete optimality conditions, that the optimal control is in fact
piecewise constant in time, and therefore a discrete function. In a second step, we
discretize the involved PDEs also in space. Here, we use usual H1-conforming lin-
ear finite elements. The resulting discretization scheme is commonly referred to as
dG(0)cG(1) method. Since the control functions are functions in time, only, solving
the time-and-space discrete optimality system corresponds to solving a completely
discretized problem.
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3.1 Semidiscretization in time

Along the lines of [23, 24], let a partitioning of the time interval Ī = [0,T ] be given
as Ī = {0}∪ I1 ∪ I2 ∪ . . .∪ IM with subintervals Im = (tm−1, tm] of size km, defined
by time points 0 = t0 < t1 < .. . < tM−1 < tM = T . The discretization parameter k is
defined as a piecewise constant function by setting k|Im = km for m = 1,2, . . . ,M, yet
k also denotes the maximal size of the time steps, i.e., k = maxkm. The semidiscrete
trial and test space is given by

Yk = {vk ∈ L2(I,V ) | vk |Im ∈P0(Im,V ), m = 1,2, . . . ,M},

where P0(Im,V ) denotes the space of constant functions defined on Im with values
in V . The control space U and the set of admissible controls Uad remain unchanged,
yet we will later find that the semidiscrete optimal control is an element of the space

Uk := {vk ∈U | vk |Im ∈P0(Im,RNu), m = 1,2, . . . ,M}.

For functions vk ∈ Yk we define

v+k,m := lim
t→0+

vk(tm + t) = vk(tm+1) =: vk,m+1,

v−k,m := lim
t→0+

vk(tm− t) = vk(tm) =: vk,m,

[vk]m := v+k,m− v−k,m = vk,m+1− vk,m

and introduce the short notation

(v,w)Im := (v,w)L2(Im×Ω), ‖v‖Im := ‖v‖L2(Im×Ω)

for functions v,w ∈ L2(Im×Ω). The semidiscrete version of the bilinear form b(·, ·)
for yk,ϕk ∈ Yk is given by

bk(yk,ϕk) = (∇yk,∇ϕk)I +
M

∑
m=2

(yk,m− yk,m−1,ϕm)+(yk,1,ϕk,1),

and the dG(0) semidiscretization of the state equation (4) for fixed control u ∈ U
reads as follows: Find a state yk = yk(u) ∈ Yk such that

bk(yk,ϕk) = (Bu,ϕk)I +( f ,ϕk)I +(y0,ϕk,1) ∀ϕk ∈ Yk. (11)

Here, ϕk,m denotes ϕk|Im
. Note that we assumed y0 = 0 and f = 0 for ease of presen-

tation, but include the more general setting in the following theorem.

Theorem 1. For every fixed control u ∈U, the semidiscrete state equation (11) with
potentially nonhomogenous initial state y0 ∈V and source term f ∈ L2(I×Ω) ad-
mits a unique semidiscrete solution yk ∈ Yk satisfying the stability result
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‖yk‖2
I +‖∇yk‖2

I +‖∆yk‖2
I +

M

∑
i=1

k−1
m ‖yk,i− yk,i−1‖2 ≤C{|u|2I +‖ f‖2

I +‖∇y0‖2}

with a constant C > 0 independent of the discretization parameters.

Proof. This is a direct consequence of Theorem 4.1 in [23], taking into account that
the controls are only time-dependent functions.

With the semidiscrete control-to-state operator Sk : U → Yk, Sk(u) = yk, where yk is
the solution of (11), and consequently a semidiscrete reduced objective function

Ĵk : U → R+
0 , u 7→ J(Sk(u),u),

the reduced semidiscrete problem formulation reads

Minimize Ĵk(u) subject to u ∈Uad. (Pk)

Existence of a unique semidiscrete optimal control ūk ∈Uad with associated semidis-
crete optimal state ȳk ∈ Yk, analogously to Problem (P), follows by standard argu-
ments. Likewise, we obtain first-order necessary and sufficient optimality conditions
for ūk ∈Uad in the form

Ĵ′k(ūk)(u− ūk) = 〈ν ūk−B∗pk(ūk),u− ūk〉I ≥ 0 ∀u ∈Uad, (12)

where pk = pk(u) ∈ Yk is the semidiscrete adjoint state, i.e. the solution of the
semidiscrete adjoint equation

bk(ϕk, pk) = (ϕk,yd− yk(u))I ∀ϕk ∈ Yk. (13)

Note that the stability results from Theorem 1 are applicable to (13). By making use
of the projection formula

ūk = Pad

(
1
ν

B∗pk(ūk)

)
(14)

on this level of discretization we readily obtain a structural result for the semidis-
crete optimal control:

Corollary 1. From the projection formula (14) we deduce that all components of
the optimal control ūk are piecewise constant in time, i.e. ūk ∈Uk ∩Uad.

Note that from Corollary 1, it is clear that ūk also solves the problem

Minimize Ĵk(uk) subject to uk ∈Uk ∩Uad,

and thus the time discretization of the controls does not have to be discussed ex-
plicitely.
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3.2 Discretization in space

Now, we introduce the spatial discretization of the optimal control problem, still in
the spirit of e.g. [24]. We consider two- or three-dimensional shape regular meshes;
see, e.g., [3], consisting of quadrilateral or hexahedral cells K, which constitute a
nonoverlapping cover of the computational domain Ω . For n = 1, the cells reduce to
subintervalls of Ω . We denote the mesh by Th = {K} and define the discretization
parameter h as a cellwise constant function by setting h|K = hK with the diameter hK
of the cell K. We use the symbol h also for the maximal cell size, i.e., h=maxhK . On
the mesh Th we construct a conforming finite element space Vh ⊂V in the standard
way

Vh = {v ∈V |v|K ∈Q(K) for K ∈Th},

with basis {Φ j
h} j=1,...,N , where Q(K) consists of shape functions obtained via bilin-

ear transformations of polynomials up to degree one defined on a reference cell K̂;
cf. also Sec. 3.2 in [23]. Then, the space-time discrete finite element space

Ykh = {vkh ∈ L2(I,Vh) | vkh|Im ∈P0(Im,Vh), m = 1,2, . . . ,M} ⊂ Yk.

leads to a discrete version of the bilinear form bk(·, ·) for ykh,ϕkh ∈ Ykh, given by

bkh(ykh,ϕkh) = (∇ykh,∇ϕkh)I +
M

∑
m=2

(ykh,m− ykh,m−1,ϕkh,m)+(ykh,1,ϕkh,1).

Eventually, we obtain the so-called dG(0)cG(1) discretization of the state equation
for given control u ∈U : Find a state ykh = ykh(u) ∈ Ykh such that

bkh(ykh,ϕkh) = (Bu,ϕkh)I +( f ,ϕkh)I +(y0,ϕkh,1) ∀ϕkh ∈ Ykh. (15)

Theorem 2. Let Ass. 2.1 be satisfied. Then, for each u ∈U and possibly nonhomog-
neous initial condition y0 ∈ V and source term f ∈ L2(Ω), there exists a unique
solution ykh ∈ Ykh of equation (15) satisfying the stability estimate

‖ykh‖2
I +‖∇ykh‖2

I +‖∆hykh‖2
I +

M

∑
i=1

k−1
m ‖ykh,i− ykh,i−1‖2

≤C
(
|u|2I +‖ f‖2

I +‖∇Πhy0‖2)
with a constant C > 0 independent of the discretization parameters k and h.

Proof. Again, this follows from [23], see Theorem 4.6, with the obvious modifica-
tions due to the structure of the control space.

Here, ∆h : Vh→Vh is defined by

(∆hvh,ϕh) =−(∇vh,∇ϕh) ∀ϕh ∈Vh.
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Repeating the steps from the semidiscrete setting leads to the introduction of the
discrete control-to-state operator Skh : U → Ykh, ykh = Skh(u), the discrete reduced
objective function Jkh : Uad → R+

0 , u 7→ J(u,Skh(u)), and the discrete problem
formulation

Minimize Ĵkh(u) subject to u ∈Uad, (Pkh)

which, again by standard arguments, admits a unique optimal solution ūkh ∈ Uad.
First-order necessary and sufficient optimality condition for ūkh ∈Uad are given by

Ĵ′kh(ūkh)(u− ūkh) = 〈ν ūkh−B∗pkh(ūkh),u− ūkh〉I ≥ 0 ∀u ∈Uad, (16)

via the discrete adjoint state pkh ∈ Ykh being the solution of the discrete adjoint
equation

bkh(ϕkh, pkh) = (ϕkh,yd− ykh)I ∀ϕkh ∈ Ykh. (17)

Let us conclude that the structure of (16), which is analogous to the continuous
problem due to Galerkin discretization, is of central importance to adapt the error
estimation techniques from [29], see Sec. 4.

3.3 A-priori Error Estimate

Let us end this section by stating an a-priori discretization error estimate between the
optimal control ū of (P) and the fully discrete solution ūkh of (Pkh). The following
theorem is a direct consequence of Theorem 6.1 in [23], where error estimates are
proven for control functions u ∈ L2(I×Ω). The specific setting with finitely many
time-dependent controls is considered for nonconvex problems with semilinear state
equations in [27], Prop. 5.4.

Theorem 3. Let ū be the optimal control of Problem (P) and ūkh be the optimal
control of Problem (Pkh). Then there exists a constant C > 0 independent of k and
h, such that the following error estimate is satisfied:

|ū− ūkh|I ≤C(k+h2)

4 A-posteriori error analysis for an approximate solution to (Pkh)

If the possibly high-dimensional optimization problem (Pkh) is not solved directly,
but an approximate solution ūp

kh ∈ Uk ∩Uad is obtained by e.g. a POD Galerkin
approximation, see Sec. 5, one is interested in estimating the error

ε
p
kh := |ūp

kh− ūkh|I ,
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without knowing ūkh. Together with an available error estimate for

εkh := |ū− ūkh|I ,

this leads to an estimate for the error between the real optimal solution ū and the
computed solution ūp

kh,

ε := |ū− ūp
kh|I ≤ εkh + ε

p
kh,

where the influence of the discretization error on the one hand and the model re-
duction error on the other hand are clearly separated. We will use Theorem 3 for
the first part. We point out that εkh may also be estimated by other available e.g. a-
posteriori error estimators, and now focus on developing an estimate for the second
part. Since the discretization has been obtained by a Galerkin method, and optimal-
ity conditions from Sec. 3 are available, we can apply the arguments and techniques
from [29]. Utilizing the notation yp

kh = Skh(u
p
kh) as well as pp

kh = pkh(u
p
kh), we obtain

the following:

Lemma 3. Let up
kh ∈Uk ∩Uad be arbitrary. Define a function ξ

p
k ∈Uk component-

wise by

(ξ p
k )i :=

(
νup

kh−B∗pp
kh

)
i , i = 1, . . . ,Nu,

as well as the index sets of active constraints

I −i := {1≤ m≤M | (up
kh)i|Im = ua,i}, i = 1, . . . ,Nu,

I +
i := {1≤ m≤M | (up

kh)i|Im = ub,i}, i = 1, . . . ,Nu,

the active sets A −
i :=

⋃
{Im | m ∈I −i }, A +

i :=
⋃
{Im | m ∈I +

i } and the inactive
set A ◦

i := I \ (A −
i ∪A +

i ). Then the function ζk ∈Uk defined componentwise by

ζk,i = [ξ p
k,i]− =−min{0,ξ p

k,i} on A −
i ,

ζk,i =−[ξ p
k,i]+ =−max{0,ξ p

k,i} on A +
i ,

ζk,i =−ξ
p
k,i on A ◦

i

for i = 1, . . . ,Nu satisfies the perturbed variational inequality

〈νup
kh−B∗pp

kh +ζk,u−up
kh〉I ≥ 0 ∀u ∈Uk ∩Uad.

Proof. Note first that due to the piecewise constant time discretization, the function
ζk is an element of Uk. Now, direct calculations for u ∈Uk ∩Uad shows:
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〈νup
kh−B∗pp

kh +ζk,u−up
kh〉=

Nu

∑
i=1

M

∑
m=1

∫
Im

(ξ p
k +ζk)i(u−up

kh)i dt

=
Nu

∑
i=1

∑
m∈I −i

km(ξ
p
k,m +[ξ p

k,m]−)i(u−ua)i + ∑
m∈I +

i

km(ξ
p
k,m− [ξ p

k,m]+)i(u−ub)i ≥ 0,

where we have used that (u−ua)i ≥ 0 and (u−ub)i ≤ 0.

Theorem 4. Let ūkh be the optimal solution to (Pkh) with associated state ȳkh and
adjoint state p̄kh. Suppose that up

kh ∈Uk ∩Uad is chosen arbitrarily with associated
state yp

kh = ykh(u
p
kh) ∈ Ykh and adjoint state pp

kh = pkh(u
p
kh) ∈ Ykh, and let ζk ∈Uk be

given as in Lemma 3. Then the following estimate is satisfied:

|ūkh−up
kh|I ≤

1
ν
|ζk|I .

Proof. The variational inequality (15)-(17) and Lemma 3 imply

0≤ 〈ν ūkh−B∗ p̄kh,u
p
kh− ūkh〉I +ν〈up

kh−B∗pp
kh +ζk, ūkh−up

kh〉I
=−ν |ūkh−up

kh|
2
I + 〈B∗(pp

kh− p̄kh),u
p
kh− ūkh〉I−〈ζk,u

p
kh− ūkh〉I

=−ν |ūkh−up
kh|

2
I +(pp

kh− p̄kh,B(u
p
kh− ūkh))I−〈ζk,u

p
kh− ūkh〉I

=−ν |ūkh−up
kh|

2
I +(B(up

kh− ūkh), pp
kh− p̄kh)I−〈ζk,u

p
kh− ūkh〉I

=−ν |ūkh−up
kh|

2
I +b(yp

kh− ȳkh, pp
kh− p̄kh)−〈ζk,u

p
kh− ūkh〉I

=−ν |ūkh−up
kh|

2
I −‖y

p
kh− ȳkh‖2

I −〈ζk,u
p
kh− ūkh〉I .

From this calculation, we conclude that

ν |ūkh−up
kh|

2
I ≤ |ζk|I |up

kh− ūkh|I , =⇒ |ūkh−up
kh|I ≤

1
ν
|ζk|I .

Combining the results of Theorem 3 and Theorem 4, we directly obtain

Corollary 2. Let ū ∈Uad be the optimal control of Problem (P), let up
kh ∈Uk ∩Uad

be chosen arbitrarily, and let ζk ∈ Uk be given as in Lemma 3. Then there exists
a constant C > 0 independent of k and h, such that the following error estimate is
fulfilled:

|ū−up
kh|I ≤C(k+h2)+

1
ν
|ζk|I .

5 The POD Galerkin discretization

In this section, we construct a problem specific subspace V `
h ⊆Vh with significantly

smaller dimension dimV `
h = `� N = dimVh such that the projection of an element
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ykh on the reduced state space Y `
kh = {φkh ∈Ykh | ∀m= 1, ...,M : φkh|Im ∈P0(Im,V `

h )}
is still a good approximation of ykh. More precisely, for a given basis rank `, we
choose orthonormal ansatz functions ψ1

h , ...,ψ
`
h ∈ Vh such that ykh−P`

hykh is min-
imized with respect to ‖ · ‖L2(I,Vh)

where P`
h : Vh→ V `

h = span(ψ1
h , ...,ψ

`
h) denotes

the canonical projector P`
h(ykh(t))=∑

`
l=1〈ykh(t),ψ l

h〉Vh ψ l
h. Hence, these basis func-

tions ψ1
h , ...,ψ

`
h are given as a solution to the optimization problem

min
ψ1

h ,...,ψ
`
h∈Vh

∫ T

0
‖ykh(t)−P`

hykh(t)‖2
Vh

dt subject to 〈ψ i
h,ψ

j
h〉Vh = δi j, (18)

where δi j denotes the Kronecker delta. Since the integrand is piecewise constant on
the time intervals I1, ..., Im, we replace (18) by

min
ψ1

h ,...,ψ
`
h∈Vh

M

∑
m=1

km‖ykh,m−P`
hykh,m‖2

Vh
subject to 〈ψ i

h,ψ
j

h〉Vh = δi j. (19)

Due to the discrete structure of the spaces Ykh and Vh, problem (18) is further equiva-
lent to a finite dimensional linear system: Let (Ah)i j = 〈φ i

h,φ
j

h 〉Vh ∈RN×N denote the
stiffness matrix of the finite elements sample (φ 1

h , ...,φ
N
h ) and let Θk ∈RM×M be the

diagonal matrix consisting of the time weights k1, ...,kM . Further, let Ykh ∈ RN×M

be the coefficient matrix of ykh ∈Ykh such that ykh(t j) = ∑
N
i=1 Yi j

khφ i
h holds. Denoting

the i-th column of a matrix by the superscript ·,i, we get the fully discretized problem

min
ψh`∈RN×`

M

∑
m=1

Θ
mm
k ((Y·,mkh )

T− (Y·,mkh )
TAhψh`ψ

T
h`)Ah(Y

·,m
kh −ψh`ψ

T
h`AhY·,mkh ) (20)

subject to ψT
h`Ahψh` = Id(`).

The solution matrixψh` ∈RN×` to (20) provides the coefficients of the optimal basis
elements ψ1

h , ...,ψ
`
h to (18): ψ l

h = ∑
N
i=1ψ

il
h`φ

i
h.

A solution to problem (18) is called a rank-` POD basis to the trajectory ykh ∈Ykh
and can be determined by solving the corresponding eigenvalue problem

R(ykh)ψh = λψh, R(ykh) =
∫ T

0
〈·,ykh(t)〉Vhykh(t)dt, (21)

choosing ψ1
h , ...,ψ

`
h ∈ Vh as the eigenfunctions of Rkh := R(ykh) : Vh → Vh corre-

sponding to the ` largest eigenvalues λ1 ≥ ·· · ≥ λ` > 0, cf. [9], Sec. 2.2. Notice that
the adjoint operator R∗kh is compact due to the Hilbert-Schmidt theorem, i.e. Rkh
is compact as well, and that Rkh is non-negative, so a complete decomposition of
Vh into eigenfunctions of Rkh is available, and each eigenvalue except for possibly
zero has finite multiplicity, see [9], Lemma 2.12 and Theorem 2.13.

Rkh has the semidiscrete representation
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Rkh =
M

∑
m=1

km〈·,ykh,m〉Vhykh,m.

Solving the eigenvalue problem (21) for the eigenfunctions ψ1
h , ...,ψ

`
h ∈Vh coincides

with the determination of their coefficient matrix ψ` ∈ RN×`. Since

Rkhψ
l
h =

M

∑
m=1

kmY·,mkh (Y
·,m
kh )

TAhψ
·,l
h` = YkhΘkYT

khAhψ
·,l
h`,

the columns of ψh` are given as the solution to the discretized eigenproblem

Rkhψh = λψh, Rkh = YkhΘkYT
khAh (22)

corresponding to the discretized problem (20).
In practice, one may replace the matrix Rkh in (22) by the symmetrized one

R̃kh =
√

AhYkhΘkYT
kh

√
Ah ∈ RN×N ,

calculate the eigenvectors ψ̃1
h`, ...,ψ̃

`
h` ∈ RN and gain ψ·,lh` by the transformation

ψ̃l
h` =

√
Ahψ

·,l
h`, l = 1, ..., `;

in addition to the effort of solving the eigenvalue problem itself, the root of the mass
matrix has to be calculated here and ` linear systems of dimension N have to be
solved.

Depending on the spatial dimension of the control problem and on the number
of gridpoints for the time and space discretizations, it may be convenient to provide
the M-dimensional eigenvalue decomposition for the adjoint operator Kkh = R∗kh
instead. If M < N holds, we deal with eigenvector-eigenvalue pairs (ψ̃l

h`,λ
l) of the

matrix

K̃kh =
√

ΘkYT
khAhYkh

√
Θk ∈ RM×M

instead. The POD basis coefficient vectors then are given by the easier transforma-
tion

ψ
·,l
h` =

1
λ l Ykh

√
Θkψ̃

l
h`, l = 1, ..., `.

In this case, neither a transformation of the eigenvectors which would require an
additional solving step of a linear system is required nor a matrix root has to be
determined; the root of the time weights matrix Θk is given elementwise since this
matrix is diagonal.

The following a-priori error estimate holds, cf. Proposition 3.3 in [15]:
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∫ T

0
‖ykh(t)−P`

hykh(t)‖2
Vh

dt =
M

∑
m=1

∥∥∥∥ykh,m−P`
hykh,m

∥∥∥∥2

Vh

=
rank(Rkh)

∑
l=`+1

λ
l .

After a POD basis of some reference trajectory ykh ∈Ykh is constructed, we introduce
the reduced state space

Y `
kh = {φkh ∈ Ykh | ∀m = 1, ...,M : φkh|Im ∈P0(Im,V `

h )}

and consider the reduced-order optimization problem

min
(y`kh,u)∈Y `

kh×Uad

1
2

M

∑
m=1

km‖ykh,m− yd,m‖2
Vh
+

ν

2
|u|2I . (23)

The first-order optimality conditions of (23), consisting of a reduced state equation
corresponding to (4), a reduced adjoint state equation corresponding to (9) and a
control equation corresponding to (10), read as

bkh(ykh,ϕkh)− (Bukh,ϕkh)I = 0 ∀ϕkh ∈ Y `
kh, (24a)

bkh(ϕkh, pkh)− (ϕkh,yd− ykh)I = 0 ∀ϕkh ∈ Y `
kh, (24b)

〈νukh−B∗pkh,u−ukh〉I ≥ 0 ∀u ∈Uad. (24c)

Since the optimal trajectory ȳkh is not available in practice to build up an appropriate
POD basis for the reduced-order model, different methods have been developed re-
cently on how to construct a reference trajectory ỹkh which covers enough dynamics
of ȳkh to build up an accurate reduced order space V `

h .
If the desired state yd is smooth and the regularization parameter ν is sufficiently

large, the dynamics of ȳkh are usually simple enough such that the state solution ỹkh
to some more or less arbitrary reference control such as ũ ≡ 1 generates a suitable
reduced space V `

h . Otherwise, if ỹkh differs too much from the optimal solution ȳkh,
it may be necessary to choose an inefficiently large basis rank ` to represent the
more complex dynamics of ȳkh in the eigenfunctions of ỹkh. Moreover, though the
properties of R(ỹkh) should guarantee a suitable approximation of ȳkh in V `

h if ` is
sufficiently large, numerical instabilities arise especially if λ` comes close to zero:
In this case, the set of eigenfunctions to R(ỹkh) corresponding to the nonzero eigen-
values is not enlarged by a basis of range(R)⊥; instead, numerical noise is added
on the eigenfunctions so that the POD basis is not improved, but even perturbed,
cf. Fig. 4. Consequently, the system matrices of the reduced-order model become
singular and the reduced order solutions get instable. One way to balance out this
problem is to provide a basis update which improves the reference control ỹkh and
hence the ansatz space V `

h .
Another method to provide accurate reduced models is the so-called Optimal-

ity System POD, where the (high-dimensional) conditions for the optimal snapshot
sample (15), (21) are included into the reduced optimization problem. The resulting
first-order optimality system which by construction includes the optimal dynamics
of the state is solved by a less accurate, but cheap routine for the high-order com-
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ponents and by a more complex method providing higher convergence orders for
the reduced equations, see [17], for instance. Let (ψ1

h , ...,ψ
`
h)⊆Vh be a rank-` POD

basis computed from some reference state ỹkh and let u`kh, ` = 1,2, ..., denote the
control solution to the reduced-order optimality system (24). We study the develop-
ment of the control errors ε`ex = |ū− ū`kh|I for various `. A stagnation of (the order
of) ε`ex may be caused by three different effects:

1. The chosen basis ranks are still too small to represent the corresponding opti-
mal state solutions ȳkh in an appropriate way. Adding some more basis vectors
may finally lead to a decay of ε`ex; the stagnation is not necessarily an indication
for a badly chosen reference trajectory. Indeed, even the optimal POD basis cor-
responding to the exact FE solution ȳkh does not guarantee small errors ε`ex for
small basis ranks, cf. our numerical tests in the next section.

2. The vector space spanned by the eigenfunctions of R(ykh) is exploited before
ε`ex decays below the desired exactness ε . As mentioned above, additional POD
elements will not improve the error decay in this case. Further, the available
information may not be sufficient to extend the current basis by additional vectors
at all.

3. The accuracy of the finite element model εex
kh = |ū− ūkh|I is reached. In this case,

expanding the POD basis may decrease the error ε`kh = |ūkh− ū`kh|I between the
high-dimensional and the low-dimensional approximation of ū, but not the actu-
ally relevant error ε`ex between ū`kh and the exact control solution ū.

Algorithm 1 (Reduced Order Modeling)
Require: Basis ranks `min < `max, initial POD basis elements ψ1

h , ...,ψ
`max
h ∈Vh, maximal number

of basis updates jmax.
1: Estimate finite element error εex

kh = |ū− ūkh|I . Set j = 1, `= `min.
2: while j ≤ jmax do
3: Set ψ`

h = (ψ1, ...,ψ`).
4: Calculate optimal control ū`kh to the `-dimensional reduced-order model.
5: Estimate ROM residual ε`kh = |ūkh− ū`kh|I .
6: if ε`kh ≤ εex

kh then
7: break (optimal accuracy reached)
8: else if ` < `max then
9: Set `= `+1. (enlarge POD basis)

10: else
11: Calculate new POD basis elements ψ1

h , ...,ψ
`max
h ∈Vh. (update POD basis)

12: Set `= `min and j = j+1.
13: end if
14: end while

We propose to choose a minimal and a maximal basis rank `min, `max at the be-
ginning and to increase the reduced model rank ` frequently, starting from `min on,
until ε`ex decays below the desired exactness ε or `max is reached; in the latter case, a
basis update is provided, choosing the lastly determined POD optimal control ū`max

kh
to calculate new snapshots and resetting the model rank on `min.
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6 Numerical Results

We test our findings combined in Algorithm 1 with the aid of an analytical test prob-
lem where the exact control, state and adjoint solutions ū, ȳ, p̄ are known explicitely.
For this purpose, we choose the one-dimensional spatial domain Ω = (0,2π), the
control space U = L2(I,R1) consisting of a single-component control u = u(t) on
the time interval I = [0, π

2 ], the single shape function χ(x) = sin(x), the lower and
upper control bounds ua = −5, ub = 5 and the regularization parameter ν = 1. To
realize the optimal triple

ȳ(t,x) = sin(x)cos(xexp(t)), p̄(t,x) = sin(x)cos(t), (25a)

ū(t) = Pad

({
π

ν
cos(t)

}
+

{
10sin(exp(2t))

})
, (25b)

we define the source term f ∈ L2(I ×Ω), the initial value y0 ∈ H1
0 (Ω) and the

desired state yd ∈ L2(I×Ω) by

f (t,x) =−sin(x)sin(xet)xet + sin(x)cos(xet)+ cos(x)sin(xet)et

+ cos(x)sin(xet)et + sin(x)cos(xet)e2t −χ(x)ū(t),

y0(x) = sin(x)cos(x),

yd(t,x) = sin(x)sin(t)+ sin(x)cos(t)+ ȳ(t,x).

Due to technical reasons, we introduce a desired control ud ∈U in addition by

ud(t) = 10sin(exp(2t))

and consider the adapted objective functional J̃(y,u) = J(y,u−ud). In the optimality
system, this has no impact on the state equation or the adjoint equation; the adapted
variational inequality for the control now reads as 〈ν(ū− ud)−B∗ p̄,u− ū〉I ≥ 0
for all u ∈Uad. By direct recalculation one sees that the functions in (25) fulfill the
adapted optimality equations. Fig. 1 illustrates the optimal solution (25).

Fig. 1 The optimal state ȳ (left), the optimal control Bū (center) and the optimal adjoint state p̄
(right) of the test setting.

The full-order optimality system (15)-(17) as well as the reduced-order one
(24) are solved by a simple fixpoint iteration un+1 = F(un) = Pad(

1
ν

B∗p(y(u)))
with admissible initial control u0. This procedure generates a converging sequence
(un+1)n∈N ⊆Uad with limit ū given that ν is not too small. In this case, F is a con-
tracting selfmapping on Uad and the Banach fixpoint theorem provides decay rates
for the residual |ū−un|I , cf. [9], Sec. 5.5. Compared to numerical strategies which
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provide higher convergence rates such as Newton methods, the numerical effort
within the single iterations is small since no coupled systems of PDEs have to be
solved.

6.1 Finite element error estimation

In order to be able to combine the a-priori finite element error estimates from
Sec. 3.3 with the a-posteriori error estimate for the POD approximation in a reason-
able way, we need to estimate the constant appearing in Theorem 3. More precisely,
we will estimate two constants Ct ,Cx > 0 such that ‖ū− ūkh‖I ≈Ctk+Cxh2 holds.
In this way, we receive slightly better results then with the constant C presented in
Theorem 3; choose C = max(Ct ,Cx) for convenience. The dependency between the
time and space discretization quantities h,k and the resulting discretization errors is
shown in Fig. 2 (left); the quality of this error indicator is shown in Fig. 2 (right).

Fig. 2 On the left, we show that the exact errors of time integration k 7→ εex
kh0

on a sufficiently fine
spatial grid h2

0� k and the exact spatial errors h2 7→ εex
k0h with sufficiently small time steps k0� h2

evolve approximatively linear in logarithmic scales. On the right, on sees that Ind(k,h)≈ εex
kh holds

given that the time and space grids are not too coarse: The bounds are sharp, but not rigorous.

We estimate such constants Ct ,Cx by solving the discretized optimality system
(15)-(17) on grids of different grid widths:

Ct =
1
k1
|ūk1h0 − ūk2h0 |I (h

2
0,k2� k1), Cx =

1
h2

1
|ūk0h1 − ūk0h2 |I (h

2
2,k0� h2

1).

Notice that this procedure does not guarantee that Ind(k,h) =Ctk+Cxh2 provides an
upper bound for the FE error. In our numerical example, we choose the parameters
h0 = 3.14e-2 and k1 = 3.08e-2, k2 = 1.57e-3 as well as k0 = 3.93e-3 and h1 =
2.99e-1, h2 = 6.22e-2 and get Ct = 0.2, Cx = 0.184.

6.2 Model reduction error estimation

We devide the time interval into M = 6400 subintervals and the spatial domain into
N = 500 subdomains. In this case, k = 2.45e-4 and h = 1.26e-2 hold. With the
growth constants given above, we expect a finite element accuracy of the magnitude
εex

kh = 7.82e-5. Let ỹkh be a perturbation of the optimal finite element solution ȳkh
such that ‖ȳkh− ỹkh‖I is of the order ε̃ = 1.00e-7. Although ε̃ < εex

kh holds true, the
POD error ε`kh and hence also the exact error ε`ex between the controls ū`kh and ūkh or
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ū, respectively, do not reach the desired accuracy εex
kh independent of the chosen basis

rank `, cf. Fig. 3 (left); the POD elements react very sensitive if the corresponding
snapshots are covered by noise. Notice that a perturbation of the control generating
the snapshots would not have this destabilizing effect on the POD basis.

After providing a basis update, we observe that the low-order model error ε`kh
decays far below the high-order model accuracy εex

kh for increasing basis rank ` while
the exact error ε`ex stagnates on the level of εex

kh as expected, cf. Fig. 3 (right). Starting
with `min = 12, the Algorithm stops successfully after three basis extensions without
requiring a further basis update.

Fig. 3 Here we present the decay behavior of the errors ε`kh and ε`ex in dependence of the chosen
POD basis rank ` as well as the desired FE error level εex

kh . On the left, a POD basis belonging to a
small pointwise perturbation of the optimal state is applied to bouild up the reduced order model.
On the right, we use an updated POD basis.

In Fig. 4 we compare the two POD bases. It turns out that overall, the first fif-
teen basis elements coincide, except of possibly the sign. Then, the noise starts to
dominate the perturbed basis; the seventeenth basis function has no structure any
more (left). In contrast, the updated basis spans a subspace of Vh with approxima-
tive dimension 34. POD elements of higher rank order than 34 get unstable as well
(right), but here, the spanned space is already sufficiently large and includes enough
dynamics of the optimal state solution to represent ȳkh up to FE precision.

Fig. 4 Some elements of the perturbed (left) and the updated (right) POD basis in comparison.

Finally, we compare the effort of the full-order model with the reduced one. The
calculation times of the single steps are presented in Tab. 1; the calculations are
provided on an Intel(R) Core(Tm) i5 2.40 GHz processor.
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Process (ROM) Time # Total

Estimate FE error 6.04 sec 1× 6.04 sec
Calculate snapshots 3.17 sec 2× 6.34 sec
Solve eigenvalue problem 19.09 sec 2× 38.17 sec
Assemble reduced system 0.33 sec 2× 0.66 sec
Solve reduced system 0.87 sec 50× 43.65 sec
Evaluate error estimator 7.28 sec 2× 14.56 sec
Total 109.40 sec

Process (FEM) Time # Total

Solve full-order system 25.81 sec 30× 774.27 sec
Total 774.27 sec

Table 1 The duration of the single processes within the reduced order modelling routine with
adaptive basis selection.

We use N = 4000 finite lements now and M = 4000 time steps. Without model
reduction, 30 fixpoint iterations are required, taking 774.27 seconds in total. To
avoid noise in the POD elements, we choose adaptive basis ranks `min = `max =
min{20, `σ} where `σ = max{` | λ` > 1.0e-12}: No basis elements corresponding
to eigenvalues close to zero shall be used to build up the reduced model. As be-
fore, the first solving of the reduced optimality system requires 30 iterations, but the
model error ε`kh is still above the desired accuracy εex

kh . The rank of the reduced-order
problem is 14 (since λ15 = 4.03e-13). Providing one basis update with the snapshots
y`kh(ū

14
kh), the new POD elements include more dynamics of the problem although the

eigenvalues decay as before; now, we have ` = 15 (since λ16 = 2.61e-13), the fix-
point routine terminates after 20 iterations and ε`kh decays below the FE accuracy.
The reduced-order modelling takes 109.40 seconds, 14.09% of the full-order solv-
ing.
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30. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Appli-
cations. Graduate Studies in Mathematics 112, American Math. Society, Providence, Rhode
Island (2010)


