
Energy-Efficiency and Performance Comparison
of Aerosol Optical Depth Retrieval on
Distributed Embedded SoC Architectures

Dustin Feld, Jochen Garcke, Jia Liu, Eric Schricker, Thomas Soddemann, and Yong
Xue

Abstract The Aerosol Optical Depth (AOD) is a significant optical property of
aerosols and is applied to the atmospheric correction of remotely sensed surface
features as well as for monitoring volcanic eruptions, forest fires, and air quality in
general, as well as gathering data for climate predictions on the basis of observations
from satellites. We have developed an AOD retrieval workflow for processing satellite
data not only with ordinary CPUs but also with parallel processors and GPU acceler-
ators in a distributed hardware environment. This workflow includes pre-processing
procedures which are followed by the runtime dominating main retrieval method.
In this paper, we investigate if and how the main retrieval method can accomodate
recent upcoming embedded hardware architectures in the field of high perfor-
mance computing. We analyze and confirm the achieved performance as well as
energy efficiency with real-world data from the moderate-resolution imaging spectro-
radiometer (MODIS) and even compare the potential of those new architectures to
today’s commonly available HPC hardware. Due to the very low energy intake, such
embedded hardware architectures provide a great chance for situations with strong
energy constraints like the pre-processing of recorded data on board of satellites.

Dustin Feld · Eric Schricker · Thomas Soddemann
Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53757
Sankt Augustin, Germany
e-mail: dustin.feld@scai.fraunhofer.de

Jochen Garcke
Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53757
Sankt Augustin, Germany
Institute for Numerical Simulation, University of Bonn, Wegelerstr. 6, 53115 Bonn, Germany

Jia Liu · Yong Xue
Institute of Remote Sensing and Digital Earth, Beijing, China

1



2 D. Feld, J. Garcke, J. Liu, E. Schricker, T. Soddemann, and Y. Xue

1 Introduction

Atmospheric aerosols are liquid or solid particles suspended in the air from natural
and anthropogenic origin. They scatter and absorb solar radiation, and, to a lesser
extent, scatter, absorb and emit terrestrial radiation (direct effects). Additionally,
aerosols acting as cloud condensation nuclei and ice nuclei are referred to as indirect
effects. A consequence of the direct effect (caused by absorbing aerosols) which
changes cloud properties is called the semi-direct effect [5]. Besides the fact that
aerosols affect the air quality and human health [8], such aerosol effects are currently
considered one of the largest uncertainties in global radiative forcing [11]. These
aspects have made the characterization of atmospheric aerosols a great concern in
recent years.

The Aerosol Optical Depth (AOD), a measure of light extinction by aerosols in
the atmospheric column above the earth’s surface, is a comprehensive variable to
remotely assess the aerosol burden in the atmosphere [14]. AOD data can be used
by applications like the atmospheric correction of remotely sensed surface features,
monitoring of sources and sinks of aerosols, radiative transfer models etc.

Compared with ground measurements, satellite remote sensing provides an effec-
tive method for monitoring spatial distribution and temporal variation of aerosols.
Many approaches have been developed for the retrieval of AOD using satellite
remote sensing observations, including the use of advanced very-high-resolution
radiometer (AVHRR), medium-resolution imaging spectrometer (MERIS), moderate-
resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiome-
ter (MISR) and others [6].

A wide range of datasets have been published since the operation of MODIS
sensor on TERRA and AQUA satellites. The broad swath of 2330 km enables MODIS
to provide global coverage with near daily frequency [14]. AOD datasets derived
from MODIS observations have been used to estimate surface particulate matter [13],
construct global climatology [10] etc. One commonly used AOD dataset can be
obtained from the National Aeronautics and Space Administration (NASA) based
on the DarkTarget and DeepBlue method [2]. The work in this paper adopts the
synergetic retrieval of aerosol properties (SRAP) algorithm developed by in [17] to
generate AOD datasets over China.

2 Method

Although many approaches have been developed to retrieve AOD, it is still a difficult
task to retrieve AOD over land because it is not easy to separate aerosols’ signals
from the land surface contributions. This paper takes the SRAP-MODIS algorithm
as the study case. It has been developed to solve the aerosol retrieval problem
over bright land surfaces. The algorithm utilizes the high-frequency multi-temporal
and multi-spectral information from MODIS data aboard both TERRA and AQUA
satellites to produce the AOD results.



Parallel AOD Retrieval on SoC Systems 3

Table 1 Symbols and applied values used in the SRAP algorithm.

Symbol Implication

input

A′i, j apparent reflectance (reflectance on the top of atmosphere)
a a = 2 (cf. [12] and [16])
bi bi = secθi , with θi the solar zenith angle for two satellite observations
ε ε = 0.1
λi wavelengths for three visible bands
b′i b′i = secθ′i , with θ

′
i the sensor zenith angle for two satellite observations

output
Ai, j ground surface reflectance
βi Ångstrom’s turbidity coefficient
α wavelength exponent

The SRAP-MODIS algorithm is a simple but practical algorithm introduced in [16]
on an operational bi-angle approach model for retrieving AOD and the earth surface
reflectance [12]. More details can be found in [17].

In the algorithm, the ground surface reflectance Ai, j is expressed by

Ai, j =
(aA′i, j − bi) + bi (1 − A′i, j )eε(bi−a)(0.00879λ−4.09

j +βiλ
−α
j )b′i

(aA′i, j − bi) + a(1 − A′i, j )eε(bi−a)(0.00879λ−4.09
j +βiλ

−α
j )b′i

, (1)

where i = 1, 2 represent the observations of TERRA MODIS and AQUA MODIS
respectively, and j = 1, 2, 3 stand for three visible spectral bands at central wavelengths
of 470, 550, 660 nm.

The symbols in Eq. (1) include both, known variables extracted from MODIS
hierarchical data format (HDF) information such as A′i, j (the reflectance on the Top
Of Atmosphere (TOA)) and unknown variables to be solved for, the symbols in Eq. (1)
are listed and explained in Table 1.

By assumption, the ground surface bidirectional reflectance properties and aerosol
types and properties do not change for two MODIS observations within short time
intervals between TERRA and AQUA overpass. Thus, the wavelength exponent
α is invariant for two observations and three visible bands. Ångstrom’s turbidity
coefficient, which represents the concentration of aerosol particles, may change for
two overpass TERRA and AQUA observations; hence we have β1 and β2 for two
overpass times.

The ground surface reflectance Ai, j can be approximated by the variation in the
wavelength and the variation in the geometry [1]. Under this assumption, the ratio of
two views’ ground surface reflectance K j for the wavelength j can be formulated as

K j =
A1, j

A2, j
, (2)

where A1, j and A2, j are the surface reflectances for the TERRA MODIS and AQUA
MODIS.



4 D. Feld, J. Garcke, J. Liu, E. Schricker, T. Soddemann, and Y. Xue

Since aerosol extinction decreases rapidly with the wavelength, the AOD at
2.12 µm is very small compared to that at the visible spectra bands. The atmospheric
contribution at 2.12 µm is relatively small, hence Kλ=2.12µm can be approximated
as the ratio between the reflectance on the TOA. Besides, since K j is assumed
independent of the wavelength, the value at 2.12 µm can be used for the visible bands.
Thus, Eq. (3) is serving as the constraint between two ground surface reflectances for
each visible band:

A1, j

A2, j
= K j = Kλ=2.12µm =

A′1,λ=2.12µm

A′2,λ=2.12µm
. (3)

As a result, the unknown variables reduce to three, i.e. Ångstrom’s turbidity
coefficient βi (i = 1, 2) for two overpass observations and the wavelength exponent α.
Three equations containing three unknown variables to be solved are formed.

In our implementation, the three variables β1, β2 and α from the obtained nonlinear
equations are solved using the Broyden quasi-Newton method in the implementation
from the ‘Numerical Recipes in C’ [9]. The known variables in Table 1 are taken as
the input data for the method while it outputs the results for βi and α. These values
are then used to calculate the resulting ground surface reflectances Ai, j and to further
calculate the AOD τA according to Ångstrom’s turbidity formula

τA = βiλ
−α
j . (4)

Figure 1 shows an example of an AOD result map for the observed benchmark
region.

Fig. 1 AOD result map for AQUA MODIS at 550 nm band.



Parallel AOD Retrieval on SoC Systems 5

3 Implementation

For an appropriate AOD retrieval using the SRAP algorithm, pre-processing proce-
dures such as cloud masking, absorption and geometric corrections, interpolations
etc. need to be implemented and applied in addition to the final AOD model solving.
We profiled the runtime of all serial procedures for the retrieval workflow on a
workstation system in an earlier publication [4]. The profiling results showed that
the final AOD model solving procedure takes up almost 50% of the total workflow
runtime and, thus, is the most time-consuming part. It is therefore in the exclusive
focus of the study in this paper. The pseudo code for the AOD model solving part is
shown in Algorithm 1. It mainly consists of data input and output (I/O) procedures,
i.e. the image data reading and writing from or to hard disk steps and the computation
performing the solving of nonlinear equations and AOD calculation according to
Ångstrom’s turbidity formula addressed in Sect. 2. The reading and writing of image
data from and to disc were implemented using the Geospatial Data Abstraction Library
(GDAL) [15]. These functions are not parallelized and are therefore executed on a
single core of the host CPU for all versions of the implementation. The computation
procedure has a pixel-based nature in the operations without communication across
the pixels. Thus, the solving of nonlinear equations and the AOD calculation for each
pixel can be assigned to an individual parallel thread without any explicit or implicit
synchronization.

For multi-core processors, the loop in Algorithm 1 was parallelized using an
OpenMP directive ‘#pragma omp parallel for’ with the advanced schedul-
ing strategy ‘schedule (dynamic)’. This choice of a dynamic scheduling
strategy is crucial for a good resulting performance as the time needed for the
individual pixels’ calculation varies depending on the input vector. This is based on
varying convergence speeds for different inputs on the one hand and on the fact that
different pixels follow different control flows in the calculation kernel on the other
hand. E.g. the calculation for a pixel over sea finishes way faster than one over land.
If a static scheduling is applied, coherent regions over sea are typically mapped to the
same core and this core would therefore become idle long before other ‘over-land’
cores finish their calculation. As the calculation time for each pixel is relatively long,
the overhead for dynamic scheduling pays off. Alternatively, a static scheduling with
a chunk-size of 1 behaves similar. This influence was intensively studied and verified
in an earlier publication [3].

For the GPU implementation, the Compute Unified Device Architecture C (CUDA-
C) was used. A respective AOD kernel was designed and implemented so that each
thread corresponds to the calculation for one pixel. The pixels are distributed on a
grid-block of parallel threads. After reading the images from disc, the input images’
data are copied from the CPU host’s main memory to the GPU device’s global
memory at once, and, after computation of the AOD result, data are copied back to the
CPU host and written to output files on disc. The thread-block size was configured to
8× 8 parallel threads per thread-block and the dimensions of the grid of thread-blocks
were set dynamically corresponding to the image size to cover the whole image with
thread-blocks.



6 D. Feld, J. Garcke, J. Liu, E. Schricker, T. Soddemann, and Y. Xue

Algorithm 1: Pseudo code for the AOD model solving.
Data: corrected reflectance, sensor zenith, solar zenith, initial values
Result: AOD results
read-in the scene’s image data (with GDAL)
create an image representation of each spectral band
if calculate DISTRIBUTED then

split the scene (each representation) in #nodes blocks
distribute the data via message passing (MPI)

OnEach Node do in parallel
if use CUDA GPU then

copy image representations to the accelerator’s memory
for each pixel p in the scene do in parallel

use xp to solve (1) with (3) for
α (wavelength exponent) and
β (Ångstrom’s turbidity coefficient)

calculate (4)
τA (AOD according to Ångstrom’s turbidity formula)

if use CUDA GPU then
copy back results from the accelerator’s memory

if calculate DISTRIBUTED then
collect results from all nodes

write resulting images to files

For distributed computing, the Message Passing Interface (MPI) was used to
combine the computing power of multiple nodes. The input images were uniformly
split into approximately identically sized pieces according to the number of nodes.
Each resulting part of the input image is distributed to its node and AOD is computed
there either on the multi-core processors or the GPU. Because of the static splitting,
the workload on the different nodes may be unbalanced but due to the relatively
slow interconnect with gigabit ethernet, a splitting into smaller portions combined
with a dynamic distribution on request is not investigated for this architecture. It
could nevertheless improve the multi-node performance furthermore. After the
computations on all nodes have finished, the AOD results are finally gathered from all
nodes and combined. Algorithm 1 and Fig. 2 depict the overall parallel procedure of
the AOD retrieval (xp represents the vector containing observations for the different
spectral bands for pixel p).

4 Embedded Low-Energy System

We set up an embedded system combined of four NVIDIA Tegra K1 (TK1) boards
as shown in Fig. 3. These boards are designed to provide relatively high computing
power especially for GPU applications while consuming only a relatively low amount



Parallel AOD Retrieval on SoC Systems 7

Fig. 2 Multi-level parallelization on the spectral bands’ data hypercube.

of energy. They are primarily targeted for mobile applications. The TK1 builds on
the same NVIDIA Kepler architecture that drives high performance graphic compute
units like the Tesla K20, but with much fewer cores (192 compared to 2496), slower
and less memory (2GB DDR3 memory shared with the CPU compared to 5GB
of exclusive GDDR5 memory) and other restrictions. Each board is driven by a
4 + 1 ARM Cortex A15 with four fast cores and one ultra low-energy core. As a
consequence, a whole TK1 board has a power intake of not more than 10watts while
a high performance graphics card may take in up to 225watts. In the middle of such
‘extreme’ GPUs, there is a wide variety of CUDA capable GPU accelerators, like the
NVIDIA GTX 680 we use in our benchmarks. This card contains 1536 CUDA cores,
2GB exclusive GDDR5 memory and consumes up to 200watts.

Gigabit
Ethernet
Switch

Data (synchronized)

NVIDIA Jetson TK1

SD-Card

16GB
eMMC

OS

Gigabit
Ethernet

USB 3.0

SATA
3.0

ARM A15
4+1 Cores

2GB DDR3L

Kepler GPU
192 Cores

128GB
SSD

NVIDIA Jetson TK1

SD-Card

16GB
eMMC

OS

Gigabit
Ethernet

USB 3.0

SATA
3.0

ARM A15
4+1 Cores

2GB DDR3L

Kepler GPU
192 Cores

128GB
SSD

NVIDIA Jetson TK1

SD-Card

16GB
eMMC

OS

Gigabit
Ethernet

USB 3.0

SATA
3.0

ARM A15
4+1 Cores

2GB DDR3L

Kepler GPU
192 Cores

128GB
SSD

NVIDIA Jetson TK1

SD-Card

16GB
eMMC

OS

Gigabit
Ethernet

USB 3.0

SATA
3.0

ARM A15
4+1 Cores

2GB DDR3L

Kepler GPU
192 Cores

128GB
SSD

Headnode

Fig. 3 Jetson TK1 cluster configuration.



8 D. Feld, J. Garcke, J. Liu, E. Schricker, T. Soddemann, and Y. Xue

Undoubtedly, such high performance GPU devices like the K20 provide computa-
tional power that is of a higher order ofmagnitude (3.52Tflops [peak single-precision])
than the TK1’s GPU chip (326Gflops [peak single-precision])1. As well, a high
performance Intel Xeon CPU computes way faster than the equipped ARM cores on
the TK1.

Certainly, the best performing hardware solution with a fast CPU and a fast GPU
composed of the aforementioned hardware would be a system combining Intel Xeon
CPUs with NVIDIA Tesla GPUs. If hard energy constraints similar to automotive or
on-board satellite situations exist, a low-energy constellation like on the TK1 may be
chosen. The question to be answered in this paper is, what to choose if the energy
efficiency of such different configurations is the criterion of choice. This can be
formalized by the pixels

joule =
pixels

wattsecond ratio. Real-time computations producing new
input data every M minutes combined with the demand to save energy are typical
scenarios. If new data arrives every M minutes, a solution with lower performance
and lower energy consumption may be preferable to high performance solutions as
long as it processes the data set in less than M minutes to meet the time constraint.

In the following benchmarks, each hardware constellation is used to compute the
AOD for the same earth region so that the number of pixels is constant. Therefore, the
overall energy consumption can be used to compare the energy efficiency of different
hardware constellations.

5 Benchmarks

The benchmarks’ input data are extracted and pre-processed from MODIS HDF data,
which can be downloaded from the Level-1 and Atmosphere Archive and Distribution
System (LAADS Web) [7]. The data was selected randomly from February 1, 2012
and it covers 84◦E-134◦E, 38◦N-48◦N, which corresponds to 5000 × 1000 pixels.
The spatial resolution of each pixel is 1km. In the following benchmarks, calculations
are performed with single-precision floating point data.

5.1 Benchmark Environment

We used two benchmark systems in our experiments: the aforementioned low-energy
system based on four NVIDIA Tegra K1 boards from Sect. 4, each equipped with
an ARM 4(+1) quad-core CPU and an NVIDIA Kepler GPU, and a workstation
equipped with an Intel Xeon E3-1275 V2 CPU and an NVIDIA GTX 680 GPU.
Details are shown in Table 2.

First we compare the performance of the two hardware systems and their different
processor types in Sect. 5.2, second we show how they behave in terms of energy

1 http://www.nvidia.com



Parallel AOD Retrieval on SoC Systems 9

Table 2 Benchmark system configurations.

CPU GPU

Type Intel® Xeon® E3-1275 V2 NVIDIA® GTX 680
WORKSTATION #Cores 4 (8 with HT) 1536
(Scientific Linux 6.6) Clock-Speed 3,5 GHz 1058 MHz

Memory 8 GB DDR3 2 GB GDDR5

Type ARM Cortex A15 NVIDIA® Kepler™
TEGRA CLUSTER #Cores 4(+1) quad-core 192 CUDA cores
(Gentoo Linux) Clock-Speed up to 2.3 GHz 852 MHz

Memory 2 GB DDR3 (shared memory space)

Table 3 Calculation runtime, HPCo=̂High Power Core, LPCo=̂Low Power Core, T=̂Threads.
1xSoC 4xSoC XeonWS

Runtime CPU GPU MPI CPU GPU
1 LPCo 1 HPCo 4 HPCo 1 LPCo 1 HPCo 1 HPCo+GPU 1T 4T

Calculation 2914.83 2861.37 717.37 47.14 46.93 18.13 192.15 49.28 3.92
I/O 4.78 4.08 3.94 4.87 4.24 4.23 1.81 1.44 1.44

Overall 2919.62 2865.45 721.31 52.01 51.16 22.36 193.97 50.72 5.36

consumption and efficiency in Sect. 5.3. As the TK1 contains not only the quad-core
CPU and a GPU but also an additional low power core, we as well analyze the
potential of this core in both counts (energy consumption and efficiency). Regarding
this, the four powerful cores are named HPCores, the additional low power core is
named LPCore. The TK1 ‘System on Chip’ boards are also referred to as SoC and the
workstation as XeonWS.

All runs were performed 10 times, the maximal and minimal runtime and energy
values were neglected and the average of the remaining 8 runs is reported. The
relative standard deviation of the runtimes of all single node runs was below 1% in
our benchmarks while the one of the multi-node runs with four TK1 boards was still
below 2%. The respective ranges of power intake are shown by the shaded areas in
Figures 7-14.

Whenever only one TK1 system is used, the results are reported in green, if more
than one TK1 boards are used, it is shown in purple and for the Xeon workstation in
gray.

5.2 Performance Benchmarks

Table 3 contains the calculation runtimes for all constellations while Fig. 4 only shows
the most relevant times as a bar chart. The results for one board (1xSoC) reveal that
using one of the faster four cores instead of the low energy core improves the runtime
by only about two percent. Using all four fast cores with multi-threading instead of
one of those leads to a near-ideal overall speedup of 3.97x. Executing the code on



10 D. Feld, J. Garcke, J. Liu, E. Schricker, T. Soddemann, and Y. Xue

Calculation runtime [s]
1

2863.37sCPU 1HPCore
717.37sCPU 4HPCore

1x
So

C
GPU 1HPCore | 46.93s

GPU 1HPCore | 18.13s

4x
So

C

CPU 1T | 192.15s
CPU 4T | 49.28s

X
eo

nW
S

GPU | 3.92s

0s 500s 1000s 1500s 2000s 2500s 3000s

Fig. 4 Calculation runtime, HPCore=̂High Power Core, T=̂Threads.

one SoC on the GPU, while the serial I/O is performed on one of the faster ARM
CPU cores, is 14x faster than on the four main ARM cores. Activating the low power
core instead of a normal one leads to a 15% performance loss in the CPU based I/O
routines while it does not significantly influence the GPU based calculation time.
Therefore, the best performing single SoC configuration is to use one of the faster
ARM cores for the I/O routines along with the GPU for the calculation part.

Distributing the work on all four boards with this configuration leads to an
additional speedup of 2.3x. Figure 5 shows how the runtime decreases the more
boards are used to process the whole work. It as well shows how the speedup stagnates
from 1.63x when taking two boards, 2.07x for three and, finally, 2.6x for all four
boards. This confirms that the interconnect via gigabit ethernet, which is used for the
MPI communication, can become a de facto bottleneck in such a system configuration.

Comparing those runtimes to the workstation shows that multi-threading on the
Xeon CPU as well scales near-optimal with a speedup of 3.82x on four cores and
that the Xeon CPU performs about 15x better than one ARM core. The resulting
performance on all Xeon cores is comparable to the performance of one TK1 with the
GPU. The GPU in the workstation expectedly reaches the best overall performance.

Calculation runtime (MPI) [s]
1

47.08sGPU 1HPCore1xSoC

28.92sGPU 1HPCore2xSoC

22.67sGPU 1HPCore3xSoC

18.13sGPU 1HPCore4xSoC

0s 5s 10s 15s 20s 25s 30s 35s 40s 45s 50s

Fig. 5 Calculation runtime (MPI), HPCore=̂High Power Core, T=̂Threads.



Parallel AOD Retrieval on SoC Systems 11

5.3 Energy Benchmarks

Table 4 contains the respective energy consumptions for all configurations. The power
intake was measured with an ISO certified digital multimeter ’Voltcraft VC870’ at the
maximal clock-rate of one measurement per second. This introduces an inaccuracy
for small runtimes that should be equalized by averaging the consumption of multiple
repeated runs. As in the previous section, Fig. 6 shows the most relevant results as a
bar chart. As the system allows it, we deactivated all cores that are not used in any of
the TK1 measurements.

Table 4 Energy consumption, HPCo=̂High Power Core, LPCo=̂Low Power Core, T=̂Threads.
1xSoC 4xSoC

Power/Energy CPU GPU MPI
1 LPCo 1 HPCo 4 HPCo 1 LPCo 1 HPCo 1 HPCo+GPU

∅ Power Intake [W] 4.14 4.30 5.06 6.48 6.64 27.32
Energy consumption [Ws] 12086.11 12309.49 3650.93 337.20 339.61 610.88

pixels/Ws 414 406 1370 14828 14723 8185
XeonWS

Power/Energy CPU GPU
1T 4T

∅ Power Intake [W] 79.07 103.88 164.36
Energy Consumption [Ws] 15336.89 5268.56 880.95

pixels/Ws 326 949 5676

Energy Consumption [Ws]
1

12309.49WsCPU 1HPCore
3650.93WsCPU 4HPCore

1x
So

C

GPU 1HPCore | 339.61Ws

GPU 1HPCore | 610.88Ws

4x
So

C

15336.89WsCPU 1T
| 5268.56WsCPU 4T

X
eo

nW
S

GPU | 880.95Ws

0Ws 3000Ws 6000Ws 9000Ws 12000Ws 15000Ws

Fig. 6 Energy consumption, HPCore=̂High Power Core, T=̂Threads.

Executing the code on four cores instead of only one on the CPU consumes only
about 3650.93Ws compared to 12309.49Ws and is therefore much more energy
efficient as the four core version is 3.97x faster and only has a 18% higher average
power intake (~5.1W cp. to 4.3W - see Fig. 7 and 8). This is based on a relatively
high power intake for all the periphery in the idle system. The best energy efficiency
on one TK1 board is reached when using the GPU.



12 D. Feld, J. Garcke, J. Liu, E. Schricker, T. Soddemann, and Y. Xue

As shown in Sect. 5.2, exhausting the compute power of all four TK1 boards leads
to the best TK1 performance but not with an ideal scaling due to the inter-board
communication via ethernet. As the power intake grows linearly when using multiple
identical boards simultaneously (plus some extra power for the ethernet switch), using
multiple boards does not improve the energy efficiency.

Comparing those results to the ones of the workstation, the TK1 system is for
every configuration (single-core CPU, multi-core CPU, GPU) more energy efficient
than its pendant on the workstation. Nevertheless, the high power intake of the
workstation’s components is almost equalized by the likewise faster computing. The
biggest advantage in terms of energy efficiency can be seen in the GPU benchmarks.
While the workstation’s GPU consumes 880.95Ws for the whole calculation, a single
TK1 board settles this task with consuming only 339.61Ws.

For better comparison, Table 4 additionally contains the pixels
Ws ratio which

quantifies how many pixels can averagely be calculated with the energy of one
wattsecond (resp. one joule).

Figures 7-14 illustrate the power intake over time for the different runs. The shaded
areas represent the range of variation in the repeated runs. It can be concluded that the
power intake on the TK1s is generally very stable over time (cp. especially Fig. 14).
On the workstation, there is more deviation in the intake, especially for the GPU runs,
but this was probably caused by the very short runtimes with only few measurement
points.

0 500 1000 1500 2000 2500

4.
0

4.
5

5.
0

5.
5

time [s]

P
ow

er
 in

ta
ke

 [W
]

Fig. 7 Power intake 1xSoC CPU 1HPCore.

0 100 200 300 400 500 600 700

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

5.
6

time [s]

P
ow

er
 in

ta
ke

 [W
]

Fig. 8 Power intake 1xSoC CPU 4HPCore.



Parallel AOD Retrieval on SoC Systems 13

0 10 20 30 40 50

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

time [s]

P
ow

er
 in

ta
ke

 [W
]

Fig. 9 Power intake 1xSoC GPU 1HPCore.

0 5 10 15 20 25

23
24

25
26

time [s]

P
ow

er
 in

ta
ke

 [W
]

Fig. 10 Power intake 4xSoC GPU 1HPCore.

0 50 100 150 200

75
80

85
90

95
10

0

time [s]

P
ow

er
 in

ta
ke

 [W
]

Fig. 11 Power intake XeonWS CPU 1T.

0 10 20 30 40 50

80
85

90
95

10
0

10
5

11
0

time [s]

P
ow

er
 in

ta
ke

 [W
]

Fig. 12 Power intake XeonWS CPU 4T.

1 2 3 4 5 6

80
10

0
12

0
14

0
16

0
18

0

time [s]

P
ow

er
 in

ta
ke

 [W
]

Fig. 13 Power intake XeonWS GPU.

1

CPU 1HPCore
CPU 4HPCore

1x
So

C

GPU 1HPCore

GPU 1HPCore

4x
So

C

CPU 1T
CPU 4T

X
eo

nW
S

GPU

0W 50W 100W 150W 200W
Average Power Intake [W]

Fig. 14 Power intake range (• =̂ Average).

The ranges of power intake among the 10 repeated runs are shown by the shaded areas.



14 D. Feld, J. Garcke, J. Liu, E. Schricker, T. Soddemann, and Y. Xue

6 Discussion

Concerning the suitability for parallel execution and the applicability for different
parallel architectures, the results from Sect. 5 show that the code scales very well in
a multi-threaded shared memory environment and is exceptionally well suited for
GPU computing. As a result, a GPU on a TK1 board can achieve a performance
comparable to the Xeon CPU while consuming only a fraction of the energy. The
difference in both, energy consumption and performance, of the low power ARM
core on the TK1 to one of the ‘normal’ cores was rather small in our benchmarks.
Due to the existent but not ideal multi-node scaling, the usage of multiple boards
improves performance on the one hand but diminishes energy-efficiency on the other
hand.

In an earlier publication [3], we investigated the performance and energy efficiency
of the retrieval code in a server environment equipped with a high performance Kepler
K20 GPU. The calculation of the same scene took 2.61 s on the GPU consuming
621.91Ws (approximately 60% is consumed by the GPU, 40% by the remaining
system) while processing 8040 pixels per Ws. Thus, the energy efficiency of this high-
end server system is in between the one of the GPU in the benchmarked workstation
system and the one on a TK1 board.

Which configuration to choose therefore strongly depends on the environmental
constraints. The most energy efficient solution for executing the presented code
is to use the GPU of one TK1 board. If the energy restrictions are a bit looser, a
compound of several such boards can further improve the performance while keeping
the energy intake relatively low. Such a system outperforms our Xeon CPU on four
threads by a factor of 2.7x while the Xeon system consumes more than 8.6x times
the energy. It has to be noted that the idling GPU power intake is included in such
CPU measurements on the workstation.

When looking purely for highest computational performance with no energy
constraints, the workstation GPU clearly wins.

Considering all benchmarks and both goals, performance and energy-efficiency, a
very interesting workstation constellation for the future will be a low energy CPU
along with a high-end GPU.

7 Outlook

In this paper, we investigated the potential of an embedded SoC architecture equipped
with a multi-core ARM processor and an NVIDIA Kepler GPU in terms of both,
computational performance and energy efficiency for the retrieval of AOD. The results
show that embedded SoC boards like the NVIDIA Tegra K1 provide a relatively high
computational power paired with a low power intake, especially if a code can make
efficient use of the GPU.

In the future, we plan to port more codes that are used in real-time scenarios to
such architectures to save energy in scenarios where either the energy constraints are



Parallel AOD Retrieval on SoC Systems 15

naturally tight or where the provided computational power of such systems is simply
sufficient.

Acknowledgements This work was partially funded by the German Ministry for Education and
Research (BMBF) under project grant 01|S13016A within the ITEA2-Project MACH.

References

1. R. J. Flowerdew and J. D. Haigh, An approximation to improve accuracy in the derivation of
surface reflectances from multi-look satellite radiometers, Geophysical Research Letters, 22
(1995), pp. 1693–1696.

2. R. C. Levy, S. Mattoo, L. A. Munchak, et al., The Collection 6 MODIS aerosol products
over land and ocean, Atmospheric Measurement Techniques, 6 (2013), pp. 2989–3034.

3. J. Liu, D. Feld, Y. Xue, J. Garcke, and T. Soddemann,Multicore processors and graphics
processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data:
Implementation, performance, and energy efficiency, IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 8 (2015), pp. 2306–2317.

4. J. Liu, D. Feld, Y. Xue, et al., An efficient geosciences workflow on multi-core processors and
GPUs: A case study for aerosol optical depth retrieval from MODIS satellite data, International
Journal of Digital Earth, 9 (2016), pp. 748–765.

5. U. Lohmann and J. Feichter,Global indirect aerosol effects: A review, Atmospheric Chemistry
and Physics, 5 (2005), pp. 715–737.

6. L. Mei, Y. Xue, H. Xu, et al., Validation and analysis of aerosol optical thickness retrieval
over land, International Journal of Remote Sensing, 33 (2012), pp. 781–803.

7. NASA, Level 1 and Atmosphere Archive and Distribution System (LAADS Web). Website, 2015.
Online at http://ladsweb.nascom.nasa.gov/, visited 2015-10-20.

8. U. Pöschl, Atmospheric aerosols: Composition, transformation, climate and health effects,
Angewandte Chemie International Edition, 44 (2005), pp. 7520–7540.

9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C (2nd Ed.): The Art of Scientific Computing, Cambridge University Press, New York, NY,
USA, 1992.

10. L. A. Remer, R. G. Kleidman, R. C. Levy, et al.,Global aerosol climatology from the MODIS
satellite sensors, Journal of Geophysical Research: Atmospheres, 113 (2008). D14S07.

11. T. F. Stocker, D. Qin, G.-K. Plattner, et al., Technical summary, in Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al.,
eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013,
book section TS, pp. 33–115.

12. J. Tang, Y. Xue, T. Yu, and Y. Guan, Aerosol optical thickness determination by exploiting the
synergy of TERRA and AQUAMODIS, Remote Sensing of Environment, 94 (2005), pp. 327–334.

13. T.-C. Tsai, Y.-J. Jeng, D. A. Chu, J.-P. Chen, and S.-C. Chang, Analysis of the relationship
between MODIS aerosol optical depth and particulate matter from 2006 to 2008, Atmospheric
Environment, 45 (2011), pp. 4777–4788.

14. Y. Wang, Y. Xue, Y. Li, et al., Prior knowledge-supported aerosol optical depth retrieval over
land surfaces at 500m spatial resolution with MODIS data, International Journal of Remote
Sensing, 33 (2012), pp. 674–691.

15. F. Warmerdam, GDAL - Geospatial Data Abstraction Library. Website, 2015. Online at
http://www.gdal.org/, visited 2015-10-20.

16. Y. Xue and A. P. Cracknell, Operational bi-angle approach to retrieve the earth surface
albedo from AVHRR data in the visible band, International Journal of Remote Sensing, 16
(1995), pp. 417–429.



16 D. Feld, J. Garcke, J. Liu, E. Schricker, T. Soddemann, and Y. Xue

17. Y. Xue, X. He, H. Xu, et al., China Collection 2.0: The aerosol optical depth dataset from
the synergetic retrieval of aerosol properties algorithm, Atmospheric Environment, 95 (2014),
pp. 45–58.


