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Summary. Spinodal decomposition, i.e., the separation of a homogeneous mixture
into different phases, can be modeled by the Cahn-Hilliard equation - a fourth
order semilinear parabolic equation. If elastic stresses due to a lattice misfit become
important, the Cahn-Hilliard equation has to be coupled to an elasticity system to
take this into account.

It is the goal of this paper to understand how elastic effects influence the for-
mation of patterns during spinodal decomposition and to analyze what kind of
morphologies one has to expect. It is shown that with a probability close to one,
the dynamics of randomly chosen initial data in the neighborhood of a uniform
mixture will be dominated by an invariant manifold which is tangential to the most
unstable eigenfunctions of the linearized operator. For example in the case of cu-
bic anisotropy it is shown that the most unstable eigenfunctions reflect the cubic
anisotropy and the anisotropy will influence the dynamics quite drastically.

1 Introduction

In this paper we consider spinodal decomposition in binary alloys in the case
where elastic effects become important. It is well known that complex pat-
terns may form in the early stages of spinodal decomposition. We are inter-
ested to understand the effect elastic interactions may have on the formation
of patterns.

The typical scenario of spinodal decomposition is as follows. At temper-
atures above a certain critical temperature a uniform mixture of the two
components in the alloy is stable. After a rapid quenching this state can be-
come unstable and regions where one or the other of the two components
dominate occur. It is the goal of this paper to understand how these regions
form and to analyze what kind of morphologies one has to expect.

Let ¢1,ca denote the concentrations of the two alloy components. Since
c1+co = 1 the variable ¢ := ¢; — ¢y completely determines the concentrations.
Deformations of the reference configuration are described by the displacement
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field u, i.e., a material point z in the reference configuration will be found at
the point = 4+ u(t, ) at time t.

Since displacement gradients in phase separating systems are small, the
theory we consider will be based on the linearized strain tensor

£(u) = %(w +(Vu)T)

where V is the gradient with respect to space and (Vu)7 is the transpose of
Vu.

In this paper we consider a generalization of the Cahn-Hilliard model
taking elastic effects into account. The model is due to Larché and Cahn [13]
and Onuki [18] using ideas introduced by Eshelby [3] and Khachaturyan [12].
The theory is based on a free energy of the form

E(c,u)z/{%VCQJr@ZJ(c)—}—W(c,E(u)) dx
2

where 2 C R? is the domain under consideration, ¢ : 2 — R is the concen-
tration difference and u : 2 — R? is the displacement field. The function
¥ : R — R is the free energy density and is assumed here to be a non-convex
function of ¢, e.g. a double well potential of the form ¢ (c) = (¢* — 1)%. With-
out the term T this type of free energy goes back to van der Waals [21] and
was introduced in the theory of spinodal decomposition by Cahn and Hilliard
[2]. The third term is the elastic energy density W : R x R?*? — R which is
chosen to be

W(e,&) = %(5 ~ &) : CIE - £(0)]

(see Eshelby [3], Khachaturyan [12], Larché and Cahn [13], Fratzl, Penrose
and Lebowitz [5]). Here, €(c) € R**? is the stress free strain at concentration
¢, C' is a fourth-rank elasticity tensor and the :—product of two matrices
A= (Aij)i7j:17...7d and B = (Bij)i7j:17...,d is given by

d
A:B=> A;Bj; and [AP=A:A.

ij=1

Our standing assumptions are:
Assumption 1.1 The stress free strains depend linearly on the concentra-

tion (Vegard’s law), i.e.,

Elc)=c- &

with a fized symmetric matriz

£* e R¥x4,
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The domain (2 is a assumed to have rectangular shape, i.e.,
2=100,0]x...x][0,44]
with £1,...,0q > 0. The elasticity tensor
C = (Cijmn)ijmn=1,....d

is assumed to be positive definite and to fulfill the symmetry conditions of
linear elasticity, i.e.,

Cijmn = Cijnm = Ojimna (1)

Cijmn = Cmnij
and there exists some dg > 0, such that
£ ClE) > dolé? (2)
for all symmetric & € R**4,
We note that the symmetry condition (1) gives for all matrices A and B

C[A]: B=A:(C[B].

Let us give two typical examples for the elasticity tensor C'. In the isotropic
case (cf. [11]) we have

where A, i are the Lamé constants and d;; is the Kronecker symbol. This
means

m,n=1

d
cle] = < Y. Cijmn Emn> = \tr€) - Id+ p(E + ET)
i,j=1,...,d
= \tré) - Id + 2u€

for all symmetric £ € R?™?. For many systems it is more realistic to assume
cubic symmetry (cf. [5], p. 168). In this case there are three degrees of
freedom for the elasticity tensor. One usually introduces the notation

Ciiii =Ci1i=1,...,d,
Ciijj = 012 ) 75 j,
Cijij =Caa 1 # 7 ,

where C11,C12, and Cyy are given constants. All other entries of C' are then
either given due to the cubic symmetry, i.e., either there is a symmetry with
respect to the coordinate axis or they are set to be zero. Formally this means
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Q ClE] QT = ClREQT]

for all orthogonal Q € R?? with det Q = 1 which let the d-dimensional cube
[—1,1]? invariant. The elasticity tensor can than be written as

Cijmn = (C11 — C12 — 2C44)0;0jmOmn
+C120:0mn (4)
+Cyy (5zm6]n + 5zn6]m)

The differential equation for ¢ is given by (see [5, 6, 7, 9])
Oic = Aw,
where w is the chemical potential difference defined as

w= 0 Ak 4 Wl )

and W(c,E(u)) = =&*: ClE(u) — c€*].

The system is then completed by the assumption of quasi-static equilibrium
for the mechanical part. This is justified since mechanical equilibrium is at-
tained on a much faster time scale than mass diffusion takes place. Therefore,
we obtain

oFE

0=—=-V -We(c,E(u) =-V-85,

ou

where

S =Wel(e,E(u)) = C[E(u) — c€¥]

is the stress tensor and V- is the divergence operator acting on rows. Alto-
gether we obtain a system of a scalar and a vector-valued equation

Oic = A(—E2AC+ Yelc)—E:S), (5)
0 =V-S=V- ClE(u)—cE].

For definiteness, we assume periodic boundary conditions for ¢ and u. The
above equations imply mass conservation for c, i.e.

/ c(t,z) dr =: ¢y = const. (6)
0

Therefore the new variable v := ¢ — ¢, satisfies fvd:n = 0. We set

N}

and, after replacing v by ¢ again, we arrive at
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e = (=A)(E*Ac+ flem +c)+E:9), (7)
0 = V- -C[&(u) —cE]. (8)

The elasticity equation (8) is linear in u and c. In Section 2 it is shown that
for all previously described elasticity tensors C' equation (8) can be solved
using Fourier transformation (see also [12, 17]). We obtain some u = u(c) for
any given ¢ with [ c¢dz = 0.

2

Secondly, in Section 2 we compute the term £* : S = £* : C[€(u) — c£*] with
u = u(c) which enters the equation (7) for ¢. This will give an operator £

L: XX, e & :8, whereX::{cELQ(Q): /cd;r:()}, 9)
(7

which is linear in ¢. With the help of £ we can rewrite the equation for ¢ as
follows

Ore = (=A)(e*Ac + flem+¢) + L(c)) . (10)
The understand the behavior of (10) for ¢ ~ 0 we linearize at ¢ = 0 to obtain
e = (=4A) (%Ac + f'(em) ¢ + L(c)) . (11)
The eigenfunctions of the right hand side in (11) are
on(@) = "7
where i = /-1 and
K= (K1, Kq) = 2m(%L, ..., 5,
V:El/ll,l...l,ljj)eZd(j.hl i (12)
The associated eigenvalues are
Ao = 62 (= &2k + f'em) + L(w)) . (13)

where we use that in our applications the linear operator £ can be written
as

L(px) = L(K) - ¢ (14)
with some 0-homogeneous function L : R?\{0} = R. We set Lmax and Lmin
to be the maximal and minimal value of L.

Now the equilibrium ¢ = 0 of (10) is unstable, if the maximal eigenvalue in
(13) is positive. Therefore we assume:

Assumption 1.2 Let the mean value ¢, of ¢ (¢f. (6)) and the mazimum of
L from (14) satisfy
f'(em) + Linax >0 .
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It is easy to see that then the eigenvalues are bounded by

(f'(em) + LmaX)2
4¢2 ’

In this situation, we can make an adaption of the theory of Maier—-Paape and
Wanner on spinodal decomposition for the Cahn-Hilliard equation (cf. [14]
and [15]). We will outline this in Section 3. In conclusion, we find that the
behavior of (10) near ¢ = 0 is dominated by a finite dimensional strongly
unstable subspace

max ,__
AmAX

yj == span {@x @ Age > Y0 - An T}

for some 79 < 1 close to one. It turns out that real parts and imaginary
parts of this subspace are just a subset of the dominating subspace occurring
for the Cahn-Hilliard equation. Therefore we inherit the small order O(g)
wavelength estimate for the elements in Y (cf. [14], Section 4). Figure 1 is a
sketch of the situation for the Cahn-Hilliard equation (£ = 0) which we give
for reference. To the left we have the Fourier vectors x that are excited the
most and to the right we have the nodal domains of a typical element of )
for that case.

Fig. 1. Cahn-Hilliard situation

The next two situations show the dominant Fourier vectors and typical pat-
tern for the case of cubic symmetry (4), £* = ¢ - Id and {2 = square. We
first have negative anisotropy, i.e. AC = Cy; — C19 — 2C44 < 0, and then in
Figure 3 the situation for positive anisotropy, i.e. AC > 0.

The last picture, Figure 4, shows the situation for isotropic symmetry (3)
and £* being not a multiple of the identity matrix (non-dilatational misfit).
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Fig. 3. Cubic symmetry with positive anisotropy

In each of the Figures 2, 3 and 4 we see that certain directions of the nodal
domains are selected.

Finally, in Section 4 we present results from numerical simulations of the
elastically modified Cahn-Hilliard system which are in agreement with the
theoretical predictions of Sections 2 and 3.
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Fig. 4. Isotropic symmetry with anisotropic eigenstrains

2 Solving the elasticity system

We start this section by computing L£(c) = £* : S, where S = C[€(u) — c£*]
and u = u(c) is the unique solution of V - S = 0 for given ¢ with [ edz = 0.
2

Let us compute £ for the Fourier mode

ou(a) =", (15)
where i = v/—1 and
= (s ) = 27 ),
v=(v,...,va) € L*.

For the solution u of (8) with ¢ = ¢,; as in (15) we make the ansatz
u(z) = (ug (x), .oy ug(x)) = aei® (16)
with @ € RY. We obtain

Omun(z) = Upikme ™
and

E(u) = Jilk ® 1 +a® R, (17)

where a ® b := ab” € R**? for all a,b € R?. We calculate,

V- Clpx&*] = V- O[E*el™ 7]
= (C[€*])ike®
= S*ikel"'? ¢ R? |
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where S* := C[€*],i.e., S* is the stress induced by £*. In addition we compute

V- ClE)] =V (Cl5i(k®a+ 0@ k)™
—3e" Ol ® U+ ® Rk

The symmetries of the elasticity tensor Cijmn = Cijnm (cf. (1)) can be used
to obtain

Clk ® 1] = Cla ® K]
and therefore

V- ClE(u)] = —e*2Clk @ ik .

Introducing the matrix

d
Z_l(lﬂ‘,) = Z Oi]'mnh?jlﬂim , (18)
Jm=1 in=1,...,d

we obtain

V-ClE)] = —e**Z (k)i .

The above used matrix Z !(x) is in fact the inverse of some matrix Z(x) €
R?*d_ This follows from the next lemma.

Lemma 2.1 The matriz Z~'(k) is strictly positive definite for all Kk € R? \
{0} and therefore invertible.

Proof: Let ¢ € R?. Then we obtain using the symmetry properties of C' (1)
and the fact that C' is positive definite (2)

d d
CTZ?I(KJ)CZ Z Cl Z Oijmn/’fj’ian

iwn=1 jm=1

= Z Cijmn{i’ijc'nﬁm

i,j,m,n
= Z Cijnm{i’ijc'nﬁm
i,j,m,n

> do|¢ & k[* = do|C?|k[* -

The above inequality shows that Z!(k) is positive definite whenever x # 0.
O

To obtain u we need to solve
V- -ClEw)] =V - ClexE7] .

This is equivalent to
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~Z Y k)a =iS"k .
Using that Z!(x) is invertible, we get

U= —iZ(k)S"k .
Hence from (16)

u(z) = —(1Z(k)S*K)eF® = —iZ(k)S* K, () . (19)
Lemma 2.2 For xk € R? \ {0} we obtain
Ligx) = &+ (CIZ(0)S hrT] - S )i .
Proof: Using the formulas for » and @ above and (17) we compute
Llpg)=E*:8=E": C[E(ﬁei“‘f) — r€’]

=&*: Cla ® kie™® — E*e' 7]

=& :C[Z(k)S*kKT — E*elr®

=& (C[Z(k)S*kKT] — S*)elr2.

This shows the lemma.
O

Remark 2.3 The operator L can be interpreted as a pseudo-differential op-
erator of order 0. This follows from the fact that

L(px) = L(k)px (20)

with a function L. The function L is 0-homogeneous because Z(k) is (—2)-
homogeneous which follows from (18) and Cramer’s rule. With u taken from
(19) and after a partial integration we obtain using (8)

1 . *] 1 2
02~ [ Wionsanar=1 [ g clew) - el = 11w [ a2

We conclude that in the elastically modified Cahn-Hilliard equation (10) the
L-term has a stabilizing effect.

2.1 The isotropic case
In this subsection we assume that

ClE] = \tr&)Id + u(E +ET)
with given A\, u € R and for some ¢ € R

E* =qld.
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Lemma 2.4 Under the above assumption on C' and £* we obtain

2p(1 = d)

2
= 2
L=q(d\+ 2u) 2T

- Id.

Proof: Let x € R? \ {0} be given. First we compute
d
Z_l(/g) =\ Z (Sl'j(smnh}jlim
jym=1 .
i,n=1,....d

d
+u Z (6im6jn + 6in6jm)/’€jh3m>
i,n=1 d

jm=1

,2n=1,...,

= MekT + p(keT + |k|21d)
= A+ p)reT + pls?1d .

We can easily invert Z~1(k) to obtain Z(k) defined as follows

1 1
Z(K)k = ——
ARNCTES I
and .
Z(k)e = —e for all e with kT e=0.
/|
Furthermore
S* =C[€*] = qCId = q(d\Id + 2uld) = q(dX\ + 2pu)Id
and (d\+2u) 1
+2p
7 w7 _ QeAT 2h) 1T
(k)S* kK SV KK

To compute

E*: (ClZ(k)S*krT] = S*) = qId: (C]Z(k)S*kKT] — S*)
=q-tr(C[Z(k)S*kkT] — S*) ,

we calculate

t’I“O[h}IiT] = Z Z ()\(S“(smn + u(élmém + 6zn62m))nm *Rn

i m,n

= (X + 201) ]2,
This gives

£ (ClZ(k)S*kKT) — S*) = q - tr(C[Z(k)S*kKT] — S*)
— 2(d) + 2) (a—f’g —d)

— 2p(1—d)
= ¢(d\ + 2p) 55

11
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which implies
2p(1 — d)

L(pr) = (AN + 2p) 2T

K

for all k # 0. Therefore the claim is proved.

Remark 2.5 We have shown that in the isotropic case, the operator L is a
multiple of the identity. C as in (8) is positive definite if and only if

w>0 and 2u+dix> 0.

Then in particular 2pu + X > 0. This implies that L is a negative multiple of
the identity for ¢ # 0 and d > 1. For the evolution equation we observe again
that the operator L has a stabilizing effect when compared to the case without
elasticity.

2.2 A cubic elasticity tensor

In this subsection we consider the case £* = ¢-Id and we assume cubic
symmetry for the elasticity tensor C' (cf. (4)), i.e.,

Cijmn = (C11 — C12 — 2C44)0i0jmImn
+0126ij5mn
+C44(6im5jn + 6ln6]m)
We remark that C' is positive definite if and only if Cyq > 0 and

Ci1 > (d— 1)‘012‘ , in case Ci2 <0
Ci1 > Cyo in case C1» >0 .

The following lemma is easy to verify.
Lemma 2.6 The matriz Z~' (k) has the entries

(Z7Y (k)i = (Ci1 — Caa)k? + Cuals?, i=1,....d,
(Z71(K))in = (Ci2 + Caa)Kikn i#En .

Lemma 2.7 With cubic symmetry for C and £* = q-1d we obtain

L(px) = ¢*(C11+(d—1)C12)

d
(Ci1 + (d=1)Ch2) < Z Zmp("é)"ép’im> - d] Pr -

m,p=1
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Proof: According to Lemma 2.2 we have to compute
L(pn) =q-tr(C[Z(k)S* kK] = S*) ey .
Under the assumptions on C' and £* we calculate

(5%)ij = (CIE7])i; = q(C[1d])s;

(2 ),

=q((C11 — Cr2 — 2044 + dCha + 2C44)d5j)ij-
This implies
S* = q(011 + (d — 1)012)Id

and

t’I‘S* = qd(CH + (d - 1)012)

Furthermore, we have
tr(C1Z(k)S*kkT]) =
= ¢(C1 + (d-1)C, ) r(C[Z(k)kkT])
Q(Cll + ( ) Ozzmn Z Zmp( )Iﬁ‘,plin

Z, ,n

q(Cll + _]- 012 ( Z Cumm mp(”)”p”m)

i,m,p

= q(011 + -1 012 (Z 011 — 012 Z p(lﬂ‘,)lﬂ‘,plﬁii + Chad Z Zmp(h?)h}plﬂ)m

b p m,p

= q(Ci1 + (d—=1)C12)% > Zmp(K)kipkim.
m,p

O

For simplicity we only give the formulas for £ in the physically interesting

cases d = 2, 3.

Lemma 2.8 (d=2) In two space dimensions we obtain

2044(0121 0122)|’$‘4

Llpw) = — .
(¢ox) CyaCr1|E|* + (C11 + C12)(C11 — Cra — 2C44) K3 K32 2¥

13

)
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Proof: For d = 2 we obtain the inverse of Z (k) as

1 <|/€2C’44 + (C11 — Caa)k3  —(Cha + Cua)K1k2 >

Z(k) = ———
(x) detZ—1(k) —(C12 4 Cag)kiks  |6[*Cag + (C11 — Cua)ki

detZil(K) = 011044‘KJ|4 + [(011 — 044)2 — (012 + 044)2]5%43% .

Hence,
2
‘H|4C44 + 2(011 — g — 2044)H2I€2
D Zmp(R)phim = detZ 1 (k) =
m,p=1

Altogether, we obtain

(C11 + Cr2) - [|K]*Cuq + 2(C11 — Cra — 2C44) K3 K3
|k|2C1aC11 + (C11 + C12)(Chy — Cia — 2044)"6%/‘6%

L(px) = ¢*(Ci1 + C12) [ — 2| pu

__ q2044(0121 - 0122)|’$‘4 0
CusCr1|64 + (Chy + C12)(C1y — Crg — 2044k K37

Remark 2.9 In the situation of Lemma 2.8 the 0—homogeneous function L
is given by
_ ¢*Cu(C}, — OFy)|K[*

C1aCh1|k|* 4 (C11 + C12)(C11 — Cra — 2C44)K1K3

L(k) =
Let us compute now for which directions k € R\ {0} L(k) becomes mazimal.
First of all we note that the fact that C is positive definite implies
Ci1 > |012‘ and Cyy > 0.

Hence we obtain:
i) In the case of positive anisotropy, i.e., AC := Cy1 — C1g — 2C44 > 0:

L(k) is mazimal if K3 = K3.
ii) In the case of negative anisotropy, i.e., AC < 0:

L(k) is mazimal if either k1 or ko is equal to zero.



Spinodal decomposition in the presence of elastic interactions

For the evolution problem this will imply that elastic interactions will am-
plify wave numbers & lying in segments around the coordinate axes stronger
than other segments in the case that the anisotropy is negative. For positive
anisotropy instead the diagonal directions will be stronger amplified.

In the case of three space dimensions we obtain:

Lemma 2.10 For cubic elasticity and £ = q-Id we obtain in three space
dimensions for all p,(z) = '™ with k € R \ {0}

E((p,i) = q2(011 + 2012) [% (OZ4|I<.‘,‘6 + 2044(011 — 012 — 2044)‘I<.}|2

(k?K3 + K362 + K2K3) + 3(C11 — Cra — 2044)25%/'@%/@%) - 3] Vs

where
det Z7' (k) = C3,C11|k|® + Caa(Cr1 — Cr2 — 2C4s)(Ch2 + C11) |6
(k?K3 + K3K3 + K3K3) + (C11 — Cra — 2C44)?
(2C12 + Cyq + C11)K3K3K3.

Proof: A straightforward computation using Lemma 2.6 shows
Zii(®) = qorz=ige (Clalel* + (Cr1 = Caa) Cual sl (k5 + 57)
+(C11 — C1a = 2C44)(Chr2 + C11)K3K7)

for i =1,2,3 with j and £ such that j #14, j # ¢, £ # i and

Zi;(k) (Cia + Caa)kikj(Caa|k[* + (C11 — Cra — 2C44)K7)

-1
~ det Z- ()
fori,7 =1,2,3,4 # j and £ such that £ # j and £ # i. We also have
det Z71 (k) = C2,C11|K|® 4+ C4a(C11 — C1a — 2C44)(C1a + C11) k|2
(k1K3 + K33 + K3RT)+
+(Ch1 — Cr2 — 2C44)*(2C12 + Cua + Cr1)KIK3KS .

Having computed Z(x) we obtain

ﬂ%;)Zmp(’i)’ip"% = m Chilsl®
+2|I€‘2044(011 — 044)(5%53 + Ii%lﬂ)% + Iﬂ)%lﬁ?%)
+3(C11 — C12 — 2C14)(C1a + C11) K2 K2R3
—2|6[?Cua(Chr2 + Cua) (k]R3 + K3K3 + K3K])
—6(Cy2 + C4)(Cy1 — C12 — 2044)'%%@%%%]

= Torz= |Clalsl® +2Cu(Cnr = Cro = 2Cua) 8] (k1K5 + K33 + K3A1)

+3(011 — 012 - 2044)25%43%5%]

15
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Now Lemma 2.7 gives the assertion.
O

We now discuss the result of Lemma 2.10. As in (20) we can write £ with
the help of a 0-homogeneous function L. We want to determine directions
for which L becomes maximal.

We obtain the following result.

Lemma 2.11 In the situation of Lemma 2.10 with L(p,) = L(k) - ¢, we
find for L:

Case A: Positive anisotropy, i.e., AC > 0. Here L is mazximal in directions
given by the eight points

1 1 1
+ 4+ o+ —) . 21
* 75 *% 2y
Case B: Negative anisotropy, i.e., AC < 0. Here L is mazimal in directions
given by the six points

(+1,0,0), (0,+1,0), and (0,0,+ 1) . (22)

Y

Proof: For negative anisotropy we can use the identity (which can be verified
after a tedious but straightforward computation)

C11 C11—=Cia _ AC _ 4,2
42(011+2012)2L(K) + 2011+2012 — det Z (k) |:O44 (C11 — C12) Zz’7j,i7éj Ky K+

2 ((011 — Ciz2 = C14)* + Cua (Cr1 — 012)) K%“%”%}

to conclude that that L is maximal in the directions corresponding to the
coordinate axes. For k on the coordinate axes the right hand side of the
above identity is zero whereas for all other directions the right hand side is
strictly negative. Here we use the fact that C is positive definite which yields
Cys >0,C11 —C12>0,C11 >0, Ciyp +2C12 > 0 and detZil(KJ) > 0.

To discuss the case of positive anisotropy, i.e., AC > 0, we consider

0] 011 011 - 012
Mk)= 2 (21 p) 4oLz )
(%) AC <q2(011 + 2C12)? () + Cii + 2012) &

where

B =9C44(C11 — C12) + 71,

a =27C3Ci1 + 972 + 73,

m = (AC) (2C1; — 2C12 — Cu4),
Y2 = (AC)Cua(C11 + C1a),

v3 = (AC)? (2C12 + Cus + Ch1)

which are all positive constants. It now holds
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M(k)

= m — (9a + b)|k|® + (27a — ¢)|x|? doiji< KiKS 4+ (27 + 90)5%5%&%] )
(23)

with

a = Cu4(C11 — C12)C3,Chu,
b=yC3},Chi,
c = (AC)?CyaChy .

Again the verification of the above identities needs some patience but is
straightforward. We remark that a,b,c > 0.

The above relation between L and M and the following statement proves
the lemma.

Claim: M (k) < 0 and M (k) = 0 if and only if K} = k3 = K3.
We have:
(det Z7(k)) M (k)
= a9 (3|n\22m<]
+b (2763 K33 — |K|°)
+e (9riR3RE — |K[? Zi,ji<] "53 — |s[° )

To show the claim we are going to show that the term on the right hand side
in the above identity is is nonnegative for x with |k| = 1. For the first two
terms it is easy to verify that the maximum on S? is attained if and only if
k? = k3 = k3 and in this case the terms are zero. The last term is a bit more

difficult to handle. W.l.o.g. we assume x7 < k3 < k2. Then we obtain

w22 = [K[°)

9“1’{‘25:3 |K“2 Zz]z<] H? |K“6
= KiK5(2K5 — ﬁ%) + k3K3(267 — K3 — K3) + KR35 (265 — KT — K3)
< K1K3(2K3 — "@1 K3) + K1K3 (267 — K3 — K3) + KTK3(2K3 — KT — K3)
=0

and this proves the lemma.

2.3 Anisotropic eigenstrains

In this section we consider the case that the eigenstrain £* is not a multiple
of the identity matrix. We restrict ourselves to isotropic elasticity in two
dimensions and eigenstrains of the form

5*2(82), a,beR witha-b>0.
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Lemma 2.12 For an isotropic elasticity tensor C and £* as above we obtain
for all k € R* \ {0}
L(px) = L(Kk)px

with
L(k) = m [Me%? + pf?rs

+ [+ (e = )2 + (e + )] w3u3]
- [A(a +0)2 4+ 2u(a® + b2)]

where e = AMa + b) + 2ua and f = A a + b) + 2ub.

Proof: For all k¥ # 0 we have to compute
L(k) =& : (C[Z(r)S*kKT] — S*).
Using the symmetry of C' and the definition S* = C[£*] we obtain
L(k) = S*: (Z(k)S*krT — £*).
Furthermore, we have
S* = C[E*] = MrE*Id + 2u&*
= Ma +b)Id+2u (g 10,)
:<)\(a+b)+2ua 0 >
0 Aa + b) + 2ub

We have (cf. the proof of Lemma 2.8 with C1o = A\, Cs4 = pand C11 = A+2u)

Z(k) = 1 plel? + A+ ws3 =X + p)rike
det Z L(k) \ —\+mwrike  ple + (A + p)s?

with
det Z71 (k) = p(\ + 2u)|K|*.

Therefore,

S*Z(k)S* =
( (Ma + b) + 2ua)? 711 (k) (Ma + b) + 2ua)(Ma + b) + 2,ub)ZQ1(f<a)>
(Ma +b) + 2ua)(Ma + b) + 2ub) Z12(k) (Ma + b) + 2ub)? Zaa (k) ‘

Altogether we obtain
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tr(S*Z(k)S*rkk™)
= 4u(>\+211l)"‘3‘4 [()\(a + b) + 2”a)2(‘n|2u + ()\ + M)H%)K/%

—2(Ma +b) + 2ua)(A(a + b) + 2ub)(X + p)K3I K3

+(\a+b) + 2ab)* (|62 + (A + )33
= SO [ (Ma + b) + 2ua)?k] + p(X(a + b) + 2ub)?k3

+ [(A+2u)(A(a + b) + 2ua)® — 2\ + p)(A(a + b) + 2pa)
(@ + b) + 2ub) + (A(a + b) + 2ub)> (A + 2p1)] i<a11{2]
T [ (Ma + b) + 2ua)?kt + p(A(a + b) + 2ub)?k4

+ [\ + wap2(a — b)? + u((Ma + b) + 2ua)? + (\a + b) + 2ub)?)] nfﬁ%] .

Also we compute

S*:&* = (Aa+b) +2ua)a+ (Ma + b) + 2ub)b
= Aa +b)? + 2u(a® +b?) .

This proves the claim.
O

Remark 2.13 We want to determine the mazimum of L on S'. Setting
2z =k? (i.e. 1 — 2 = k3) an analysis of the function

9(2) = pe?2® + pf* (1= 2)* + [(A+ p)(e = )7 + p(e? + )] 2(1 - 2)

shows that g can attain its maximum only for z = 0,1. This means that
L attains its maximum on the coordinate ares. Here one obtains that the
mazimum is attained on the x1-axis if and only if a®> > b* and on the xo-axis
if and only if b > a>.

The wave numbers k for which L attains its mazimum are amplified most
strongly by elastic interactions. In this case only wave numbers lying on one
particular coordinate axis are most strongly amplified.

Remark 2.14 In Figure 5 we show the graph of A, . in the two dimen-
sional case as a function of k1 and ko given by equation (13). On the left
hand we consider the case of an elasticity tensor with positive anisotropy (cf.
Lemma 2.8) whereas on the right the elasticity tensor is isotropic but the
eigenstrain is not (c¢f. Lemma 2.12).

3 Spinodal decomposition and elastic interactions

In this section we will apply the abstract results of Section 2 of [15] to the
Cahn-Hilliard equation with elasticity. This application is very much along

19
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Fig. 5. \. . in the two dimensional case as a function of k1 and k2; on the left:
with positive anisotropy of the elasticity tensor, on the right: with anisotropic eigen-
strains.

the lines of the application of this theory given in Section 3 of [15] and Section
2 of [16], where the binary and multicomponent Cahn-Hilliard model were
discussed. We consider the equation (10), i.e.,

Oic = (=A)(E®Ac + flem +¢) + L(e)) in 2,
¢ is periodic, (24)

[edz = 0,
Q

where ¢ > 0 is a small parameter. We specify our assumptions as follows.

(A1) On top of our standing Assumption 1.1 we let 2 be of rectangular shape
in R?, where d € {1,2,3}.
(A2) Let f: R — R be a smooth function.

In this situation we defined the linear operator £ : X — X in Section 1
(cf. (9)), which, as we saw in Section 2, always has a representation on the
eigenfunctions ¢, = e*® as L(p,) = L(k) @x, with some 0-homogeneous
function L (cf. (14)). Our last assumption is:

(A3) Let ¢, and L satisfy Assumption 1.2 to make the equilibrium ¢, unstable.
To rewrite (24) we set

F(e) = f(em + ) = f'(em)e = fem) (25)

so that f(0) = f'(0) = 0. Furthermore, let
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Ace = (=A)(e*Ac+ f'(em)c) , Beci= Ace+ (—A) Le)

. (26)
and F(e) == (=AQ)f(e) .
Then formally the first equation in (24) is of the form
O0ic = Bec+ F(c) . (27)

The evolution equation (27) is of the same form as the one used in the bi-
nary Cahn—Hilliard case considered in [15]. Thus, we can use the abstract
theory developed there to prove the dominance properties mentioned in the
introduction. For this we only have to verify hypotheses (H1) through (H3)
in [15]. This will be done in the following subsections. Basically, we have to
verify the following three claims.

(H1) The operator —B. is sectorial in the Hilbert space X.

(H2) There exists a decomposition X = X"~ @ X~ ® X T @ X+ into pairwise
orthogonal subspaces, such that all subspaces are finite-dimensional ex-
cept X~ 7, and such that the linear semigroup corresponding to d;¢ = B.c
satisfies several dichotomy estimates, see Lemma 3.8(b) below.

(H3) The nonlinear mapping F : X* — X is C'! with F(0) = 0 and DF(0) = 0.
Furthermore, it satisfies a global Lipschitz condition with constant Lg,
i.e., for all ¢,¢é € X we have

[F(c) = F(&)llx < Lplle = éf[x« .

Here X denotes the fractional power space corresponding to B. and
a€(0,1).

Hypothesis (H3) was already developed in [15], Section 3.3, because the non-
linearity in (24) is exactly the same as for the Cahn—Hilliard equation. In the
course of verifying the hypotheses (H1) and (H2), we also calculate several
constants introduced in [15], which in turn furnish an upper bound on the
Lipschitz constant Lg. (Notice that since the nonlinearity in our example
(see (26)) does not satisfy a global Lipschitz condition, we have to employ
a standard cut-off technique.) This will eventually determine the size of the
neighborhood on which our results are valid.

3.1 Spectral properties

In the following lemma we collect several properties of the linear operator B,
which will be needed later. These results are the obvious generalization of
Lemma 3.1 in [15], where the operator A. with Neumann type boundary
conditions was discussed. We will again use the eigenfunctions ¢, = e'#®
of —A and their eigenvalues |x|?.

21
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Lemma 3.1 Assume that (A1), (A2), and (A3) are satisfied, and let X be
defined as in (9). Define the operator B. : X — X by

B.c = (-A) (2 Ac+ f'(em)e+ L(c)) ,
with domain
D(B:) ={ce XNH"(2): c¢ is periodic} .
Then the following assertions hold.

(a) The spectrum of the operator —A : X — X with domain
D(-A)={ce XN H*(N): c is periodic}

consists of all |k|?, where k € R? \ {0} satisfies (12). The correspond-

ing normalized eigenfunctions @, = ¢./ll¢xl| form a complete L*(02)-

orthonormal set in X. Furthermore, if N4(u) denotes the number of

eigenvalues less than p € R (counting multiplicities), then we have that
Na(p) ~ p*? as p— oo, (28)
where the proportionality constant depends only on (2.

(b) The operator —Be defined above is selfadjoint and sectorial. The spectrum
of B. consists of real eigenvalues A\ . given in (13) with corresponding
eigenfunctions .. Moreover, the largest eigenvalue is for small € > 0 of
the order

(fl(cm) + Lmax)2

ARax .= PP , and bounded by A% . (29)

For later reference let us also introduce the following notation.

Definition 3.2 We denote all k related to eigenvalues of —A by
A:={k e R"\ {0} : & is of the form (12)}

and PA={0€ S ': k/|k| =6 for some k € A}.
Furthermore, for given 8 € PA let

AB)={keA: k/|k| =0} c R\ {0}

be all k corresponding to eigenvalues of —A lying on the same half ray as 6.
Any 0 € PA satisfying L(0) = Liax is called Oax.

Due to the above lemma, B, generates an analytic semigroup S.(t) on X.
Furthermore, for every B. the fractional power space X/2¢ C X is defined;
cf. the discussion in Subsection 2.1 of [15] following (H1). Although formally
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this fractional power space depends on &, it will turn out in the next lemma
that algebraically, i.e., as a vector space, we have X'/2¢ = H2 (), where

H2,(02):=Sce H}(N) : /cdaz =0 and c is periodic

Q
Only the topological structure given by the norm || - ||/ on X'/2< will
depend on the parameter €. Fortunately, the norms || - || /2. will turn out

to be equivalent to the standard H?(£2)-norm on H2,({2). More precisely, we
have the following result.

Lemma 3.3 Assume that (A1) and (A3) are satisfied, and let||-||; /2. denote
the norm on X'/2< defined by

HCH1/275 = H(—B{.j + bEI)l/QcH for all ce X 1/2:e ,

where b, = (f'(cm) + Liax)” /2 and ||-]| = [l£2(02y. Moreover, let ||-|| g2 (o)
denote the standard H?(§2)-norm, and define another norm || -||. on H?(12)

by
lell« == Vlell2 + [|Ac||2 for all c € H*() .

For €2 > 0 we assume €2 < f'(¢m) + Lmax and, in case f'(cm) + Lmin < 0,
we assume additionally € < |f'(¢m) + Lmin|. Then we have

XU = 12, (0)

and the norm ||-||1 /2. is equivalent to both ||-||g>(o) and ||-||«. More precisely,

there exists a (e-independent) constant C' depending only on the domain (2
such that for all c € H2, (1) the estimates

€ ¢
— - |lc]|« < |le e < — -lcll« 30
7 llell« < flellijz,e < — - Ilell (30)
and .
€ c-C
|| C 2 < |le E< -|c 2
ch llellm=a) < llellije.e < ——=llellmz(a)

hold. Here we set
A f'(em) + Limax in case f'(¢m) + Lmin >0
\/(f’(cm) + Lmax)2 + % (f'(em) + Lmin)2 , otherwise .

Proof: As already pointed out in Lemma 3.2 in [15] we have that the norm
|| - |« is an equivalent norm on H?2({2), i.e., there is a constant C' such that
for all ¢ € H%(£2) the estimate
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1
¢ ey < lelle < € -llellaz(q) (31)

holds, cf. Temam [20, p. 150] and Fife, Kielhofer, Maier-Paape, Wanner [4,
Lemma 6.1] for the necessary elliptic regularity results.

Therefore we only have to verify (30). According to Amann [1, Theorem
4.6.7] the fractional power space X1/2= consists of all functions ¢ € X whose
L?(02)-Fourier coefficients &, = (¢, ¢x), k € A, satisfy

3 (b = M) lgul P < 00 -

KEA

In that case, the norm [[c|[; /2. is given by

1/2
lelliyo,e = (Z(bs - )‘ms)fi“onp) .

KEA

On the other hand a function ¢ € X is in HZ2,(?) if and only if

lell2 =" (1+18]*) &llexll® < oo . (32)
KEA

These characterizations eventually furnish the stated results. Using the rep-
resentation (13) of A\, . and L(k) € [Lmin, Lmax] We obtain

6> (=26 + f'(em) + Lmin) < Ae < [6]% (=€%|K]* + f'(cm) + Lmax) -

An easy calculation gives for all s > 0 and 0 < €2 < f'(cm) + Lmax

2
% (14 5%) < b +e%5> — (f'(cm) + Lmax) 8

yielding the left hand side of (30). For the right hand side of (30) we observe
for s > 0 and ¢ as assumed

N

2
b +€25% — (f'(cm) + Liin) s < 3—2 (14 s?).

These estimates immediately imply the assertions of the lemma.
O

Since according to the above lemma the fractional power space X1/2e
algebraically does not depend on &, we will omit the superscript € in the
following and simply write X'/2 = H2 (). Also, Lemma 3.3 shows that
we may choose either the standard H?(§2)-norm or the norm || - ||, on the
fractional power space X'/2, since both of them are equivalent to the graph
norm || - || /2. of (=B + b.I)*/2. It will turn out to be very convenient to
choose the norm || - ||. as a (non-standard) norm on X'/2. Thus, from now
on we identify the space (X/2,[| - ||1/2,.) With the space (HZ2,(£2),]| - |[+)-
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3.2 Spectral gaps and exponential dichotomy estimates

The following lemma proves the existence of suitable spectral gaps in the
spectrum of B.. They will be used to define the decomposition of X men-
tioned in (H2), and therefore eventually furnish the dichotomy estimates, see
Lemma 3.8(b). The size of these gaps turns out to be crucial, because it pro-
vides a restriction on the possible size of the global Lipschitz constant of the
nonlinearity in (H3).

Lemma 3.4 Assume that (A1) and (A3) are satisfied, so that in particular
we have d € {1,2,3}. Furthermore, fix two constants v. < v* < 1 and let
Al®X pe defined as in (29).

Then there exist constants g, po > 0 depending only on vy, v*, 2, and
f'(em) + Lmax such that for arbitrary 0 < € < gq the following holds. The
linear operator B has eigenvalues \.(e) and X\*(€) satisfying both

Ve s AME <N (8) < AF(e) < vt . Amax

and
M (e) = Aul(e) > o -2
Moreover, the whole interval (A.(g), \*(€)) is part of the resolvent set of B..

In fact, both the interval (vi - AP*, A(g)) and (A*(g),v* - A®) contains
eigenvalues of the form A\, . € A(0) if

29 = max{s(f'(cm) + L(6) — e?s) s >0} > v* A
In particular, in the above intervals are always eigenvalues from A(Omax)-

Proof: Fix two constants v, < v4. < v** <v*. Due to Lemma 3.1, especially
(28), we can choose € > 0 small enough such that for all 0 < ¢ < g¢ the
following two assertions hold.

1. Both in the interval [v**, v*] - AT2* and in [v., Vs ] - A?* there is at least
one eigenvalue of B.. Let \**(¢) denote the smallest eigenvalue in the
first interval, and A..(¢) the largest one in the second interval.

2. The number of eigenvalues of B; in the interval (v.., v**)-AM** is bounded
above by C-e~?—1, where C' depends only on v,, v*, 2, and f'(¢m)+Lmax.

Let po := (f'(¢m) + Limax)? (v** — v4s)/(4C) and assume that any two consec-
utive eigenvalues of the operator B, in the interval [A..(g), \**(¢)] are strictly
less than pg - €472 apart. Then we get

(fl(cm) + Lmax)2 (U** - 'U**)
4e? '

N (€) = Aau(€) < o -€972.C -7 =

This however contradicts the fact that

(f,(cm) + Lmax)2 (U** - 'U**)
4e? '

AT(E) = Aenle) 2 (V77 — i) - AT =

25
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and the proof of the lemma is complete.

Loosely speaking, the above lemma states that it is possible to find gaps
in the spectrum of B. whose size can be controlled as ¢ — 0. We will use
this fact to obtain the spectral gaps needed for assumption (H2). To this end,
choose constants

v<T <0<y <7 <uvt<ut<l, (33)

where typically the differences v~ —v~ 7,7~ —v~, and 7" —v™T will be small.
Using these constants the following results are an immediate consequence of
Lemma 3.4. They give the appropriate choices of the spectral gaps for the
operators B. needed for our application.

Corollary 3.5 Assume that all the assumptions of Lemma 3.4 are satisfied.
Then with the constants from (33) there exist intervals

Jom=las b7 Clw T, o] e
Joo= as,b7] C fun,w] - AR
J:r = [a;r,b;r] C [QJr:ﬁJr] /\énax

such that for sufficiently small € > 0 the following holds.

(a) Each of the intervals j;’, J=, JX is contained in the resolvent set of
B..
(b) If we define a7~ := (4~ +b-7)/2 and let

Jo T =las b C T e, T ] Ame

then there is an e-independent constant p1 > 0 such that the length of
each of the intervals J-~, J=, and JF is at least py -€?~2. The constant

w1 depends only on 2, f'(¢m) + Lmax, and the constants in (33).
(¢) The interval [v~~ - A"®* a= ") is not contained in the resolvent set of Be,

» e

i-e., this interval contains at least one eigenvalue of B-:.

Using this result, we can now define the subspace decomposition of X
needed for applying the results of [15].

Definition 3.6 Using the constants introduced in Corollary 3.5, define the

intervals I7~ := (—o0,a; ), I7 := (b; ~,a2), IT := (bs,a7), and I} =

(bF, A1) Furthermore, let X, X, XX, and X" denote the sum of all

£
eigenspaces of the operator B, corresponding to eigenvalues A, . in I, I,

£
I, and I, respectively.

g

For further reference we define
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Definition 3.7 For given 8 € PA, € > 0, we denote by X\; g, i € N the
ordered eigenvalues A, . of B lying in A(f). Hence we have M1 ge > Ao g >
... = —00. The corresponding eigenfunctions v; 9., € N of B. are obtained
form the eigenfunctions @, through this ordering procedure in the obvious
way. Furthermore, denote by &ig. € A,i € N the related wave vector k of
Vi Note that |k g | is monotonically increasing for increasing i in the
region |fig.c|* > (f' (cm) + L(9)) /€.

The restrictions of B, or of the corresponding (linear) analytic semigroup
S.(t) to each of the subspaces defined above will be denoted by the appropri-
ate superscript. With these definitions we can proceed to verifying the two hy-
potheses (H1) and (H2) for the linearization. Again we use the non-standard
norm || - [, (which is equivalent to the norm || - |[;/2.) on X2 = H? ().

Lemma 3.8 Assume that (A1) and (A3) hold. Let —B. : X — X denote the
self-adjoint and sectorial operator defined in Lemma 3.1, let Sc(t) : X — X,
t > 0, denote the corresponding analytic semigroup, and let X'/? = H2,(0)
denote the fractional power space of Subsection 3.1 with norm ||-||.. Further-
more, consider the constants and intervals introduced in Corollary 3.5 and
Definition 3.6. Then the following assertions hold for arbitrary 0 < e < &g,
where ey depends only on the domain (2, the constant f'(¢y) + Lmax, and the
constants in (33).

(a) The subspaces X_, X, and XIT are finite-dimensional subspaces of

X2 and their dimensions are proportional to e~ where d denotes the
dimension of the domain (2. Furthermore, the spaces X, X7, X, and
Xt are orthogonal with respect to the L?(§2)-scalar product (-,-), and
their restrictions to X'/? are orthogonal with respect to (-,-)..

(b) There exists a constant M.~ > 0 such that for every ¢ € XIT, ¢t €

X+t ecoeX7, ;- € X NXY2, and c=— € X~ the estimates

€ *

1SHH() et < et [lett]]. fort <0,
1S (#)et || < et [let|l. fort>0,
1SF(E) e[ < ebet |t fort<o0,
1S ()|« < et le s fort>0,
1S- () ||« < eb= 7t le ||« fort<0,
ISz~ (®)er~|ls < et -l fort>0,
ISZ= ()7« < MZ7 712 e% - ||c™7|| for t > 0

hold, and
M-~ <C-e 2 45 £ 50,

where C' > 0 depends only on 2, f'(¢;m) + Lmax, and the constants in
(33). Note that due to the finite dimensions of the subspaces X7, XZ,
and X T the semigroups S- (t), SF(t), and SF(t) can be extended to
groups.

27
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(¢) There exists a constant My /5 . > 1 such that for allc € X7 & X & X+

we have
1

M1/27E

Alell < flell < Tlefls < Myyae - flell

and
M1/2,5'€2—>O as E-)O,

where C' > 0 depends only on f'(¢m) + Lmax, and the constants in (33).

Proof: The assertions of (a) follow easily from Lemma 3.1, (28), Corollary
3.5, and Definition 3.6.

As for the proof of (b), let ¢ € X be arbitrary, let 1; g - denote the eigenfunc-
tions of B. according to Definition 3.7, and let ¢ = >, p, S & etine
denote the Fourier series representation of ¢ in X, i.e., let & g, := (¢, ¥ig,c),
where (-,-) denotes the standard L2(2)-scalar product. Then we have an
explicit spectral representation of the semigroup S-(¢) given by

(e}
Ss(t)c = Z Zexi'g'i.t 'fi,ﬂ,s "(/}i,ﬂ,s for t>0 s
9ePA i=1
and if ¢ € X'/2 then (32) furnishes

lel2= 5 57 (1 + Jfige

fePA i=1

Ny igell? < oo

These two identities already imply the first six inequalities in part (b). For
example, let Ay g > ... > Ay (4).6.c, for § € PA, denote all eigenvalues of B.
in the interval I+, where ng() = 0 is possible. Then an element ¢™+ € X+
has the Fourier series representation ctt = ZaePA Z?:Oge) &i0,e%ip,, and
for every t < 0 we obtain

n0(0)
ISEF@tTIT = Y0 D (L +lRiael") - ot &g - lbi el

gecPA i=1
no(6)
< N7 ot ST (1 [Rigel!) €2z i
fcPA =1

e ||t |2

IN

since Ao (9),0,. € I = (b1, A\P**] according to Definition 3.6. The remaining
five of the first six inequalities follow analogously.

In order to prove the seventh inequality, let ¢~ € X~ be arbitrary.
If nq(f) > 1 is chosen in such a way that ;g for i > n,(f) and § € PA
denote all the eigenvalues of B, which are contained in I, then ¢~ has the
Fourier series representation ¢~ ~ = ZeePA Z?im(a) &i0,:Yi - in X, and for
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arbitrary ¢ > 0 we actually have S~ (t)¢c~~ € X'/2. Due to the choice of the
interval 17~ one further obtains ;9. < Ay, (9),9,- < 0 for all i > ny(6), and
therefore &;g. > Bp/e* for all i > ny(f), where we set By = f'(cm) + L(6).
Thus,

1S:- e 112 =D > (1+|Rie.-

0EPA i=n,(6)

4) Pt .51,27975 gl

Now it is easy to verify that for all £ > 0, i > ny(f), and A > X, (5),6, We
have

i L+ |Rigelt
1 ) 4\, 22X, t el 1 2xt
( + |I€z,9,s ) e > 26()\ — /\i,g,s) ‘
_ 1+ |Rig.el* Tl et

2e (X — Bolkig,.e

7+ il

To continue, define the function h(s) = (1 + s?) - (A — Bs + £2s%)~!, where
A=a-7<0,s€Z:={s>0 : \—Bs+¢e%s> >0}, and 8 = By for
an arbitrary # € PA. Assume first that 6 is such that 8y > 0. Then h is
monotonically decreasing on Z, and this implies

o2 1+ |&igel! 1+ 18y ()0,
BT 2e(N = BolRigel? + 2 Rigelt) T 26X = Any(0),0.0)
Lt ot (7-)
2e(a: ~ —a: )

If By < 0, then h switches exactly once from decreasing to increasing in 7,
and this yields

Cipe < maX{ME_—,s_l} = M " .

This proves the seventh estimate in (b). Finally, using a calculation which
was already employed in the proof of Lemma 3.6(b) in [15] and which uses
the estimate A\, (4,0 fmarse > 0 - AP =07 (By,...)?/(4e?) from Corol-

lary 3.5(c), we obtain

M- < o(1+d/2) a/2 \/54 F Bbumen)” - (L4 V1 -0 7)%/4

-max ¢ €%,
H1

where p1 > 0 is defined in Corollary 3.5(b). This finally proves the asymptotic
behavior of the constant M~ for e — 0.

The proof of part (¢) follows the lines of the proof of Lemma 3.6(c) in [15]
and is therefore omitted.
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O

According to the above lemma the linear part of the Cahn-Hilliard equa-
tion with elasticity (24) satisfies (with respect to the non-standard norm ||-||.)
both (H1) and (H2), as well as (7) from Section 2 in [15]. Moreover, the
asymptotic behavior for € — 0 of certain spectral gaps in the spectrum of B,
and of the constants M_ ~ and M, 5 . have been obtained. We close this sub-
section with the following remark.

Remark 3.9 With the results of Corollary 3.5 and Lemma 3.8 we can deduce
the asymptotic behavior of certain constants introduced in [15, Section 2]
for ¢ — 0. Although the specific values of these constants are different if
compared to the application in [15, Section 3], their dependence on ¢ is not.
Hence, we obtain exactly the same asymptotics, i.e., C;~ > C - &% and
CH > C -2 for e — 0, see Remark 3.7 in [15].

Even though we did not formally introduce these constants, we want to
point out that their asymptotic behavior is used to prove that the abstract
theory of Section 2 in [15] can be applied to B. and a nonlinear function F,
whose Lipschitz constant satisfies 0 < Ly < C - &%, For more details see [15,
Remark 2.11]. All of the constants C' above depend only on 2, f'(¢)+ Liax,
and the constants in (33).

3.3 Properties of the nonlinearity

Hypothesis (H3) is valid for some function F : H2 (2) — L2(£2) which
coincides with F' from (26) on a certain neighborhood of the origin. In order
to obtain a global Lipschitz constant Lj of the order et (as required by
Remark 3.9), the size of this neighborhood has to be proportional to &4
with respect to the H2(§2)-norm. This can be proved by applying the results
from [15, Section 3.3] to f and F. This immediately furnishes the following

result.

Corollary 3.10 The nonlinear operator F defined in (26) satisfies (H3) with
a Lipschitz constant L of the order €% on an H?(12)-neighborhood of 0 with
size proportional to €?.

3.4 Spinodal decomposition

In the previous subsections we established all properties of (24) which are
necessary to apply the abstract results of [15, Section 2] to the Cahn—Hilliard
equation with elasticity — and this can be done exactly as in Subsection 3.4
of [15]. Moreover, since the asymptotic behavior of the involved constants re-
mains basically unchanged, we obtain exactly the same result, of course after
adopting the new notation (¢, instead of u, B. instead of A. and so on).
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Therefore, we refrain from presenting our main theorem again in as detailed
a form as in the binary case, and state only an intuitive abbreviated version.

Suppose that three constants 0 < r < p < R are given. We consider initial
conditions from the ball

Bi(em) = {(vE€em+ X @ X @ X v —cull« <7} C em+ H2,(2)

and their evolution under the dynamics of (24). Let M, denote the set of
all initial conditions v € B, (c¢y,) whose corresponding solution of (24) either
remains in the larger ball Bg(c,,) for all time, or has distance greater than p
from X @& X" upon exiting Bgr(cm). See also Figure 6 in [15]. In other
words, the initial conditions in M, cannot be considered as being dominated
by the strongly unstable subspace Y := X+ @ X+,

Our main theorem states that the volume (which is the canonical Lebesgue
volume of the finite-dimensional space X & X & X) of these “bad”initial
conditions compared to the volume of all initial conditions in B,(cy,) is arbi-
trarily small, provided the constants 0 < r < p < R are chosen proportional
toe? ase — 0.

Theorem 3.11 We consider solutions of the Cahn—Hilliard equation with
elasticity (24) and assume that hypotheses (A1), (A2), and (A8) are satisfied.
Then there exists a positive constant eq which depends only on 2, f'(cm) +
Luiax, |f'(¢m) + Lmin|, and the constants in (33), such that for arbitrary
0 < e < gq the following holds.

For every 0 < p K 1 there exist constants 0 < r € p € R which depend
only on f'(cm) + Lmax, 2, and the constants in (33) (r depends additionally
on p) and which are all proportional to €% as ¢ — 0, such that

vol(M,)

_ 34
vol(B,(¢m)) — (34)
Proof: One only has to apply the abstract theory of Section 2 in [15].
Hypotheses (H1) through (H3) have been established in Subsections 3.1
through 3.3, and the necessary constants have been calculated, furnish-
ing the ball with size proportional to e? on which the result is valid.

O

Remark 3.12 This theorem guarantees that the initial conditions near ¢,
are dominated by the subspace Y. This is why we call Y the dominating
subspace. Since the nonlinearity F' is exactly the same as in [15] we expect
that also the results of Sander and Wanner [19] on second phase spinodal
decomposition hold true for the Cahn-Hilliard equation with elasticity.
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4 Numerical simulations

Finally, we would like to show that the patterns predicted by our analysis
in Sections 2 and 3 are in fact observed in typical solutions having initial
data close to an unstable homogeneous state ¢, i.€., ¥ cc(Cm) — Lmax =
—(f"(¢m) + Lmax) < 0. We made a series of numerical simulations based on a
finite element method developed in Garcke, Rumpf, Weikard [10] and in this
section we will present typical patterns seen in the numerical experiments.
We point out that in [10] optimal error estimates are established, i.e. the
method used is very reliable.

Before we present the numerical results, let us remark that the patterns
shown are generic in the sense that the initial data have to be degenerate
in a certain sense in order not to lead to similar patterns. In all simulations
we were choosing ¢, = 0 and were taking a random perturbation around ¢,,
as initial data. All calculations have been performed on the unit square with
e =10"3,9(c) = +(c*—0.16)? and the solutions are shown at time ¢ = 0.001.

Fig. 6. The case without elasticity; modulus of the Fourier coefficients (left) and
sign of the concentration difference ¢ (right)

At first we consider the case without elasticity. The left hand side of Fig-
ure 6 shows the modulus of the Fourier coefficients of a solution to the Cahn-
Hilliard equation during spinodal decomposition after a fixed time. On the
right the sign of the concentration difference ¢ (black denoting positive, white
denoting negative values) is shown. The Fourier coefficients were calculated
using the FFTW-software package (see http://www.fitw.org for details). Fig-
ure 6 corresponds to Figure 1 in that neither in the Fourier coefficients nor in
the concentration picture there are any distinguished directions reflecting the
isotropy of the Cahn-Hilliard model without elasticity. Essentially the same
picture occurs in the case of isotropic elasticity.
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Fig. 7. Negative anisotropy of the elasticity tensor; modulus of the Fourier coeffi-
cient (left) and sign of the concentration difference ¢ (right)

Fig. 8. Positive anisotropy of the elasticity tensor; modulus of the Fourier coefficient
(left) and sign of the concentration difference ¢ (right)

In the Figures 7 and 8 we show numerical results with an anisotropic
elasticity tensor. Parameters were C1; = 10, C19 = 1, C4y = 1 and ¢ = ‘{—g
(this implies Lyar & —0.068, Lyyin = —0.2 and f'(c,,) = 0.16) for the case
with positive anisotropy and Ci;; = 2, C15 = 1, Cyy = 100 and ¢ = 0.2
(i.e., Limaz = —0.06, Ly = —0.236 and f'(¢,;,) = 0.16) for the case with
negative anisotropy. In both cases the anisotropy is clearly visible in the
Fourier coefficients as well as in the concentration.
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Fig. 9. Anisotropic eigenstrain and isotropic elasticity tensor; modulus of the
Fourier coefficient (left) and sign of the concentration difference ¢ (right)

Finally we consider the case with isotropic elasticity tensor but anisotropic

eigenstrains (see Figure 9). The parameter were A = 1, = 1 and a = 1,

b=0.1 (i.e., Lypge = —0.015, Lypip, = —1.5 and f'(¢p,) = 0.16).
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