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omposition, i.e., the separation of a homogeneous mixtureinto di�erent phases, 
an be modeled by the Cahn-Hilliard equation - a fourthorder semilinear paraboli
 equation. If elasti
 stresses due to a latti
e mis�t be
omeimportant, the Cahn-Hilliard equation has to be 
oupled to an elasti
ity system totake this into a

ount.It is the goal of this paper to understand how elasti
 e�e
ts in
uen
e the for-mation of patterns during spinodal de
omposition and to analyze what kind ofmorphologies one has to expe
t. It is shown that with a probability 
lose to one,the dynami
s of randomly 
hosen initial data in the neighborhood of a uniformmixture will be dominated by an invariant manifold whi
h is tangential to the mostunstable eigenfun
tions of the linearized operator. For example in the 
ase of 
u-bi
 anisotropy it is shown that the most unstable eigenfun
tions re
e
t the 
ubi
anisotropy and the anisotropy will in
uen
e the dynami
s quite drasti
ally.1 Introdu
tionIn this paper we 
onsider spinodal de
omposition in binary alloys in the 
asewhere elasti
 e�e
ts be
ome important. It is well known that 
omplex pat-terns may form in the early stages of spinodal de
omposition. We are inter-ested to understand the e�e
t elasti
 intera
tions may have on the formationof patterns.The typi
al s
enario of spinodal de
omposition is as follows. At temper-atures above a 
ertain 
riti
al temperature a uniform mixture of the two
omponents in the alloy is stable. After a rapid quen
hing this state 
an be-
ome unstable and regions where one or the other of the two 
omponentsdominate o

ur. It is the goal of this paper to understand how these regionsform and to analyze what kind of morphologies one has to expe
t.Let 
1; 
2 denote the 
on
entrations of the two alloy 
omponents. Sin
e
1+
2 = 1 the variable 
 := 
1�
2 
ompletely determines the 
on
entrations.Deformations of the referen
e 
on�guration are des
ribed by the displa
ement
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h Weikard�eld u, i.e., a material point x in the referen
e 
on�guration will be found atthe point x+ u(t; x) at time t.Sin
e displa
ement gradients in phase separating systems are small, thetheory we 
onsider will be based on the linearized strain tensorE(u) = 12(ru+ (ru)T )where r is the gradient with respe
t to spa
e and (ru)T is the transpose ofru.In this paper we 
onsider a generalization of the Cahn-Hilliard modeltaking elasti
 e�e
ts into a

ount. The model is due to Lar
h�e and Cahn [13℄and Onuki [18℄ using ideas introdu
ed by Eshelby [3℄ and Kha
haturyan [12℄.The theory is based on a free energy of the formE(
; u) = Z
 �"22 jr
j2 +  (
) +W (
; E(u))� dxwhere 
 � Rd is the domain under 
onsideration, 
 : 
 ! R is the 
on
en-tration di�eren
e and u : 
 ! Rd is the displa
ement �eld. The fun
tion : R ! R is the free energy density and is assumed here to be a non-
onvexfun
tion of 
, e.g. a double well potential of the form  (
) = (
2� 1)2. With-out the term W this type of free energy goes ba
k to van der Waals [21℄ andwas introdu
ed in the theory of spinodal de
omposition by Cahn and Hilliard[2℄. The third term is the elasti
 energy density W : R � Rd�d ! R whi
h is
hosen to be W (
; E) = 12(E � ~E(
)) : C[E � ~E(
)℄(see Eshelby [3℄, Kha
haturyan [12℄, Lar
h�e and Cahn [13℄, Fratzl, Penroseand Lebowitz [5℄). Here, ~E(
) 2 Rd�d is the stress free strain at 
on
entration
, C is a fourth-rank elasti
ity tensor and the :{produ
t of two matri
esA = (Aij)i;j=1;:::;d and B = (Bij)i;j=1;:::;d is given byA : B = dXi;j=1AijBij and jAj2 = A : A :Our standing assumptions are:Assumption 1.1 The stress free strains depend linearly on the 
on
entra-tion (Vegard's law), i.e., ~E(
) = 
 � E�with a �xed symmetri
 matrix E� 2 Rd�d :
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tions 3The domain 
 is a assumed to have re
tangular shape, i.e.,
 = [0; `1℄� : : :� [0; `d℄with `1; : : : ; `d > 0. The elasti
ity tensorC = (Cijmn)i;j;m;n=1;:::;dis assumed to be positive de�nite and to ful�ll the symmetry 
onditions oflinear elasti
ity, i.e., Cijmn = Cijnm = Cjimn;Cijmn = Cmnij (1)and there exists some d0 > 0, su
h thatE : C[E ℄ � d0jEj2 (2)for all symmetri
 E 2 Rd�d .We note that the symmetry 
ondition (1) gives for all matri
es A and BC[A℄ : B = A : C[B℄:Let us give two typi
al examples for the elasti
ity tensor C. In the isotropi

ase (
f. [11℄) we haveCijmn = �ÆijÆmn + �(ÆimÆjn + ÆinÆjm) (3)where �; � are the Lam�e 
onstants and Æij is the Krone
ker symbol. ThismeansC[E ℄ =  dPm;n=1 Cijmn Emn!i;j=1;:::;d = �(trE) � Id+ �(E + ET )= �(trE) � Id+ 2�Efor all symmetri
 E 2 Rd�d . For many systems it is more realisti
 to assume
ubi
 symmetry (
f. [5℄, p. 168). In this 
ase there are three degrees offreedom for the elasti
ity tensor. One usually introdu
es the notationCiiii := C11 i = 1; : : : ; d;Ciijj := C12 i 6= j;Cijij := C44 i 6= j ;where C11; C12, and C44 are given 
onstants. All other entries of C are theneither given due to the 
ubi
 symmetry, i.e., either there is a symmetry withrespe
t to the 
oordinate axis or they are set to be zero. Formally this means
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ke, Stanislaus Maier-Paape, and Ulri
h WeikardQ C[E ℄ QT = C[QEQT ℄for all orthogonal Q 2 Rd�d with detQ = 1 whi
h let the d{dimensional 
ube[�1; 1℄d invariant. The elasti
ity tensor 
an than be written asCijmn = (C11 � C12 � 2C44)ÆijÆjmÆmn+C12ÆijÆmn+C44(ÆimÆjn + ÆinÆjm): (4)The di�erential equation for 
 is given by (see [5, 6, 7, 9℄)�t
 = �w;where w is the 
hemi
al potential di�eren
e de�ned asw = ÆEÆ
 = �"2�
+  ;
(
) +W;
(
; E(u))and W;
(
; E(u)) = �E� : C[E(u)� 
E�℄.The system is then 
ompleted by the assumption of quasi-stati
 equilibriumfor the me
hani
al part. This is justi�ed sin
e me
hani
al equilibrium is at-tained on a mu
h faster time s
ale than mass di�usion takes pla
e. Therefore,we obtain 0 = ÆEÆu = �r �W;E(
; E(u)) = �r � S;where S =W;E(
; E(u)) = C[E(u)� 
E�℄is the stress tensor and r� is the divergen
e operator a
ting on rows. Alto-gether we obtain a system of a s
alar and a ve
tor-valued equation�t
 = �(�"2�
+  ;
(
)� E� : S);0 = r � S = r � C[E(u)� 
E�℄ : (5)For de�niteness, we assume periodi
 boundary 
onditions for 
 and u. Theabove equations imply mass 
onservation for 
, i.e.Z
 
(t; x) dx =: 
m = 
onst. (6)Therefore the new variable v := 
� 
m satis�es R
 vdx = 0. We setf(
) := � ;
(
)and, after repla
ing v by 
 again, we arrive at
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 = (��)("2�
+ f(
m + 
) + E� : S); (7)0 = r � C[E(u)� 
E�℄ : (8)The elasti
ity equation (8) is linear in u and 
. In Se
tion 2 it is shown thatfor all previously des
ribed elasti
ity tensors C equation (8) 
an be solvedusing Fourier transformation (see also [12, 17℄). We obtain some u = u(
) forany given 
 with R
 
 dx = 0.Se
ondly, in Se
tion 2 we 
ompute the term E� : S = E� : C[E(u)� 
E�℄ withu = u(
) whi
h enters the equation (7) for 
. This will give an operator LL : X ! X; 
 7! E� : S; where X := n
 2 L2(
) : Z
 
dx = 0o ; (9)whi
h is linear in 
. With the help of L we 
an rewrite the equation for 
 asfollows �t
 = (��)("2�
 + f(
m + 
) + L(
)) : (10)The understand the behavior of (10) for 
 � 0 we linearize at 
 = 0 to obtain�t
 = ���) ("2�
 + f 0(
m) 
 + L(
)� : (11)The eigenfun
tions of the right hand side in (11) are'�(x) = ei��x ;where i = p�1 and � = (�1; :::; �d) = 2�( �1`1 ; : : : ; �d`d );� = (�1; : : : ; �d) 2 Zd : (12)The asso
iated eigenvalues are��;" = j�j2�� "2j�j2 + f 0(
m) + L(�)� ; (13)where we use that in our appli
ations the linear operator L 
an be writtenas L('�) = L(�) � '� (14)with some 0{homogeneous fun
tion L : Rdnf0g ! R. We set Lmax and Lminto be the maximal and minimal value of L.Now the equilibrium 
 = 0 of (10) is unstable, if the maximal eigenvalue in(13) is positive. Therefore we assume:Assumption 1.2 Let the mean value 
m of 
 (
f. (6)) and the maximum ofL from (14) satisfy f 0(
m) + Lmax > 0 :
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h WeikardIt is easy to see that then the eigenvalues are bounded by�max" := (f 0(
m) + Lmax)24"2 :In this situation, we 
an make an adaption of the theory of Maier{Paape andWanner on spinodal de
omposition for the Cahn{Hilliard equation (
f. [14℄and [15℄). We will outline this in Se
tion 3. In 
on
lusion, we �nd that thebehavior of (10) near 
 = 0 is dominated by a �nite dimensional stronglyunstable subspa
e Y+" := span f'� : ��;" > 
0 � �max" gfor some 
0 < 1 
lose to one. It turns out that real parts and imaginaryparts of this subspa
e are just a subset of the dominating subspa
e o

urringfor the Cahn{Hilliard equation. Therefore we inherit the small order O(")wavelength estimate for the elements in Y+" (
f. [14℄, Se
tion 4). Figure 1 is asket
h of the situation for the Cahn{Hilliard equation (L = 0) whi
h we givefor referen
e. To the left we have the Fourier ve
tors � that are ex
ited themost and to the right we have the nodal domains of a typi
al element of Y+"for that 
ase.

Fig. 1. Cahn{Hilliard situationThe next two situations show the dominant Fourier ve
tors and typi
al pat-tern for the 
ase of 
ubi
 symmetry (4), E� = q � Id and 
 = square. We�rst have negative anisotropy, i.e. �C = C11 � C12 � 2C44 < 0, and then inFigure 3 the situation for positive anisotropy, i.e. �C > 0.The last pi
ture, Figure 4, shows the situation for isotropi
 symmetry (3)and E� being not a multiple of the identity matrix (non-dilatational mis�t).
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Fig. 2. Cubi
 symmetry with negative anisotropy

Fig. 3. Cubi
 symmetry with positive anisotropyIn ea
h of the Figures 2, 3 and 4 we see that 
ertain dire
tions of the nodaldomains are sele
ted.Finally, in Se
tion 4 we present results from numeri
al simulations of theelasti
ally modi�ed Cahn-Hilliard system whi
h are in agreement with thetheoreti
al predi
tions of Se
tions 2 and 3.
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Fig. 4. Isotropi
 symmetry with anisotropi
 eigenstrains2 Solving the elasti
ity systemWe start this se
tion by 
omputing L(
) = E� : S, where S = C[E(u) � 
E�℄and u = u(
) is the unique solution of r � S = 0 for given 
 with R
 
dx = 0.Let us 
ompute L for the Fourier mode'�(x) = ei��x ; (15)where i = p�1 and � = (�1; :::; �d) = 2�( �1`1 ; : : : ; �d`d );� = (�1; : : : ; �d) 2 Zd :For the solution u of (8) with 
 = '� as in (15) we make the ansatzu(x) = (u1(x); :::; ud(x)) = ~uei��x (16)with ~u 2 Rd . We obtain �mun(x) = ~uni�mei��xand E(u) = 12 i(�
 ~u+ ~u
 �)ei��x; (17)where a
 b := abT 2 Rd�d for all a; b 2 Rd . We 
al
ulate,r � C['�E�℄ = r � C[E�ei��x℄= (C[E�℄)i�ei��x= S�i�ei��x 2 Rd ;
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omposition in the presen
e of elasti
 intera
tions 9where S� := C[E�℄, i.e., S� is the stress indu
ed by E�. In addition we 
omputer � C[E(u)℄ = r � (C[ 12 i(�
 ~u+ ~u
 �)℄ei��x)= � 12ei��xC[�
 ~u+ ~u
 �℄� :The symmetries of the elasti
ity tensor Cijmn = Cijnm (
f. (1)) 
an be usedto obtain C[�
 ~u℄ = C[~u
 �℄and therefore r � C[E(u)℄ = �ei��xC[�
 ~u℄� :Introdu
ing the matrixZ�1(�) = 0� dXj;m=1Cijmn�j�m1Ai;n=1;:::;d ; (18)we obtain r � C[E(u)℄ = �ei��xZ�1(�)~u :The above used matrix Z�1(�) is in fa
t the inverse of some matrix Z(�) 2Rd�d . This follows from the next lemma.Lemma 2.1 The matrix Z�1(�) is stri
tly positive de�nite for all � 2 Rd nf0g and therefore invertible.Proof: Let � 2 Rd . Then we obtain using the symmetry properties of C (1)and the fa
t that C is positive de�nite (2)�TZ�1(�)� = dPi;n=1 �i dPj;m=1Cijmn�j�m�n= Pi;j;m;nCijmn�i�j�n�m= Pi;j;m;nCijnm�i�j�n�m� d0j� 
 �j2 = d0j�j2j�j2 :The above inequality shows that Z�1(�) is positive de�nite whenever � 6= 0.�To obtain u we need to solver � C[E(u)℄ = r � C['�E�℄ :This is equivalent to
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h Weikard�Z�1(�)~u = iS�� :Using that Z�1(�) is invertible, we get~u = �iZ(�)S�� :Hen
e from (16)u(x) = �(iZ(�)S��)ei��x = �iZ(�)S��'�(x) : (19)Lemma 2.2 For � 2 Rd n f0g we obtainL('�) = E� : (C[Z(�)S���T ℄� S�)'� :Proof: Using the formulas for u and ~u above and (17) we 
omputeL('�) = E� : S = E� : C[E(~uei��x)� '�E�℄= E� : C[~u
 �iei��x � E�ei��x℄= E� : C[Z(�)S���T � E�℄ei��x= E� : (C[Z(�)S���T ℄� S�)ei��x:This shows the lemma. �Remark 2.3 The operator L 
an be interpreted as a pseudo-di�erential op-erator of order 0. This follows from the fa
t thatL('�) = L(�)'� (20)with a fun
tion L. The fun
tion L is 0-homogeneous be
ause Z(�) is (�2)-homogeneous whi
h follows from (18) and Cramer's rule. With u taken from(19) and after a partial integration we obtain using (8)0 � � Z
 W ('�; E(u)) dx = 12 Z
 '�E� : C[E(u) � '�E�℄ = 12L(�) Z
 '2� :We 
on
lude that in the elasti
ally modi�ed Cahn-Hilliard equation (10) theL-term has a stabilizing e�e
t.2.1 The isotropi
 
aseIn this subse
tion we assume thatC[E ℄ = �(trE)Id + �(E + ET )with given �; � 2 R and for some q 2 RE� = qId:
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tions 11Lemma 2.4 Under the above assumption on C and E� we obtainL = q2(d� + 2�)2�(1� d)2�+ � � Id:Proof: Let � 2 Rd n f0g be given. First we 
omputeZ�1(�) = � dPj;m=1 ÆijÆmn�j�m!i;n=1;:::;d+� dPj;m=1(ÆimÆjn + ÆinÆjm)�j�m!i;n=1;:::;d= ���T + �(��T + j�j2Id)= (�+ �)��T + �j�j2Id :We 
an easily invert Z�1(�) to obtain Z(�) de�ned as followsZ(�)� = 1(2�+ �) 1j�j2�and Z(�)e = 1�j�j2 e for all e with �T � e = 0 :FurthermoreS� = C[E�℄ = qCId = q(d�Id + 2�Id) = q(d�+ 2�)Idand Z(�)S���T = q(d� + 2�)(2�+ �) 1j�j2 ��T :To 
omputeE� : (C[Z(�)S���T ℄� S�) = q Id : (C[Z(�)S���T ℄� S�)= q � tr(C[Z(�)S���T ℄� S�) ;we 
al
ulatetrC[��T ℄ =Pi Pm;n(�ÆiiÆmn + �(ÆimÆin + ÆinÆim))�m � �n= (d� + 2�)j�j2:This givesE� : (C[Z(�)S���T ℄� S�) = q � tr(C[Z(�)S���T ℄� S�)= q2(d�+ 2�)� d�+2�(2�+�) � d�= q2(d�+ 2�) 2�(1�d)2�+� ;
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h Weikardwhi
h implies L('�) = q2(d� + 2�) 2�(1� d)2�+ � '�for all � 6= 0. Therefore the 
laim is proved. �Remark 2.5 We have shown that in the isotropi
 
ase, the operator L is amultiple of the identity. C as in (3) is positive de�nite if and only if� > 0 and 2�+ d� > 0:Then in parti
ular 2�+ � > 0: This implies that L is a negative multiple ofthe identity for q 6= 0 and d > 1. For the evolution equation we observe againthat the operator L has a stabilizing e�e
t when 
ompared to the 
ase withoutelasti
ity.2.2 A 
ubi
 elasti
ity tensorIn this subse
tion we 
onsider the 
ase E� = q � Id and we assume 
ubi
symmetry for the elasti
ity tensor C (
f. (4)), i.e.,Cijmn = (C11 � C12 � 2C44)ÆijÆjmÆmn+C12ÆijÆmn+C44(ÆimÆjn + ÆinÆjm):We remark that C is positive de�nite if and only if C44 > 0 andC11 > (d� 1)jC12j ; in 
ase C12 < 0C11 > C12 ; in 
ase C12 � 0 :The following lemma is easy to verify.Lemma 2.6 The matrix Z�1(�) has the entries(Z�1(�))ii = (C11 � C44)�2i + C44j�j2; i = 1; : : : ; d ;(Z�1(�))in = (C12 + C44)�i�n i 6= n :Lemma 2.7 With 
ubi
 symmetry for C and E� = q �Id we obtainL('�) = q2(C11+(d�1)C12)"(C11 + (d� 1)C12)  dXm;p=1Zmp(�)�p�m!� d#'� :
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ording to Lemma 2.2 we have to 
omputeL('�) = q � tr(C[Z(�)S���T ℄� S�)'� :Under the assumptions on C and E� we 
al
ulate(S�)ij = (C[E�℄)ij = q(C[Id℄)ij= q� dPm=1Cijmm�ij= q((C11 � C12 � 2C44 + dC12 + 2C44)Æij)ij :This implies S� = q(C11 + (d� 1)C12)Idand trS� = q d(C11 + (d� 1)C12):Furthermore, we havetr(C[Z(�)S���T ℄) == q(C11 + (d� 1)C12)tr(C[Z(�)��T ℄)= q(C11 + (d� 1)C12) Pi;m;nCiimnPp Zmp(�)�p�n= q(C11 + (d� 1)C12) Pi;m;pCiimmZmp(�)�p�m!= q(C11 + (d� 1)C12) Pi (C11 � C12)Pp Zip(�)�p�i + C12dPm;pZmp(�)�p�m!= q(C11 + (d� 1)C12)2 Pm;pZmp(�)�p�m: �For simpli
ity we only give the formulas for L in the physi
ally interesting
ases d = 2; 3.Lemma 2.8 (d=2) In two spa
e dimensions we obtainL('�) = � q2C44(C211 � C212)j�j4C44C11j�j4 + (C11 + C12)(C11 � C12 � 2C44)�21�22'� :



14 Harald Gar
ke, Stanislaus Maier-Paape, and Ulri
h WeikardProof: For d = 2 we obtain the inverse of Z�1(�) asZ(�) = 1detZ�1(�) � j�j2C44 + (C11 � C44)�22 �(C12 + C44)�1�2�(C12 + C44)�1�2 j�j2C44 + (C11 � C44)�21�with detZ�1(�) = C11C44j�j4 + [(C11 � C44)2 � (C12 + C44)2℄�21�22 :Hen
e, 2Xm;p=1Zmp(�)�p�m = j�j4C44 + 2(C11 � C12 � 2C44)�21�22detZ�1(�) :Altogether, we obtainL('�) = q2(C11 + C12) � (C11 + C12) � [j�j4C44 + 2(C11 � C12 � 2C44)�21�22℄j�j4C44C11 + (C11 + C12)(C11 � C12 � 2C44)�21�22 � 2�'�= � q2C44(C211 � C212)j�j4C44C11j�j4 + (C11 + C12)(C11 � C12 � 2C44)�21�22'� :Remark 2.9 In the situation of Lemma 2.8 the 0{homogeneous fun
tion Lis given byL(�) = � q2C44(C211 � C212)j�j4C44C11j�j4 + (C11 + C12)(C11 � C12 � 2C44)�21�22 :Let us 
ompute now for whi
h dire
tions � 2 Rd nf0g L(�) be
omes maximal.First of all we note that the fa
t that C is positive de�nite impliesC11 > jC12j and C44 > 0 :Hen
e we obtain:i) In the 
ase of positive anisotropy, i.e., �C := C11 � C12 � 2C44 > 0:L(�) is maximal if �21 = �22:ii) In the 
ase of negative anisotropy, i.e., �C < 0:L(�) is maximal if either �1 or �2 is equal to zero:
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tions 15For the evolution problem this will imply that elasti
 intera
tions will am-plify wave numbers � lying in segments around the 
oordinate axes strongerthan other segments in the 
ase that the anisotropy is negative. For positiveanisotropy instead the diagonal dire
tions will be stronger ampli�ed.In the 
ase of three spa
e dimensions we obtain:Lemma 2.10 For 
ubi
 elasti
ity and E� = q �Id we obtain in three spa
edimensions for all '�(x) = ei��x with � 2 R3 n f0gL('�) = q2(C11 + 2C12)h (C11+2C12)detZ�1(�) �C244j�j6 + 2C44(C11 � C12 � 2C44)j�j2(�21�22 + �22�23 + �23�21) + 3(C11 � C12 � 2C44)2�21�22�23�� 3i'�wheredetZ�1(�) = C244C11j�j6 + C44(C11 � C12 � 2C44)(C12 + C11)j�j2(�21�22 + �22�23 + �23�21) + (C11 � C12 � 2C44)2(2C12 + C44 + C11)�21�22�23:Proof: A straightforward 
omputation using Lemma 2.6 showsZii(�) = 1detZ�1(�) �C244j�j4 + (C11 � C44)C44j�j2(�2j + �2̀)+(C11 � C12 � 2C44)(C12 + C11)�2j�2̀�for i = 1; 2; 3 with j and ` su
h that j 6= i, j 6= `, ` 6= i andZij(�) = �1detZ�1(�) (C12 + C44)�i�j(C44j�j2 + (C11 � C12 � 2C44)�2̀)for i; j = 1; 2; 3, i 6= j and ` su
h that ` 6= j and ` 6= i. We also havedetZ�1(�) = C244C11j�j6 + C44(C11 � C12 � 2C44)(C12 + C11)j�j2(�21�22 + �22�23 + �23�21)++(C11 � C12 � 2C44)2(2C12 + C44 + C11)�21�22�23 :Having 
omputed Z(�) we obtainPm;pZmp(�)�p�m = 1detZ�1(�)hC244j�j6+2j�j2C44(C11 � C44)(�21�22 + �22�23 + �23�21)+3(C11 � C12 � 2C44)(C12 + C11)�21�22�23�2j�j2C44(C12 + C44)(�21�22 + �22�23 + �23�21)�6(C12 + C44)(C11 � C12 � 2C44)�21�22�23i= 1detZ�1(�)hC244j�j6 + 2C44(C11 � C12 � 2C44)j�j2(�21�22 + �22�23 + �23�21)+3(C11 � C12 � 2C44)2�21�22�23i



16 Harald Gar
ke, Stanislaus Maier-Paape, and Ulri
h WeikardNow Lemma 2.7 gives the assertion. �We now dis
uss the result of Lemma 2.10. As in (20) we 
an write L withthe help of a 0{homogeneous fun
tion L. We want to determine dire
tionsfor whi
h L be
omes maximal.We obtain the following result.Lemma 2.11 In the situation of Lemma 2.10 with L('�) = L(�) � '� we�nd for L:Case A: Positive anisotropy, i.e., �C > 0. Here L is maximal in dire
tionsgiven by the eight points�� 1p3 ; � 1p3 ; � 1p3� : (21)Case B: Negative anisotropy, i.e., �C < 0. Here L is maximal in dire
tionsgiven by the six points(� 1; 0; 0) ; (0;� 1; 0); and (0; 0;� 1) : (22)Proof: For negative anisotropy we 
an use the identity (whi
h 
an be veri�edafter a tedious but straightforward 
omputation)C11q2(C11+2C12)2L(�) + 2 C11�C12C11+2C12 = �CdetZ�1(�)hC44 (C11 � C12)Pi;j; i6=j �4i�2j+2�(C11 � C12 � C44)2 + C44 (C11 � C12)��21�22�23ito 
on
lude that that L is maximal in the dire
tions 
orresponding to the
oordinate axes. For � on the 
oordinate axes the right hand side of theabove identity is zero whereas for all other dire
tions the right hand side isstri
tly negative. Here we use the fa
t that C is positive de�nite whi
h yieldsC44 > 0, C11 � C12 > 0, C11 > 0, C11 + 2C12 > 0 and detZ�1(�) > 0.To dis
uss the 
ase of positive anisotropy, i.e., �C > 0, we 
onsiderM(�) = ��C � C11q2(C11 + 2C12)2L(�) + 2 C11 � C12C11 + 2C12�� � ;where � = 9C44(C11 � C12) + 
1;� = 27C244C11 + 9
2 + 
3;
1 = (�C) (2C11 � 2C12 � C44) ;
2 = (�C)C44(C11 + C12);
3 = (�C)2 (2C12 + C44 + C11)whi
h are all positive 
onstants. It now holds
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tions 17M(�)= 1detZ�1(�)h� (9a+ b)j�j6 + (27a� 
)j�j2Pi;j i<j �2i�2j + (27b+ 9
)�21�22�23i ;(23)with a = C44(C11 � C12)C244C11;b = 
1C244C11;
 = (�C)3C44C11 :Again the veri�
ation of the above identities needs some patien
e but isstraightforward. We remark that a; b; 
 > 0.The above relation between L and M and the following statement provesthe lemma.Claim: M(�) � 0 and M(�) = 0 if and only if �21 = �22 = �23.We have: �detZ�1(�)�M(�)= a 9 �3j�j2Pi;j i<j �2i�2j � j�j6�+b �27�21�22�23 � j�j6�+
�9�21�22�23 � j�j2Pi;j i<j �2i �2j � j�j6� :To show the 
laim we are going to show that the term on the right hand sidein the above identity is is nonnegative for � with j�j = 1. For the �rst twoterms it is easy to verify that the maximum on S2 is attained if and only if�21 = �22 = �23 and in this 
ase the terms are zero. The last term is a bit morediÆ
ult to handle. W.l.o.g. we assume �21 � �22 � �23. Then we obtain9�21�22�23 � j�j2Pi;j i<j �2i �2j � j�j6= �21�22(2�23 � �21 � �22) + �22�23(2�21 � �22 � �23) + �21�23(2�22 � �21 � �23)� �21�23(2�23 � �21 � �22) + �21�23(2�21 � �22 � �23) + �21�23(2�22 � �21 � �23)= 0and this proves the lemma. �2.3 Anisotropi
 eigenstrainsIn this se
tion we 
onsider the 
ase that the eigenstrain E� is not a multipleof the identity matrix. We restri
t ourselves to isotropi
 elasti
ity in twodimensions and eigenstrains of the formE� = �a 00 b� ; a; b 2 R with a � b > 0 :
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ke, Stanislaus Maier-Paape, and Ulri
h WeikardLemma 2.12 For an isotropi
 elasti
ity tensor C and E� as above we obtainfor all � 2 R2 n f0g L('�) = L(�)'�with L(�) = 1�(�+2�)j�j4 h�e2�41 + �f2�42+ �(�+ �)(e� f)2 + �(e2 + f2)��21�22i�h�(a+ b)2 + 2�(a2 + b2)iwhere e = �(a+ b) + 2�a and f = �(a+ b) + 2�b.Proof: For all � 6= 0 we have to 
omputeL(�) = E� : (C[Z(�)S���T ℄� S�):Using the symmetry of C and the de�nition S� = C[E�℄ we obtainL(�) = S� : (Z(�)S���T � E�):Furthermore, we haveS� = C[E�℄ = �trE�Id+ 2�E�= �(a+ b)Id+ 2��a 00 b�= ��(a+ b) + 2�a 00 �(a+ b) + 2�b� :We have (
f. the proof of Lemma 2.8 with C12 = �, C44 = � and C11 = �+2�)Z(�) = 1detZ�1(�) ��j�j2 + (�+ �)�22 �(�+ �)�1�2�(�+ �)�1�2 �j�j2 + (� + �)�21�with detZ�1(�) = �(�+ 2�)j�j4:Therefore,S�Z(�)S� =� (�(a+ b) + 2�a)2Z11(�) (�(a+ b) + 2�a)(�(a+ b) + 2�b)Z21(�)(�(a+ b) + 2�a)(�(a+ b) + 2�b)Z12(�) (�(a+ b) + 2�b)2Z22(�) � :Altogether we obtain
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tions 19tr(S�Z(�)S���T )= 1�(�+2�)j�j4 h(�(a+ b) + 2�a)2(j�j2�+ (�+ �)�22)�21�2(�(a+ b) + 2�a)(�(a+ b) + 2�b)(�+ �)�21�22+(�(a+ b) + 2�b)2(j�j2�+ (�+ �)�21)�22i= 1�(�+2�)j�j4 h�(�(a+ b) + 2�a)2�41 + �(�(a + b) + 2�b)2�42+ �(�+ 2�)(�(a+ b) + 2�a)2 � 2(�+ �)(�(a + b) + 2�a)(�(a + b) + 2�b) + (�(a + b) + 2�b)2(�+ 2�)��21�22i= 1�(�+2�)j�j4 h�(�(a+ b) + 2�a)2�41 + �(�(a + b) + 2�b)2�42+ �(�+ �)4�2(a� b)2 + �((�(a + b) + 2�a)2 + (�(a+ b) + 2�b)2)��21�22i :Also we 
omputeS� : E� = (�(a+ b) + 2�a)a+ (�(a + b) + 2�b)b= �(a+ b)2 + 2�(a2 + b2) :This proves the 
laim. �Remark 2.13 We want to determine the maximum of L on S1. Settingz = �21 (i.e. 1� z = �22) an analysis of the fun
tiong(z) = �e2z2 + �f2(1� z)2 + �(�+ �)(e� f)2 + �(e2 + f2)� z(1� z)shows that g 
an attain its maximum only for z = 0; 1. This means thatL attains its maximum on the 
oordinate axes. Here one obtains that themaximum is attained on the x1-axis if and only if a2 > b2 and on the x2-axisif and only if b2 > a2.The wave numbers � for whi
h L attains its maximum are ampli�ed moststrongly by elasti
 intera
tions. In this 
ase only wave numbers lying on oneparti
ular 
oordinate axis are most strongly ampli�ed.Remark 2.14 In Figure 5 we show the graph of ��;" in the two dimen-sional 
ase as a fun
tion of �1 and �2 given by equation (13). On the lefthand we 
onsider the 
ase of an elasti
ity tensor with positive anisotropy (
f.Lemma 2.8) whereas on the right the elasti
ity tensor is isotropi
 but theeigenstrain is not (
f. Lemma 2.12).3 Spinodal de
omposition and elasti
 intera
tionsIn this se
tion we will apply the abstra
t results of Se
tion 2 of [15℄ to theCahn-Hilliard equation with elasti
ity. This appli
ation is very mu
h along
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Fig. 5. ��;" in the two dimensional 
ase as a fun
tion of �1 and �2; on the left:with positive anisotropy of the elasti
ity tensor, on the right: with anisotropi
 eigen-strains.the lines of the appli
ation of this theory given in Se
tion 3 of [15℄ and Se
tion2 of [16℄, where the binary and multi
omponent Cahn{Hilliard model weredis
ussed. We 
onsider the equation (10), i.e.,�t
 = (��)("2�
 + f(
m + 
) + L(
)) in 
 ;
 is periodi
;R
 
dx = 0 ; (24)where " > 0 is a small parameter. We spe
ify our assumptions as follows.(A1) On top of our standing Assumption 1.1 we let 
 be of re
tangular shapein Rd , where d 2 f1; 2; 3g.(A2) Let f : R ! R be a smooth fun
tion.In this situation we de�ned the linear operator L : X ! X in Se
tion 1(
f. (9)), whi
h, as we saw in Se
tion 2, always has a representation on theeigenfun
tions '� = ei�x as L('�) = L(�) '�, with some 0{homogeneousfun
tion L (
f. (14)). Our last assumption is:(A3) Let 
m and L satisfy Assumption 1.2 to make the equilibrium 
m unstable.To rewrite (24) we set~f(
) := f(
m + 
)� f 0(
m)
� f(
m) ; (25)so that ~f(0) = ~f 0(0) = 0. Furthermore, let
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tions 21A"
 := (��)("2�
+ f 0(
m)
) ; B"
 := A"
+ (��) L(
) ;and F (
) := (��) ~f(
) : (26)Then formally the �rst equation in (24) is of the form�t
 = B"
+ F (
) : (27)The evolution equation (27) is of the same form as the one used in the bi-nary Cahn{Hilliard 
ase 
onsidered in [15℄. Thus, we 
an use the abstra
ttheory developed there to prove the dominan
e properties mentioned in theintrodu
tion. For this we only have to verify hypotheses (H1) through (H3)in [15℄. This will be done in the following subse
tions. Basi
ally, we have toverify the following three 
laims.(H1) The operator �B" is se
torial in the Hilbert spa
e X .(H2) There exists a de
omposition X = X���X��X+�X++ into pairwiseorthogonal subspa
es, su
h that all subspa
es are �nite-dimensional ex-
eptX��, and su
h that the linear semigroup 
orresponding to �t
 = B"
satis�es several di
hotomy estimates, see Lemma 3.8(b) below.(H3) The nonlinear mapping F : X� ! X is C1 with F (0) = 0 andDF (0) = 0.Furthermore, it satis�es a global Lips
hitz 
ondition with 
onstant LF ,i.e., for all 
; ~
 2 X� we havekF (
)� F (~
)kX � LF k
� ~
kX� :Here X� denotes the fra
tional power spa
e 
orresponding to B" and� 2 (0; 1).Hypothesis (H3) was already developed in [15℄, Se
tion 3.3, be
ause the non-linearity in (24) is exa
tly the same as for the Cahn{Hilliard equation. In the
ourse of verifying the hypotheses (H1) and (H2), we also 
al
ulate several
onstants introdu
ed in [15℄, whi
h in turn furnish an upper bound on theLips
hitz 
onstant LF . (Noti
e that sin
e the nonlinearity in our example(see (26)) does not satisfy a global Lips
hitz 
ondition, we have to employa standard 
ut-o� te
hnique.) This will eventually determine the size of theneighborhood on whi
h our results are valid.3.1 Spe
tral propertiesIn the following lemma we 
olle
t several properties of the linear operator B"whi
h will be needed later. These results are the obvious generalization ofLemma 3.1 in [15℄, where the operator A" with Neumann type boundary
onditions was dis
ussed. We will again use the eigenfun
tions '� = ei�xof �� and their eigenvalues j�j2.
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ke, Stanislaus Maier-Paape, and Ulri
h WeikardLemma 3.1 Assume that (A1), (A2), and (A3) are satis�ed, and let X bede�ned as in (9). De�ne the operator B" : X ! X byB"
 = (��) �"2�
+ f 0(
m)
+ L(
)� ;with domain D(B") = �
 2 X \H4(
) : 
 is periodi
	 :Then the following assertions hold.(a) The spe
trum of the operator �� : X ! X with domainD(��) = f
 2 X \H2(
) : 
 is periodi
g
onsists of all j�j2, where � 2 Rd n f0g satis�es (12). The 
orrespond-ing normalized eigenfun
tions ~'� = '�=k'�k form a 
omplete L2(
)-orthonormal set in X. Furthermore, if Nd(�) denotes the number ofeigenvalues less than � 2 R (
ounting multipli
ities), then we have thatNd(�) � �d=2 as �!1 ; (28)where the proportionality 
onstant depends only on 
.(b) The operator �B" de�ned above is selfadjoint and se
torial. The spe
trumof B" 
onsists of real eigenvalues ��;" given in (13) with 
orrespondingeigenfun
tions '�. Moreover, the largest eigenvalue is for small " > 0 ofthe order�max" := (f 0(
m) + Lmax)24"2 ; and bounded by �max" : (29)For later referen
e let us also introdu
e the following notation.De�nition 3.2 We denote all � related to eigenvalues of �� by� := �� 2 Rd n f0g : � is of the form (12)	and P� = �� 2 Sd�1 : �=j�j = � for some � 2 �	.Furthermore, for given � 2 P� let�(�) = f� 2 � : �=j�j = �g � Rd n f0gbe all � 
orresponding to eigenvalues of �� lying on the same half ray as �.Any � 2 P� satisfying L(�) = Lmax is 
alled �max.Due to the above lemma, B" generates an analyti
 semigroup S"(t) on X .Furthermore, for every B" the fra
tional power spa
e X1=2;" � X is de�ned;
f. the dis
ussion in Subse
tion 2.1 of [15℄ following (H1). Although formally
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tions 23this fra
tional power spa
e depends on ", it will turn out in the next lemmathat algebrai
ally, i.e., as a ve
tor spa
e, we have X1=2;" = H2av(
), whereH2av(
) := 8<:
 2 H2(
) : Z
 
dx = 0 and 
 is periodi
9=; :Only the topologi
al stru
ture given by the norm jj � jj1=2;" on X1=2;" willdepend on the parameter ". Fortunately, the norms jj � jj1=2;" will turn outto be equivalent to the standard H2(
)-norm on H2av(
). More pre
isely, wehave the following result.Lemma 3.3 Assume that (A1) and (A3) are satis�ed, and let jj�jj1=2;" denotethe norm on X1=2;" de�ned byjj
jj1=2;" := ������(�B" + b"I)1=2
������ for all 
 2 X1=2;" ;where b" = (f 0(
m) + Lmax)2 ="2 and jj�jj = jj�jjL2(
). Moreover, let jj�jjH2(
)denote the standard H2(
)-norm, and de�ne another norm jj � jj� on H2(
)by jj
jj� := pjj
jj2 + jj�
jj2 for all 
 2 H2(
) :For "2 > 0 we assume "2 � f 0(
m) + Lmax and, in 
ase f 0(
m) + Lmin < 0,we assume additionally "2 < jf 0(
m) + Lminj. Then we haveX1=2;" = H2av(
) ;and the norm jj�jj1=2;" is equivalent to both jj�jjH2(
) and jj�jj�. More pre
isely,there exists a ("-independent) 
onstant C depending only on the domain 
su
h that for all 
 2 H2av(
) the estimates"p2 � jj
jj� � jj
jj1=2;" � Ĉ" � jj
jj� (30)and "C � p2 � jj
jjH2(
) � jj
jj1=2;" � Ĉ � C" � jj
jjH2(
)hold. Here we setĈ := (f 0(
m) + Lmax ; in 
ase f 0(
m) + Lmin � 0q(f 0(
m) + Lmax)2 + 12 (f 0(
m) + Lmin)2 ; otherwise :
Proof: As already pointed out in Lemma 3.2 in [15℄ we have that the normjj � jj� is an equivalent norm on H2(
), i.e., there is a 
onstant C su
h thatfor all 
 2 H2(
) the estimate
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h Weikard1C � jj
jjH2(
) � jj
jj� � C � jj
jjH2(
) (31)holds, 
f. Temam [20, p. 150℄ and Fife, Kielh�ofer, Maier-Paape, Wanner [4,Lemma 6.1℄ for the ne
essary ellipti
 regularity results.Therefore we only have to verify (30). A

ording to Amann [1, Theorem4.6.7℄ the fra
tional power spa
e X1=2;" 
onsists of all fun
tions 
 2 X whoseL2(
)-Fourier 
oeÆ
ients �� = (
; '�), � 2 �, satisfyX�2�(b" � ��;")�2�jj'�jj2 <1 :In that 
ase, the norm jj
jj1=2;" is given byjj
jj1=2;" =  X�2�(b" � ��;")�2�jj'�jj2!1=2 :On the other hand a fun
tion 
 2 X is in H2av(
) if and only ifjj
jj2� = X�2� �1 + j�j4� �2�jj'�jj2 <1 : (32)These 
hara
terizations eventually furnish the stated results. Using the rep-resentation (13) of ��;" and L(�) 2 [Lmin; Lmax℄ we obtainj�j2 ��"2j�j2 + f 0(
m) + Lmin� � ��;" � j�j2 ��"2j�j2 + f 0(
m) + Lmax� :An easy 
al
ulation gives for all s � 0 and 0 < "2 < f 0(
m) + Lmax"22 (1 + s2) � b" + "2s2 � (f 0(
m) + Lmax) syielding the left hand side of (30). For the right hand side of (30) we observefor s � 0 and " as assumedb" + "2s2 � (f 0(
m) + Lmin) s � Ĉ2"2 (1 + s2) :These estimates immediately imply the assertions of the lemma. �Sin
e a

ording to the above lemma the fra
tional power spa
e X1=2;"algebrai
ally does not depend on ", we will omit the supers
ript " in thefollowing and simply write X1=2 = H2av(
). Also, Lemma 3.3 shows thatwe may 
hoose either the standard H2(
)-norm or the norm jj � jj� on thefra
tional power spa
e X1=2, sin
e both of them are equivalent to the graphnorm jj � jj1=2;" of (�B" + b"I)1=2. It will turn out to be very 
onvenient to
hoose the norm jj � jj� as a (non-standard) norm on X1=2. Thus, from nowon we identify the spa
e (X1=2; jj � jj1=2;") with the spa
e (H2av(
); jj � jj�).
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tral gaps and exponential di
hotomy estimatesThe following lemma proves the existen
e of suitable spe
tral gaps in thespe
trum of B". They will be used to de�ne the de
omposition of X men-tioned in (H2), and therefore eventually furnish the di
hotomy estimates, seeLemma 3.8(b). The size of these gaps turns out to be 
ru
ial, be
ause it pro-vides a restri
tion on the possible size of the global Lips
hitz 
onstant of thenonlinearity in (H3).Lemma 3.4 Assume that (A1) and (A3) are satis�ed, so that in parti
ularwe have d 2 f1; 2; 3g. Furthermore, �x two 
onstants v� < v� < 1 and let�max" be de�ned as in (29).Then there exist 
onstants "0; �0 > 0 depending only on v�, v�, 
, andf 0(
m) + Lmax su
h that for arbitrary 0 < " � "0 the following holds. Thelinear operator B" has eigenvalues ��(") and ��(") satisfying bothv� � �max" � ��(") < ��(") � v� � �max"and ��(")� ��(") � �0 � "d�2 :Moreover, the whole interval (��("); ��(")) is part of the resolvent set of B".In fa
t, both the interval (v� � �max" ; ��(")) and (��("); v� � �max" ) 
ontainseigenvalues of the form ��;" 2 �(�) if�max";� := maxfs(f 0(
m) + L(�)� "2s) : s � 0g � v� � �max" :In parti
ular, in the above intervals are always eigenvalues from �(�max).Proof: Fix two 
onstants v� < v�� < v�� < v�. Due to Lemma 3.1, espe
ially(28), we 
an 
hoose "0 > 0 small enough su
h that for all 0 < " � "0 thefollowing two assertions hold.1. Both in the interval [v��; v�℄ � �max" and in [v�; v��℄ � �max" there is at leastone eigenvalue of B". Let ���(") denote the smallest eigenvalue in the�rst interval, and ���(") the largest one in the se
ond interval.2. The number of eigenvalues of B" in the interval (v��; v��)��max" is boundedabove by C �"�d�1, where C depends only on v�, v�,
, and f 0(
m)+Lmax.Let �0 := (f 0(
m)+Lmax)2(v���v��)=(4C) and assume that any two 
onse
-utive eigenvalues of the operator B" in the interval [���("); ���(")℄ are stri
tlyless than �0 � "d�2 apart. Then we get���(")� ���(") < �0 � "d�2 � C � "�d = (f 0(
m) + Lmax)2 (v�� � v��)4"2 :This however 
ontradi
ts the fa
t that���(")� ���(") � (v�� � v��) � �max" = (f 0(
m) + Lmax)2 (v�� � v��)4"2 ;
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h Weikardand the proof of the lemma is 
omplete. �Loosely speaking, the above lemma states that it is possible to �nd gapsin the spe
trum of B" whose size 
an be 
ontrolled as " ! 0. We will usethis fa
t to obtain the spe
tral gaps needed for assumption (H2). To this end,
hoose 
onstantsv�� < v�� � 0� v� < v� < v+ < v+ < 1 ; (33)where typi
ally the di�eren
es v���v��, v��v�, and v+�v+ will be small.Using these 
onstants the following results are an immediate 
onsequen
e ofLemma 3.4. They give the appropriate 
hoi
es of the spe
tral gaps for theoperators B" needed for our appli
ation.Corollary 3.5 Assume that all the assumptions of Lemma 3.4 are satis�ed.Then with the 
onstants from (33) there exist intervalsĴ��" := [â��" ; b��" ℄ � [v��; v��℄ � �max" ;J�" := [a�" ; b�" ℄ � [v�; v�℄ � �max" ;J+" := [a+" ; b+" ℄ � [v+; v+℄ � �max"su
h that for suÆ
iently small " > 0 the following holds.(a) Ea
h of the intervals Ĵ��" , J�" , J+" is 
ontained in the resolvent set ofB".(b) If we de�ne a��" := (â��" + b��" )=2 and letJ��" := [a��" ; b��" ℄ � Ĵ��" � [v��; v��℄ � �max" ;then there is an "-independent 
onstant �1 > 0 su
h that the length ofea
h of the intervals J��" , J�" , and J+" is at least �1 � "d�2. The 
onstant�1 depends only on 
, f 0(
m) + Lmax, and the 
onstants in (33).(
) The interval [v�� ��max" ; a��" ) is not 
ontained in the resolvent set of B",i.e., this interval 
ontains at least one eigenvalue of B".Using this result, we 
an now de�ne the subspa
e de
omposition of Xneeded for applying the results of [15℄.De�nition 3.6 Using the 
onstants introdu
ed in Corollary 3.5, de�ne theintervals I��" := (�1; a��" ), I�" := (b��" ; a�" ), I+" := (b�" ; a+" ), and I++" :=(b+" ; �max" ℄. Furthermore, let X��" , X�" , X+" , and X++" denote the sum of alleigenspa
es of the operator B" 
orresponding to eigenvalues ��;" in I��" , I�" ,I+" , and I++" , respe
tively.For further referen
e we de�ne
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tions 27De�nition 3.7 For given � 2 P�; " > 0, we denote by �i;�;"; i 2 N theordered eigenvalues ��;" of B" lying in �(�). Hen
e we have �1;�;" � �2;�;" �::: ! �1. The 
orresponding eigenfun
tions  i;�;"; i 2 N of B" are obtainedform the eigenfun
tions '� through this ordering pro
edure in the obviousway. Furthermore, denote by ~�i;�;" 2 �; i 2 N the related wave ve
tor � of i;�;". Note that j~�i;�;"j is monotoni
ally in
reasing for in
reasing i in theregion j~�i;�;"j2 > (f 0(
m) + L(�)) ="2.The restri
tions of B" or of the 
orresponding (linear) analyti
 semigroupS"(t) to ea
h of the subspa
es de�ned above will be denoted by the appropri-ate supers
ript. With these de�nitions we 
an pro
eed to verifying the two hy-potheses (H1) and (H2) for the linearization. Again we use the non-standardnorm jj � jj� (whi
h is equivalent to the norm jj � jj1=2;") on X1=2 = H2av(
).Lemma 3.8 Assume that (A1) and (A3) hold. Let �B" : X ! X denote theself-adjoint and se
torial operator de�ned in Lemma 3.1, let S"(t) : X ! X,t � 0, denote the 
orresponding analyti
 semigroup, and let X1=2 = H2av(
)denote the fra
tional power spa
e of Subse
tion 3.1 with norm jj � jj�. Further-more, 
onsider the 
onstants and intervals introdu
ed in Corollary 3.5 andDe�nition 3.6. Then the following assertions hold for arbitrary 0 < " � "0,where "0 depends only on the domain 
, the 
onstant f 0(
m)+Lmax, and the
onstants in (33).(a) The subspa
es X�" , X+" , and X++" are �nite-dimensional subspa
es ofX1=2, and their dimensions are proportional to "�d, where d denotes thedimension of the domain 
. Furthermore, the spa
es X��" , X�" , X+" , andX++" are orthogonal with respe
t to the L2(
)-s
alar produ
t (�; �), andtheir restri
tions to X1=2 are orthogonal with respe
t to (�; �)�.(b) There exists a 
onstant M��" > 0 su
h that for every 
++ 2 X++" , 
+ 2X+" , 
� 2 X�" , 
��� 2 X��" \X1=2, and 
�� 2 X��" the estimatesjjS++" (t)
++jj� � eb+" t � jj
++jj� for t � 0 ;jjS+" (t)
+jj� � ea+" t � jj
+jj� for t � 0 ;jjS+" (t)
+jj� � eb�" t � jj
+jj� for t � 0 ;jjS�" (t)
�jj� � ea�" t � jj
�jj� for t � 0 ;jjS�" (t)
�jj� � eb��" t � jj
�jj� for t � 0 ;jjS��" (t)
��� jj� � ea��" t � jj
��� jj� for t � 0 ;jjS��" (t)
��jj� � M��" � t�1=2 � ea��" t � jj
��jj for t > 0hold, and M��" � C � "�(1+d=2) as "! 0 ;where C > 0 depends only on 
, f 0(
m) + Lmax, and the 
onstants in(33). Note that due to the �nite dimensions of the subspa
es X�" , X+" ,and X++" the semigroups S�" (t), S+" (t), and S++" (t) 
an be extended togroups.
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) There exists a 
onstant M1=2;" � 1 su
h that for all 
 2 X�" �X+" �X++"we have 1M1=2;" � jj
jj � jj
jj � jj
jj� �M1=2;" � jj
jj ;and M1=2;" � "2 ! C as "! 0 ;where C > 0 depends only on f 0(
m) + Lmax, and the 
onstants in (33).Proof: The assertions of (a) follow easily from Lemma 3.1, (28), Corollary3.5, and De�nition 3.6.As for the proof of (b), let 
 2 X be arbitrary, let  i;�;" denote the eigenfun
-tions of B" a

ording to De�nition 3.7, and let 
 = P�2P�P1i=1 �i;�;" i;�;"denote the Fourier series representation of 
 in X , i.e., let �i;�;" := (
;  i;�;"),where (�; �) denotes the standard L2(
)-s
alar produ
t. Then we have anexpli
it spe
tral representation of the semigroup S"(t) given byS"(t)
 = X�2P� 1Xi=1 e�i;�;"�t � �i;�;" �  i;�;" for t > 0 ;and if 
 2 X1=2, then (32) furnishesk
k2� = X�2P� 1Xi=1 �1 + j~�i;�;"j4� � �2i;�;" � k i;�;"k2 <1 :These two identities already imply the �rst six inequalities in part (b). Forexample, let �1;�;" � : : : � �n0(�);�;", for � 2 P�, denote all eigenvalues of B"in the interval I++" , where n0(�) = 0 is possible. Then an element 
++ 2 X++"has the Fourier series representation 
++ = P�2P� Pn0(�)i=1 �i;�;" i;�;", andfor every t � 0 we obtainkS++" (t)
++k2� = X�2P� n0(�)Xi=1 �1 + j~�i;�;"j4� � e2�i;�;"�t � �2i;�;" � k i;�;"k2� X�2P� e2�n0(�);�;" �t � n0(�)Xi=1 �1 + j~�i;�;"j4� � �2i;�;" � k i;�;"k2� e2b+" �t � k
++k2� ;sin
e �n0(�);�;" 2 I++" = (b+" ; �max" ℄ a

ording to De�nition 3.6. The remaining�ve of the �rst six inequalities follow analogously.In order to prove the seventh inequality, let 
�� 2 X��" be arbitrary.If n1(�) � 1 is 
hosen in su
h a way that �i;�;" for i � n1(�) and � 2 P�denote all the eigenvalues of B" whi
h are 
ontained in I��" , then 
�� has theFourier series representation 
�� =P�2P� P1i=n1(�) �i;�;" i;�;" inX , and for
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tions 29arbitrary t > 0 we a
tually have S��" (t)
�� 2 X1=2. Due to the 
hoi
e of theinterval I��" one further obtains �i;�;" � �n1(�);�;" < 0 for all i � n1(�), andtherefore ~�i;�;" > ��="2 for all i � n1(�), where we set �� = f 0(
m) + L(�).Thus,jjS��" (t)
��jj2� = X�2P� 1Xi=n1(�) �1 + j~�i;�;"j4� � e2�i;�;"�t � �2i;�;" � k i;�;"k2 :Now it is easy to verify that for all t > 0, i � n1(�), and � > �n1(�);�;" wehave�1 + j~�i;�;"j4� � e2�i;�;"�t � 1 + j~�i;�;"j42e(�� �i;�;") � t�1 � e2��t= 1 + j~�i;�;"j42e (�� ��j~�i;�;"j2 + "2j~�i;�;"j4) � t�1 � e2��t :To 
ontinue, de�ne the fun
tion h(s) = (1 + s2) � (� � �s + "2s2)�1, where� = a��" < 0, s 2 Z := fs > 0 : � � �s + "2s2 > 0g, and � = �� foran arbitrary � 2 P�. Assume �rst that � is su
h that �� � 0. Then h ismonotoni
ally de
reasing on Z, and this impliesC2i;�;" := 1 + j~�i;�;"j42e(�� ��j~�i;�;"j2 + "2j~�i;�;"j4) � 1 + j~�n1(�);�;"j42e(�� �n1(�);�;")� 1 + j~�n1(�max);�max;"j42e(a��" � â��" ) =: �fM��" �2 :If �� < 0, then h swit
hes exa
tly on
e from de
reasing to in
reasing in Z,and this yields Ci;�;" � maxnfM��" ; "�1o =: M��" :This proves the seventh estimate in (b). Finally, using a 
al
ulation whi
hwas already employed in the proof of Lemma 3.6(b) in [15℄ and whi
h usesthe estimate �n1(�max);�max;" � v�� � �max" = v�� � (��max)2=(4"2) from Corol-lary 3.5(
), we obtainM��" � "�(1+d=2) �max8<:"d=2; s"4 + (��max)2 � (1 +p1� v��)2=4�1 9=; ;where �1 > 0 is de�ned in Corollary 3.5(b). This �nally proves the asymptoti
behavior of the 
onstant M��" for "! 0.The proof of part (
) follows the lines of the proof of Lemma 3.6(
) in [15℄and is therefore omitted.
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h Weikard�A

ording to the above lemma the linear part of the Cahn-Hilliard equa-tion with elasti
ity (24) satis�es (with respe
t to the non-standard norm k�k�)both (H1) and (H2), as well as (7) from Se
tion 2 in [15℄. Moreover, theasymptoti
 behavior for "! 0 of 
ertain spe
tral gaps in the spe
trum of B",and of the 
onstantsM��" andM1=2;" have been obtained. We 
lose this sub-se
tion with the following remark.Remark 3.9 With the results of Corollary 3.5 and Lemma 3.8 we 
an dedu
ethe asymptoti
 behavior of 
ertain 
onstants introdu
ed in [15, Se
tion 2℄for " ! 0. Although the spe
i�
 values of these 
onstants are di�erent if
ompared to the appli
ation in [15, Se
tion 3℄, their dependen
e on " is not.Hen
e, we obtain exa
tly the same asymptoti
s, i.e., C��" � C � "d andC+" � C � "d�2 for "! 0, see Remark 3.7 in [15℄.Even though we did not formally introdu
e these 
onstants, we want topoint out that their asymptoti
 behavior is used to prove that the abstra
ttheory of Se
tion 2 in [15℄ 
an be applied to B" and a nonlinear fun
tion F ,whose Lips
hitz 
onstant satis�es 0 � LF � C � "d. For more details see [15,Remark 2.11℄. All of the 
onstants C above depend only on 
, f 0(
m)+Lmax,and the 
onstants in (33).3.3 Properties of the nonlinearityHypothesis (H3) is valid for some fun
tion F̂ : H2av(
) ! L2(
) whi
h
oin
ides with F from (26) on a 
ertain neighborhood of the origin. In orderto obtain a global Lips
hitz 
onstant LF̂ of the order "d (as required byRemark 3.9), the size of this neighborhood has to be proportional to "dwith respe
t to the H2(
)-norm. This 
an be proved by applying the resultsfrom [15, Se
tion 3.3℄ to ~f and F . This immediately furnishes the followingresult.Corollary 3.10 The nonlinear operator F de�ned in (26) satis�es (H3) witha Lips
hitz 
onstant LF of the order "d on an H2(
)-neighborhood of 0 withsize proportional to "d.3.4 Spinodal de
ompositionIn the previous subse
tions we established all properties of (24) whi
h arene
essary to apply the abstra
t results of [15, Se
tion 2℄ to the Cahn{Hilliardequation with elasti
ity | and this 
an be done exa
tly as in Subse
tion 3.4of [15℄. Moreover, sin
e the asymptoti
 behavior of the involved 
onstants re-mains basi
ally un
hanged, we obtain exa
tly the same result, of 
ourse afteradopting the new notation (
m instead of �, B" instead of A" and so on).
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 intera
tions 31Therefore, we refrain from presenting our main theorem again in as detaileda form as in the binary 
ase, and state only an intuitive abbreviated version.Suppose that three 
onstants 0 < r � � � R are given. We 
onsider initial
onditions from the ballBr(
m) = fv 2 
m +X�" �X+" �X++" : kv � 
mk� < rg � 
m +H2av(
)and their evolution under the dynami
s of (24). Let Mr denote the set ofall initial 
onditions v 2 Br(
m) whose 
orresponding solution of (24) eitherremains in the larger ball BR(
m) for all time, or has distan
e greater than �from X+" � X++" upon exiting BR(
m). See also Figure 6 in [15℄. In otherwords, the initial 
onditions in Mr 
annot be 
onsidered as being dominatedby the strongly unstable subspa
e Y+" := X+" �X++" .Our main theorem states that the volume (whi
h is the 
anoni
al Lebesguevolume of the �nite-dimensional spa
e X�" �X+" �X++" ) of these \bad"initial
onditions 
ompared to the volume of all initial 
onditions in Br(
m) is arbi-trarily small, provided the 
onstants 0 < r � �� R are 
hosen proportionalto "d as "! 0.Theorem 3.11 We 
onsider solutions of the Cahn{Hilliard equation withelasti
ity (24) and assume that hypotheses (A1), (A2), and (A3) are satis�ed.Then there exists a positive 
onstant "0 whi
h depends only on 
, f 0(
m) +Lmax, jf 0(
m) + Lminj, and the 
onstants in (33), su
h that for arbitrary0 < " � "0 the following holds.For every 0 < p � 1 there exist 
onstants 0 < r � � � R whi
h dependonly on f 0(
m) +Lmax, 
, and the 
onstants in (33) (r depends additionallyon p) and whi
h are all proportional to "d as "! 0, su
h thatvol(Mr)vol(Br(
m)) � p : (34)Proof: One only has to apply the abstra
t theory of Se
tion 2 in [15℄.Hypotheses (H1) through (H3) have been established in Subse
tions 3.1through 3.3, and the ne
essary 
onstants have been 
al
ulated, furnish-ing the ball with size proportional to "d on whi
h the result is valid.�Remark 3.12 This theorem guarantees that the initial 
onditions near 
mare dominated by the subspa
e Y+" . This is why we 
all Y+" the dominatingsubspa
e. Sin
e the nonlinearity F is exa
tly the same as in [15℄ we expe
tthat also the results of Sander and Wanner [19℄ on se
ond phase spinodalde
omposition hold true for the Cahn-Hilliard equation with elasti
ity.
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h Weikard4 Numeri
al simulationsFinally, we would like to show that the patterns predi
ted by our analysisin Se
tions 2 and 3 are in fa
t observed in typi
al solutions having initialdata 
lose to an unstable homogeneous state 
m, i.e.,  ;

(
m) � Lmax =�(f 0(
m)+Lmax) < 0. We made a series of numeri
al simulations based on a�nite element method developed in Gar
ke, Rumpf, Weikard [10℄ and in thisse
tion we will present typi
al patterns seen in the numeri
al experiments.We point out that in [10℄ optimal error estimates are established, i.e. themethod used is very reliable.Before we present the numeri
al results, let us remark that the patternsshown are generi
 in the sense that the initial data have to be degeneratein a 
ertain sense in order not to lead to similar patterns. In all simulationswe were 
hoosing 
m = 0 and were taking a random perturbation around 
mas initial data. All 
al
ulations have been performed on the unit square with" = 10�3,  (
) = 14 (
2�0:16)2 and the solutions are shown at time t = 0:001.

Fig. 6. The 
ase without elasti
ity; modulus of the Fourier 
oeÆ
ients (left) andsign of the 
on
entration di�eren
e 
 (right)At �rst we 
onsider the 
ase without elasti
ity. The left hand side of Fig-ure 6 shows the modulus of the Fourier 
oeÆ
ients of a solution to the Cahn-Hilliard equation during spinodal de
omposition after a �xed time. On theright the sign of the 
on
entration di�eren
e 
 (bla
k denoting positive, whitedenoting negative values) is shown. The Fourier 
oeÆ
ients were 
al
ulatedusing the FFTW-software pa
kage (see http://www.�tw.org for details). Fig-ure 6 
orresponds to Figure 1 in that neither in the Fourier 
oeÆ
ients nor inthe 
on
entration pi
ture there are any distinguished dire
tions re
e
ting theisotropy of the Cahn-Hilliard model without elasti
ity. Essentially the samepi
ture o

urs in the 
ase of isotropi
 elasti
ity.



Spinodal de
omposition in the presen
e of elasti
 intera
tions 33

Fig. 7. Negative anisotropy of the elasti
ity tensor; modulus of the Fourier 
oeÆ-
ient (left) and sign of the 
on
entration di�eren
e 
 (right)

Fig. 8. Positive anisotropy of the elasti
ity tensor; modulus of the Fourier 
oeÆ
ient(left) and sign of the 
on
entration di�eren
e 
 (right)In the Figures 7 and 8 we show numeri
al results with an anisotropi
elasti
ity tensor. Parameters were C11 = 10, C12 = 1, C44 = 1 and q = p210(this implies Lmax � �0:068, Lmin = �0:2 and f 0(
m) = 0:16) for the 
asewith positive anisotropy and C11 = 2, C12 = 1, C44 = 100 and q = 0:2(i.e., Lmax = �0:06, Lmin � �0:236 and f 0(
m) = 0:16) for the 
ase withnegative anisotropy. In both 
ases the anisotropy is 
learly visible in theFourier 
oeÆ
ients as well as in the 
on
entration.
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Fig. 9. Anisotropi
 eigenstrain and isotropi
 elasti
ity tensor; modulus of theFourier 
oeÆ
ient (left) and sign of the 
on
entration di�eren
e 
 (right)Finally we 
onsider the 
ase with isotropi
 elasti
ity tensor but anisotropi
eigenstrains (see Figure 9). The parameter were � = 1, � = 12 and a = 1,b = 0:1 (i.e., Lmax = �0:015, Lmin = �1:5 and f 0(
m) = 0:16).A
knowledgmentThis work has been started while SMP was visiting the University ofBonn as a guest of the Sonderfors
hungsberei
h 256 \Ni
htlineare partielleDi�erentialglei
hungen" (SFB256). HG and UW have been members of theSFB256 for many years and all three authors gratefully a
knowledge thesupport of the Sonderfors
hungsberei
h.Referen
es1. H. Amann, Linear and Quasilinear Paraboli
 Problems. Volume I: Abstra
t Lin-ear Theory, Birkh�auser, Basel { Boston { Berlin, 1995.2. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I.Interfa
ial free energy, Journal of Chemi
al Physi
s, Vol. 28 (1958), pp. 258{267.3. J.D. Eshelby, The 
ontinuum theory of latti
e defe
ts, Solid State Physi
s, 3(1956), pp. 79-144.4. P.C. Fife, H. Kielh�ofer, S. Maier-Paape, and T. Wanner, Perturbation ofdoubly periodi
 solution bran
hes with appli
ations to the Cahn-Hilliard equation,Physi
a D, 100(3-4) (1997), pp. 257-278.5. P. Fratzl, O. Penrose, and J. L. Lebowitz,Modelling of phase separation inalloys with 
oherent elasti
 mis�t, J. Stat. Physi
s, 95 5/6 (1999), pp. 1429{1503.6. H. Gar
ke, On mathemati
al models for phase separation in elasti
ally stressedsolids, habilitation thesis, Bonn, 2000.7. H. Gar
ke, On Cahn{Hilliard systems with elasti
ity, submitted.



Spinodal de
omposition in the presen
e of elasti
 intera
tions 358. H. Gar
ke, The �{limit of the elasti
ally modi�ed Ginzburg{Landau energy,manus
ript.9. H. Gar
ke, On a Cahn-Hilliard model for phase separation with elasti
 mis�t,manus
ript.10. H. Gar
ke, M. Rumpf, and U. Weikard, The Cahn-Hilliard equation withelasti
ity: Finite element approximation and qualitative studies, Interfa
es andFree Boundaries, 3 (2001), pp. 101-118.11. M.E. Gurtin, An introdu
tion to Continuum Me
hani
s, A
ademi
 Press,1981.12. A. G. Kha
haturyan, Theory of Stru
tural Transformations in Solids, Wiley,New York, 1983.13. F. C. Lar
h�e and J. W. Cahn, The e�e
t of self{stress on di�usion in solids,A
ta Metall., 30 (1982), pp. 1835{1845.14. S. Maier{Paape and T. Wanner, Spinodal de
omposition for the Cahn-Hilliard equation in higher dimensions. Part I: Probability and wavelength es-timate, Comm. Math. Phys. 195 (1998), pp. 435-464.15. S. Maier{Paape and T. Wanner, Spinodal de
omposition for the Cahn-Hilliard equation in higher dimensions. Nonlinear dynami
s, Ar
h. Rat. Me
h.Anal., 151 (2000), pp. 187-219.16. S. Maier-Paape, B. Stoth, and T. Wanner, Spinodal de
omposition formulti
omponent Cahn{Hilliard systems, J. Stat. Phys., Vol. 98, Nos. 3/4, 2000,pp. 871-890.17. T. Mura, Mi
rome
hani
s of Defe
ts in Solids, Nijho�, the Hague, 1982.18. A. Onuki, Ginzburg{Landau approa
h to elasti
 e�e
ts in the phase separationof solids, J. Phys. So
. Jpn., 58 (1989), pp. 3065{3068.19. E. Sander and T. Wanner, Unexpe
tedly linear behavior for the Cahn{Hilliard equation, SIAM J. Appl. Math., 60(6) (2000), pp. 2182-2202.20. R. Temam, In�nite-Dimensional Dynami
al Systems in Me
hani
s andPhysi
s, Springer-Verlag, New York { Berlin { Heidelberg, 1988.21. J. D. van der Waals, The thermodynami
 theory of 
apillarity under thehypothesis of a 
ontinuous variation of density (in Dut
h), Verhaendel. Kronik.Akad. Weten. Amsterdam, Vol. 1, (1893), Engl. translation by J.S. Rowlinson, J.Stat. Phys., 20 (1979), pp. 197{244.


