
Spinodal deomposition in the presene ofelasti interationsHarald Garke, Stanislaus Maier-Paape, and Ulrih Weikard1 Naturwissenshaftlihe Fakult�at I - Mathematik, Universit�at Regensburg,D - 93040 Regensburg, Germany, harald.garke�mathematik.uni-regensburg.de2 Institut f�ur Mathematik, RWTH Aahen, D - 52062 Aahen, Germany,maier�instmath.RWTH-Aahen.DE3 Institut f�ur Mathematik, Universit�at Duisburg, Lotharstra�e 63, D - 47048Duisburg, Germany and Institut f�ur Angewandte Mathematik, Universit�atBonn, Wegelerstra�e 6, 53115 Bonn, Germany, wkd�iam.uni-bonn.deSummary. Spinodal deomposition, i.e., the separation of a homogeneous mixtureinto di�erent phases, an be modeled by the Cahn-Hilliard equation - a fourthorder semilinear paraboli equation. If elasti stresses due to a lattie mis�t beomeimportant, the Cahn-Hilliard equation has to be oupled to an elastiity system totake this into aount.It is the goal of this paper to understand how elasti e�ets inuene the for-mation of patterns during spinodal deomposition and to analyze what kind ofmorphologies one has to expet. It is shown that with a probability lose to one,the dynamis of randomly hosen initial data in the neighborhood of a uniformmixture will be dominated by an invariant manifold whih is tangential to the mostunstable eigenfuntions of the linearized operator. For example in the ase of u-bi anisotropy it is shown that the most unstable eigenfuntions reet the ubianisotropy and the anisotropy will inuene the dynamis quite drastially.1 IntrodutionIn this paper we onsider spinodal deomposition in binary alloys in the asewhere elasti e�ets beome important. It is well known that omplex pat-terns may form in the early stages of spinodal deomposition. We are inter-ested to understand the e�et elasti interations may have on the formationof patterns.The typial senario of spinodal deomposition is as follows. At temper-atures above a ertain ritial temperature a uniform mixture of the twoomponents in the alloy is stable. After a rapid quenhing this state an be-ome unstable and regions where one or the other of the two omponentsdominate our. It is the goal of this paper to understand how these regionsform and to analyze what kind of morphologies one has to expet.Let 1; 2 denote the onentrations of the two alloy omponents. Sine1+2 = 1 the variable  := 1�2 ompletely determines the onentrations.Deformations of the referene on�guration are desribed by the displaement



2 Harald Garke, Stanislaus Maier-Paape, and Ulrih Weikard�eld u, i.e., a material point x in the referene on�guration will be found atthe point x+ u(t; x) at time t.Sine displaement gradients in phase separating systems are small, thetheory we onsider will be based on the linearized strain tensorE(u) = 12(ru+ (ru)T )where r is the gradient with respet to spae and (ru)T is the transpose ofru.In this paper we onsider a generalization of the Cahn-Hilliard modeltaking elasti e�ets into aount. The model is due to Larh�e and Cahn [13℄and Onuki [18℄ using ideas introdued by Eshelby [3℄ and Khahaturyan [12℄.The theory is based on a free energy of the formE(; u) = Z
 �"22 jrj2 +  () +W (; E(u))� dxwhere 
 � Rd is the domain under onsideration,  : 
 ! R is the onen-tration di�erene and u : 
 ! Rd is the displaement �eld. The funtion : R ! R is the free energy density and is assumed here to be a non-onvexfuntion of , e.g. a double well potential of the form  () = (2� 1)2. With-out the term W this type of free energy goes bak to van der Waals [21℄ andwas introdued in the theory of spinodal deomposition by Cahn and Hilliard[2℄. The third term is the elasti energy density W : R � Rd�d ! R whih ishosen to be W (; E) = 12(E � ~E()) : C[E � ~E()℄(see Eshelby [3℄, Khahaturyan [12℄, Larh�e and Cahn [13℄, Fratzl, Penroseand Lebowitz [5℄). Here, ~E() 2 Rd�d is the stress free strain at onentration, C is a fourth-rank elastiity tensor and the :{produt of two matriesA = (Aij)i;j=1;:::;d and B = (Bij)i;j=1;:::;d is given byA : B = dXi;j=1AijBij and jAj2 = A : A :Our standing assumptions are:Assumption 1.1 The stress free strains depend linearly on the onentra-tion (Vegard's law), i.e., ~E() =  � E�with a �xed symmetri matrix E� 2 Rd�d :



Spinodal deomposition in the presene of elasti interations 3The domain 
 is a assumed to have retangular shape, i.e.,
 = [0; `1℄� : : :� [0; `d℄with `1; : : : ; `d > 0. The elastiity tensorC = (Cijmn)i;j;m;n=1;:::;dis assumed to be positive de�nite and to ful�ll the symmetry onditions oflinear elastiity, i.e., Cijmn = Cijnm = Cjimn;Cijmn = Cmnij (1)and there exists some d0 > 0, suh thatE : C[E ℄ � d0jEj2 (2)for all symmetri E 2 Rd�d .We note that the symmetry ondition (1) gives for all matries A and BC[A℄ : B = A : C[B℄:Let us give two typial examples for the elastiity tensor C. In the isotropiase (f. [11℄) we haveCijmn = �ÆijÆmn + �(ÆimÆjn + ÆinÆjm) (3)where �; � are the Lam�e onstants and Æij is the Kroneker symbol. ThismeansC[E ℄ =  dPm;n=1 Cijmn Emn!i;j=1;:::;d = �(trE) � Id+ �(E + ET )= �(trE) � Id+ 2�Efor all symmetri E 2 Rd�d . For many systems it is more realisti to assumeubi symmetry (f. [5℄, p. 168). In this ase there are three degrees offreedom for the elastiity tensor. One usually introdues the notationCiiii := C11 i = 1; : : : ; d;Ciijj := C12 i 6= j;Cijij := C44 i 6= j ;where C11; C12, and C44 are given onstants. All other entries of C are theneither given due to the ubi symmetry, i.e., either there is a symmetry withrespet to the oordinate axis or they are set to be zero. Formally this means



4 Harald Garke, Stanislaus Maier-Paape, and Ulrih WeikardQ C[E ℄ QT = C[QEQT ℄for all orthogonal Q 2 Rd�d with detQ = 1 whih let the d{dimensional ube[�1; 1℄d invariant. The elastiity tensor an than be written asCijmn = (C11 � C12 � 2C44)ÆijÆjmÆmn+C12ÆijÆmn+C44(ÆimÆjn + ÆinÆjm): (4)The di�erential equation for  is given by (see [5, 6, 7, 9℄)�t = �w;where w is the hemial potential di�erene de�ned asw = ÆEÆ = �"2�+  ;() +W;(; E(u))and W;(; E(u)) = �E� : C[E(u)� E�℄.The system is then ompleted by the assumption of quasi-stati equilibriumfor the mehanial part. This is justi�ed sine mehanial equilibrium is at-tained on a muh faster time sale than mass di�usion takes plae. Therefore,we obtain 0 = ÆEÆu = �r �W;E(; E(u)) = �r � S;where S =W;E(; E(u)) = C[E(u)� E�℄is the stress tensor and r� is the divergene operator ating on rows. Alto-gether we obtain a system of a salar and a vetor-valued equation�t = �(�"2�+  ;()� E� : S);0 = r � S = r � C[E(u)� E�℄ : (5)For de�niteness, we assume periodi boundary onditions for  and u. Theabove equations imply mass onservation for , i.e.Z
 (t; x) dx =: m = onst. (6)Therefore the new variable v := � m satis�es R
 vdx = 0. We setf() := � ;()and, after replaing v by  again, we arrive at



Spinodal deomposition in the presene of elasti interations 5�t = (��)("2�+ f(m + ) + E� : S); (7)0 = r � C[E(u)� E�℄ : (8)The elastiity equation (8) is linear in u and . In Setion 2 it is shown thatfor all previously desribed elastiity tensors C equation (8) an be solvedusing Fourier transformation (see also [12, 17℄). We obtain some u = u() forany given  with R
  dx = 0.Seondly, in Setion 2 we ompute the term E� : S = E� : C[E(u)� E�℄ withu = u() whih enters the equation (7) for . This will give an operator LL : X ! X;  7! E� : S; where X := n 2 L2(
) : Z
 dx = 0o ; (9)whih is linear in . With the help of L we an rewrite the equation for  asfollows �t = (��)("2� + f(m + ) + L()) : (10)The understand the behavior of (10) for  � 0 we linearize at  = 0 to obtain�t = ���) ("2� + f 0(m)  + L()� : (11)The eigenfuntions of the right hand side in (11) are'�(x) = ei��x ;where i = p�1 and � = (�1; :::; �d) = 2�( �1`1 ; : : : ; �d`d );� = (�1; : : : ; �d) 2 Zd : (12)The assoiated eigenvalues are��;" = j�j2�� "2j�j2 + f 0(m) + L(�)� ; (13)where we use that in our appliations the linear operator L an be writtenas L('�) = L(�) � '� (14)with some 0{homogeneous funtion L : Rdnf0g ! R. We set Lmax and Lminto be the maximal and minimal value of L.Now the equilibrium  = 0 of (10) is unstable, if the maximal eigenvalue in(13) is positive. Therefore we assume:Assumption 1.2 Let the mean value m of  (f. (6)) and the maximum ofL from (14) satisfy f 0(m) + Lmax > 0 :



6 Harald Garke, Stanislaus Maier-Paape, and Ulrih WeikardIt is easy to see that then the eigenvalues are bounded by�max" := (f 0(m) + Lmax)24"2 :In this situation, we an make an adaption of the theory of Maier{Paape andWanner on spinodal deomposition for the Cahn{Hilliard equation (f. [14℄and [15℄). We will outline this in Setion 3. In onlusion, we �nd that thebehavior of (10) near  = 0 is dominated by a �nite dimensional stronglyunstable subspae Y+" := span f'� : ��;" > 0 � �max" gfor some 0 < 1 lose to one. It turns out that real parts and imaginaryparts of this subspae are just a subset of the dominating subspae ourringfor the Cahn{Hilliard equation. Therefore we inherit the small order O(")wavelength estimate for the elements in Y+" (f. [14℄, Setion 4). Figure 1 is asketh of the situation for the Cahn{Hilliard equation (L = 0) whih we givefor referene. To the left we have the Fourier vetors � that are exited themost and to the right we have the nodal domains of a typial element of Y+"for that ase.

Fig. 1. Cahn{Hilliard situationThe next two situations show the dominant Fourier vetors and typial pat-tern for the ase of ubi symmetry (4), E� = q � Id and 
 = square. We�rst have negative anisotropy, i.e. �C = C11 � C12 � 2C44 < 0, and then inFigure 3 the situation for positive anisotropy, i.e. �C > 0.The last piture, Figure 4, shows the situation for isotropi symmetry (3)and E� being not a multiple of the identity matrix (non-dilatational mis�t).
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Fig. 2. Cubi symmetry with negative anisotropy

Fig. 3. Cubi symmetry with positive anisotropyIn eah of the Figures 2, 3 and 4 we see that ertain diretions of the nodaldomains are seleted.Finally, in Setion 4 we present results from numerial simulations of theelastially modi�ed Cahn-Hilliard system whih are in agreement with thetheoretial preditions of Setions 2 and 3.
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Fig. 4. Isotropi symmetry with anisotropi eigenstrains2 Solving the elastiity systemWe start this setion by omputing L() = E� : S, where S = C[E(u) � E�℄and u = u() is the unique solution of r � S = 0 for given  with R
 dx = 0.Let us ompute L for the Fourier mode'�(x) = ei��x ; (15)where i = p�1 and � = (�1; :::; �d) = 2�( �1`1 ; : : : ; �d`d );� = (�1; : : : ; �d) 2 Zd :For the solution u of (8) with  = '� as in (15) we make the ansatzu(x) = (u1(x); :::; ud(x)) = ~uei��x (16)with ~u 2 Rd . We obtain �mun(x) = ~uni�mei��xand E(u) = 12 i(�
 ~u+ ~u
 �)ei��x; (17)where a
 b := abT 2 Rd�d for all a; b 2 Rd . We alulate,r � C['�E�℄ = r � C[E�ei��x℄= (C[E�℄)i�ei��x= S�i�ei��x 2 Rd ;



Spinodal deomposition in the presene of elasti interations 9where S� := C[E�℄, i.e., S� is the stress indued by E�. In addition we omputer � C[E(u)℄ = r � (C[ 12 i(�
 ~u+ ~u
 �)℄ei��x)= � 12ei��xC[�
 ~u+ ~u
 �℄� :The symmetries of the elastiity tensor Cijmn = Cijnm (f. (1)) an be usedto obtain C[�
 ~u℄ = C[~u
 �℄and therefore r � C[E(u)℄ = �ei��xC[�
 ~u℄� :Introduing the matrixZ�1(�) = 0� dXj;m=1Cijmn�j�m1Ai;n=1;:::;d ; (18)we obtain r � C[E(u)℄ = �ei��xZ�1(�)~u :The above used matrix Z�1(�) is in fat the inverse of some matrix Z(�) 2Rd�d . This follows from the next lemma.Lemma 2.1 The matrix Z�1(�) is stritly positive de�nite for all � 2 Rd nf0g and therefore invertible.Proof: Let � 2 Rd . Then we obtain using the symmetry properties of C (1)and the fat that C is positive de�nite (2)�TZ�1(�)� = dPi;n=1 �i dPj;m=1Cijmn�j�m�n= Pi;j;m;nCijmn�i�j�n�m= Pi;j;m;nCijnm�i�j�n�m� d0j� 
 �j2 = d0j�j2j�j2 :The above inequality shows that Z�1(�) is positive de�nite whenever � 6= 0.�To obtain u we need to solver � C[E(u)℄ = r � C['�E�℄ :This is equivalent to



10 Harald Garke, Stanislaus Maier-Paape, and Ulrih Weikard�Z�1(�)~u = iS�� :Using that Z�1(�) is invertible, we get~u = �iZ(�)S�� :Hene from (16)u(x) = �(iZ(�)S��)ei��x = �iZ(�)S��'�(x) : (19)Lemma 2.2 For � 2 Rd n f0g we obtainL('�) = E� : (C[Z(�)S���T ℄� S�)'� :Proof: Using the formulas for u and ~u above and (17) we omputeL('�) = E� : S = E� : C[E(~uei��x)� '�E�℄= E� : C[~u
 �iei��x � E�ei��x℄= E� : C[Z(�)S���T � E�℄ei��x= E� : (C[Z(�)S���T ℄� S�)ei��x:This shows the lemma. �Remark 2.3 The operator L an be interpreted as a pseudo-di�erential op-erator of order 0. This follows from the fat thatL('�) = L(�)'� (20)with a funtion L. The funtion L is 0-homogeneous beause Z(�) is (�2)-homogeneous whih follows from (18) and Cramer's rule. With u taken from(19) and after a partial integration we obtain using (8)0 � � Z
 W ('�; E(u)) dx = 12 Z
 '�E� : C[E(u) � '�E�℄ = 12L(�) Z
 '2� :We onlude that in the elastially modi�ed Cahn-Hilliard equation (10) theL-term has a stabilizing e�et.2.1 The isotropi aseIn this subsetion we assume thatC[E ℄ = �(trE)Id + �(E + ET )with given �; � 2 R and for some q 2 RE� = qId:



Spinodal deomposition in the presene of elasti interations 11Lemma 2.4 Under the above assumption on C and E� we obtainL = q2(d� + 2�)2�(1� d)2�+ � � Id:Proof: Let � 2 Rd n f0g be given. First we omputeZ�1(�) = � dPj;m=1 ÆijÆmn�j�m!i;n=1;:::;d+� dPj;m=1(ÆimÆjn + ÆinÆjm)�j�m!i;n=1;:::;d= ���T + �(��T + j�j2Id)= (�+ �)��T + �j�j2Id :We an easily invert Z�1(�) to obtain Z(�) de�ned as followsZ(�)� = 1(2�+ �) 1j�j2�and Z(�)e = 1�j�j2 e for all e with �T � e = 0 :FurthermoreS� = C[E�℄ = qCId = q(d�Id + 2�Id) = q(d�+ 2�)Idand Z(�)S���T = q(d� + 2�)(2�+ �) 1j�j2 ��T :To omputeE� : (C[Z(�)S���T ℄� S�) = q Id : (C[Z(�)S���T ℄� S�)= q � tr(C[Z(�)S���T ℄� S�) ;we alulatetrC[��T ℄ =Pi Pm;n(�ÆiiÆmn + �(ÆimÆin + ÆinÆim))�m � �n= (d� + 2�)j�j2:This givesE� : (C[Z(�)S���T ℄� S�) = q � tr(C[Z(�)S���T ℄� S�)= q2(d�+ 2�)� d�+2�(2�+�) � d�= q2(d�+ 2�) 2�(1�d)2�+� ;



12 Harald Garke, Stanislaus Maier-Paape, and Ulrih Weikardwhih implies L('�) = q2(d� + 2�) 2�(1� d)2�+ � '�for all � 6= 0. Therefore the laim is proved. �Remark 2.5 We have shown that in the isotropi ase, the operator L is amultiple of the identity. C as in (3) is positive de�nite if and only if� > 0 and 2�+ d� > 0:Then in partiular 2�+ � > 0: This implies that L is a negative multiple ofthe identity for q 6= 0 and d > 1. For the evolution equation we observe againthat the operator L has a stabilizing e�et when ompared to the ase withoutelastiity.2.2 A ubi elastiity tensorIn this subsetion we onsider the ase E� = q � Id and we assume ubisymmetry for the elastiity tensor C (f. (4)), i.e.,Cijmn = (C11 � C12 � 2C44)ÆijÆjmÆmn+C12ÆijÆmn+C44(ÆimÆjn + ÆinÆjm):We remark that C is positive de�nite if and only if C44 > 0 andC11 > (d� 1)jC12j ; in ase C12 < 0C11 > C12 ; in ase C12 � 0 :The following lemma is easy to verify.Lemma 2.6 The matrix Z�1(�) has the entries(Z�1(�))ii = (C11 � C44)�2i + C44j�j2; i = 1; : : : ; d ;(Z�1(�))in = (C12 + C44)�i�n i 6= n :Lemma 2.7 With ubi symmetry for C and E� = q �Id we obtainL('�) = q2(C11+(d�1)C12)"(C11 + (d� 1)C12)  dXm;p=1Zmp(�)�p�m!� d#'� :



Spinodal deomposition in the presene of elasti interations 13Proof: Aording to Lemma 2.2 we have to omputeL('�) = q � tr(C[Z(�)S���T ℄� S�)'� :Under the assumptions on C and E� we alulate(S�)ij = (C[E�℄)ij = q(C[Id℄)ij= q� dPm=1Cijmm�ij= q((C11 � C12 � 2C44 + dC12 + 2C44)Æij)ij :This implies S� = q(C11 + (d� 1)C12)Idand trS� = q d(C11 + (d� 1)C12):Furthermore, we havetr(C[Z(�)S���T ℄) == q(C11 + (d� 1)C12)tr(C[Z(�)��T ℄)= q(C11 + (d� 1)C12) Pi;m;nCiimnPp Zmp(�)�p�n= q(C11 + (d� 1)C12) Pi;m;pCiimmZmp(�)�p�m!= q(C11 + (d� 1)C12) Pi (C11 � C12)Pp Zip(�)�p�i + C12dPm;pZmp(�)�p�m!= q(C11 + (d� 1)C12)2 Pm;pZmp(�)�p�m: �For simpliity we only give the formulas for L in the physially interestingases d = 2; 3.Lemma 2.8 (d=2) In two spae dimensions we obtainL('�) = � q2C44(C211 � C212)j�j4C44C11j�j4 + (C11 + C12)(C11 � C12 � 2C44)�21�22'� :



14 Harald Garke, Stanislaus Maier-Paape, and Ulrih WeikardProof: For d = 2 we obtain the inverse of Z�1(�) asZ(�) = 1detZ�1(�) � j�j2C44 + (C11 � C44)�22 �(C12 + C44)�1�2�(C12 + C44)�1�2 j�j2C44 + (C11 � C44)�21�with detZ�1(�) = C11C44j�j4 + [(C11 � C44)2 � (C12 + C44)2℄�21�22 :Hene, 2Xm;p=1Zmp(�)�p�m = j�j4C44 + 2(C11 � C12 � 2C44)�21�22detZ�1(�) :Altogether, we obtainL('�) = q2(C11 + C12) � (C11 + C12) � [j�j4C44 + 2(C11 � C12 � 2C44)�21�22℄j�j4C44C11 + (C11 + C12)(C11 � C12 � 2C44)�21�22 � 2�'�= � q2C44(C211 � C212)j�j4C44C11j�j4 + (C11 + C12)(C11 � C12 � 2C44)�21�22'� :Remark 2.9 In the situation of Lemma 2.8 the 0{homogeneous funtion Lis given byL(�) = � q2C44(C211 � C212)j�j4C44C11j�j4 + (C11 + C12)(C11 � C12 � 2C44)�21�22 :Let us ompute now for whih diretions � 2 Rd nf0g L(�) beomes maximal.First of all we note that the fat that C is positive de�nite impliesC11 > jC12j and C44 > 0 :Hene we obtain:i) In the ase of positive anisotropy, i.e., �C := C11 � C12 � 2C44 > 0:L(�) is maximal if �21 = �22:ii) In the ase of negative anisotropy, i.e., �C < 0:L(�) is maximal if either �1 or �2 is equal to zero:



Spinodal deomposition in the presene of elasti interations 15For the evolution problem this will imply that elasti interations will am-plify wave numbers � lying in segments around the oordinate axes strongerthan other segments in the ase that the anisotropy is negative. For positiveanisotropy instead the diagonal diretions will be stronger ampli�ed.In the ase of three spae dimensions we obtain:Lemma 2.10 For ubi elastiity and E� = q �Id we obtain in three spaedimensions for all '�(x) = ei��x with � 2 R3 n f0gL('�) = q2(C11 + 2C12)h (C11+2C12)detZ�1(�) �C244j�j6 + 2C44(C11 � C12 � 2C44)j�j2(�21�22 + �22�23 + �23�21) + 3(C11 � C12 � 2C44)2�21�22�23�� 3i'�wheredetZ�1(�) = C244C11j�j6 + C44(C11 � C12 � 2C44)(C12 + C11)j�j2(�21�22 + �22�23 + �23�21) + (C11 � C12 � 2C44)2(2C12 + C44 + C11)�21�22�23:Proof: A straightforward omputation using Lemma 2.6 showsZii(�) = 1detZ�1(�) �C244j�j4 + (C11 � C44)C44j�j2(�2j + �2̀)+(C11 � C12 � 2C44)(C12 + C11)�2j�2̀�for i = 1; 2; 3 with j and ` suh that j 6= i, j 6= `, ` 6= i andZij(�) = �1detZ�1(�) (C12 + C44)�i�j(C44j�j2 + (C11 � C12 � 2C44)�2̀)for i; j = 1; 2; 3, i 6= j and ` suh that ` 6= j and ` 6= i. We also havedetZ�1(�) = C244C11j�j6 + C44(C11 � C12 � 2C44)(C12 + C11)j�j2(�21�22 + �22�23 + �23�21)++(C11 � C12 � 2C44)2(2C12 + C44 + C11)�21�22�23 :Having omputed Z(�) we obtainPm;pZmp(�)�p�m = 1detZ�1(�)hC244j�j6+2j�j2C44(C11 � C44)(�21�22 + �22�23 + �23�21)+3(C11 � C12 � 2C44)(C12 + C11)�21�22�23�2j�j2C44(C12 + C44)(�21�22 + �22�23 + �23�21)�6(C12 + C44)(C11 � C12 � 2C44)�21�22�23i= 1detZ�1(�)hC244j�j6 + 2C44(C11 � C12 � 2C44)j�j2(�21�22 + �22�23 + �23�21)+3(C11 � C12 � 2C44)2�21�22�23i



16 Harald Garke, Stanislaus Maier-Paape, and Ulrih WeikardNow Lemma 2.7 gives the assertion. �We now disuss the result of Lemma 2.10. As in (20) we an write L withthe help of a 0{homogeneous funtion L. We want to determine diretionsfor whih L beomes maximal.We obtain the following result.Lemma 2.11 In the situation of Lemma 2.10 with L('�) = L(�) � '� we�nd for L:Case A: Positive anisotropy, i.e., �C > 0. Here L is maximal in diretionsgiven by the eight points�� 1p3 ; � 1p3 ; � 1p3� : (21)Case B: Negative anisotropy, i.e., �C < 0. Here L is maximal in diretionsgiven by the six points(� 1; 0; 0) ; (0;� 1; 0); and (0; 0;� 1) : (22)Proof: For negative anisotropy we an use the identity (whih an be veri�edafter a tedious but straightforward omputation)C11q2(C11+2C12)2L(�) + 2 C11�C12C11+2C12 = �CdetZ�1(�)hC44 (C11 � C12)Pi;j; i6=j �4i�2j+2�(C11 � C12 � C44)2 + C44 (C11 � C12)��21�22�23ito onlude that that L is maximal in the diretions orresponding to theoordinate axes. For � on the oordinate axes the right hand side of theabove identity is zero whereas for all other diretions the right hand side isstritly negative. Here we use the fat that C is positive de�nite whih yieldsC44 > 0, C11 � C12 > 0, C11 > 0, C11 + 2C12 > 0 and detZ�1(�) > 0.To disuss the ase of positive anisotropy, i.e., �C > 0, we onsiderM(�) = ��C � C11q2(C11 + 2C12)2L(�) + 2 C11 � C12C11 + 2C12�� � ;where � = 9C44(C11 � C12) + 1;� = 27C244C11 + 92 + 3;1 = (�C) (2C11 � 2C12 � C44) ;2 = (�C)C44(C11 + C12);3 = (�C)2 (2C12 + C44 + C11)whih are all positive onstants. It now holds



Spinodal deomposition in the presene of elasti interations 17M(�)= 1detZ�1(�)h� (9a+ b)j�j6 + (27a� )j�j2Pi;j i<j �2i�2j + (27b+ 9)�21�22�23i ;(23)with a = C44(C11 � C12)C244C11;b = 1C244C11; = (�C)3C44C11 :Again the veri�ation of the above identities needs some patiene but isstraightforward. We remark that a; b;  > 0.The above relation between L and M and the following statement provesthe lemma.Claim: M(�) � 0 and M(�) = 0 if and only if �21 = �22 = �23.We have: �detZ�1(�)�M(�)= a 9 �3j�j2Pi;j i<j �2i�2j � j�j6�+b �27�21�22�23 � j�j6�+�9�21�22�23 � j�j2Pi;j i<j �2i �2j � j�j6� :To show the laim we are going to show that the term on the right hand sidein the above identity is is nonnegative for � with j�j = 1. For the �rst twoterms it is easy to verify that the maximum on S2 is attained if and only if�21 = �22 = �23 and in this ase the terms are zero. The last term is a bit morediÆult to handle. W.l.o.g. we assume �21 � �22 � �23. Then we obtain9�21�22�23 � j�j2Pi;j i<j �2i �2j � j�j6= �21�22(2�23 � �21 � �22) + �22�23(2�21 � �22 � �23) + �21�23(2�22 � �21 � �23)� �21�23(2�23 � �21 � �22) + �21�23(2�21 � �22 � �23) + �21�23(2�22 � �21 � �23)= 0and this proves the lemma. �2.3 Anisotropi eigenstrainsIn this setion we onsider the ase that the eigenstrain E� is not a multipleof the identity matrix. We restrit ourselves to isotropi elastiity in twodimensions and eigenstrains of the formE� = �a 00 b� ; a; b 2 R with a � b > 0 :



18 Harald Garke, Stanislaus Maier-Paape, and Ulrih WeikardLemma 2.12 For an isotropi elastiity tensor C and E� as above we obtainfor all � 2 R2 n f0g L('�) = L(�)'�with L(�) = 1�(�+2�)j�j4 h�e2�41 + �f2�42+ �(�+ �)(e� f)2 + �(e2 + f2)��21�22i�h�(a+ b)2 + 2�(a2 + b2)iwhere e = �(a+ b) + 2�a and f = �(a+ b) + 2�b.Proof: For all � 6= 0 we have to omputeL(�) = E� : (C[Z(�)S���T ℄� S�):Using the symmetry of C and the de�nition S� = C[E�℄ we obtainL(�) = S� : (Z(�)S���T � E�):Furthermore, we haveS� = C[E�℄ = �trE�Id+ 2�E�= �(a+ b)Id+ 2��a 00 b�= ��(a+ b) + 2�a 00 �(a+ b) + 2�b� :We have (f. the proof of Lemma 2.8 with C12 = �, C44 = � and C11 = �+2�)Z(�) = 1detZ�1(�) ��j�j2 + (�+ �)�22 �(�+ �)�1�2�(�+ �)�1�2 �j�j2 + (� + �)�21�with detZ�1(�) = �(�+ 2�)j�j4:Therefore,S�Z(�)S� =� (�(a+ b) + 2�a)2Z11(�) (�(a+ b) + 2�a)(�(a+ b) + 2�b)Z21(�)(�(a+ b) + 2�a)(�(a+ b) + 2�b)Z12(�) (�(a+ b) + 2�b)2Z22(�) � :Altogether we obtain



Spinodal deomposition in the presene of elasti interations 19tr(S�Z(�)S���T )= 1�(�+2�)j�j4 h(�(a+ b) + 2�a)2(j�j2�+ (�+ �)�22)�21�2(�(a+ b) + 2�a)(�(a+ b) + 2�b)(�+ �)�21�22+(�(a+ b) + 2�b)2(j�j2�+ (�+ �)�21)�22i= 1�(�+2�)j�j4 h�(�(a+ b) + 2�a)2�41 + �(�(a + b) + 2�b)2�42+ �(�+ 2�)(�(a+ b) + 2�a)2 � 2(�+ �)(�(a + b) + 2�a)(�(a + b) + 2�b) + (�(a + b) + 2�b)2(�+ 2�)��21�22i= 1�(�+2�)j�j4 h�(�(a+ b) + 2�a)2�41 + �(�(a + b) + 2�b)2�42+ �(�+ �)4�2(a� b)2 + �((�(a + b) + 2�a)2 + (�(a+ b) + 2�b)2)��21�22i :Also we omputeS� : E� = (�(a+ b) + 2�a)a+ (�(a + b) + 2�b)b= �(a+ b)2 + 2�(a2 + b2) :This proves the laim. �Remark 2.13 We want to determine the maximum of L on S1. Settingz = �21 (i.e. 1� z = �22) an analysis of the funtiong(z) = �e2z2 + �f2(1� z)2 + �(�+ �)(e� f)2 + �(e2 + f2)� z(1� z)shows that g an attain its maximum only for z = 0; 1. This means thatL attains its maximum on the oordinate axes. Here one obtains that themaximum is attained on the x1-axis if and only if a2 > b2 and on the x2-axisif and only if b2 > a2.The wave numbers � for whih L attains its maximum are ampli�ed moststrongly by elasti interations. In this ase only wave numbers lying on onepartiular oordinate axis are most strongly ampli�ed.Remark 2.14 In Figure 5 we show the graph of ��;" in the two dimen-sional ase as a funtion of �1 and �2 given by equation (13). On the lefthand we onsider the ase of an elastiity tensor with positive anisotropy (f.Lemma 2.8) whereas on the right the elastiity tensor is isotropi but theeigenstrain is not (f. Lemma 2.12).3 Spinodal deomposition and elasti interationsIn this setion we will apply the abstrat results of Setion 2 of [15℄ to theCahn-Hilliard equation with elastiity. This appliation is very muh along
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Fig. 5. ��;" in the two dimensional ase as a funtion of �1 and �2; on the left:with positive anisotropy of the elastiity tensor, on the right: with anisotropi eigen-strains.the lines of the appliation of this theory given in Setion 3 of [15℄ and Setion2 of [16℄, where the binary and multiomponent Cahn{Hilliard model weredisussed. We onsider the equation (10), i.e.,�t = (��)("2� + f(m + ) + L()) in 
 ; is periodi;R
 dx = 0 ; (24)where " > 0 is a small parameter. We speify our assumptions as follows.(A1) On top of our standing Assumption 1.1 we let 
 be of retangular shapein Rd , where d 2 f1; 2; 3g.(A2) Let f : R ! R be a smooth funtion.In this situation we de�ned the linear operator L : X ! X in Setion 1(f. (9)), whih, as we saw in Setion 2, always has a representation on theeigenfuntions '� = ei�x as L('�) = L(�) '�, with some 0{homogeneousfuntion L (f. (14)). Our last assumption is:(A3) Let m and L satisfy Assumption 1.2 to make the equilibrium m unstable.To rewrite (24) we set~f() := f(m + )� f 0(m)� f(m) ; (25)so that ~f(0) = ~f 0(0) = 0. Furthermore, let



Spinodal deomposition in the presene of elasti interations 21A" := (��)("2�+ f 0(m)) ; B" := A"+ (��) L() ;and F () := (��) ~f() : (26)Then formally the �rst equation in (24) is of the form�t = B"+ F () : (27)The evolution equation (27) is of the same form as the one used in the bi-nary Cahn{Hilliard ase onsidered in [15℄. Thus, we an use the abstrattheory developed there to prove the dominane properties mentioned in theintrodution. For this we only have to verify hypotheses (H1) through (H3)in [15℄. This will be done in the following subsetions. Basially, we have toverify the following three laims.(H1) The operator �B" is setorial in the Hilbert spae X .(H2) There exists a deomposition X = X���X��X+�X++ into pairwiseorthogonal subspaes, suh that all subspaes are �nite-dimensional ex-eptX��, and suh that the linear semigroup orresponding to �t = B"satis�es several dihotomy estimates, see Lemma 3.8(b) below.(H3) The nonlinear mapping F : X� ! X is C1 with F (0) = 0 andDF (0) = 0.Furthermore, it satis�es a global Lipshitz ondition with onstant LF ,i.e., for all ; ~ 2 X� we havekF ()� F (~)kX � LF k� ~kX� :Here X� denotes the frational power spae orresponding to B" and� 2 (0; 1).Hypothesis (H3) was already developed in [15℄, Setion 3.3, beause the non-linearity in (24) is exatly the same as for the Cahn{Hilliard equation. In theourse of verifying the hypotheses (H1) and (H2), we also alulate severalonstants introdued in [15℄, whih in turn furnish an upper bound on theLipshitz onstant LF . (Notie that sine the nonlinearity in our example(see (26)) does not satisfy a global Lipshitz ondition, we have to employa standard ut-o� tehnique.) This will eventually determine the size of theneighborhood on whih our results are valid.3.1 Spetral propertiesIn the following lemma we ollet several properties of the linear operator B"whih will be needed later. These results are the obvious generalization ofLemma 3.1 in [15℄, where the operator A" with Neumann type boundaryonditions was disussed. We will again use the eigenfuntions '� = ei�xof �� and their eigenvalues j�j2.



22 Harald Garke, Stanislaus Maier-Paape, and Ulrih WeikardLemma 3.1 Assume that (A1), (A2), and (A3) are satis�ed, and let X bede�ned as in (9). De�ne the operator B" : X ! X byB" = (��) �"2�+ f 0(m)+ L()� ;with domain D(B") = � 2 X \H4(
) :  is periodi	 :Then the following assertions hold.(a) The spetrum of the operator �� : X ! X with domainD(��) = f 2 X \H2(
) :  is periodigonsists of all j�j2, where � 2 Rd n f0g satis�es (12). The orrespond-ing normalized eigenfuntions ~'� = '�=k'�k form a omplete L2(
)-orthonormal set in X. Furthermore, if Nd(�) denotes the number ofeigenvalues less than � 2 R (ounting multipliities), then we have thatNd(�) � �d=2 as �!1 ; (28)where the proportionality onstant depends only on 
.(b) The operator �B" de�ned above is selfadjoint and setorial. The spetrumof B" onsists of real eigenvalues ��;" given in (13) with orrespondingeigenfuntions '�. Moreover, the largest eigenvalue is for small " > 0 ofthe order�max" := (f 0(m) + Lmax)24"2 ; and bounded by �max" : (29)For later referene let us also introdue the following notation.De�nition 3.2 We denote all � related to eigenvalues of �� by� := �� 2 Rd n f0g : � is of the form (12)	and P� = �� 2 Sd�1 : �=j�j = � for some � 2 �	.Furthermore, for given � 2 P� let�(�) = f� 2 � : �=j�j = �g � Rd n f0gbe all � orresponding to eigenvalues of �� lying on the same half ray as �.Any � 2 P� satisfying L(�) = Lmax is alled �max.Due to the above lemma, B" generates an analyti semigroup S"(t) on X .Furthermore, for every B" the frational power spae X1=2;" � X is de�ned;f. the disussion in Subsetion 2.1 of [15℄ following (H1). Although formally



Spinodal deomposition in the presene of elasti interations 23this frational power spae depends on ", it will turn out in the next lemmathat algebraially, i.e., as a vetor spae, we have X1=2;" = H2av(
), whereH2av(
) := 8<: 2 H2(
) : Z
 dx = 0 and  is periodi9=; :Only the topologial struture given by the norm jj � jj1=2;" on X1=2;" willdepend on the parameter ". Fortunately, the norms jj � jj1=2;" will turn outto be equivalent to the standard H2(
)-norm on H2av(
). More preisely, wehave the following result.Lemma 3.3 Assume that (A1) and (A3) are satis�ed, and let jj�jj1=2;" denotethe norm on X1=2;" de�ned byjjjj1=2;" := ������(�B" + b"I)1=2������ for all  2 X1=2;" ;where b" = (f 0(m) + Lmax)2 ="2 and jj�jj = jj�jjL2(
). Moreover, let jj�jjH2(
)denote the standard H2(
)-norm, and de�ne another norm jj � jj� on H2(
)by jjjj� := pjjjj2 + jj�jj2 for all  2 H2(
) :For "2 > 0 we assume "2 � f 0(m) + Lmax and, in ase f 0(m) + Lmin < 0,we assume additionally "2 < jf 0(m) + Lminj. Then we haveX1=2;" = H2av(
) ;and the norm jj�jj1=2;" is equivalent to both jj�jjH2(
) and jj�jj�. More preisely,there exists a ("-independent) onstant C depending only on the domain 
suh that for all  2 H2av(
) the estimates"p2 � jjjj� � jjjj1=2;" � Ĉ" � jjjj� (30)and "C � p2 � jjjjH2(
) � jjjj1=2;" � Ĉ � C" � jjjjH2(
)hold. Here we setĈ := (f 0(m) + Lmax ; in ase f 0(m) + Lmin � 0q(f 0(m) + Lmax)2 + 12 (f 0(m) + Lmin)2 ; otherwise :
Proof: As already pointed out in Lemma 3.2 in [15℄ we have that the normjj � jj� is an equivalent norm on H2(
), i.e., there is a onstant C suh thatfor all  2 H2(
) the estimate



24 Harald Garke, Stanislaus Maier-Paape, and Ulrih Weikard1C � jjjjH2(
) � jjjj� � C � jjjjH2(
) (31)holds, f. Temam [20, p. 150℄ and Fife, Kielh�ofer, Maier-Paape, Wanner [4,Lemma 6.1℄ for the neessary ellipti regularity results.Therefore we only have to verify (30). Aording to Amann [1, Theorem4.6.7℄ the frational power spae X1=2;" onsists of all funtions  2 X whoseL2(
)-Fourier oeÆients �� = (; '�), � 2 �, satisfyX�2�(b" � ��;")�2�jj'�jj2 <1 :In that ase, the norm jjjj1=2;" is given byjjjj1=2;" =  X�2�(b" � ��;")�2�jj'�jj2!1=2 :On the other hand a funtion  2 X is in H2av(
) if and only ifjjjj2� = X�2� �1 + j�j4� �2�jj'�jj2 <1 : (32)These haraterizations eventually furnish the stated results. Using the rep-resentation (13) of ��;" and L(�) 2 [Lmin; Lmax℄ we obtainj�j2 ��"2j�j2 + f 0(m) + Lmin� � ��;" � j�j2 ��"2j�j2 + f 0(m) + Lmax� :An easy alulation gives for all s � 0 and 0 < "2 < f 0(m) + Lmax"22 (1 + s2) � b" + "2s2 � (f 0(m) + Lmax) syielding the left hand side of (30). For the right hand side of (30) we observefor s � 0 and " as assumedb" + "2s2 � (f 0(m) + Lmin) s � Ĉ2"2 (1 + s2) :These estimates immediately imply the assertions of the lemma. �Sine aording to the above lemma the frational power spae X1=2;"algebraially does not depend on ", we will omit the supersript " in thefollowing and simply write X1=2 = H2av(
). Also, Lemma 3.3 shows thatwe may hoose either the standard H2(
)-norm or the norm jj � jj� on thefrational power spae X1=2, sine both of them are equivalent to the graphnorm jj � jj1=2;" of (�B" + b"I)1=2. It will turn out to be very onvenient tohoose the norm jj � jj� as a (non-standard) norm on X1=2. Thus, from nowon we identify the spae (X1=2; jj � jj1=2;") with the spae (H2av(
); jj � jj�).



Spinodal deomposition in the presene of elasti interations 253.2 Spetral gaps and exponential dihotomy estimatesThe following lemma proves the existene of suitable spetral gaps in thespetrum of B". They will be used to de�ne the deomposition of X men-tioned in (H2), and therefore eventually furnish the dihotomy estimates, seeLemma 3.8(b). The size of these gaps turns out to be ruial, beause it pro-vides a restrition on the possible size of the global Lipshitz onstant of thenonlinearity in (H3).Lemma 3.4 Assume that (A1) and (A3) are satis�ed, so that in partiularwe have d 2 f1; 2; 3g. Furthermore, �x two onstants v� < v� < 1 and let�max" be de�ned as in (29).Then there exist onstants "0; �0 > 0 depending only on v�, v�, 
, andf 0(m) + Lmax suh that for arbitrary 0 < " � "0 the following holds. Thelinear operator B" has eigenvalues ��(") and ��(") satisfying bothv� � �max" � ��(") < ��(") � v� � �max"and ��(")� ��(") � �0 � "d�2 :Moreover, the whole interval (��("); ��(")) is part of the resolvent set of B".In fat, both the interval (v� � �max" ; ��(")) and (��("); v� � �max" ) ontainseigenvalues of the form ��;" 2 �(�) if�max";� := maxfs(f 0(m) + L(�)� "2s) : s � 0g � v� � �max" :In partiular, in the above intervals are always eigenvalues from �(�max).Proof: Fix two onstants v� < v�� < v�� < v�. Due to Lemma 3.1, espeially(28), we an hoose "0 > 0 small enough suh that for all 0 < " � "0 thefollowing two assertions hold.1. Both in the interval [v��; v�℄ � �max" and in [v�; v��℄ � �max" there is at leastone eigenvalue of B". Let ���(") denote the smallest eigenvalue in the�rst interval, and ���(") the largest one in the seond interval.2. The number of eigenvalues of B" in the interval (v��; v��)��max" is boundedabove by C �"�d�1, where C depends only on v�, v�,
, and f 0(m)+Lmax.Let �0 := (f 0(m)+Lmax)2(v���v��)=(4C) and assume that any two onse-utive eigenvalues of the operator B" in the interval [���("); ���(")℄ are stritlyless than �0 � "d�2 apart. Then we get���(")� ���(") < �0 � "d�2 � C � "�d = (f 0(m) + Lmax)2 (v�� � v��)4"2 :This however ontradits the fat that���(")� ���(") � (v�� � v��) � �max" = (f 0(m) + Lmax)2 (v�� � v��)4"2 ;



26 Harald Garke, Stanislaus Maier-Paape, and Ulrih Weikardand the proof of the lemma is omplete. �Loosely speaking, the above lemma states that it is possible to �nd gapsin the spetrum of B" whose size an be ontrolled as " ! 0. We will usethis fat to obtain the spetral gaps needed for assumption (H2). To this end,hoose onstantsv�� < v�� � 0� v� < v� < v+ < v+ < 1 ; (33)where typially the di�erenes v���v��, v��v�, and v+�v+ will be small.Using these onstants the following results are an immediate onsequene ofLemma 3.4. They give the appropriate hoies of the spetral gaps for theoperators B" needed for our appliation.Corollary 3.5 Assume that all the assumptions of Lemma 3.4 are satis�ed.Then with the onstants from (33) there exist intervalsĴ��" := [â��" ; b��" ℄ � [v��; v��℄ � �max" ;J�" := [a�" ; b�" ℄ � [v�; v�℄ � �max" ;J+" := [a+" ; b+" ℄ � [v+; v+℄ � �max"suh that for suÆiently small " > 0 the following holds.(a) Eah of the intervals Ĵ��" , J�" , J+" is ontained in the resolvent set ofB".(b) If we de�ne a��" := (â��" + b��" )=2 and letJ��" := [a��" ; b��" ℄ � Ĵ��" � [v��; v��℄ � �max" ;then there is an "-independent onstant �1 > 0 suh that the length ofeah of the intervals J��" , J�" , and J+" is at least �1 � "d�2. The onstant�1 depends only on 
, f 0(m) + Lmax, and the onstants in (33).() The interval [v�� ��max" ; a��" ) is not ontained in the resolvent set of B",i.e., this interval ontains at least one eigenvalue of B".Using this result, we an now de�ne the subspae deomposition of Xneeded for applying the results of [15℄.De�nition 3.6 Using the onstants introdued in Corollary 3.5, de�ne theintervals I��" := (�1; a��" ), I�" := (b��" ; a�" ), I+" := (b�" ; a+" ), and I++" :=(b+" ; �max" ℄. Furthermore, let X��" , X�" , X+" , and X++" denote the sum of alleigenspaes of the operator B" orresponding to eigenvalues ��;" in I��" , I�" ,I+" , and I++" , respetively.For further referene we de�ne



Spinodal deomposition in the presene of elasti interations 27De�nition 3.7 For given � 2 P�; " > 0, we denote by �i;�;"; i 2 N theordered eigenvalues ��;" of B" lying in �(�). Hene we have �1;�;" � �2;�;" �::: ! �1. The orresponding eigenfuntions  i;�;"; i 2 N of B" are obtainedform the eigenfuntions '� through this ordering proedure in the obviousway. Furthermore, denote by ~�i;�;" 2 �; i 2 N the related wave vetor � of i;�;". Note that j~�i;�;"j is monotonially inreasing for inreasing i in theregion j~�i;�;"j2 > (f 0(m) + L(�)) ="2.The restritions of B" or of the orresponding (linear) analyti semigroupS"(t) to eah of the subspaes de�ned above will be denoted by the appropri-ate supersript. With these de�nitions we an proeed to verifying the two hy-potheses (H1) and (H2) for the linearization. Again we use the non-standardnorm jj � jj� (whih is equivalent to the norm jj � jj1=2;") on X1=2 = H2av(
).Lemma 3.8 Assume that (A1) and (A3) hold. Let �B" : X ! X denote theself-adjoint and setorial operator de�ned in Lemma 3.1, let S"(t) : X ! X,t � 0, denote the orresponding analyti semigroup, and let X1=2 = H2av(
)denote the frational power spae of Subsetion 3.1 with norm jj � jj�. Further-more, onsider the onstants and intervals introdued in Corollary 3.5 andDe�nition 3.6. Then the following assertions hold for arbitrary 0 < " � "0,where "0 depends only on the domain 
, the onstant f 0(m)+Lmax, and theonstants in (33).(a) The subspaes X�" , X+" , and X++" are �nite-dimensional subspaes ofX1=2, and their dimensions are proportional to "�d, where d denotes thedimension of the domain 
. Furthermore, the spaes X��" , X�" , X+" , andX++" are orthogonal with respet to the L2(
)-salar produt (�; �), andtheir restritions to X1=2 are orthogonal with respet to (�; �)�.(b) There exists a onstant M��" > 0 suh that for every ++ 2 X++" , + 2X+" , � 2 X�" , ��� 2 X��" \X1=2, and �� 2 X��" the estimatesjjS++" (t)++jj� � eb+" t � jj++jj� for t � 0 ;jjS+" (t)+jj� � ea+" t � jj+jj� for t � 0 ;jjS+" (t)+jj� � eb�" t � jj+jj� for t � 0 ;jjS�" (t)�jj� � ea�" t � jj�jj� for t � 0 ;jjS�" (t)�jj� � eb��" t � jj�jj� for t � 0 ;jjS��" (t)��� jj� � ea��" t � jj��� jj� for t � 0 ;jjS��" (t)��jj� � M��" � t�1=2 � ea��" t � jj��jj for t > 0hold, and M��" � C � "�(1+d=2) as "! 0 ;where C > 0 depends only on 
, f 0(m) + Lmax, and the onstants in(33). Note that due to the �nite dimensions of the subspaes X�" , X+" ,and X++" the semigroups S�" (t), S+" (t), and S++" (t) an be extended togroups.



28 Harald Garke, Stanislaus Maier-Paape, and Ulrih Weikard() There exists a onstant M1=2;" � 1 suh that for all  2 X�" �X+" �X++"we have 1M1=2;" � jjjj � jjjj � jjjj� �M1=2;" � jjjj ;and M1=2;" � "2 ! C as "! 0 ;where C > 0 depends only on f 0(m) + Lmax, and the onstants in (33).Proof: The assertions of (a) follow easily from Lemma 3.1, (28), Corollary3.5, and De�nition 3.6.As for the proof of (b), let  2 X be arbitrary, let  i;�;" denote the eigenfun-tions of B" aording to De�nition 3.7, and let  = P�2P�P1i=1 �i;�;" i;�;"denote the Fourier series representation of  in X , i.e., let �i;�;" := (;  i;�;"),where (�; �) denotes the standard L2(
)-salar produt. Then we have anexpliit spetral representation of the semigroup S"(t) given byS"(t) = X�2P� 1Xi=1 e�i;�;"�t � �i;�;" �  i;�;" for t > 0 ;and if  2 X1=2, then (32) furnisheskk2� = X�2P� 1Xi=1 �1 + j~�i;�;"j4� � �2i;�;" � k i;�;"k2 <1 :These two identities already imply the �rst six inequalities in part (b). Forexample, let �1;�;" � : : : � �n0(�);�;", for � 2 P�, denote all eigenvalues of B"in the interval I++" , where n0(�) = 0 is possible. Then an element ++ 2 X++"has the Fourier series representation ++ = P�2P� Pn0(�)i=1 �i;�;" i;�;", andfor every t � 0 we obtainkS++" (t)++k2� = X�2P� n0(�)Xi=1 �1 + j~�i;�;"j4� � e2�i;�;"�t � �2i;�;" � k i;�;"k2� X�2P� e2�n0(�);�;" �t � n0(�)Xi=1 �1 + j~�i;�;"j4� � �2i;�;" � k i;�;"k2� e2b+" �t � k++k2� ;sine �n0(�);�;" 2 I++" = (b+" ; �max" ℄ aording to De�nition 3.6. The remaining�ve of the �rst six inequalities follow analogously.In order to prove the seventh inequality, let �� 2 X��" be arbitrary.If n1(�) � 1 is hosen in suh a way that �i;�;" for i � n1(�) and � 2 P�denote all the eigenvalues of B" whih are ontained in I��" , then �� has theFourier series representation �� =P�2P� P1i=n1(�) �i;�;" i;�;" inX , and for



Spinodal deomposition in the presene of elasti interations 29arbitrary t > 0 we atually have S��" (t)�� 2 X1=2. Due to the hoie of theinterval I��" one further obtains �i;�;" � �n1(�);�;" < 0 for all i � n1(�), andtherefore ~�i;�;" > ��="2 for all i � n1(�), where we set �� = f 0(m) + L(�).Thus,jjS��" (t)��jj2� = X�2P� 1Xi=n1(�) �1 + j~�i;�;"j4� � e2�i;�;"�t � �2i;�;" � k i;�;"k2 :Now it is easy to verify that for all t > 0, i � n1(�), and � > �n1(�);�;" wehave�1 + j~�i;�;"j4� � e2�i;�;"�t � 1 + j~�i;�;"j42e(�� �i;�;") � t�1 � e2��t= 1 + j~�i;�;"j42e (�� ��j~�i;�;"j2 + "2j~�i;�;"j4) � t�1 � e2��t :To ontinue, de�ne the funtion h(s) = (1 + s2) � (� � �s + "2s2)�1, where� = a��" < 0, s 2 Z := fs > 0 : � � �s + "2s2 > 0g, and � = �� foran arbitrary � 2 P�. Assume �rst that � is suh that �� � 0. Then h ismonotonially dereasing on Z, and this impliesC2i;�;" := 1 + j~�i;�;"j42e(�� ��j~�i;�;"j2 + "2j~�i;�;"j4) � 1 + j~�n1(�);�;"j42e(�� �n1(�);�;")� 1 + j~�n1(�max);�max;"j42e(a��" � â��" ) =: �fM��" �2 :If �� < 0, then h swithes exatly one from dereasing to inreasing in Z,and this yields Ci;�;" � maxnfM��" ; "�1o =: M��" :This proves the seventh estimate in (b). Finally, using a alulation whihwas already employed in the proof of Lemma 3.6(b) in [15℄ and whih usesthe estimate �n1(�max);�max;" � v�� � �max" = v�� � (��max)2=(4"2) from Corol-lary 3.5(), we obtainM��" � "�(1+d=2) �max8<:"d=2; s"4 + (��max)2 � (1 +p1� v��)2=4�1 9=; ;where �1 > 0 is de�ned in Corollary 3.5(b). This �nally proves the asymptotibehavior of the onstant M��" for "! 0.The proof of part () follows the lines of the proof of Lemma 3.6() in [15℄and is therefore omitted.



30 Harald Garke, Stanislaus Maier-Paape, and Ulrih Weikard�Aording to the above lemma the linear part of the Cahn-Hilliard equa-tion with elastiity (24) satis�es (with respet to the non-standard norm k�k�)both (H1) and (H2), as well as (7) from Setion 2 in [15℄. Moreover, theasymptoti behavior for "! 0 of ertain spetral gaps in the spetrum of B",and of the onstantsM��" andM1=2;" have been obtained. We lose this sub-setion with the following remark.Remark 3.9 With the results of Corollary 3.5 and Lemma 3.8 we an deduethe asymptoti behavior of ertain onstants introdued in [15, Setion 2℄for " ! 0. Although the spei� values of these onstants are di�erent ifompared to the appliation in [15, Setion 3℄, their dependene on " is not.Hene, we obtain exatly the same asymptotis, i.e., C��" � C � "d andC+" � C � "d�2 for "! 0, see Remark 3.7 in [15℄.Even though we did not formally introdue these onstants, we want topoint out that their asymptoti behavior is used to prove that the abstrattheory of Setion 2 in [15℄ an be applied to B" and a nonlinear funtion F ,whose Lipshitz onstant satis�es 0 � LF � C � "d. For more details see [15,Remark 2.11℄. All of the onstants C above depend only on 
, f 0(m)+Lmax,and the onstants in (33).3.3 Properties of the nonlinearityHypothesis (H3) is valid for some funtion F̂ : H2av(
) ! L2(
) whihoinides with F from (26) on a ertain neighborhood of the origin. In orderto obtain a global Lipshitz onstant LF̂ of the order "d (as required byRemark 3.9), the size of this neighborhood has to be proportional to "dwith respet to the H2(
)-norm. This an be proved by applying the resultsfrom [15, Setion 3.3℄ to ~f and F . This immediately furnishes the followingresult.Corollary 3.10 The nonlinear operator F de�ned in (26) satis�es (H3) witha Lipshitz onstant LF of the order "d on an H2(
)-neighborhood of 0 withsize proportional to "d.3.4 Spinodal deompositionIn the previous subsetions we established all properties of (24) whih areneessary to apply the abstrat results of [15, Setion 2℄ to the Cahn{Hilliardequation with elastiity | and this an be done exatly as in Subsetion 3.4of [15℄. Moreover, sine the asymptoti behavior of the involved onstants re-mains basially unhanged, we obtain exatly the same result, of ourse afteradopting the new notation (m instead of �, B" instead of A" and so on).



Spinodal deomposition in the presene of elasti interations 31Therefore, we refrain from presenting our main theorem again in as detaileda form as in the binary ase, and state only an intuitive abbreviated version.Suppose that three onstants 0 < r � � � R are given. We onsider initialonditions from the ballBr(m) = fv 2 m +X�" �X+" �X++" : kv � mk� < rg � m +H2av(
)and their evolution under the dynamis of (24). Let Mr denote the set ofall initial onditions v 2 Br(m) whose orresponding solution of (24) eitherremains in the larger ball BR(m) for all time, or has distane greater than �from X+" � X++" upon exiting BR(m). See also Figure 6 in [15℄. In otherwords, the initial onditions in Mr annot be onsidered as being dominatedby the strongly unstable subspae Y+" := X+" �X++" .Our main theorem states that the volume (whih is the anonial Lebesguevolume of the �nite-dimensional spae X�" �X+" �X++" ) of these \bad"initialonditions ompared to the volume of all initial onditions in Br(m) is arbi-trarily small, provided the onstants 0 < r � �� R are hosen proportionalto "d as "! 0.Theorem 3.11 We onsider solutions of the Cahn{Hilliard equation withelastiity (24) and assume that hypotheses (A1), (A2), and (A3) are satis�ed.Then there exists a positive onstant "0 whih depends only on 
, f 0(m) +Lmax, jf 0(m) + Lminj, and the onstants in (33), suh that for arbitrary0 < " � "0 the following holds.For every 0 < p � 1 there exist onstants 0 < r � � � R whih dependonly on f 0(m) +Lmax, 
, and the onstants in (33) (r depends additionallyon p) and whih are all proportional to "d as "! 0, suh thatvol(Mr)vol(Br(m)) � p : (34)Proof: One only has to apply the abstrat theory of Setion 2 in [15℄.Hypotheses (H1) through (H3) have been established in Subsetions 3.1through 3.3, and the neessary onstants have been alulated, furnish-ing the ball with size proportional to "d on whih the result is valid.�Remark 3.12 This theorem guarantees that the initial onditions near mare dominated by the subspae Y+" . This is why we all Y+" the dominatingsubspae. Sine the nonlinearity F is exatly the same as in [15℄ we expetthat also the results of Sander and Wanner [19℄ on seond phase spinodaldeomposition hold true for the Cahn-Hilliard equation with elastiity.



32 Harald Garke, Stanislaus Maier-Paape, and Ulrih Weikard4 Numerial simulationsFinally, we would like to show that the patterns predited by our analysisin Setions 2 and 3 are in fat observed in typial solutions having initialdata lose to an unstable homogeneous state m, i.e.,  ;(m) � Lmax =�(f 0(m)+Lmax) < 0. We made a series of numerial simulations based on a�nite element method developed in Garke, Rumpf, Weikard [10℄ and in thissetion we will present typial patterns seen in the numerial experiments.We point out that in [10℄ optimal error estimates are established, i.e. themethod used is very reliable.Before we present the numerial results, let us remark that the patternsshown are generi in the sense that the initial data have to be degeneratein a ertain sense in order not to lead to similar patterns. In all simulationswe were hoosing m = 0 and were taking a random perturbation around mas initial data. All alulations have been performed on the unit square with" = 10�3,  () = 14 (2�0:16)2 and the solutions are shown at time t = 0:001.

Fig. 6. The ase without elastiity; modulus of the Fourier oeÆients (left) andsign of the onentration di�erene  (right)At �rst we onsider the ase without elastiity. The left hand side of Fig-ure 6 shows the modulus of the Fourier oeÆients of a solution to the Cahn-Hilliard equation during spinodal deomposition after a �xed time. On theright the sign of the onentration di�erene  (blak denoting positive, whitedenoting negative values) is shown. The Fourier oeÆients were alulatedusing the FFTW-software pakage (see http://www.�tw.org for details). Fig-ure 6 orresponds to Figure 1 in that neither in the Fourier oeÆients nor inthe onentration piture there are any distinguished diretions reeting theisotropy of the Cahn-Hilliard model without elastiity. Essentially the samepiture ours in the ase of isotropi elastiity.
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Fig. 7. Negative anisotropy of the elastiity tensor; modulus of the Fourier oeÆ-ient (left) and sign of the onentration di�erene  (right)

Fig. 8. Positive anisotropy of the elastiity tensor; modulus of the Fourier oeÆient(left) and sign of the onentration di�erene  (right)In the Figures 7 and 8 we show numerial results with an anisotropielastiity tensor. Parameters were C11 = 10, C12 = 1, C44 = 1 and q = p210(this implies Lmax � �0:068, Lmin = �0:2 and f 0(m) = 0:16) for the asewith positive anisotropy and C11 = 2, C12 = 1, C44 = 100 and q = 0:2(i.e., Lmax = �0:06, Lmin � �0:236 and f 0(m) = 0:16) for the ase withnegative anisotropy. In both ases the anisotropy is learly visible in theFourier oeÆients as well as in the onentration.
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Fig. 9. Anisotropi eigenstrain and isotropi elastiity tensor; modulus of theFourier oeÆient (left) and sign of the onentration di�erene  (right)Finally we onsider the ase with isotropi elastiity tensor but anisotropieigenstrains (see Figure 9). The parameter were � = 1, � = 12 and a = 1,b = 0:1 (i.e., Lmax = �0:015, Lmin = �1:5 and f 0(m) = 0:16).AknowledgmentThis work has been started while SMP was visiting the University ofBonn as a guest of the Sonderforshungsbereih 256 \Nihtlineare partielleDi�erentialgleihungen" (SFB256). HG and UW have been members of theSFB256 for many years and all three authors gratefully aknowledge thesupport of the Sonderforshungsbereih.Referenes1. H. Amann, Linear and Quasilinear Paraboli Problems. Volume I: Abstrat Lin-ear Theory, Birkh�auser, Basel { Boston { Berlin, 1995.2. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I.Interfaial free energy, Journal of Chemial Physis, Vol. 28 (1958), pp. 258{267.3. J.D. Eshelby, The ontinuum theory of lattie defets, Solid State Physis, 3(1956), pp. 79-144.4. P.C. Fife, H. Kielh�ofer, S. Maier-Paape, and T. Wanner, Perturbation ofdoubly periodi solution branhes with appliations to the Cahn-Hilliard equation,Physia D, 100(3-4) (1997), pp. 257-278.5. P. Fratzl, O. Penrose, and J. L. Lebowitz,Modelling of phase separation inalloys with oherent elasti mis�t, J. Stat. Physis, 95 5/6 (1999), pp. 1429{1503.6. H. Garke, On mathematial models for phase separation in elastially stressedsolids, habilitation thesis, Bonn, 2000.7. H. Garke, On Cahn{Hilliard systems with elastiity, submitted.
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