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Abstract

A new method for the simplification of flow fields
is presented. It is based on continuous clustering.
A well-known physical clustering model, the Cahn
Hilliard model which describes phase separation, is
modified to reflect the properties of the data to be
visualized. Clusters are defined implicitly as con-
nected components of the positivity set of a density
function. An evolution equation for this function is
obtained as a suitable gradient flow of an underly-
ing anisotropic energy functional. Here, time serves
as the scale parameter. The evolution is character-
ized by a successive coarsening of patterns — the ac-
tual clustering — during which the underlying sim-
ulation data specifies preferable pattern boundaries.
We introduce specific physical quantities in the sim-
ulation to control the shape, orientation and distri-
bution of the clusters, as a function of the underly-
ing flow field. In addition the model is expanded in-
volving elastic effects. Thereby in early stages of
the evolution shear layer type representation of the
flow field can be generated, whereas for later stages
the distribution of clusters can be influenced. Fur-
thermore, we incorporate upwind ideas to give the
clusters an oriented drop–shaped appearance. Here
we discuss the applicability of this new type of ap-
proach mainly for flow fields, where the cluster en-
ergy penalizes cross streamline boundaries. How-
ever, the method also carries provisions for other
fields as well. The clusters can be displayed directly
as a flow texture. Alternatively, the clusters can be
visualized by iconic representations, which are posi-
tioned by using a skeletonization algorithm.

1 Introduction

Nowadays, fast computing hardware and efficient
numerical algorithms enable highly detailed and
large scientific simulations which deliver enormous
amounts of data. Various visualization strategies
have been proposed to represent such data in an in-
tuitively understandable way.

The larger and more complex the simulation results
become, the stronger is the need for a suitable multi-
scale visualization approach. Simplified representa-
tions of the data, useful to see the global pattern, can
be gradually refined for further insight. Moreover,
different viewers need different representations. Nu-
merical experts might want to see the raw data in full�[harald jtpreuss jrumpf jwkd]@iam.uni-
bonn.de[alext jvanwijk]@win.tue.nl

Figure 1: Vector field visualization: hedgehog plots
(left), proposed clustering methods (right).

detail, technological experts might want to see cer-
tain features such as vortices, whereas the manage-
ment might need a simplified presentation.

Clustering, well-known from statistics, is such a
multiscale approach. Data are grouped in succes-
sively larger sets of strong internal correlation. Many
techniques are available for scattered and scalar data,
e.g. based on wavelet or Fourier analysis [12, 28].
However, for vector data, only few multiscale visu-
alization methods are available. The most ubiquitous
vector field simplification method is still regular sub-
sampling, which is well-known to produce aliases
(see e.g. Fig. 1). Turk [25] uses an energy minimiz-
ing approach to place equally distributed streamlines
at a user prescribed resolution on the screen. Se-
lected streamline drawings are furthermore consid-
ered by Jobard et al [10].

Recently, two approaches for clustering vector data
have been proposed. In both approaches a hierar-
chical clustering tree is produced and the resulting
clusters are visualized with arrows. Heckel et al. [9]
start from scattered points with vector data. Initially
all points are stored in a single cluster, which is re-
cursively split in a top-down manner. At each step,
the cluster with the strongest discrepancy between
streamlines generated by the original field and its ap-
proximation by the cluster is bisected with a plane,
using principal component analysis. The resulting
clusters are guaranteed to be convex, as a result of
this bisection approach. However, accurately repre-
senting complex fields with convex clusters may re-
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quire a large cluster count.

Telea and Van Wijk [23] use a bottom-up approach.
Initially, each data point is a cluster, next these clus-
ters are merged. In each step the most similar clus-
ters are merged, according to a measure of the dif-
ference in position and orientation of the vectors that
represent the clusters. The cluster shapes are con-
strained only indirectly by adapting the weights of
the various terms in the error measure. However,
this method is sometimes sensitive to the mentioned
weight tuning.

Here we propose a continuous clustering method
based on a phase separation model which leads to a
diffusion problem. The main difference to the other
approaches is that no boolean merging or splitting
decisions have to be made. Instead, a suitable dif-
fusion process continuously enhances strong corre-
lations in the cluster sets. In contrast to Heckel’s
method, the clusters that we generate are not neces-
sarily convex. Hence, curved flow fields can be rep-
resented more effectively. Figure 1 shows two vec-
tor fields visualized with the classical hedgehog plot
(left) and with two variants of our method (right).

Our approach is motivated by a well-known physi-
cal model for phase separation in binary alloys which
can be understood as a clustering of material in order
to decrease the free energy of the physical system.
As a major application, we consider clustering on
flow fields. The method is related to multiscale im-
age processing methodology which leads to second
order parabolic equations, whereas our model here
will be a fourth oder problem. Perona and Malik [17]
have introduced a continuous diffusion model which
allows the denoising of images together with edge
enhancing. The recovery of lower dimensional struc-
tures in images is analyzed by Weickert [27], who in-
troduced an anisotropic nonlinear diffusion method
where the diffusion matrix depends on the so called
structure tensor of the image. Preußer and Rumpf
presented an efficient implementation for large scale
image data [19] and used an anisotropic diffusion ap-
proach for flow visualization [20].

In detail the aims of our method are� to extract a collection of nicely shaped subsets
of the physical domain, where each of them is
being characterized by a strong correlation in
the underlying physical data and they all to-
gether are supposed to cover an approximately
fixed fraction of the domain,� to consider not only one such representation,
but a scale of them ranging from fine granu-
larity in the subdivision to very few and coarse
cluster sets.

This multiscale should enable the exploration of
complicated simulation data and the visual percep-
tion of correlations in such data sets at different reso-
lutions. In our model, the clusters will be represented
implicitly by a scalar function evolving in time. In
addition, we expand the model incorporating a con-
tribution to the energy due to elastic effects. Thereby
we are able to influence the distribution of the par-
ticles and for small evolution times – not yet in the

range of the actual clustering results – we obtain im-
ages which show shear layer type patterns. Further-
more, we use an upwind idea to obtain drop-shaped
particles which clearly outline the flow field direc-
tion.

Concerning the graphical representation, we could
straightforwardly use a color coded representation
of this function on the physical domain as a texture.
In the last decade, a variety of such texturing meth-
ods has been presented for flow visualization. We
mention here the spot noise technique by Van Wijk
[5], the line integral convolution method by Cabral
and Leedom [2], several improvements and modifi-
cations of this method [29, 7, 21], and the already
mentioned nonlinear anisotropic diffusion method
[20]. As an alternative to the above, we use the ac-
tual clustering as a precomputing step and pipe the
output into an iconic representation approach. Thus,
the distinct subsets at any scale are represented by
suitable graphical icons. This allows a further reduc-
tion of graphically represented data, while maintain-
ing and strengthening the informational content.

The ingredients of our continuous clustering strategy
are as follows:� We formulate an evolution problem for a func-

tion which implicitly describes the set of clus-
ters. The evolution can be interpreted as the
gradient flow with respect to an appropriate en-
ergy.� There are two major energy contributions. The
first one leads to the nucleation of cluster sets
on the physical domain. The second one gives
rise for a successive coarsening of the clusters.� Depending on the underlying physical data,
surface segments are weighted depending on
their location and orientation. That is, surfaces
are considerably penalized if they are oriented
in cross direction to the correlation, otherwise
their energy contribution is kept small. Several
energy components can be defined to constrain
the clusters’ shapes in relation to various quan-
tities in the flow dataset.� On any scale, a skeletonization method is used
to reduce the informational content of the clus-
ter sets to their essence, which is to be further
visualized.� Finally, geometric icons are selected to repre-
sent the extracted skeleton information graphi-
cally, e. g. with arrows in case of vector data.

Let us emphasize that the actual physical data en-
ter the clustering method only via the anisotropic en-
ergy. Moreover, the evolved function is solely used
to define the cluster sets without any further physical
meaning.

As application we mainly consider flow fields, where
the concept of correlation along streamlines is near
at hand. Nevertheless, the methodology is not re-
stricted to flow visualization and is thus presented
here for more general data.
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Figure 2: Three timesteps of the original Cahn
Hilliard phase separation.

The organization of the paper is as follows. In Sec-
tion 2, we outline the physical model of phase sep-
aration in binary alloys which motivates this work.
Section 3 extends this model by taking into account
physical elasticity. In Section 4, we expand this
model and interpret it in terms of a multiscale cluster
analysis. In Section 5, we describe how the cluster
shape can be controlled to visualize the direction of
a vector field. Section 6 discusses how anisotropic
elasticity can be used to visualize shear layer type
patterns. A finite element discretization is described
in Section 7. In Section 8, the skeletonization ap-
proach is outlined and we discuss graphical icons in
case of vector data. Finally in Section 9 we discuss
the results and in Section 10 we draw conclusions.

2 Reviewing a Physical Cluster-
ing Model

Before we discuss our model of continuous cluster-
ing on simulation data we will review in this section a
physical model for clustering in metal alloys, which
goes back to Cahn and Hilliard [3]. The Cahn–
Hilliard model was introduced to describe phase sep-
aration and coarsening in binary alloys. Phase sep-
aration occurs when a uniform mixture of the alloy
is quenched below a certain critical temperature un-
derneath which the uniform mixture becomes unsta-
ble. As a result a very fine microstructure of two spa-
tially separated phases with different concentrations
develops. In later stages of the evolution, on a much
slower time scale than the initial phase separation,
the structures become coarser: either by merging of
particles or by growing of bigger particles at the cost
of smaller ones. This coarsening can be understood
as a clustering, where the system mainly tries to de-
crease the surface energy of the particles which leads
to coarser and coarser structures during the evolu-
tion. In the basic Cahn–Hilliard model this surface
energy is isotropic. There are no preferred directions
of the interfaces. Hence the particles tend to be ball
shaped (cf. Fig. 2).

We now briefly outline the basic ideas of the Cahn–
Hilliard model. For more details we refer to the re-
view papers by Elliott [6] and Novick–Cohen [15].
The Cahn–Hilliard model is based on a Ginzburg–
Landau free energy which is a functional in terms
of the concentration difference � of the two material
components. The Ginzburg–Landau free energy E
is defined to beE(�) := Z
 n	(�) + 
2 jr�j2o ;

ρ

Ψ

Figure 3: Chemical energy as function of concentra-
tion

where 
 is a bounded domain. The first term in the
free energy, 	(�), is the chemical energy density and
typically has a double well form. In this paper we
take 	(�) = 14��2 � �2�2
with a constant � 2 (0; 1] (cf. Fig. 3). We note that
the system is locally in one of the two phases if the
value of � is close to one of the two minima �� of	. The diffusion equation for the concentration �
is given by @�@t = �w
onR+�
. In the equation above we denote byw the
local chemical potential difference which is given as
the variational derivative �E�� of E with respect to �
(cf. Section 4). Thus, we obtainw = �
��+	0(�):
The system has to be supplemented with boundary
and initial conditions. Here we request @@�w =@@� � = 0, where � is the outer normal on @
, and�(0; �) = �0(�) for some initial concentration dis-
tribution �0. We remark that with these boundary
conditions mass is conserved and that the Ginzburg–
Landau free energy is a Lyapunov functional, i.e. we
haveddt Z
 �(x; t)dx = 0 and

ddtE (�(t)) � 0:
Starting with a random perturbation of a constant
state ��0, which has values in the unstable concave
part of	, we observe the following: In the beginning
the chemical energy decreases rapidly whereas the
gradient energy increases. This is due to the fact that
during phase separation � attains values which are
at large portions of the domain close to the minima
of the chemical energy 	. Since regions of differ-
ent phase are separated by transition zones with large
gradients of �, the gradient energy increases during
phase separation. In the second stage of the evolu-
tion — the actual clustering — when the structures
become coarser, the total amount of transition zones
decreases. Correspondingly the amount of gradient
energy becomes smaller again.

3 Including Elasticity

Elastic stresses play an important role during phase
separation in most alloys. Such stresses arise from
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Figure 4: Three timesteps of a Cahn-Hilliard process
including anisotropic elasticity.

an elastic energy which takes into account elastic in-
teractions due to different crystal structures. The free
energy E can be defined as a functional of the con-
centration � and the displacement field u, as followsE(�;u) := Z
 n (�) + 
2 jr�j2 +W (�;u)o dx:
The third term accounts for an energy con-
tributions due to elasticity. We consider
linear elasticity and obtain W (�;u) :=�E(u)� �E(�)� : C �E(u)� �E(�)� ; whereE(u) := 12 �ru+ (ru)t�. Here, C is the possibly
anisotropic elasticity tensor and the term �E(�) is the
stress free strain at a concentration � given in the
simplest model by �E(�) = e � Id with a material
constant e. The product A : B of two d�dmatricesA;B is defined to be

Pdi;j=1AijBij .

Thus the resulting diffusion equation introduced in
Sec. 2 has to be modified. We obtain for the chemical
potentialw = �
��+  0(�)� S : �E 0(�) in 
T ;

(3.1)

where S = C(E(u)� �E(�))
is the stress tensor. Figure 4 shows three timesteps
from a diffusion process that takes anisotropic elas-
ticity into account.

Since the relaxation into mechanical equilibrium oc-
curs on a time scale that is fast compared to the time
scale at which diffusion takes place we assume qua-
sistatic equilibrium for the deformation. Hence, we
obtain the mechanical equilibrium condition divS =0.

4 A Multiscale Clustering Ap-
proach

The aim of this section is to derive a continuous clus-
tering model mainly on flow data. Motivated by the
Cahn-Hilliard model for phase separation and parti-
cle coarsening (cf. Section 2), we introduce a cluster
mapping u : R+0 � 
 ! R which will be the solu-
tion of an appropriate evolution problem. Thereby,
time will serve as the scale parameter leading from
fine cluster granularity to successively coarser clus-
ters. For fixed time t our definition of the set of clus-
ters C(t) is founded on the function u byC(t) = fx ju(t; x) � 0g:

This set splits up into the actual clustersC(t) =[i Ci(t)
where fCi(t)gi are the connected components ofC(t).
Now we study the evolution problem which controls
the quantity u. We suppose this evolution to be a
suitable clustering model, if for the induced C(t)� the number of clusters generically decreases in

time,� the shape of the cluster components strongly
corresponds to correlations in the data field,� the volume fraction covered by C(t) is approx-
imately constant in t, i. e. jC(t)jj
j � � for� 2 (0; 1).

We pick up the physical Cahn-Hilliard model and
consider a double well separation potential	(u) and
define a separation energy Es = R
 es(u) dx with
energy density es(u) = 	(u). Under all u withR
 u dx = �u0 = const. the energy Es is minimal ifu attains only the values ��. This leads to a binary
decomposition of the domain into two parts, where
one part corresponds to fx ju(x) = �g.

The set fx ju(x) = �g however can have many con-
nected components and may even be very unstruc-
tured. Furthermore there is no mechanism which en-
forces a successive coarsening and thus a true mul-
tiscale of clusters. Therefore, we want to introduce
a term penalizing the occurrence of many discon-
nected cluster components with high interfacial area.
Motivated by the Cahn–Hilliard theory of phase tran-
sition we choose a gradient energy E@ = R
 e@ dx
with local energy density e@ that penalizes rapid spa-
tial variations of u.

In order to have flexibility to choose an anisotropic
and inhomogeneous gradient energy, an appropriate
definition of an interfacial energy density is given bye@(ru) = 
2Aru � ru;
where “�” denotes the scalar product in Rn , 
 is a
scaling coefficient and A 2 Rn�n is some symmet-
ric positive definite matrix that may depend on the
space variable and other quantities involved.

In the following we will call the set @fx ju(x) = 0g
the interface. The orientation of the interface can be
described by the normal to the interface which, in the
case that ru 6= 0, is given by� = rukruk :
We remark that the interface between the set of posi-
tive and negative values of u is perpendicular to �.
For A = Id all gradients of u and hence, all in-
terfaces are penalized equally independent of their
orientation. With respect to our clustering inten-
tion we consider an anisotropic energy density which
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strongly depends on the orientation of the local inter-
face and thereby on the direction of ru.

Let us assume v : 
! Rn to be some vector field on
the domain 
. Typically such a field induces a flow
on 
 with streamlines which are solution of the or-
dinary differential equation _x = v(x). Now, a natu-
ral clustering should emphasize the coherence along
the induced streamlines. Thus, cross streamline in-
terfaces have to be penalized significantly by the gra-
dient energy. We chooseA := B(v)T � 1 00 �(kvk)Idn�1 �B(v)
where Idn�1 is the identity mapping inRn�1 and for
given r 2 Rn the mapping B(r) 2 SO(n) is a co-
ordinate rotation with B(r)r = krke1. Since inter-
faces that cross streamlines have to have larger en-
ergy we choose a positive � with � � 1.

Now we define the first variation of the energyw = �E�u ;
which is defined on 
 byZ
 �E�u � dx := dd�E(u+ ��)����=0:
We obtain w = 	0(u)� 
 div(Aru).
Let us assume that the evolution of the cluster map-
ping u is governed by diffusion where the corre-
sponding flux linearly depends on the negative gra-
dient of the first variation of energy. As the simplest
model we choose @tu � �w = 0 and end up with
the following fourth order parabolic problem:

Find a continuous cluster mapping u : R+0 �
! R,
such that@tu��w = 0 (4.1)w = 	0(u)� 
 div(Aru) (4.2)

with boundary conditions @@�u = @@�w = 0 and pre-
scribed initial data u(0; �) = u0(�).
This modified Cahn–Hilliard equation can be inter-
preted as the H�1 gradient flow for the energy E
(see [15] for a discussion of this fact in the case of
the standard Cahn–Hilliard equation). In particular
we immediately obtain the Lyapunov property@tE(u) � 0 : (4.3)

This energy decay is in fundamental accordance to
the desired successive pattern coarsening in the evo-
lution. After an initial short period of phase separa-
tion it is mainly the interfacial energy contribution
which is successively reduced. Furthermore, as in
the case of the standard Cahn–Hilliard equation, we
obtain that

R
 u(x; t)dx is constant in time, which
corresponds to the approximate volume conservation
of the generated scale of cluster sets.

In general it does not make sense to consider certain
initial data, if no a priori information on the clus-
tering is known. As initial data u0 we thus choose

Figure 5: Continuous clustering of a vector field:
time evolution (upper row), effect of increasing
anisotropy (lower row). The computation is based on
a grid of resolution 2572 .

a constant value �u0 plus some small random noise.
The constant �u0 depends on the volume fraction� of
the domain later on to be covered by the clusters, i.e.
by the sets fx j u(t; x) � 0g. Therefore, we choose�u0 = �� � (1��)�:
Starting with a random perturbation of this constant
first very rapidly cluster patterns will grow without
any prescribed location and orientation. This is in
order to decrease Es = R
	(u) dx which forces
the solution to obtain values close to �� in most of
the domain 
. After this process the clusters orien-
tate themselves in an anisotropic way to decrease the
amount of the anisotropic gradient energyE@ . In ad-
dition, the cluster becomes coarser and coarser due to
the fact that smaller particles shrink and larger ones
grow. We remark that in particular one observes that
a large particle that is surrounded by smaller ones
grow to the expense of the smaller ones. This implies
that as time evolves locally only the main features of
the clusters will be kept.

Altogether, we obtain a scale u(t; �) of cluster map-
pings and induced cluster sets C(t). They repre-
sent a successively coarser representation of simu-
lation data and continuously enhance coherences in
the underlying simulation data set, where the clus-
ter set C(t) will cover a volume of approximate size�j
j. As already mentioned, the multiscale property
comes along with the decay of the energy E(u) (see
(4.3)).

To summarize, the vector field that is to be repre-
sented defines the anisotropy of the energy and there-
fore governs the diffusion process of u. Roughly
speaking, the vector field determines in which direc-
tion an interface between phases is relatively ”cheap”
(from an energy point of view). As the energy is min-
imized during the evolution the interfaces will move
in such a way that there are mostly ”cheap” interfaces
(i.e. interfaces whereru is roughly perpendicular tov, which means that the interface is roughly parallel
to v). So for any particle most of its boundary will
be aligned with the vector field v. If not too large,
the particles themselves will be aligned to the vector
field. Fig. 5 shows the result of this process and the
influence of increasing anisotropy in the surface en-
ergy term.
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Figure 6: Vector field visualization with control on particle shape (different time scales)

5 Control of Particle Shape

The results presented in Fig. 5 are quite similar to
the various flow texture methods known in the liter-
ature [5, 2, 29, 7, 21]. Given a good scale choice,
such images could be used on their own to give in-
sight in a 2D flow field. However, such images con-
vey only the orientation, but not also the direction,
of a flow field. This limitation has been recognized
by Wegenkittl et al [26], who have presented several
methods to emphasize direction in LIC algorithms.
One method to convey directional information via
iconification is further presented in Sec. 8. In this
section, we discuss an alternative method that adds
directional information directly into the continuous
clustering model.

Our aim is to create interfaces that are asymmetric
with respect to the flow field’s direction. We divide
such an interface into two regions, depending on the
angle between the interface’s surface normal and the
flow field, i.e. the quantity ru � vjvj (see also Fig. 7).
In the front half, defined byru � vjvj < 0, the energy
is as described in the previous section. In the back
half, defined by ru � vjvj > 0, we define an addi-
tional shape energy term Es as a function of the an-
gle between the local gradient ru and the flow fieldv: Es(u) = Z
 q 
2 max �ru � vjvj ; 0�2

back half front half

∇u
v

∇u · v > 0 ∇u · v < 0

∇u
v

Figure 7: Control of particle shape

The coefficient q defines the importance of this addi-
tional shape energy Es in the global energy, thus the
intensity of this effect in the final visualization. The
shape energy penalizes thus only the back halves of
the clusters, decreasing the value of u in these areas.
Indeed the clusters try to avoid backsides whose nor-
mals point in the upwind direction. If the function u
is directly visualized by a color plot, the perceived
effect suggests drops of fluid transported by the un-
derlying vector field v. Figure 8 shows this effect for

vector field

Figure 8: Constant vector field, single particle (left).
Circular vector field (right)

Figure 9: Control of particle shape. Overview image
(left) and close-up image (right)

a single, respectively several particles, in a circular
vector field.

Figure 6 shows several time steps in the visualiza-
tion of a more complex flow field. Figure 9 illustrates
the effect of the additional energy term Es on the
particle shape by showing a close-up for a timestep
of the above sequence. The above images are
similar to the furlike textures for flow visualization
presented in [16]: the flow field’s direction is sug-
gested by the fading away of the ’tail’ of the particles.
However, whereas the cited method generates sharp,
arrow-shaped particles that point in the direction of
the flow field, we generate blunt, drop-like particles
that point in the opposite direction.

Corresponding to the above additional energy term,
the first variation of the energy w – which we have
to build into our diffusion problem – is now defined
by: w = 	0(u)� 
 div(Aru)� 
div~v:
where~v := (q �(ru � v) vjvj�; if ru � v > 0;0; if ru � v � 0:
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Figure 10: Effect of anisotropic elasticity. Early
timestep (left); late timestep (right)

6 Stress-Driven Diffusion

Now, let us discuss the extension of our cluster-
ing model based on elastic stresses. We choose
an anisotropic elasticity which is strongly correlated
with the flow field. Hence we define a modified
strain E(~u) := BT (v)E(~u)B(v)
a correspondingly modified stress:S = CBT (v)(E(u)� �E(u))B(v)
and the appropriate modified elastic energy:W (u;u) =  BT (v) �E(u)� �E(u)�B(v)! :C BT (v) �E(u)� �E(u)�B(v)!
Again the rotationB(v) is used to transform the flow
aligned coordinate system to the canonical coordi-
nate frame. With the modifications presented above,
the elasticity tensor is defined in such a way that the
flow direction is the preferred stretching direction.

Incorporating anisotropic elasticity leads to interest-
ing images already in the early clustering stages.
These images are related to the shear zones of the
flow field. For later times, the resulting clustering
tries to avoid the crossing of high shear regions. Fig-
ure 10 illustrates the above effects for the vector field
discussed in Sec. 5.

It is sometimes convenient to choose u-dependent
elasticity tensors C(u) in such a way that the particles
have larger elasticity constants, i.e. the particles are
harder than the surrounding matrix. In this setting,
already in case of an isotropic elasticity independent
on a vector field, we recognize significant chances in
the behaviour of our method: the cluster distribution
tends to be more uniform. Furthermore, independent
of the initial volume fraction, it is always the harder
phase which forms the clusters, whereas the softer
phase builds the surrounding matrix. In conclusion,
elasticity can be used for two goals. First, it can pro-
duce cluster-based visualizations of shear layer type
data. Secondly, it can be used as a global control for
the cluster size distribution.

7 Discretization of the Diffusion
Problem

In what follows we briefly discuss the discretiza-
tion and implementation of the evolution problem for
the cluster mapping u and the set of clusters C(t).
For this purpose a finite element discretization in
space and some discrete scheme in time are consid-
ered. Here, uppercase letters denote discrete quan-
tities which correspond to continuous quantities in
lowercase letters. Hence, we consider an appropriate
continuous variational formulation for (4.1), (4.2),
given by (@tu; �) + (rw;r�) = 0;(w; �) = �	0(u); ��+ (Aru;r�) ;
which shall hold for all �; � 2 C1(�
), where (�; �)
denotes the L2 product on the domain 
. For a finite
element implementation we now replace the contin-
uous solution and test functions in this formulation
by discrete approximations in some finite element
space. Here we have restricted ourselves to finite
elements on regular adaptive grids Mh in 2D and
3D generated by recursive subdivision of elementsE. On these grids we consider the bilinear, respec-
tively trilinear finite element spaces V h for the ap-
proximation of u andw on 
. Numerical integration
of the L2 products is based on the lumped masses
product (�; �)h [24]. Furthermore we consider a cen-
ter of mass quadrature rule for the bilinear forms(r�;r �) and (Ar �;r �). Especially, we replaceA
by the piecewise constant diffusion tensor Ah, withAhjE = A(cE), where cE is the element’s center of
mass.

For the discretization in time we have taken into ac-
count two possibilities: a first order implicit Euler
scheme and a second order �–splitting scheme (see
Bristeau et al. [1] and Müller Urbaniak [14]). Both
are known to be strongly A–stable. While we can
prove the energy decay property (4.3) for the implicit
Euler scheme, we use the �–splitting for practical
computations as it allows larger time steps.

In the case of the implicit Euler scheme the time
derivative is discretized by @tu((n + 1)�) �Un+1�Un� where � is the selected time step and Un
an approximation of u(n�). A brief introduction to
the more complicated �–splitting can be found in the
appendix.

Finally, we can derive a fully discrete scheme. For
the “hat shaped” multilinear basis functions �i and
the discrete piecewise constant anisotropic diffusion
matrix Ah we define byMh := ((�i;�j)h)ij ;Lh(A) := �(Ahr�i;r�j)�ij
the diagonal lumped mass and the anisotropic stiff-
ness matrix respectively and by Lh := Lh(Id) the
standard stiffness matrix. These global matricesMh,Lh, andLh(A) are assembled in a grid traversal col-
lecting the contributions on all local grid elements as
it is standard in finite element programming [4].
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If we indicate by a bar coefficient vectors corre-
sponding to finite element functions in the basisf�igi, we obtain the backward Euler discretizationMh �Un+1 + �Lh( �	0( �Un+1) +
M�1h Lh(A) �Un+1) =Mh �Un
with U0 = Ihu0, where Ih is the interpolation on
grid Mh. By obvious notation �	0(�) := (	0(�))i is
the vector of nodal wise derivatives of 	.

In each step of the discrete evolution we have to solve
this system of nonlinear equations. In order to do this
we apply some Newton scheme which typically con-
verges in a few steps if we consider moderate time
steps and pick up the old solution at the old time step
as the initial guess for the newton iteration.

The efficiency of our approach is further increased by
an adaptive grid refinement and coarsening strategy.
Here, we used a heuristic strategy which refines in
interfacial regions and coarsens in the pure phases.

In the case of the implicit Euler scheme, it is possible
to prove discrete counterparts of the mass conserva-
tion and energy decay properties. I. e.Z
 Un dx = Z
 Ihu0 dx
andEh(Un) := Z
 nIh	(Un) +AhrUn � rUno dx
is non increasing (discrete Lyapunov property) and
thus gives reason for the discrete multiscale property
of our methodEh(Un+1) � Eh(Un) � � � � � Eh(U1) � Eh(Ihu0) :
Considering in addition either the directional term
which allows control of the particle shape or the elas-
tic stress term in the discrete potential we proceed
analogously to the basic model. Except in the elastic-
ity case where we have to couple the diffusion equa-
tion with the balance law for the elasticity. For de-
tails we refer to [8].

8 Iconic Representation of the
Clusters

The clustering method described in Section 4 pro-
duces clusters which emphasize the spatial coher-
ence in the data. In what follows concerning the
iconic representation we focus to the case of flow
data. Nevertheless this exposition might inspire the
reader to think of different applications along the
same guidelines. For flow data, cluster interfaces
tend to be tangent to the streamlines of the under-
lying vector field, so the clusters’ shapes convey lo-
cal insight in the vector field direction. On the other
hand, the physical phase separation model presented
in section 2 produces clusters which tend to be evenly
distributed over the domain of interest 
.

Consequently, such clusters could be used as a start-
ing point for producing a simplified visualization of
the structure of the underlying vector field. For this,
we propose to reduce each cluster to one curved ar-
row icon. For every cluster, the size and spatial posi-
tion of the icon should reflect the size of the cluster,
whereas the curvature and arrow direction should be
related to the vector field inside the respective clus-
ter. We have chosen to use the curved arrow icons
as they convey several information levels in a sim-
ple, easy to understand manner [23], as compared to
other, more abstract icons.

The iconic visualization pipeline based on the
multiscale clustering proceeds as follows (see also
Figs. 11 and 13). First, the clusters C are extracted
from the Cahn-Hilliard equation solution u. Next,
the skeletons of the clusters are computed as sets
of discrete points, as shown further in section 8.2.
Next, the center points of the skeletons are detected
and used to construct the curved arrows by stream-
line tracing, as discussed in section 8.4. The reason
why we use such an apparently complicated method
is, that typically the clusters are large thin often
curved structures and streamline tracing is rather
sensitive with respect to the choice of the starting
point. The rest of this section explains the several
steps in detail.

8.1 Cluster Extraction

First we extract the clusters C from the scalar fieldu. For this, we classify all the cells of the discretiza-
tion of the field u as cluster outside, border, or inside
cells, based on the sign of u(x). Moreover, all bor-
der and inside cells belonging to a given cluster are
labelled by the cluster’s ID as presented by e.g. Wal-
sum et al. in [18].

8.2 Skeletonization

In the second step, clusters are reduced to their skele-
tons. By skeleton, we understand here a set of points
which, if connected, produce a ’spine’ which con-
veys the shape information of the original cluster in
a compact manner.

There are numerous skeletonization algorithms [11,
13]. However, many such algorithms produce skele-
tons with complex, tree-like topologies. As we in-
tend here to use the skeletons only to produce the
arrow icons, we prefer simple, polyline-like topolo-
gies.

To produce such skeletons, we use a discrete method
based on the eikonal equation [22]. Given a bound-
ary curve � in two dimensions (or a boundary sur-
face, in 3D) and a function T , such that T = 0 on�, the eikonal equation is jrT j = 1. If we regard� as being the level set (e.g. isoline or isosurface)
of the function T , the above equation describes the
evolution in time of � in normal direction to �, with
constant speed equal to 1. In our case, � coincides
with the previously detected cluster boundaries.
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Figure 11: Pipeline for iconic cluster visualization

flag all points as Known, Trial or Far ;

for all Trial points P
   insert P in narrowband;

while narrowband not empty
{
    A :=  point with smallest T in narrowband;

    remove A from narrowband;
   
    flag A as Known;

    for all neighbors N of A
       if N is Far
       {
           add N to narrowband;
           flag N as Trial;
       }

   if A has no Trial neighbors
      flag A as Extremum;   
   else
      for all Trial neighbors N of A
          recompute T at N by solving the eikonal equation;
}

Figure 12: Fast marching method pseudocode

As presented by Sethian [22], we discretize the above
equation on the same grid used to solve the Cahn-
Hilliard equation, as follows (for the 2D case):max(D�xij T; 0)2 +min(D+xij T; 0)2 +max(D�yij T; 0)2 +min(D+yij T; 0)2 = F�2ij ;

(8.1)

where the ij denotes the current grid point and the
operators D+ and D� denote the forward and back-
ward differences at that grid point. On a 2D regular
grid of cell size hwe haveD+xij T = Ti+1;j�Tijh andD�xij T = Tij�Ti�1;jh , and similarly for the y axis.

Equation (8.1) can be iteratively solved for every grid
point, until the solution T converges. However, we
use the more efficient fast marching method, as de-
scribed in [22]. The fast marching method proceeds
by first tagging all grid points as either Known (for
the points on � with known value T = 0), Trial (all
points that are one grid point away from �), and Far,
for all other points.

The algorithm (Fig. 12) constructs the solution T it-
eratively from the initially Known points withT = 0
on the boundary �. At each step, the solution T is
constructed from the point with the smallest com-
puted T value, by stepping away from the boundary
in a downwind direction. When a local extremum
point of T is encountered, we freeze that point and
add it to the skeleton. The boundary is thus marched
inwards until it collapses into a single line, namely
the skeleton points of the cluster �.

To implement the algorithm efficiently, we use a
heap structure narrowband to maintain the set of
Trial points. The heap is maintained sorted in as-
cending order on the value of T . Finding the Trial
point with the smallestT value in narrowband is thusO(1). Inserting a new point in the heap isO(logM)
in the worst case for a heap of M points. Overall,
the fast marching method isO(NlogN) in the worst
case for a grid of N points [22]. Practically, our im-
plementation of the above algorithm completes in a
few seconds on grids of around 100,000 cells on an
SGI O2 R5500 machine.

8.3 Reconnection and Center Detec-
tion

The skeletonization produces a set of usually dis-
joint skeleton points (Fig. 13). The reason for this
is that the inwards marching of the boundary de-
scribed in the previous section is accurate only up to
the size of a grid cell. However, the desired skele-
ton should be exactly one grid cell thick. By look-
ing at the extracted skeletons, we estimated empiri-
cally that about ten percent of the skeleton points are
not extracted by the fast marching method. To reme-
diate this problem, we reconnect the extracted dis-
joint points in a postprocessing step based on a clos-
est point strategy in order to produce a polyline. For
every cluster, we then compute the center of its poly-
line and use it in the next step of the pipeline.

8.4 Icon Construction

From the skeleton centers detected in the previous
step, streamlines are traced in the vector field until
they reach the borders of the clusters within which
they evolve. Next, curved arrow geometries are con-
structed around the extracted streamlines. Finally we
discuss the application of the continuous clustering
method and the associated curved arrow visualiza-
tion to various vector fields.

The leftmost image in Fig. 13 shows a solutionu(t; �)
of the Cahn-Hilliard process driven by a 3-vortex
vector field on a 64� 64 2D grid.

The thresholding of the continuous signal u into
clusters is shown in the second image of Fig. 13. The
clusters overlaid with the extracted skeleton points
are shown in the third image of Fig. 13. The right-
most image in Fig. 13 visualizes the vector field with
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Figure 13: Clustering pipeline, from left to right: diffusion solution, clusters, skeleton points, curved arrow vi-
sualization. The underlying grid is of size 2572 .

Figure 14: From left to right: the results of two suc-
cessive time steps of the clustering evolution with
corresponding icons.

Figure 15: Two different convective vector fields are
depicted by the clustering method. On the left a fine
representation is shown, whereas on the right a re-
sulting coarse representation is depicted.

streamline-based icons. The curved arrows, initiated
from the skeleton centers depicted as small balls, are
clipped by the borders of the clusters into which they
evolve.

A similar visualization is shown, for two different
clustering time instants, in Fig. 14. The multiscale
feature of the clustering is visible in the reduction of
the arrow count. An enhancement of the proposed
curved arrow visualization is shown in Fig. 15 by
the addition of a spot noise textured background. Fi-
nally, Fig. 16 shows the proposed method applied on
a circular 2D vortex.

9 Discussion

In this section, we compare the presented continu-
ous clustering method with the discrete clustering
method presented in [23]. Similarly to the method
presented here, discrete clustering builds a vector

Figure 16: Visualization of a circular flow field by
the clustering method.

Figure 17: A 3D vectorfield is visualized by the clus-
tering method

field multiscale representation by merging neigh-
bouring cells with similar vector values. The time
parameter of the Cahn-Hilliard equation is equiva-
lent with the iteration count in the bottom-up discrete
cluster merging. The continuous clustering method
delivers a continuous scale of successively coarser
cluster sets. In contrast, discrete clustering proceeds
in distinct steps, where two clusters are merged at
each step.

Figure 18 shows the discrete clustering of the two
vector fields discussed in the previous section. Re-
garding the cluster shapes, the continuous clustering
explicitly constrains the shape via the minimization
of the interfacial energy, in order to obtain vector-
aligned, smooth-shaped clusters. In contrast, the dis-
crete clustering does not constrain the cluster shapes
in any manner, assuming that their growth to a ’natu-
ral’ partition of the vector field can be governed only
by the inter-cluster similarity function. This can lead
however to ’badly’ shaped (e.g thin and long) clus-
ters, which are hard to represent by curved arrow
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Figure 18: Discrete clustering of a 3-vortex field
(left) and a circular vortex field (right).

Figure 19: Simple ball image (left) and brush–stroke
representation (right)

icons. In this respect, we see the controlling of the
cluster shape in the continuous clustering method as
an advantage. However, discrete clustering always
merges the two most resembling clusters, so the in-
trinsic symmetry of the underlying vector field re-
mains visible in the clustering (see [23] for details).
This may be seen as an advantage of the discrete
clustering method, see Fig. 18. Finally, the shapes
produced by the continuous clustering are not con-
strained to simple convex ones, as in the method pre-
sented by Heckel et al [9]. We have applied the con-
tinuous clustering method also to the visualization of
3D fields. Fig. 17 shows the visualization of a 3D cir-
cular vortex field from two different viewpoints. The
produced arrow icons illustrate the clustering of the
data in the center of the domain, where the flow is
dominated by a vertical swirling motion, and along
the domain’s boundary, where the flow mainly ro-
tates in horizontal planes.

Finally we present an application of our approach for
2D image processing, where we generate a scale of
brush stroke type representations of a greyscale im-
age. We consider the intensity of an image as a scalar
function s : 
 ! R. If we intend to release brush
strokes along regions of homogeneous values of the
scalar quantity s, we need to energetically favour in-
terfaces which have a tangent space locally perpen-
dicular to rs. Hence, we choose a corresponding
quadratic form withA := B(rs)T � � 00 Idn�1 �B(rs);
where for given r 2 Rn the mapping B(r) 2SO(n) is again a coordinate rotation with B(r)r =krke1, and 1 > �0. Figure 19 shows the application
of out method on a simple ball image in which the
image gradient varies smoothly. However, when
the image is more complex, it is harder to recognize

Figure 20: Multiscale brush–stroke representation of
a greyscale Mona Lisa image.

the original image features in the processed images
(cf. Fig. 20).

10 Conclusions

We have presented a new multiscale clustering ap-
proach which is based on a continuous model for
clustering on scientific data. The approach is moti-
vated by well-known physical clustering models de-
scribing the phase separation and coarsening process
in metal alloys. As a case study we focused on the
clustering of flow fields. Future research could be di-
rected to� the improvement of the performance of the

method with respect to computing time, where
parallelization or implementation of the under-
lying diffusion in texture hardware may help
to overcome the computational bottleneck (the
clustering process takes – depending on the
size and resolution of the data – from several
minutes up to a couple of hours on a fast work-
station),� the construction of further appropriate interfa-
cial energies for different applications,� a detailed classification of the skeleton shapes
and the selection of appropriate icons, e. g. for
saddle points or vortices in flow fields.

Appendix

Here we briefly outline the implementation of the �-
splitting scheme. Due to its strong stability prop-
erties it allows much larger timesteps scheme and
we have used it in the current implementation of our
clustering model. The scheme divides any time step
in three substeps (see Figure 21). In each substep the
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linear operator is split up into two parts with coeffi-
cients � and 1�� respectively, one of which is taken
implicitly the other explicitly. The nonlinear term is
taken implicitly in the middle substep only.

ttn tn + θτ tn +(1-θ)τ tn +τ

Figure 21: �–splitting, subdivision of time steps

For the parameter � 2 (0:5; 1], � = 1� � and � 2(0; 0:5) the scheme reads as follows:�Mh + ���LhM�1h Lh(A)� �Un+�= �Mh����LhM�1h Lh(A)� �Un���Lh 0� �Un�;�Mh + �(1� 2�)�LhM�1h Lh(A)� �Un+1��+ (1� 2�)�Lh 0� �Un+1���= �Mh � �(1� 2�)�LhM�1h Lh(A)� �Un+�;�Mh + ���LhM�1h Lh(A)� �Un+1= �Mh � ���LhM�1h Lh(A)� �Un+1��� ��Lh 0� �Un+1���
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