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ABSTRACT. We consider the Cahn—Hilliard equation — a fourth—ordenlimear para-
bolic diffusion equation describing phase separation ofhary alloy which is quenched
below a critical temperature. The occurrence of two phasesi¢é to a nonconvex double
well free energy. The evolution initially leads to a very fimécrostructure of regions with
different phases which tend to become coarser at later times

The resulting phases might have different elastic propertaused by a different lat-
tice spacing. This effect is not reflected by the standardh€Hilliard model. Here, we
discuss an approach which contains anisotropic elastssss by coupling the expanded
diffusion equation with a corresponding quasistationamgdr elasticity problem for the
displacements on the microstructure.

Convergence and a discrete energy decay property are $tatadinite element dis-
cretization. An appropriate timestep scheme based onrihvegdy A—stable®—scheme and
a spatial grid adaptation by refining and coarsening imptbeealgorithms efficiency sig-
nificantly. Various numerical simulations outline diffetequalitative effects of the gener-
alized model. Finally, a surprising stabilizing effect bétanisotropic elasticity is observed
in the limit case of a vanishing fourth order term, origigakpresenting interfacial energy.

1. INTRODUCTION

It is the aim of this paper to present a fast and reliable nitaemethod for the Cahn—
Hilliard equation with elasticity. The Cahn—Hilliard mddeas introduced in [4, 5] to de-
scribe phase separation and coarsening in binary alloyaseP$eparation occurs when a
uniform mixture of the alloy is quenched below a certainicait temperature underneath
which the uniform mixture becomes unstable. As a result @ fime microstructure of two
spatially separated phases with different concentratitewglops. In later stages of the evo-
lution on a much longer time scale than the initial phase regjom the structures become
coarser: either by merging of particles or by the growth gfger particles at the cost of
smaller ones. Numerical simulations of these phenomenshangn in Section 6. There is
an extensive mathematical literature on the Cahn—Hillgydation and for reviews we refer
to Elliott [11] and Novick—Cohen [23].

In many systems the elastic behaviour of the two componeiisng up the alloy are
different. Hence, the two phases might have different ielgsbperties as for example
due to different lattice spacing. The resulting elastieeff have a pronounced impact
on the evolving coarsening morphology and hence on the rahf@operties. Figure 1
gives a first impression on how elastic effects change thevielr of the system. The
complete sequences are shown in Section 6. Although thissssehave been studied a lot
in the materials science and physics literature (see FR¢zlrose and Lebowitz [15] for an
1



overview) only very few mathematical results have appearethe Cahn—Hilliard model
with elastic effects (see e.g. Carrive, Miranville and Rigt[6] and Garcke [17]). The
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(a) Standard Cahn—Hilliard— (b) Cahn—Hilliard—model
model, t=0.5 with elasticity, t=0.5

FIGURE 1. Impact of elasticity on particle shape (humerical reult

Cahn—Hilliard model with elastic contributions is basedao@inzburg—Landau free energy
which is a functional in terms of the concentration differep = p4 — pp (04, pB € [0, 1]
with p4 + pp = 1 being the concentrations of the two components) and théadisment
field u. Both functions shall be defined on a bounded donfaia R¢ with a sufficiently
smooth boundary.

Now the Ginzburg—Landau free energyis defined to be

B(pw) = [ {l)+ JIVol + W(p.u)} do.

The energy consists of three terms. The first tef(p) is the chemical energy, which
typically has a double well form taken in this paper to be
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with a constanb € (0, 1]. We note that the system is locally in one of the two phaséif t
value of the concentration difference is close to one ofweerhinima=+b of .

The second one describes the interfacial energy of therayatel it is assumed that the
parametery is positive which implies that gradients are penalized. &fiect of this term
is that the total amount of transition zones is accounteéhftire energy. This can be made
precise in the limit when the thickness of the interfacesli$eio zero (see Modica [21]).

The third term accounts for energy contributions due totielaffects. Since the deforma-
tions that appear in applications are usually small, therthés based on linear elasticity
and therefore the strain tensor is given by

£(u) i= % (Vu+ (Vu)!) .
2



In the case of homogeneous elasticity, i.e. in the case lieaglastic constants in the two
phases are the same, the elastic energy is (see e.g. [18]15, 1

(1.2) W (p.u) = (E(u) — £(p)) : C (E(w) ~ £(p))

Here,C is the possibly anisotropic elasticity tensor which we assto be positive definite
and complying with the usual symmetry conditions of linelastcity. The term&(p) is
the stress free strain at a concentrationT his is the value the strain tensor would take if
the material is uniform with concentration We will assume that Vegard’s law is satisfied,
i.e. the stress free strain is isotropic and varies lineaitit the concentration. Hence (see
[15]),

E(p) =elp—p)1
with constants: and p. In the following we will takep = 0 which means that we take a
reference state that is a uniform mixture of the two comptmerhe productd : B of two

d x d matricesA, B is defined to be th&>7 ._, A;;B;;.
Now the diffusion equation for the concentratipiis given by

(1.3) % = Aw in Qp:=Qx(0,7),

whereT > 0 is an arbitrary but fixed time, while we have rescaled suchtti@mobility
is equal to one. In the equation above we denotevkthe chemical potential difference
which is given as the variational derivati\%g of E with respect top. Since‘fs—ﬁ is defined

by /o, %_E(P’ u)( = LE(p+e(, u)|.— for variations¢ we obtain

(1.4) w=—yAp+¢'(p) =S:E(p) In Qr,
where
S =C(E(u) - &(p))

is the stress tensor. Since the relaxation into mechanigalilerium occurs on a time scale
that is fast compared to the time scale at which diffusioes$giace we assume quasistatic
equilibrium for the deformation. Hencé% = 0 which impliesdivS = 0. Summing up
the system comprises the following two equationsgandu on Q7:

dp = AW (p) —7vAp—S:E(p)),

(1.5) 0 = div(C(E(u) —&(p))).

The system is supplemented with the following boundary ait@hi conditions
(1.6) Vp-v=0, Vw-v =0, Sv=20 on 00 x (0,7,
(1.7) p(.,0) = po(.) in Q

wherev is the outer unit normal t6Q andp, € H'(Q) are the initial data. For an existence
and uniqueness result for the problem (1.3)—(1.7) we ref&arcke [17].

We remark that with the boundary conditions (1.6) mass iseored and that the Ginzburg—
Landau free energy is a Lyapunov functional, i.e. we have

d
—_— = e < .
a ). plz,t)de =0 and th (p(t),u(t)) <0
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FIGURE 2. Evolution of the different forms of energy (numericalus)

In Figure 2 we plot how the different parts of the energy egdlvtime. The numerical
simulation upon which the results is based used an initislevavhich was a random per-
turbation of a uniform mixture = const. In the beginning the chemical energy decreases
whereas the interfacial energy increases. This is due téatlie¢hat during phase separa-
tion p attains values which are at large portions of the domainectoghe minima of the
chemical energy. As the transition zones between these regions are charaddy large
gradients ofy the Dirichlet energy given by the second term in 1.2 increase

In the second stage of the evolution when the structuresnbe@marser the total amount
of transition zones decreases. Correspondingly the anafunterfacial energy becomes
smaller again. For the same reason the chemical energyadesrbut at a much slower rate
than during the initial phase.

One also observes that at later stages of the evolution dséeénergy part becomes larger
compared to the two other ones. This is the case since fagrlgngrticles elastic energy
contributions are bigger compared to the interfacial enestpereas for small particles it is
vice versa (see for example Fratzl, Penrose and Lebowiix [15

At first, we will introduce a semi—discrete finite element @pgmation for the Cahn—
Hilliard equation with elasticity. The discretization iased on an ansatz with continuous,
piecewise linear finite elements fpyw andu (see also Elliott, French and Milner [12] for
the case of the Cahn—Hilliard equation without elasticifgr the discretization in time we
state two possibilities. One is the standard implicit Eglelieme and the second one is the
strongly A—stablé—splitting scheme (see Bristeau, Glowinski and Periawafg] Muller
Urbaniak [22]). For the semi—discrete scheme we will shotinog error estimates itk
which generalizes results of Elliott, French and Milner][i®2the case that elastic effects
are included into the Cahn—Hilliard model.

In the case of the implicit Euler scheme, we state a Lyapumopepty of a discrete free
energy and an error estimate for the fully discrete schem&facompare [11] for the case
without elasticity).

For practical computations we choose thesplitting scheme which — due to its stability
properties — allows for large time steps which are pradtidadependent of the space dis-
cretization (see Table 1). The efficiency of our approachiithér increased by an adaptive
grid refinement and coarsening strategy. Here, we used &stiestrategy which refines in
interfacial regions and coarsens in the pure phases.

4



A major part of the paper is devoted to the presentation ofarigal simulations show-
ing several qualitative properties of solutions of the Gatilliard equation with elasticity.
First we show a splitting phenomenon demonstrating thars® coarsening can happen
locally for some time already in the case of the Cahn—Hdliaquation without elasticity.
We then demonstrate that a cubic anisotropy in the elasérggrhas a pronounced effect
on the particle shape. With no elastic contribution to thergy the phase boundaries tend
to be round, whereas with elasticity a tendency towards tamgalar (or cubic) shape can
be observed which is stronger for larger particles. Finallg made computations setting
the gradient energy coefficientto zero. If also the elastic energy part is zero the resulting
evolution equation would be a second order forward backwaradbolic equation which
consequently would be ill-posed. We now observe that in tmearical experiments with
~v = 0 and elastic effects present the elastic part has a regulgréffect. The numeri-
cal simulations show that rectangular phase regions appeiah are separated by sharp
interfaces. This regularizing effect is remarkable andedess further study.

Finally, let us mention that there have been several nuedesiadies for the Cahn—Hilliard
equation with elasticity which were based on Fourier tramms and spectral theory. We
refer to the work of Leo, Lowengrub and Jou [20], Dreyer andl&f(j9] and Gitt [18] and
the references therein for these approaches. For the raahenalysis of the Cahn—Hilliard
equation with a more physical logarithmic free energy wered Copetti and Elliott [8] and
Barrett and Blowey [1, 2].

2. WEAK FORMULATION AND DISCRETIZATION

Testing the equations (1.3)—(1.5) with functionsHn (€2) yields the weak formulation of
the problem:

(P) Find
pe L0, T; H'(Q) N H" (0,T; (H'(Q)"),
w € L2(0,T; HY(Q)),
ue L’(0,T; (H'(2))
such that for almost all € (0, 7') and for any¢ € H'(Q) and any¢ € (H')%(Q)

(2.1) (Orp, C) + (Vw V() = 0

(2.2) ¥(Vp, V¢) - ( p):¢) = (w=19'(p)0)
(2.3) ((C(E E(p )) = 0,

(2.4) (,) = ppa.e. inQ

where(.,.) is the L2—scalar product and, .) is the duality pairing between the Sobolev
spaceH ' (Q) and its duald ! (Q)*.

As the operatof has the nontrivial kernel

K= {s : Q — R%s(z) = Az + b, with A € R skew symmetric and € Rd}
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the displacement: is not uniquely determined. The source of this nonunigqueigshat
translations and infinitesimal rotations have no impachendastic energy. We will always
choose that solution of the elastic equation which has nah{®?)¢(Q)-norm. Since only
&(u) enters the equation fgr there is still uniqueness ip which is the quantity we are
mainly interested in (see also Garcke [17]).

In the following we will assume for simplicity th&® is a polyhedral domain. Generali-
sations to curved domains are of course possible by usingdaoy finite elements with
curved faces (see e.g. Ciarlet [7]). For a given triangoitefi”* — which we suppose to be
regular in the sense of [7] — we choose

sh={pe CO(Q)‘ ¢ €PIT)VT € T ¢ H'(Q)

and(S")? as ansatz-spaces for the finite element approximati@n:of andu respectively.
Here, we denoted by, (T') the set of all affine linear functions dh. To write the elastic
terms more conveniently we introduce the following scalardpct of two matrix-valued
functions A andB:

(2.5) (A, B) := (A,CB) = /A . CB.
Q

For later usage we introduce the corresponding npifp := /(-, ), and the correspond-

ing scalar product with numerical integratiQr;-)’g. The quadrature formula is assumed
to be exact for piecewise linear integrands. Furthermoeuge the lumped mass scalar
product(.,.)” instead of thel.>—scalar product where appropriate.

Using these notation the standard finite element approiomatf the elastic part of the
problem leads to:

Givenp” find u” with u” (-, ¢) € (S")4, such that

(s.e©) = (E6M).€@),  vee (s

Note that all integrations in the identity above only invelgiecewise linear integrands.

Hence, the(:, -) .—scalar product could be considered instead of the lumpes$ malar

product(-, -)5.

As £(p) = epl we verify for anyp € H':
(S:€(p).¢) = /(8 el)p = /C(s(u> ~E(p)) - el = (E(w) — £(p),E(p),
Q

Q

Thus, using numerical quadrature the considered semietiéisapproximation scheme reads
as follows:

(P®)  Find p", w", u” with
ph('at)awh('at) € Shaph('ma') € Cl([O,T]),uh(-,t) € (Sh)d!
such that
h
0= (&tﬂha‘P) + (thavw) )

0= (q/;’(ph) — wh,w)h + v (Vph,VgO) - <5(uh) - g(Ph)ag(‘P)>
6



_ h
0= (£(u") - E(").E8),
holds for allp € S" and all¢ € (S")¢, andp”(z,0) = pf(z) Vz € Q.

Here,pl is assumed to be a suitable approximatiopgin S”. For a fully discrete scheme
we need to approximate the time derivatiy@”. This will be discussed in detail in Sec-
tion 4. Introducing the notatiot for the mass matrixM for the lumped mass matrix
for the stiffness matrix and defining

Gij == (E(&;) /5 :CE(E;)  1<i,j<d-N

and

Gij = (£(£,). o)) = /E(s» {CE(p;) 1<i<d-NJ1<j<N,
Q

where{y;}, {¢,} are the standard basis functions3f and (S*)? respectively. WhileV
is the number of nodes of the triangulati@®. We formulate our semidiscrete scheme in
matrix notation, splitting the right hand side into a noakn and a linear term:

—
(2.6) MO = =AY (p") — L5"
where

= (YAMTTA+ (1 : C1)A - AM™IGTG71G).
Here an overhead arrow distinguishes a vector of hodal sdfoen the corresponding finite
element function. Since the matrix does not have full rank, the inverse does not exist

in the usual sense. Hence, we denote the solution operathe @flastic system — which
selects the solution with minim&L?)?(Q)—norm — byg—".

3. CONVERGENCE OF THESEMIDISCRETE SCHEME

Let us now consider the convergence properties of semaesaolutions of PP). We
obtain the following theorem that generalizes the conuergeresults obtained by Elliott,
French and Milner [12] for the standard Cahn—Hilliard model

Theorem 1 (A priori error estimate for the semi-discrete schemadt p, w andu be solu-
tions of the Cahn-Hilliard equation with elasticity on a eex polyhedral bounded domain
Q c R? (d € {1,2,3}) with regularity

p € L¥(0,T; H*(Q))

dp € L>(0,T; H'(Q))

u € L>0,T;(H*(Q)?
and supposél py — p0HL2 < ch?.

Then the following error bounds hold:

IN

—i—Hw w‘ ch?,

+ Hatp A" ‘

Jo=+]

Loo(L2(Q L2(L%(Q L2(L%(Q))

—i—Hw w‘

IN

H’O p HLoo H'2(Q ch,
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HE(U_Uh)HLw(o,T;(B)d) s ch

Proof. Letw" € S" be the generalized Ritz projection of i.e. (w" — w,1) = 0 and for
anyy € S"

3.1) (vwh,w) — (—Aw +oh, w)h

Here,é{‘ € R is defined aé%’)lgh in order to guarantee existencewf. Sinces{ Aw =0
the properties of the lumped mass scalar product imply
(3.2) 01 < h? Al < ch?
The last inequality follows becauséAw = Va;p € L>°(0,T; L%(2)). We then split the
errorw — w” into two parts to be treated separately:

v = wh — " kY =" —w ie. w' —w = 0" + K.
Standard properties of the Ritz projection imply an esteriat <%

16 L2y + R IVE |20 < ch®.

The error part®” will be estimated later. We introduce the following two béar forms on
(Hl(Q))dJrl x (Hl (Q))d+1:

B((¢.6),(C,0) = v(Ve, V) +(E(&) - E(p),E(0) = £(C)),
By ((#:€),(¢,0) = 7(Vp, V) + (E(€) — E(9).E(@) — £(O))e »

whereyp, ¢ € H'(Q) and¢, o € (H')?(Q2). Connected with the bilinear fori is a semi-
norm||(p, u)|| 5 :== /B ((p,u), (p,u)) on (H')¥*+1(Q) and forB,, a respective semi-norm
H-||Bh. Using the new notation we can write the elliptic problen2j2.(2.3) as

(3.3) B((p.u), (o)) = (w—=9'(p).() V(o) e (H'(Q)H
Now we consider the following two auxiliary problems:
(P")  Find p" € S" andu” € (S")? such that for anyy, ¢) € (S")4+!

(3.4) B (5", 4", (9.)) = (w - 4'(p), v)

and

(P")  Findp" € S" and@” € (S")¢ such that for any(, £) € (S")4+!
(3.5) By (7.8, (6.8)) = (" — /(o) + o}, 0)

! 715}1 h ~ . . -
with 0% := %. We remark that probleniP?) is solvable since the solvability

condition(w — 9'(p), 1) = 0 is fulfilled. This can be seen by choosigg= 1 ande = ¢ 1
in (3.3). Whereas problerfP?) is solvable due to the definition ¢f, which can be seen
by takingy = 1 and¢ = e1 in (3.5). Solutions of both problems are not unique and

therefore we can choog#, " such thatf p" = [ " = [ p andu”, " are assumed to be
Q Q Q

the solutions with minima{Z?)4—norm.



We split the errop” — p andu” — u in three parts:

h

Gp::ph—ﬁh KP h

oY = u" — " K"

wo= = p,

—a" M= a" — .

I
e
>

h

Il
e

In order to estimate” andx" we subtract (3.4) from (3.5) and get

(5"~ () +8.0)" — (0= (o). 0) = By (50, (0.8)) = B (5" 4. (5.8)
=7 (VK Vi) + (E(k") — E(5"). £(€) — E(¢))y +
+e*(1:C1) [(ﬁh,tp)h - (ﬁhﬂp)] ;
for any (¢, &) € (S")4*!, since the quadrature formula of tfée-)g—scalar product is

assumed to be exact for piecewise constant and piecewesr linnctions. Choosing =
kP and¢ = k" yields with the properties of the lumped mass scalar pr¢abit

(3.6)
B 2
IRl 220 + (™)~ E6:)2) =

:(wh—wwrw%wﬂh—0u—wwxw)+¥u»cm[@%Mj—(wﬁwf]

< |:Ch2 HwHHQx?(Q) + ‘Kw‘h + Ch2 H'Z/JI(p)HHZZ(Q) + ‘5§‘h + Ch2 Hféh‘

Hl,?(Q):| 1621 1.2 (@) -
From the definition ob? it follows that

33| < eh? (|0l gusgay + 15° oy + lwla) < ch?
To show thaf” is bounded in théf' (©2)—norm we test (3.4) witlp = p" and¢ = a’:

oot (e 8@1) = (w0-vi00.7)

Pl

v||va

< Jw=4"(0)]| 120 £2(Q)

IN

oo = #0079

+ 1)
L2(Q)

1 12
o =) Gy e [V, o+ el = 0) gy

IN

For appropriate: this implies that|| V5" L2y < ¢ independent of.. Thus, due to the
Poincaé inequality we obtain an estimate «f from (3.6):

IV oy < ch® and 60l aqqy < ch?.
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Concernings" we note that from (3.6) it follows that:
2
1€ 20 < ¢ (0™ ¢)
_ 2 _ 2
e(lE@le) +e(lle) —€6)z)

_ 2
< e(7IVR oy + (6™ - £6)]c) )
ch®.

IN

IN

Thereby,|€ (k") |20y < ch?.

Now we turn to the Galerkin projection errars = p" — p and™ = @ — u. Combining
equation (3.3) and (3.4) yields the usual Galerkin orthadjonrelation

B((:7;¢%), (¢,€)) =0
for anyp € S and any¢ € (S")%. Hence,

1675 %)lp < (o=@, u—€)lz,

inf
peSh ge(Sh)d
where the right hand side is boundedddy and we achieve
IV 20y + 1E@WH) 20y < e (7 e%)llg < ch.

To estimate the.>—norm we make use of a standard duality argument [25].(kef) €
(L%(Q))4*! which fulfill the solvability conditions

(3.7) /Qg-adxzo, /ngdac—i-e/ﬂﬁ-xdxzo

for all elementso that lie in the kernellC of the operato€. Then we defingu,v) €
(H'(9))%*! as the solution of the dual problem

(3.8) —yAp—etrC (E(v) —E(w) = ¢
(3.9) —divC (E(w) —E(p) = &

with Neumann boundary condition fprand the stress free boundary conditib(€ (v) — £(u)) v =
0. We compute

(va (:0) + ("‘uag) =B ((Lpa l’u)v (Ma’/))

= ; p u o h o, h
thSh,llrllhfe(Sh)dB<(L L )a(,u BV =V ))

< |(e”, inf
<N, it
< e [[(10)l 2

Due to Korn's inequality and elliptic regularity theory wak|| (1, v) || 2.2y < € [l(¢: €l 12(q)-
Now we want to choose

(‘Pag) = (Lp - cha’*u) = ([)h —pP— Chaﬁh - u)
(c" a constant to be determined later) as the right hand side8iy, (3.9) and therefore we
have to check the solvability conditions (3.7). The disptaentsu anda” were chosen to

have minimal.>—norm under all solutions that lie im + /C anda” + K respectively. This
10
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implies thatu anda” are orthogonal tdC which shows that the first solvability condition
in (3.7) holds. Choosing" such that the second solvability condition in (3.7) is fefdilfor
(¢, &) and taking into account thatandj” have the same mean value gives

2 2 h
HLpHLz(Q) + ||Lu||L2(Q) = (Lp, Lp —C ) + (Lu, Lu)

< eh? (WP = )

L Q)

Sincec” is bounded by|(p — 4", u — 4")| ., ,, we can conclude
||l’pHL2(Q) +h||va||L2(Q> < ch2,
el z2) T RNEC) 20y < ch?®.

So far, the generalized projection errofa™ and the error terms due to numerical quadra-
ture k”,k" are estimated in agreement with the stated result on thelgéotor.

Concerning the estimates for the remaining error quasiied™ and@" we can proceed
as in the corresponding proof in Elliott, French and Milng2][ for the standard Cahn—
Hilliard problem. Here, we have used that L>°(0,T; H%(Q)) and thatd < 3 to apply
the Sobolev embedding theorem to conclude 1@(-,75)\&00(9) is uniformly bounded
with respect ta. Therefore we obtain as in [12] the following inequalities:

t
6°(1) 2 + / U ()2 ds < C(h'+10°(0)2)
0
IV07 ()20 + 167 (1) 2 +

t
+ / 90°(s)[2 + V07 ()220 ds < CUB" + 67(0) | 2pnz ey + 10(0)]2)
0

which hold for¢ € [0, T']. From this we finally get estimates fé, ©" and@" and together
with the already shown bounds fdt, ., x?, k™ andk" the theorem follows immediately.
[l

Let us remark that in convex domai&’—regularity results in space hold true, even if the
boundary is not smooth. This implies that the assumptiorteértheorem hold true if the
initial data are sufficiently smooth. Furthermore, we paint that the error estimates are
optimal in the sense that with the finite element method aarasficonvergence better than
O(h?) in the L2-norm andO (k) in the H'-norm cannot be expected anyway. We also note
that standard arguments yield corresponding estimatdseih®—norm. Furthermore, a
generalization of these results to more general smootlyisef and stress free straiifs

is possible.

4. DISCRETIZATION IN TIME

In Section 2 we introduced a spatial discretization of therQdilliard model with elasticity

and obtained a system of nonlinear ordinary differentialagipn (2.6). We will now focus

onto an appropriate discretization in time. Replacing itne derivatived, p” by a backward
11



difference quotien h("t)*’;h("t*” with timestepr we obtain an implicit Euler scheme. In
each step we have to compute a new density veitor at time(n + 1)7 by solving

—_—
(4.1) (M +7L)fn 1 + TAY (o 1) = My

This scheme is known to be first order consistent (cf. ther@stimate below (4.3)). We
can improve the consistency order selecting a Crank—Niootgpe discretization. The
nonlinear part is approximated by (see also [10, 16])

p(r,s) =4 "% 7 ’
P'(r), forr=s
and we have to solve in each timestep the nonlinear system
T . A re— T ..
(4.2) (M + S L)+ 5 Ab (P, o) = (M = S L7

With respect to a proper humerical modelling it is importenguarantee properties known
for the continuous solution also for its discrete countdrp@/e immediately observe that

mass is conserved by both discrete schemes. In the consimase, the energy turns out to
be a Lyapunov functional. The same holds true for the imipltciler scheme. We obtain

that under the assumptiogé > —cy andr < i—g the functional

~ 1 _ 2
Whp,w) = 2 Jol? + (), )" + 5 (€ ) — EGo)]|c)
decays in time (cf. Fig. 2).

For the proof, which is a generalization of Elliott’'s pro@fl]] of the existence of a Lyapunov
functional, we refer to [27]. There an analogous result @ven also for a modified Crank-
Nicolson scheme.

The convergence results presented in Section 3 for the disgriete scheme can easily be
extended to the implicit Euler and the Crank—Nicolson sahésee Elliott [11] and Elliott
and Larsson [13] for the standard Cahn-Hilliard model). éetails on the proof we refer
to Weikard [27]. We obtain an error estimate

SC<HF’0—P}8‘ +h2+75>7

wherec is independent ofi and r. Depending on the time discretizatien= 1 for the
implicit Euler ands = 2 for the Crank—Nicolson discretization.

(4.3) ‘

oy = p(n7)|

L2(Q) L*(Q)

Thus, the backward Euler discretization is only of first oydéhereas the Crank—Nicolson
scheme delivers a second order discretization in time (sfimate (4.3)). Unfortunately
the Crank-Nicolson time stepping scheme is not stronglytédbls [25]. Hence, high fre-
guencies components in the function governed by the evol@guation are not smoothed.
Phase separation as it occurs in the Cahn—Hilliard modehasacterized by significant
high frequency contributions, visible at the interfacen. fdct, for larger timesteps, still
much smaller than the spatial grid size, oscillations alyeshow up in the implementation
of the Crank—Nicolson scheme. Hence, we ask for a second tim=discretization which
is applicable for our nonlinear evolution problem and whiels the strong A—stability prop-
erty.
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The ©—splitting—scheme, originally proposed by Strang [24] asdan operator splitting
scheme by Bristeau, R. Glowinski, and Periaux [3] for the iNiaStokes—equations has
this property for a certain choice of control parameters.

In each timestep we have to successively solve the follotireg equation ip” ,, 5",
andp?, for givend € (0,0.5):

(M + aefc) ph, = (M - 5975) g - arAm ,
(M+ 80— 20)72) g+
+(1 - 29)T¢41«/)'(T+1_9)> = (M —a(l - 20)7£)ﬁ!§+a,
(M+adrL)hy, = (M= pBorL)Ft, - 0r A (71 )

for a second parametere (0.5, 1] to be fixed and fog = 1 — «a.

Choosingd = 1 — @ this scheme is of second order accuracy. For a detailed sinale
refer to Miller-Urbaniak [22]. Here, in the context of Cahtilliard models we confine
ourselves to numerical observations.

For the parametet = 1 — g anda = % ~ 0.586 we performed several experiments
to evaluate a “maximal” possible timestep for differentialivalues, which are assumed to
be specifically characteristic for our evolution problenmeBuperior stability allows bigger
timesteps independent of the spatial grid size. For a givefonnm grid and given initial
data we successively incremented the timesteprsiadil oscillations occurred. The tables
below show this experimental “maximal” timestep sizg,, for different grids and initial
values. It turns out that in the relevant range the maxinma¢sitep size is independent of

the spatial grid sizé.

Initial data: —b + 2bx, <12 Initial data: —b + 2bx random initial datg
h | Tmax h | Tmax h | Tmax
1/16 0.0235 1/16 0.0185 1/16 0.0190
V2/32 0.0260 Vv2/32 | 0.0190 Vv2/32| 0.0185
1/32 0.0210 1/32 0.0180 1/32 | 0.0190
V2/64 0.0200 Vv2/64 | 0.0175 V2/64 | 0.0190

TABLE 1. Maximal timestepgmay for different initial data and different
grid sizeh on a domainQ = (0, 1)? (xz<1/2 denotes the characteristic
function of the subdomaifn, 0.5) x (0,1), b = 0.4)

Together with the adaptive grid refinement strategy@hrescheme allows to perform calcu-
lations of complex configurations in reasonable time. Fagdifor example shows an inter-
esting effect of temporary negative coarsening. Even witletasticity a long, bar shaped
particle splits up into several small, ball shaped paicksfter that the usual coarsening of
the particles takes place.

13
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FIGURE 3. Deformation of a bar shaped particle (without elastjdititial
value,t = 0.01,¢ = 0.02,¢ = 0.05,t =0.1,7 = 0.2, ¢ = 0.5 and¢ = 2.0)

5. IMPLEMENTATIONAL ASPECTS ANDADAPTIVE GRIDS

We implemented the numerical schemes described above ofriardgular grid, generated
by successive refinement of some prescribed macro triaimula

After assembling the matrices, any timestep requires thaiso of several large systems
of algebraic equations. In the first and third steps oféteplitting-scheme the system are
linear and symmetric. Hence we used the conjugate gradietitad with a BPX precondi-
tioning to solve them. However, the second step is nonliaedrso we applied Newton'’s

FIGURE 4. Adaptive grids corresponding to the evolution in Figure 3
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method. The resulting linear systems are not symmetric lagrdfore a GMRES-algorithm
[26] was applied in each Newton iteration.

For efficiency the calculations were based on an adaptiediyed grid. After each timestep
local error indicators were calculated heuristically. Sé&error indicators then governed the
refinement and coarsening process of the grid. The heudsttegy was to refine the
transition zones while coarsening the phases.

To identify the transition zone several approaches provdmbtequally suitable. One could
either refine regions where the norm of the gradient of thetswl is bigger than a certain
threshold, or where the concentration is far form the minaiue nonlinearityyy. Figure 4
shows the adaptive grid of two timesteps of the evolutiomshim Figure 3.

6. NUMERICAL RESULTS

In all computational experiments we used the functjoof (1.1) which has a double well
form and the constarit was chosen to b8.4. The gradient energy coefficientin the
Cahn-Hilliard equation was set to #6~° although in our implementation smaller values
of v can also be handled.

Figure 5 demonstrates the impact of elasticity in the Cahiliak model. In both calcula-
tions the initial value has been one homogeneous phase witial random perturbation.
Whereas in the case without elasticity ball shaped aredsecadter the phase separation
has taken place, cubic anisotropic elasticity causes a raotangular shape of the particles.
For the elasticity tensor we chose:

Cii11 =2 Crize =1 Ci212 = 10.

The solution of the elastic system is illustrated in Figur&&rting from a ball shaped initial
value the anisotropy can at once be seen in the trace of Hia t#nsor. The corresponding
displacement field is presented in the right subfigure of 6revtize deformatior® = = +
25u(z) is "applied" to a chequer pattern.

Figure 7 shows the case wheye= 0. As initial value we chose the evolution shown in the
top row of Figure 5 at the time= 1.0. In this simulationy was10~° and the elasticity was
switched off. Settingy = 0 leads even for small timesteps to oscillations that imntetjia
rendered the results meaningless. The oscillation pattgiter a small single timestep are
shown in the middle Subfigure of Figure 7. Starting again ftominitial value now with
elastic effects present leads to stable solutions withpsimerfaces as depicted in the right
part of Figure 7.

Finally, we present some calculations regarding the estimates proven above. As there
are no analytic solutions for the Cahn-Hilliard equatiorokn it is difficult to device a
sensible test situation in which a meaningful experimentabr can be computed. We
proceed as follows: We prescribe initial dat@ = b - tanh(10z) whereb = 0.4 is the
constant from (1.1). Using this initial data we calculateeference solution applying 512
timesteps of timestep size = 10~ on a uniform grid with grid sizé. = 278, First we
compare the result of the final timestep to numerical sahgtion coarser but still uniform
grids. Table 2 shows the difference between the refererloé@oand respective solutions
on coarser grids. These are measured infikreand in theL,.-norm. We divided the
15



timestep size by four for any halfening of the grid size. Tésuits give a strong indication
for the predicted second order convergence.

To give experimental evidence for the applicability of atilapgrids to the problem at hand
we compare the reference solution with a series of solut@msdaptive grids. Starting
from an adaptive resolution of the initial data with a minimelement size oh,,;, =

2~% we generate successively finer adaptive grids by globaler&mt up to an minimal
element size of,,;, = 2~7. On each grid we calculate a numerical solution. For the
adaptive approximation of the initial data we apply the ggatibased marking strategy
already mentioned in Section 5. Again the expected secother @onvergence now with
respect to the finest gridsize can be seen.

uniform grid
h ‘ th - prefHLoo(Q) ‘ ||ph - pT‘efHLZ(Q) ‘ Huh - urefHLoo(Q) ‘ Huh - urefHL2(Q)

21 4.620019e-02 1.103694e-02 1.067519e-03 1.131053e-04
275 1.609030e-02 2.728970e-03 3.615097e-04 2.767725e-05
276 3.909958e-03 6.675369e-04 8.771903e-05 6.330371e-06
277 2.104562e-03 3.521095e-04 4.132785e-05 3.630578e-06

adaptively refined grid

Pmin ‘ lon — prefHLoo(Q) ‘ lon — prefHL2(Q) ‘ Jup — uT‘efHLOC(Q) ‘ Jup — urefHL2(Q)

4.612586e-02

1.121934e-02

1.337114e-03

2.556929e-04

1.594744e-02

2.888784e-03

4.358494e-04

6.459105e-05

4
5
6
7

4.199800e-03

7.404723e-04

1.157450e-04

1.397157e-05

2

R
o
o

6.636309e-04

1.468596e-04

1.647358e-05

2.742585e-06

TABLE 2. Evaluation of the experimental numerical error for a ésstmple.
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(a) t=0.01

(e) t=0.01 (f) t=0.2 (9) t=1.0 (h)t=7.5

FIGURE 5. Evolution without (top) and with (bottom) elasticity

FIGURE 6. Initial value, trS with positive anisotropic elasticity and
(strongly scaled) displacement field
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FIGURE 7. The casey = 0: Initial value, without elasticity and with elasticity
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