A Procedural Interface for Multiresolutional Visualization of General
Numerical Data

T. Gefiner B. Haasdonk R. Kende M. Lenz M. Metscher R. Neubauer
M. Ohlberger W. Rosenbaum M. Rumpf R. Schworer M. Spielberg
U. Weikard

9th December 1999

Abstract

Together with a rapid development of computer hardware, sophisticated, efficient numerical algorithms allow
simulation computations of complex physical phenomena. Methods, such as Finite Volume, Multigrid Finite
Element schemes, Sparse Grid, Wavelet approaches, and Particle Methods or Gridless Discretizations all carry
their own, tailored data structures, which reflect the decomposition of the function spaces as well as the decom-
position in physical space.

Multiresolutional visualization on numerical data is described as an indispensable ingredient of real time inter-
active post processing. The typically enormous data bases are locally resolved on different levels of detail to
achieve a significant saving of CPU and rendering time.

For efficient data analysis and graphical post processing the method of spatial, hierarchical subdivision combined
with the recovery of the local function spaces is presented. To manage a variety of different numerical data a gen-
eral procedural interface to arbitrary large numerical data sets is presented. This leads to a visualization beyond
prescribed data formats. Discrete numerical solution data is directly addressed in the user’s data structures.
Furthermore the procedural interface supports a flexible method of local error measurement, again encapsulated
in certain user supplied functions. The software conception, its data classes and methods are described and the
setup of the corresponding procedural user interfaces is discussed in detail.

Ezamples from various numerical methods and different data bases underline the applicability of the proposed
concept.

Contents

Description of the Interface Structures

Writing Display Methods for the Classes HMesh2d and HMesh3d

2.1 Introduction e
2.2 Preparation e e e e e e e
2.3 Data Extraction e e s

Hierarchical Searching using the Interface

An Interface Recipe

4.1 Introduction e e e e e e e e e e e
4.2 The Bismesh Structure e e e e e e
4.3 Data Structures of the Interfaceo
4.4 getnew hmesh()
4.5 Routines to Traverse the hmesh o
4.6 Handling INTERFACE_ELEMENTS e e e e e
4.7 Helement Description L e
4.8 Geometry Error Estimator e
4.9 Routines for Functions on hmeshes

Fundamental Methods on Hierarchical Meshes

5.1 GenMesh
5.2 Mesh2d
5.3 HMesh2d
5.4 Projects for Meshes
5.5 Methods on other classes related tomeshes,
5.6 HMesh3d e e e

11
11
12
13

19

1 DESCRIPTION OF THE INTERFACE STRUCTURES 3

1 Description of the Interface Structures

The base structure implementing the multiresolution concepts is HMesh3d and HMesh2d for three and two space
dimensions respectively. For the description of the implementational aspects we will always restrict to either
the three dimesional or the two dimensional case, as the concepts for both situations are transferable. The
hierarchical concept (HMesh3d) is implemented as a subclass of Mesh3d. Additionally to Mesh3d, which deals
with non-hierarchical meshes, (HMesh3d) is enlarged by the hierarchical element functionality and expanded
interface structures. Although MESH3D has already been described in an earlier paper [34], its documentation is
in revised form listed once more for the sake of completeness and with respect to actualizations.

Hierarchical Element

In this mesh concept we use a procedural access to single elements. The procedures return element data in a
small structure, these procedures are described later on. One example is for instance

HELEMENT3D *first_macro(HMESH3D *mesh, MESH_ELEMENT_FLAGS required);

This — user supplied — function has to return the first macro element of a given HMesh3d. The flags required
specify, which parts of the HELEMENT3D—structure are to be filled at least.

typedef struct helement3d

{

MESH3D *mesh;
double **vertex;
int *vindex;
int eindex;
ELEMENT3D_DESCRIPTION *descr;
MESH_ELEMENT_FLAGS present;
void *user_data;
HELEMENT3D *parent;
VINHERIT *vinh;
int ref_rule;
int level;

} HELEMENT3D;

The structure for an element of the mesh consists mainly of a pointer descr to an element description, which
contains all information described above, and a vector of pointers vertex to the world coordinates of the
element’s vertices.

Such information may be enlarged by optional global eindex and vindex[] integer indices of the element itself
and its vertices and a pointer to a data area which contains additional information that may be used by the
transformation routines or any other of the user-supplied routines.

The vertex indices, if present, allow the visualization routines to minimize the number of calls to the data
function, if the data values are globally continuous. In this case, the values at a node are uniquely defined,
independent of the element where it belongs to. If the data is not continuous between elements, the global
vertex index may also be used to compute a continuous approximation to the data by averaging the values at
the nodes.

The global element indices for example may be used to specify a set of elements of special attention and to
display only these elements (or their neighbourhood).

The flag variable present shows, which data arrays are set, at least the ones, which were set in the function
call. The pointer parent points to the HELEMENT-structure of the parent element, if there is one. This allows
a flexible handling of the existing list of element, from the coarsest parent element to the current decendent
element.

Each of the later described funtions has to set the mesh, descr, present and parent entries. Since mesh is an
HMesh in this context is must of course be downcasted. If the max_eindex entry of mesh is nonzero, eindex must
be set to the element’s global number, else to zero. ref_rule is completely optional. The optional user_data

1 DESCRIPTION OF THE INTERFACE STRUCTURES 4

can point to additional data and is not dereferenced in the library. vertex, vindex and vinh only need to be
set, if the required flags of the function call says so. vertex points to an array of pointers, pointing to an
array containing the world coordinates of the vertices. If the max _vindex entry of mesh is nonzero, vindex must
point to an array of the vertice’s global numbers, else it must be NULL. vinh points to an array of VINHERIT
structures

for each vertex, or is NULL.

descr points to an element description, which is constant for a whole class of elements, and which will be
described hereafter:

The geometry of a single element is described using a polygon—oriented boundary representation of the parameter
domain. As we support only (curved) polyhedral elements, an element can be described by the set of its vertices
and a description of the boundary polygons. This applies only to the local coordinates of an element; its shape
in world coordinates is determined by a transformation routine.

For a three dimensional polyhedron, we specify the number of boundary polygons (faces) and for each of these
polygons the number of vertices, the local vertex indices and their order (thus giving an orientation to the
polygon such that the surface normal is the inner normal to the polyhedron), and the local indices of the
adjacent face across each of the edges of the polygon.

For each vertex, the coordinates in the local coordinate system of the element are given by the element descrip-
tion. Based on these values, the visualization routines may operate in the local coordinate space. The pointer
to a function check_inside() is provided by the element description, which checks whether a point in local
coordinates is inside the element or not.

The element description is completed by pointers to transformation routines from local coordinates to world
coordinates and vice versa and routines boundary () and neighbour (), which give information about the neigh-
bourhood of elements. Additionally, the transformation routine from world to local coordinates checks whether
a given point is inside the element or not.

typedef struct helement3d_description

{
int dindex;
int number_of_vertices;
int number_of_polygons;
int *polygon_length;
int **xpolygon_vertex;
int *xpolygon_neighbour;
int dimension_of_coord;
double *xcoord;
int parametric_degree;
int (*world_to_coord) (HELEMENT3D *, double *, double *);
void (*coord_to_world) (HELEMENT3D *, double *, double *);
int (*check_inside) (HELEMENT3D *, double x*);

HELEMENT3D *(*neighbour) (HELEMENT3D *, int, int, double *, double *, MESH_ELEMENT_FLAGS);

int (*boundary) (HELEMENT3D *, int);

void (*get_boundary_vertex_estimate) (HELEMENT3D *, double *, int);
double (*get_boundary_face_estimate) (HELEMENT3D *, int);

void (*coord_of _parent) (HELEMENT3D *, double *, double *);

} HELEMENT3D_DESCRIPTION;

The entries dindex to boundary are inherited from HMesh3d. The variables give following information:

dindex is an index of the current description. This is to distinguish descriptions, which might be processed in
a distributed environment.

number _of vertices is the number of vertices in an element of this type.

1 DESCRIPTION OF THE INTERFACE STRUCTURES 5

number _of _polygons is the number of polygonal faces of an element of this type.
polygon_length[j] is the count of vertices of the j—th face (0 < j < number_of_polygons).

polygon vertex[j][i] is the (local) index (with range [0,...,number of vertices — 1]) of the i-th vertex
from the j—th face (0 < j < number_of polygons, 0 < i < polygon_lengthl[j]).

polygon neighbour[j] [i] is the index of the adjacent face to the j—th face across the edge from vertex
polygon_vertex[j][i] to vertex polygon vertex[j]1[i+ 1] (0 < j < number_of polygons, 0 < i <
polygon_lengthl[j]).

dimension_of_coord is the dimension of the local coordinates.

coord[k] [i] is the i—th local coordinate of the k—th vertex from the polyhedron (0 < i < dimension_of_coord,
0 < k < number_of vertices).

parametric degree is the degree of parametric elements.

check_inside(element3d, coord) returns INSIDE (—1) if the point with local coordinates coord is inside of
the element’s parameter range. Otherwise, at least one plane of a local face separates the element and
the given point. In this case the local index of such a face is returned.

world to_coord(element3d, xyz, coord) transforms a point from given world coordinates xyz[3] to
coord[dimension_of_coords] in the local coordinate system of element3d. The return value is iden-
tical to that from check_inside().

coord_to_world(element3d, coord, xyz) transforms a point from local coordinates co-
ord[dimension of coords] to world coordinates xyz[3].

neighbour (element3d, polygon, flag, coord, xyz, required) returns a pointer to an adjacent element
of element3d across face number polygon. Depending on flag, the routine returns the first neighbour
or a next one (in case of non—conforming meshes the adjacency may be not one to one). If coord is not
NULL, the routine transforms those coordinates from the old local coordinate system to the new one. In
many cases this transformation can be supported by the optional parameter xyz, which provides world
coordinates of the point if available, otherwise this parameter has to be NULL. The structure element3d
may be overwritten by the routine. On hierarchical data not explicitely storing neighbour pointers, it is
a bad idea to implement this function, set its pointer to NULL to mark this.

boundary(element3d, polygon) returns 0, if polygon is an inner face of the mesh, a negative integer, if
polygon is part of the mesh’s outer boundary and a positive integer for interior boundary layers.

get_boundary vertex estimate(element3d, estimate, face) determines the geometry boundary estimator
for vertices lying on face face of element3d, using the current level.

get_boundary face_estimate(element3d, face) returns the geometry boundary estimator for face face of
element3d, taking into account the finer level.

coord_of parent(element3d, child coord, parent_coord) determines the local coordinates of a point,
given in element3d’s local coordinates child_coord, in its parent’s local coordinates parent_coord. Since
this can be implemented in a less efficient way using the above funtions, there is a default function for
this purpose, named g_hmesh3d_def_coord of_parent.

The number of such element descriptions and therefore the amount of storage for them is equal to the number
of different element types in one mesh. There are no copies of this necessary for each element.

In Figure 1 vertex and face relationships for the example of cubes are depicted. check_inside() is easily
implemented using the local coordinates.

The user’s data structures (e.g. from a numerical method) may be completely different to the structures
described above. In case of implicitly given Finite Difference meshes, the functions neighbour and boundary
are implemented using simple index arithmetic.

Unstructured grids usually provide such information explicitly.

1 DESCRIPTION OF THE INTERFACE STRUCTURES 6

TS — 7

5

6
2

_—
G
1/

/3\2
0\1 0\(9)1/

Figure 1: Prototype of a cube.

typedef struct vinherit
{
int np;
int *pindex;
double *pweight;

} VINHERIT;

This structure defines optional vertex inheritance for a vertex. If the required flags order a vinh array and
none can be given, it has to be set to NULL. Ist entries are

np number of parent vertices

pindex local indices of parent vertices

pweight weights for the coordinate calculation

A vertex also appearing in the parent element would have a VINHERIT of {1,{i},{1.0}}, one being interpolated
between two vertices ¢ and j by bisection would have {2,{i,j},{0.5,0.5}}.

Supervising Grid Structure

Now we introduce the supervising structures of the actual tree of elements and the function data defined on
the corresponding domain. At first we introduce an enumeration type which will serve as a parameter type to
describe the required information of a given element for a specific visualization task.

typedef enum

{
hefNone =0,
hefVertex = 1<<0,
hefVindex = 1<<1,
hefVinh = 1<<2,
hefAll = 1<<0 | 1<<1 | 1<<2

} MESH_ELEMENT_FLAGS;

More precise hefNone indicates no information except the basic one is to be specified, hefVertex marks that
vertex coordinates have to be supported. Vertex indices (if present) have to be delivered, if hefVindex is set,
and finally coordinate inherintence rules have to be supported whenever hefVinh is marked.

In what follows the class description for nonhierarchical meshes MESH3D and for hierarchical meshes HMESH3D
are listed.

1 DESCRIPTION OF THE INTERFACE STRUCTURES

typedef struct mesh3d

{
int max_dimension_of_coord;
int max_eindex;
int max_vindex;
int max_dindex;
int max_number_of_vertices;
G_LIST *current_function; /* private */

MESH_ACCESS_FLAGS access_mode;
MESH_ACCESS_FLAGS access_capability;

GENMESH_FDATA *f_data;

void *user_data;

ELEMENT3D *(xfirst_element) (MESH3D *, MESH_ELEMENT_FLAGS) ;

ELEMENT3D * (*next_element) (ELEMENT3D *, MESH_ELEMENT_FLAGS);

ELEMENT3D * (*copy_element) (ELEMENT3D %, MESH_ELEMENT_FLAGS);

void (xfree_element) (ELEMENT3D *);

ELEMENT3D * (xcomplete_element) (ELEMENT3D *, MESH_ELEMENT_FLAGS) ;

int (*set_time) (MESH3D *, double t);

int (*get_time) (MESH3D *, double *t, double *tminus, double *tplus);
} MESH3D;

This mesh class is a superclass of the following class hmesh3d:

typedef struct hmesh3d

{
int max_dimension_of_coord;
int max_eindex;
int max_vindex;
int max_dindex;
int max_number_of_vertices;
G_LIST xcurrent_function; /* private */

MESH_ACCESS_FLAGS access_mode;
MESH_ACCESS_FLAGS access_capability;

GENMESH_FDATA *xf_data;

void *user_data;

ELEMENT3D *(xfirst_element) (MESH3D *, MESH_ELEMENT_FLAGS) ;
ELEMENT3D * (*next_element) (ELEMENT3D *, MESH_ELEMENT_FLAGS);
ELEMENT3D * (*copy_element) (ELEMENT3D *, MESH_ELEMENT_FLAGS);
void (xfree_element) (ELEMENT3D *);

ELEMENT3D * (*complete_element) (ELEMENT3D *, MESH_ELEMENT_FLAGS) ;

1 DESCRIPTION OF THE INTERFACE STRUCTURES

int (*set_time) (MESH3D *, double t);
int (*get_time) (MESH3D *, double *t, double *tminus, double *tplus);
HELEMENT3D *(xfirst_child) (HELEMENT3D *, MESH_ELEMENT_FLAGS);
HELEMENT3D * (*next_child) (HELEMENT3D *, MESH_ELEMENT_FLAGS);
HELEMENT3D *(xfirst_macro) (HMESH3D *, MESH_ELEMENT_FLAGS) ;
HELEMENT3D * (*next_macro) (HELEMENT3D *, MESH_ELEMENT_FLAGS);
HELEMENT3D * (xselect_child) (HELEMENT3D *, double *, double *, MESH_ELEMENT_FLAGS);
int max_level;
int level_of_interest;
double boundary_threshold;
} HMESH3D;

The mesh is just a collection of elements, as they are described in the previous section, together with optional
data functions on the mesh. As already mentioned Mesh3d only contains the subset of instance variables from
max_dimension_of_coord to get_time.
We restrict the access to elements to a procedural interface, that delivers pointers to elements in one of two

possible ways:

— by building a procedurally linked list of elements, that runs sequentially through all elements in the mesh
via two procedures

ELEMENT *first_element (mesh,required),
ELEMENT *next_element (element,required),

which return the anchor to the list resp. the next element in the list, having to provide all data not
mentioned in MESH_ELEMENT FLAGS and all arrays marked in required. As shown later on, for an HMesh3d
these functions can be implemented using their hierarchical counterparts. Thus default functions are
present in new instances.

we can go from one element to an adjacent element (in space) across the face polygon via the routine
ELEMENT *neighbour(element , polygon, flag, coord, xyz, required)

which is contained in the HELEMENT3D _DESCRIPTION.

Both the next_element () and neighbour() routines may overwrite the element data structure such that
no additional storage is needed for the next element’s data structures. In case, where one needs to collect
information about several elements, a routine

ELEMENT *copy_element (element,required)

gives a copy of an element, which can be deleted later by

free_element (element,required).

When an element lacks some information, in conformance to its present flags, there may be called

ELEMENT *complete_element (element,required)

to complete it. Normally it would return the same, updated, element again; of course with correct present.
The hierarchical extensions/replacements of first_element and next_element are

ELEMENT #*first_macro(mesh,required),

ELEMENT #next macro(element,required),

which traverse the macro elements in an equivalent way and

ELEMENT #first_child(parent,required),

1 DESCRIPTION OF THE INTERFACE STRUCTURES 9

ELEMENT #next_child(element,required),

where first_child returns the first child of parent on the next finer level, and subsequent calls of next_child
traverse the other children on this level.

ELEMENT #select_child(parent,parent_coord,child _coord,required)

is only optional and needed for efficient hierarchical searching. If the point with the local coordinates
parent_coord is contained in a child of parent, a new element is created, filled with the child’s informa-
tion, and returned. In addition the local coordinates of the point are converted to the child’s local coordinate
system and returned in child coord. There is a default function, g_hmesh3d def _select_child, for this using
the above described functions, but in many situations there exists a direct access to the children, which results
in a speedup.

The variables access_mode and access_capability indicate the currently set traversal mode and the supported
traversal modes respectively. It is the user’s responsibility to set the flag access_capability and to program
the mesh traversal routines (first_element, next_element, etc.) so that the set access capabilities are indeed
supported. At the moment there are only two possible access flags for different types of mesh traversal (c.f.
Section 5.6.3 for further explanations:

typedef enum {

mafNone =0,
mafSorted = 1<<0,
mafBoundary = 11

} MESH_ACCESS_FLAGS;

The integer max_dindex gives an upper bound of the used element description indices.

This procedural access to the mesh elements allows the generation of local element data at the time when it is
actually needed. Otherwise, in case of an array or pointered list, complete information for all elements of the
mesh would have to be present at the same time (and occupy much more storage).

The routines which generate the element data structures have to convert between the representations via user’s
data structures and the element structures. They do this mainly by assigning vertex and index information
for an element and referring to a previously prepared description. As mentioned above, in case of structured
meshes this is done mainly by index arithmetic, whereas for unstructured meshes such information is usually
stored with the mesh.

The MESH3D data structure contains values for the allocation of temporary memory that some routines may
need:

— An upper bound max number_of vertices for the number of vertices of any element in the mesh such
that a routine which wants to store local vertex information knows how much memory it has to allocate.

— Upper bounds max_eindex and max_vindex for the element index and vertex index, if such information
is supplied (then the eindex and vindex[] entries in the ELEMENT data structure deliver values in the
range [0, ..., max_eindex—1] resp. [0, ..., max_vindex—1]). If any one of the max_?index values is smaller
or equal to zero, the elements do not give corresponding index information.

Furthermore the mesh supports function evaluation in an abstract and flexible way. There can be defined several
functions on the mesh. They are all independent concerning properties such as continuity and polynomial degree.
The entry current_function is a pointer to a list of currently supported functions on the mesh. The GLIST is
a simple list supervising class type.

The functions set_time() and get_time() enable the handling of timedependent data. Calling set_time()
with time t ensures that the next function evaluation is with respect to this new time. Furthermore, meshes
deforming in time, will then — if supported — deliver time dependent coordinate positions. Finally, the access
routines consider the correct adaptive grid valid for the specified time, with its uniquely defined tree hierarchy.
The call of get_time() returns the current time *t and the current time interval [*tminus,*tplus]. In case of
adaptive grids changing their grid topology in time, the identification of an time interval is very useful to be
sure that the grid is constant on this time interval.

An HMESH3D has the additional variables

1 DESCRIPTION OF THE INTERFACE STRUCTURES 10

max_level: The maximal hierarchy level, e. g. 0 for an HMesh3d only consisting of macro elements, 1 if every
macro element has children, but no grandchildren, etc.

level of_interest: The maximal hierarchy level that is of interest right now. Recursive traversal of the
elements will stop at this level; which is a simple way to reduce computing times.

boundary_threshold: The threshold for the error on displaying the boundaries.

Due to their nature, level of _interest and boundary_threshold can be adjusted interactively at the graphical
user interface.

At last, the HMESH3D structure contains an interface to data given on the mesh. Here we want to support
a situation where different types of data are given at the same time on the same mesh with different value
dimensions and other characteristics (example: a piecewise linear, scalar pressure, a piecewise quadratic, vector—
valued velocity, and some more), together with some methods to select one of the data values for display. The
data characteristics may change between two visualization tasks. Additionally, there may be data characteristics
which change from element to element in the same mesh, for example the polynomial degree of the basis
functions. To handle all these situations, we use a rather general interface for functions on the mesh. A user
supplied procedure evaluates data selected for visualization. Instead of only supporting functions given in terms
of a Lagrangian basis, this concept is open for any type of user function such as one of Hermitian type or one
only piecewisely defined on several parts of a single element, for example.

Data to be displayed is defined globally on the whole mesh, although the evaluation of data is done on element
level (using local coordinates). Thus, the data interface is located at mesh level and described by the following
structure:

Discrete Functions

typedef struct f_hdata3d

{
char *name;
GENMESH_FDATA *last, *next;
int dimension_of_value;
int continuous_data;
void *function_data;
void (*£) (ELEMENT3D *, int, double[], double[], void *function_data);
void (xf_el_info) (ELEMENT3D *, F_EL_INFO3D x*, void *function_data);
void (*get_bounds) (HELEMENT3D *, double *, double *, void *function_data);
void (*get_vertex_estimate) (HELEMENT3D *, double *, void *function_data);
double (*get_element_estimate) (HELEMENT3D *, void *function_data);
double threshold;
double geometry_threshold;
double hp_threshold;
int hp_maxlevel;

} F_HDATA3D;

This is the structure defining a function on an hierarchical mesh. The entries name to f_el_info are inherited
from Mesh3d, which is again a subclass of Gen Mesh; due to this inheritance the F_HDATA3D has to be downcast to
GENMESH_FDATA3D in assignments. All entries have to be set by the interface. threshold, geometry_threshold,
hp_threshold and hp_maxlevel can later be edited on the graphical user interface.

In detail, the entries are:

name: a textual description of current data (“pressure”, e.g.), internally used as the name of the function that
will appear in selection dialogs on the user interface,

2 WRITING DISPLAY METHODS FOR THE CLASSES HMESH2D AND HMESH3D 11

dimension_of _value: is the dimension of the function values, i. e. 1 for a scalar function, > 1 for a vector
valued function,

continuous_data: contains the boolean (TRUE or FALSE) information, if the function is continuous between
elements,

f(el, vindex, coord, val, function data): the data function itself generating dimension of value — di-
mensional values at a position which has to be specified in local coordinates on element el. This function
may also be called with parameters coord=NULL and a local index vindex of one of the element’s vertices.

f_el_info(el, el_info, function_data): fills structure el_info with local information about data, such as
polynomial degree for use by routines which adaptively choose the display resolution, e.g.

last, next: to build a doubly linked list of data descriptions.

function_data: optional pointer, passed on every function call, in which the user can store information needed
to calculate the function values or to identify the function in the case of dynamical allocation.

get _bounds(el, min, max, function data): calculates the lower— and upper bound of the function values
in an element. If this cannot be determined in an efficient way, return —oc and +oo.

get_vertex_estimate (el, vertex_est, function. data): calculates the error estimator for all vertices of
el, filling vertex_est with these values.

get_element estimate (el, function data): returns the error estimator for the children, thus determining,
if the element is to be refined.

threshold, geometry threshold, hp_threshold: are the thresholds for function, geometry and on—element
subdivision in case of higher polynomial degrees, respectively. If an error indicator is above its threshold,
refinement will be attempted.

hpmaxlevel: is the maximal refinement level for on—element subdivision in case of higher polynomial degrees.
Its name resembles hp—methods.

The f_data entry in the HMESH3D structure gives access to data which is currently selected for display. By use
of the doubly linked list, an interactive choice between different data is possible.

In the end, the HMESH3D structure contains a data pointer user_data. This simplifies the simultaneous handling
of multiple mesh3d data sets, if for any reason one does not want to create GRAPE subclasses of HMesh3d.

typedef struct f_hel_info3d { int polynomial_degree; } F_HEL_INF03D;

The structure, f_el_info () has to fill with information about the function. Currently the only entry is

polynomial degree, which is the function’s polynomial degree on the elements, i. e. 1 for a piecewise linear
function.

2 Writing Display Methods for the Classes HMesh2d and HMesh3d

2.1 Introduction

The GRAPE-library contains a large variety of methods for visualizing data given on hierachical grids. On the
one hand there are methods for analysing the grid itself on the other hand functions defined on the grid can
be presented in different ways. However, not all possible methods and algorithms for extracting and visualizing
data can be included in advance. So in accordance with the open and extensible concept of GRAPE the user
can write his own display methods. How to do this and which tools exist in GRAPE to facilitate this is the
scope of the following sections.

In general any display method will have the following structure:

2 WRITING DISPLAY METHODS FOR THE CLASSES HMESH2D AND HMESH3D 12

e Preparation, includes getting the object to be displayed, getting a graphic device, initializing interactive
elements with which parameters of the display method can be altered and possibly getting additional tools
as for example the colorbar.

e Data extraction, by means of the interface functions of the Hmesh — first-macro, next-macro, etc. — and
the access function of the F_hdata-structure the necessary data is extracted. As this process is very similar
in many display methods there are powerfull tools for the most common extraction requirements.

e Rendering, finally using the functionality of the graphic device the extracted data are rendered. This part
of the display method is almost always specific for it and thus it is the part where except for the routines
provided in the graphic device no other tools are available.

In the following each of the steps mentioned above is discussed in detail. Once the user has written a display-
method it must be added to the appropriate class as described in [38]. In order to be able to choose the display
method in the manager a naming convention must be complied with.

Most examples in this section are based on the class HMesh2d. However, the corresponding class HMesh3d is
similar and most of the examples work also in the 3D-case.

2.2 Preparation

The task of the preparational part of the display method is to provide access to the necessary objects and data
structures. As an example the beginning of the hmesh2d isoline display method is printed below. In addition to
the HMesh2d object the isoline method needs access to the function values. Therefore a pointer to a F_HDATA2D
structure is initialized. As the isolines are colored according to their isovalue a colorbar is neccessary. Besides
the obligatory graphic device the use of a lens is prepared. For more details concerning the different objects see
their respective documentation.

HMESH2D* hmesh2d_isoline_disp(void)

{
HMESH2Dx* hmesh;
F_HDATA2D* f_hdata2d;
COLORBAR* colorbar;

GRAPHICDEVICE* device;
static HMESH2D_LENS#* lens = NULL;
/* get hmesh and function */

hmesh = (HMESH2D*)START_METHOD (G_INSTANCE) ;
ALERT (hmesh, "hmesh2d-isoline: No hmesh!",END_METHOD(NULL));

f_hdata2d = (F_HDATA2D*)GRAPE (hmesh,"get-function")
("scalar","scalar","vector","default" ,NULL) ;

ALERT (f_hdata2d,"hmesh2d-isoline-select: No function!'",
END_METHOD (NULL)) ;

/* get colorbar and graphicdevice */

colorbar = (COLORBAR#*)GRAPE(Colorbar,"get-stdcolorbar")
(hmesh2d_isoline_disp,'"isoline-disp");

device = (GRAPHICDEVICE*)GRAPE (GraphicDevice,"get-stddev") ();
/* get lens */

if(!lens)

2 WRITING DISPLAY METHODS FOR THE CLASSES HMESH2D AND HMESH3D 13

lens = (HMESH2D_LENS*)GRAPE (Hmesh2d_Lens,"get-lens")
("lens for hmesh2d-isoline");

}

Often the visualiztion algorithms implemented in display methods depend on parameters that allow the user
to manipulate the resulting picture. To make this possible interactive elements must be added to the manager.
Below an excerpt of the display method hmesh2d-shrink-disp is printed. This methods has one parameter which
controls the size of the shrunk elements.

HMESH2D* hmesh2d_shrink_disp(void)
{
MANAGER* mgr;

static GROUP* group

= NULL;
static SLIDER* shrink_size_ctl = NULL;
static double shrink_size = 0.95;

/* get manager */
mgr = (MANAGER*)GRAPE(Manager,"get-stdmgr") ();
/* get interactives */

if (!'shrink_size_ctl)
shrink_size_ctl =
(SLIDER*)new_item(Slider,
I_Label,"shrink-factor",
I_Var,&shrink_size,dfDouble,
I_MinMax,0.0,1.0,
I_Scale, 1.0,
I_0ffset,0.0,
I_RSizeX,0.5,I_SizeY,1.0,
I_End);
if ('group)
group = (GROUP*)new_item(Group,
I_Border,bfBorder |bfTitle,
I_Name,"hmesh2d-shrink",
I_Size,12.0,1.25,
I_Ttem,shrink_size_ctl,
I_End);

if (GRAPE(mgr, "new-handle") (hmesh2d_shrink_disp,1))
GRAPE (mgr,"add-inter") (group) ;

2.3 Data Extraction
2.3.1 Overview

In this sections the tools that are helpfull for extracting data are presented. Although the context is to write
display methods the tools are also usefull for calculating error estimators, norms of functions and for many
other purposes.

2 WRITING DISPLAY METHODS FOR THE CLASSES HMESH2D AND HMESH3D 14

There are exceptions, but most display methods extract the necessary data in the following way: The hierachical
tree is traversed via the interface functions and on any leaf the data are fetched, calculated and rendered. As
hanging nodes may occur in an adaptive traverse, hierachical projection is needed to assure continuity.

To support this, there are functions in GRAPE — namely g_traverse_hmesh2d () and g_traverse_hmesh3d() —
that implement such an traverse. Among other things these routines need three call-back-functions as arguments.

e projection; in this routine the necessary data on the currrent element are collected and if appropriate
interpolated.

e test_if_proceed; this functions controlls the traverse. It is decided whether to proceed on the next finer
level or to stop on the current element and in the latter case whether to render on the current element or
not. The outcome may be based on the projected data or for example on the error estimators included in
the HMesh-interface.

e action_on_element; this functions should contain the code for rendering the data on an element.

Further arguments of g_traverse_hmesh2d () are the Hmesh2d object, a pointer to a HM2_GENERAL variable, the
traverse mode, the level of interest, an array of pointers to the element data, a pointer to other arbitrary data
possibly needed in the action_on_element routine and a mesh element flag.

The traverse mode, an variable of type integer, determines on which elements the action_on_element routine
may be called. Possible values are G_LEAVES, G_PREFIX and G_POSTFIX. If the traverse mode is G_LEAVES
the action is at most called on a leaf of the hierachical tree. In contrast if the traverse mode is G_PREFIX or
G_POSTFIX the action_on_element routine may be called on all elements of the tree. In the case of G_PREFIX
the action_on_element routine is called first on the parent element and after that the children are con-
sidered. Whereas in the case of G_POSTFIX only after the complete subtree of an element is traversed the
action_on_element routine is called on the element itself.

The level of interest is the maximum depth of the hierachical traverse. In most display methods this should
be the level of interest stored in the Hmesh2d object. Since this entry can be manipulated by the user via the
uif-hm2-project it is not neccessary that display methods have an interactive element controlling it.

The interface functions of the Hmesh2d allow to choose which entries of the HELEMENT2D structure are filled by
the interface. In the same way this choice can be made for the whole traverse with the mesh element flag.
Below the exact prototype of the traverse routine is printed. The other arguments are explained in the next
section.

void g_traverse_hmesh2d(

HMESH2D* hmesh,

HM2_GENERAL* general,

int traverse_mode,

int level_of_interest,

int (*projection) (HELEMENT2D* helement,
HM2_GENERAL* general,
void* element_data,
void* parent_data),

int (*test_if_proceed) (HELEMENT2D* helement,
HM2_GENERAL* general,
void* element_data),

int (xaction_on_element) (HELEMENT2D* helement,
HM2_GENERAL* general,
void* element_data,
void* action_arg),

void** element_data,
void* action_arg,
MESH_ELEMENT_FLAGS mesh_element_flag)

2 WRITING DISPLAY METHODS FOR THE CLASSES HMESH2D AND HMESH3D 15

2.3.2 Preparing the traverse

There are two different data structures used by the traverse functions. One structure is defined by the user and
contains the element specific data. The other is of the type HM2_GENERAL and consists of pointers to objects
and data structures that usually are needed in the action_on_element-routine but are not element specific,
e.g. a pointer to the graphic device or the colorbar. The definition of this structure is given below.

typedef struct hm2_general{
struct graphicdevicex* dev;
struct colorbarx* colorbar;
struct hmesh2d_lens* lens;
F_HDATA2Dx* f_hdata2d;
} HM2_GENERAL;

Note that it is not compulsory to fill all entries of this structure. If for example the action_on_element-routine
does not need the colorbar the entry may be ignored by the user.

The user defined data structure with the element specific data may contain vertex coordinates, nodal function
values or color values. The data structure used by the isoline display method for example employs all of the
entries:

typedef struct hm2_coord_color_fct_data {
VEC3 vertex_coord[MESH2D_MAX_VERTEX];
VEC3 vertex_color [MESH2D_MAX_VERTEX];
double vertex_value[MESH2D_MAX_VERTEX] ;
int in_lens_area;

} HM2_COORD_COLOR_FCT_DATA;

Memory for an array of these structure variables must be allocated. The length of this array is given by
the maximal depth of the hierachical tree. As an example we have again printed part of the display method
hmesh2d-shrink-disp.

HMESH2D* hmesh2d_shrink_disp(void)
{

HM2_GENERAL general;
HM2_COORD_DATA** hm2_shrink_data;

int i,max;
/* get hmesh, graphic device, ... and initialize interactives */
/* prepare mesh-traverse */

max = hmesh->level_of_interest + 1;

general.dev
general.lens

dev;
lens;

G_MEM_ALLOC(hm2_shrink_data,max) ;

for(i=0;i<max;i++)
G_MEM_ALLOC (hm2_shrink_datal[i],1);

/* traverse the mesh */

g_traverse_hmesh2d (hmesh,
&general,

2 WRITING DISPLAY METHODS FOR THE CLASSES HMESH2D AND HMESH3D 16

G_LEAVES,
hmesh->level_of_interest,
hm2_coord_projection,
hm2_geom_test_if_proceed,
hm2_shrink_draw_element,
(void**)hm2_shrink_data,
NULL,

hefVertex|hefVinh);

/* free memory */

for(i=0;i<max;i++)
G_MEM_FREE (hm2_shrink_datalil,1);

G_MEM_FREE (hm2_shrink_data,max) ;

END_METHOD (hmesh) ;
}

The functions hm2_coord_projection, hm2_geom_test_if_proceed and hm2_shrink_draw_element must be
defined somewhere else. The GRAPE-library contains several projection and test-if-proceed routines that can
be reused and are explained in the next sections.

2.3.3 The projection routine

The purpose of the projection routine is to fill the element specific data in the element data structure. In the
example above this was of the type HM2_COORD_DATA and contained only the vertex coordinates of the respective
element. The data of the current element may depend on the data in the HELEMENT2D and the element data of
the parent element. Additionally the entries of the HM2_GENERAL-structure may play a role in assembling and
calculating the data on the current element.

The GRAPE library features several projection routines that can be reused by any other display method. In
the 2D-case these are:

e hm2_coord_simpl_projection

e hm2_coord_lens_projection

e hm2_scalar_fct_simpl_projection

e hm2_scalar_fct_lens_projection

e hm2_vec_fct_simpl_projection

e hm2_vec_fct_lens_projection

e hm2_coord_color_simpl_projection

e hm2_coord_color_lens_projection

e hm2_coord_color_fct_simpl_projection

e hm2_coord_color_fct_lens_projection
These routines use the following data structure as element data:

typedef struct hm2_coord_data {
VEC3 vertex_coord[MESH2D_MAX_VERTEX];
int in_lens_area;

} HM2_COORD_DATA;

2 WRITING DISPLAY METHODS FOR THE CLASSES HMESH2D AND HMESH3D 17

typedef struct hm2_scalar_fct_data {
double vertex_value[MESH2D_MAX_VERTEX];
int in_lens_area;

} HM2_SCALAR_FCT_DATA;

typedef struct hm2_vec_fct_data {
VEC3 vertex_coord[MESH2D_MAX_VERTEX];
VEC3 vertex_value[MESH2D_MAX_VERTEX];
int in_lens_area;

} HM2_VEC_FCT_DATA;

typedef struct hm2_coord_color_data {
VEC3 vertex_coord[MESH2D_MAX_VERTEX];
VEC3 vertex_color [MESH2D_MAX_VERTEX];
int in_lens_area;

} HM2_COORD_COLOR_DATA;

typedef struct hm2_coord_color_fct_data {
VEC3 vertex_coord[MESH2D_MAX_VERTEX];
VEC3 vertex_color[MESH2D_MAX_VERTEX];
double vertex_value[MESH2D_MAX_VERTEX] ;
int in_lens_area;

} HM2_COORD_COLOR_FCT_DATA;

The names of the projection routines indicate which data are calculated: _coord_ means that vertex coordinates
are compiled, _vec_fct_ means that vector valued functions are calculated and so on.

Within these projection routines the vertex error estimators are used to decide wether a given datum has to
be interpolated from parent data in order to assure continuity or if it has to be filled with the original value
provided by the HMESH interface.

2.3.4 The test-if-proceed routine

As mentioned above this functions controlls the traverse. It may return each of the three values G_HM_NOACTION,
G_HM_PROCEED or G_HM_ACTION. If G_HM_ACTION is returned the traverse is stopped on the current element and
the action_on_element routine is called. Whereas if G_HM_NOACTION is returned the traverse is stopped on the
current element without calling the action_on_element routine. In contrast G_HM_PROCEED causes the traverse
to go on to the next finer level. It is important to understand that the traverse mode determines on which
elements the action_on_element routine may be called (on all nodes of the tree or only on the leaves) but the
result of test_if_proceed determines when the action_on_element routine is actually called.

The arguments of the test_if_proceed routine are the HELEMENT2D, the HM2_GENERAL-structure and the ele-
ment data of the current element. For an example see the hm2_fct_lens_test_if_proceed routine at the end
of this section.

Typically the test_if_proceed routine compares an element error indicator to an appropriate threshold. In
the 3D-case other intersection tests are also a common task performed in this routine. In the GRAPE-library
several standard routines of this kind are incorporated. In the 2D-case these are:

e hm2_geom_simpl_test_if_proceed
e hm2_geom_lens_test_if_proceed
e hm2_fct_simpl_test_if_proceed
e hm2_fct_lens_test_if_proceed

e hm2_geom_fct_simpl_test_if_proceed

2 WRITING DISPLAY METHODS FOR THE CLASSES HMESH2D AND HMESH3D 18

e hm2_geom_fct_lens_test_if_proceed

As the names indicate either the geometry error indicators, the function error indicators or both are compared
to their respective threshold. Additionally the functionality of the lens is supported or not.

int hm2_fct_lens_test_if_proceed (HELEMENT2D* helement,
HM2_GENERAL* general,
void* el_data)

{
HMESH2D* hmesh = (HMESH2D*)helement->mesh;
F_HDATA2D* f_hdata2d = general->f_hdata2d;
HMESH2D_LENS* lens = general->lens;
double error,lens_error;
double lens_threshold;
/* get element error estimator */
if (f_hdata2d->get_element_estimate)
error = f_hdata2d->get_element_estimate(helement,
f_hdata2d->function_data);
else
error = f_hdata2d->threshold + 1.0;
/* lens condition */
lens_threshold = 1ens—>get_1ens_e1ement_threshold(helement,lens);
if (hmesh->get_lens_element_estimate)
lens_error = hmesh->get_lens_element_estimate(helement,
lens->lens_data) ;
else
lens_error = lens_threshold + 1.0;
/* compare with threshold */
if (error < f_hdata2d->threshold && lens_error < lens_threshold)
return G_HM_ACTION;
else
return G_HM_PROCEED;
}

2.3.5 The action-on-element routine

This routine performs the actual rendering and displaying on a given element. The arguments are the
HELEMENT2D, the HM2_GENERAL-structure, the element data of the current element and a pointer to arbitrary,
user defined data. The last argument is of the type void* and can be used to pass data from the display method
to the action_on_element routine.

Below the hm2_disp_draw_element routine is printed as an example.

static int hm2_disp_draw_element (HELEMENT2D* helement,
HM2_GENERAL* general,
void* el_data,
void* action_arg)

GRAPHICDEVICEx dev = general->dev;

3 HIERARCHICAL SEARCHING USING THE INTERFACE 19

HMESH2Dx* hmesh

HELEMENT2D_DESCRIPTION* descr =
(HELEMENT2D_DESCRIPTION*)helement->descr;

HM2_COORD_DATA* element_data = (HM2_COORD_DATA*)el_data;

(HMESH2D*) helement->mesh;

VEC3* vertex_coord = element_data->vertex_coord;
int i,number_of_vertices = descr->number_of_vertices;

if (dev->grid_patch == G_GRID){
dev->move(vertex_coord[number_of_vertices-1]);
for (i=0;i<number_of_vertices;i++)
dev->draw(vertex_coord[i]) ;

}
elsef{
VEC3 normal;
g_vec3_get_normal_to_plane_quietly(normal,
vertex_coord[0],
vertex_coord[1],
vertex_coord[2]);
dev->begin_patch();
dev->patch_normal(normal) ;
for (i=0;i<number_of_vertices;i++)
dev->patch_vertex(vertex_coord[i]);
dev->end_patch();
}

return TRUE;
}

3 Hierarchical Searching using the Interface

Particle tracing methods which generate and visualize particle lines, stream surfaces ore moving clouds of
particles are important tools for the examination of velocity fields. The efficiency of these methods depends
senitively on searching algorithms. Let us suppose that h and At|umax| are of the same size in the corresponding
integration method. Fig 2 sketches a typical particle line on a 2D grid. The basic task is to locate points on the
grid, which are computed by the corresponding ODE solver. For each new position we need the grid element
and the corresponding local coordinates to evaluate the numerical velocity at that position. It is obvious, that
a local algorithm should be used in this searching process. This local method can be provided with an inital
guess, which typically is the result of the last timestep. Figure 3 illustrates two alternative schemes. On the one
hand, we can proceed recursively up and down. Thereby we first move from the guess positions fine grid element
successively to coarser elements until the destination position is in the current element or we have reached the
macro grid level. Then we zoom into finer grid level until the finest element which contains the destination
position has been reached. On a other hand, we can start on the macro level, search for a coarse element
containing the destination position and then perform the above zooming operation. Especially on hierarchical
grids of a larger depth the first method is obviously the better choice. I. e. in average about four level changes
(two up and two down respectively) are necessary for a 2D grid consisting of rectangles to locate the new point
of the particle line under the above assumption on the step sizes. The kernel of the second algorithm could be
implemented in the following way:

3 HIERARCHICAL SEARCHING USING THE INTERFACE 20

VAV,

AN

Figure 2: Typical particle line

Figure 3: Different searching strategies

4 AN INTERFACE RECIPE 21

element = self->first_macro(hefAll);
element->descr->world_to_coord ((ELEMENT*)element,point,local_coord) ;

while(element->descr->check_inside ((ELEMENT*)element,local_coord)==false)q{
element = self->next_macro(element,hefAll);

3

while((help_element = element->first_child(element,hefA11)) !=NULL){
element = help_element;

element->descr->world_to_coord ((ELEMENT*)element,point,local_coord) ;
while(element->descr->check_inside((ELEMENT*)element,point)==false){
element = element->next_child(element,hefAll);
}
}

To improve efficiency the new interface routines

void coord_of_parent (HELEMENT3D *element, double *local_coord,
double *local_coord_of_parent);

and

HELEMENT3D *select_child (HELEMENT3D *element, double *local_coord,
double *local_coord_of_child,HELEMENT3D_FLAGS hefall)

have been added. coord_of-parent() transforms the local coordinates of a point in an element to that one of
the parent element. select_child() returns the child element containing a point already known to be inside the
parent element and calculates its local coordinates corresponding to the child element. This allows very fast
and direct access to elements of arbitrary nested hierarchical grids. With these functions at hand, the kernel
for the first algorithm look as follows:

if (element != NULL){
element->descr->world_to_coord ((ELEMENT*)element,point,local_coord) ;
while((-1 '= element->desc->check_inside ((ELEMENT3D *)element,local_coord))q{
&& (e [0] ->parent!=NULL))

help_element = element;

((HELEMENT3D_DESCRIPTION*) (element->descr))->coord_of _parent
(element, local_coord,local_coord);

element = element->parent;

hmesh->free_element ((ELEMENT3D#*)help_element) ;

}
while((help_element = hmesh->select_child
(element,local_coord,local_coord,hefAll)) !'=NULL)

{element = help_element;}

}

This algorithm is implemented in the method

HMESH3D *hmesh3d_search(VEC3 point, double *local_coord, HELEMENT3D **element)

which uses *element as the element of the intial guess, to locate a particle at position point on the grid hierarchy.

4 An Interface Recipe

4.1 Introduction

In the following we will demonstrate which steps the user has to pass to get from a general
interface mask to a complete hierarchical interface. In each step we will first present the

4 AN INTERFACE RECIPE 22

code from the interface mask (marked by horizontal lines) and afterwards discuss the nec-
cessary modifications. The recipe and the example cover the 2D-case. The 3D-case is analogous.

The interface consists of the following routines:
e HMESH2D-routines

— get_new_hmesh()
— Routines to traverse the hierarchical mesh
* interface_first_macro()
interface_next_macro()
interface_first_child()
interface_next_child()
interface_select_child()
interface_first_element/()
interface_next_element()

* X X K ¥ ¥

— Handling interface_elements

* get_interface_element()

* free_interface_element|()

 fill interface_element_with_user_macro_element/()
* fill_interface_element_with_user_child_element()

— Helement Description

 element_world_to_coord()

* element_coord_to_world()

* helement_description_check_inside()

* helement_description_neighbour()

* helement_description_boundary()

* helement_description_coord_of_parent/()

— Geometry error estimator
* get_geometry_vertex_estimate()
% get_geometry_element_estimate()

e Routines for functions on hierachical meshes

— get_new_fhdata()

— data_access_function()

— local_information()

— get_bounds()

— Function error estimator

* get_function_vertex_estimate()
* get_function_element_estimate()

In order to illustrate the single steps we introduce a sample data structure. As the interface
uses its own data structures we have to distinguish three kinds of data structures:

4 AN INTERFACE RECIPE 23

e the data structure of the user
e the internal GRAPE data structures
e the interface data structures

In the example the user data structures are called BISMESH, BELEMENTs and BELEMENT_MACRO.
The task of the interface is to translate these structures into the respective internal GRAPE
structures HMESH2D and HELEMENT2D. The interface employs so called INTERFACE_ELEMENTS to
generate the HELEMENT2Ds.

4.2 The Bismesh Structure

Our sample data structure will describe a triangulation of a given domain that is refined by
bisection starting from a macro triangulation. Each element is represented in the following
data structure called BELEMENT:

typedef struct belementd{
struct belement* neighbour[3];
struct belement* child[2];
struct belement* parent;

int newnode;

int flag;
} BELEMENT;
Here newnode contains the global index of the node that is created while the element is being
bisected. The flag is used to decide which element has to be refined. Elements of the macro
triangulation called BELEMENT _MACRQ are basically the same as the BELEMENTs. They only have
some additional information included:
typedef struct belement_macro{

BELEMENT* neighbour[3];

BELEMENT* child[2];
BELEMENT* parent;

int newnode;
int flag;

int nodel[3];

struct belement_macro* next;
} BELEMENT_MACRO;

The BELEMENT_MACROs are chain linked via the next pointer while the node array contains the
global indices of the vertices.

Global information regarding the bisection mesh is grouped in the structure BISMESH:

typedef struct bismesh{
int number_macro_points;
int number_macro_elements;
int number_points;
int number_elements;
int max_level;

BELEMENT_MACRO#* first;
VEC3* macro_coord;

double* geo_estimates;
} BISMESH;

The pointer first enables us to access the chain of the macro elements while the coordinates
of the macro nodes are stored in the array macro_coord. The error estimators concerning the
geometry are stored in the array geo_estimates.

4 AN INTERFACE RECIPE 24

4.3 Data Structures of the Interface

The purpose of a hmesh interface is to translate data stored in a given user format — like the
above bismesh structures —into the HMESH2D/HELEMENT2D structures. According to the interface
mask the INTERFACE_ELEMENT consists of all data of the HELEMENT2D. These are grouped in
HMESH2D_HELEMENT2D_STRUCT. The additional variables support the recursive mesh traversal
and the generation of HELEMENT2Ds. Furthermore there may be some entries which depend on
the user’s data format.

typedef struct interface_element {
HMESH2D_HELEMENT2D_STRUCT;

USER_ELEMENT* user_element;
double* point_coords [MAX_NUMBER_OF_VERTICES_PER_ELEMENT] ;
int level;

struct interface_element* next;

/% additional entries by the user */

[

INTERFACE_ELEMENT;

In our case the INTERFACE_ELEMENT structure of the mask has the concrete outline:

typedef struct interface_element {
HMESH2D_HELEMENT2D_STRUCT;

BELEMENT * belement;
double* point_coords [MAX_NUMBER_OF_VERTICES_PER_ELEMENT] ;
int level;

struct interface_element* next;
VEC3 coord_of_new_node;

} INTERFACE_ELEMENT;

The INTERFACE_ELEMENTs are organized in a free list which is linked via the next pointer.
The coordinates of the point that is created while the element is being bisected are stored
in coord_of_new_node. Although the routines for traversing the mesh have pointers to
HELEMENT2Ds as arguments and return values, in the inteface these pointers will be casted
pointers to INTERFACE_ELEMENTs. In an object oriented setting one would apply the subclass
concept here.

BISMESH strucutre (user) Interface

bel enment _nacr o |interface_e|enent|

|interface_e|enent|

<t

bel ement

4 AN INTERFACE RECIPE

4.4 get_new_hmesh()

25

The initialization routine of the interface mask gets a new instance of HMESH2D and fills in the
neccessary data. In the interface mask it looks like that:

HMESH2D* get_new_hmesh(USER_MESH* user_mesh,...)

{

HMESH2D* hmesh;

hmesh = (HMESH2D*)GRAPE (HMesh2d, "new-instance") ("name of hmesh");
ASSURE (hmesh, "get _new_hmesh: can’t get new hmesh instance",return NULL);

hmesh->first_macro = interface_first_macro;
hmesh->next_macro = interface_next_macro;
hmesh->first_child = interface_first_child;
hmesh->next_child = interface_next_child;
hmesh->select_child = interface_select_child;
hmesh->first_element = interface_first_element;
hmesh->next_element = interface_next_element;

hmesh->max_level = ...;

hmesh->max_vindex = ...;

hmesh->level_of_interest = ...;

hmesh->dimension_of_world e

hmesh->max_dimension_of_coord el

hmesh->max_number_of_vertices = MAX_NUMBER_OF_VERTICES_PER_ELEMENT;
hmesh->geometry_data = (void*)...; /¥ 2D-case only */

/* in 2D-case */

hmesh->get_geometry_vertex_estimate =
interface_get_geometry_vertex_estimate;

hmesh->get_geometry_element_estimate =
interface_get_geometry_element_estimate;

/* £ill the helement description */

helement_description->number_of_vertices = ...;
helement_description->dimension_of_coord = ...;
helement_description->coord = ...
helement_description->parametric_degree = ...;
helement_description->world_to_coord e
helement_description->coord_to_world = ...

helement_description->check_inside = helement_description_check_inside;
helement_description->neighbour = helement_description_neighbour;
helement_description->boundary helement_description_boundary;
helement_description->coord_of_parent = helement_description_coord_of_parent;

/* inheritance rules */

inheritance_rule[O]—)np = ...; /* number of parent points */
inheritance_rule[0]->pindex = ...;
inheritance_rule[0]->pweight = ...;

inheritance_rule[n]—)np = ...; /* number of parent points */
inheritance_rule[n]->pindex = .
inheritance_rule[n]->pweight = ...;

return hmesh;

In our example this becomes:

HMESH2D* get_new_hmesh(BISMESH* bismesh)

{

HMESH2D* hmesh;

hmesh = (HMESH2D#)GRAPE (HMesh2d,"new-instance") ("my sample bismesh");
ASSURE (hmesh, "get _new_hmesh: can’t get new hmesh instance",return NULL);

4 AN INTERFACE RECIPE

hmesh->first_macro = interface_first_macro;
hmesh->next_macro = interface_next_macro;
hmesh->first_child = interface_first_child;
hmesh->next_child = interface_next_child;

hmesh->select_child
hmesh->first_element
hmesh->next_element

hmesh->max_level
hmesh->max_vindex

hmesh->user_data = (void#*)bismesh;
hmesh->level_of_interest = 1; /* can be changed interactively later
hmesh->dimension_of_world = 3;

hmesh->max_dimension_
hmesh->max_number_of_

hmesh->geometry_data

/* in 2D-case, see I.

= interface_select_child;
= interface_first_element;
= interface_next_element;

= bismesh->max_level;
= bismesh->number_points;

of _coord = 3;

vertices = MAX_NUMBER_OF_VERTICES_PER_ELEMENT;

= NULL;

5 x/

hmesh->get_geometry_vertex_estimate =
get_geometry_vertex_estimate;

hmesh->get_geometry_element_estimate =
get_geometry_element_estimate;

/* £ill the helement

helement_description.
helement_description.

helement_description.
helement_description.
helement_description.
helement_description.
helement_description.

helement_description.
helement_description.
helement_description.

/* inheritance rules

inheritance_rule_in_child_0[0]

description */

number_of_vertices
dimension_of_coord

coord
parametric_degree
world_to_coord
coord_to_world
check_inside

neighbour = helement_description_neighbour;
boundary = helement_description_boundary;
coord_of_parent = helement_description_coord_of_parent;

*/

3

on an element */

local_coordinate_system;

1;

triangle_world_to_coord;
triangle_coord_to_world;

triangle_check_inside;

= vinherit_point_0;

inheritance_rule_in_child_0[1] = vinherit_point_1_in_child_0;
inheritance_rule_in_child_0[2] = vinherit_point_2_in_child_0;

inheritance_rule_in_child_1[0]

= vinherit_point_0;

inheritance_rule_in_child_1[1] = vinherit_point_1_in_child_1;

inheritance_rule_in_child_1[2]

return hmesh;

}

= vinherit_point_2_in_child_1;

3; /* number of local coords

26

The inheritance rules defined at the bottom describe how points in a child element can be

expressed as a convex combination of points in the parent element.

For the bisection of triangles there are the following six inheritance rules:

static VINHERIT inheritance_rule_in_child_0[3];
static VINHERIT inheritance_rule_in_child_1[3];

static int pindex_point_0[2] = {1 ,2 };

static double pweight_point_0[2] = {0.5,0.5};

static VINHERIT vinherit_point_0 = {2,pindex_point_0,pweight_point_0};
static double pweight_point_1_or_2[1] = {1.0};

static int pindex_point_1_in_child_0[1] = {2};

static VINHERIT vinherit_point_1_in_child_0
{1,pindex_point_1_in_child_0,pweight_point_1_or_2};

static int pindex_point_2_in_child_0[1] = {0};
static VINHERIT vinherit_point_2_in_child_0
{1,pindex_point_2_in_child_0,pweight_point_1_or_2};

static int pindex_point_1_in_child_1[1] = {0};
static VINHERIT vinherit_point_1_in_child_1
{1,pindex_point_1_in_child_1,pweight_point_1_or_2};

4 AN INTERFACE RECIPE 27

parent element

bi section

N

new node

static int pindex_point_2_in_child_1[1] = {1};
static VINHERIT vinherit_point_2_in_child_1

{1,pindex_point_2_in_child_1,pweight_point_1_or_2};

The meaning of the VINHERIT are discussed in detail in 1.

4.5 Routines to Traverse the hmesh

The following routines are used by GRAPE to traverse the mesh. The main modification from
the code in the interface mask is to provide the respective element of the user data structure,
i.e. in our case the BELEMENT or BELEMENT_MACRO.

interface_first_macro()

This routine gets the first macro element of the user mesh. In the interface mask it looks like
that:

static HELEMENT2D* interface_first_macro(HMESH2D* hmesh,
MESH_ELEMENT_FLAGS flags)
{
USER_MACRO_ELEMENT* user_macro
INTERFACE_ELEMENT* interface_element

= ...
= get_interface_element (hmesh) ;
fill_interface_element_with_user_macro_element (interface_element,
user_macro,

flags);

return (HELEMENT2D#*)interface_element;
}

In our bismesh structure we have a pointer to the first macro element at hand. We use the
interface routines get_interface_element () to request an empty INTERFACE_ELEMENT from
the free list and fill_interface_element_with_user_macro_element () to write the data of
belement_macro in the INTERFACE_ELEMENT.

static HELEMENT2D* interface_first_macro(HMESH2D* hmesh,

MESH_ELEMENT_FLAGS flags)
{

4 AN INTERFACE RECIPE 28

BISMESH* bismesh (BISMESH*) (hmesh->user_data) ;
BELEMENT_MACRO* belement_macro = bismesh->first;
INTERFACE_ELEMENT#* interface_element = get_interface_element (hmesh);

fill_interface_element_with_user_macro_element (interface_element,
belement_macro,
flags);

return (HELEMENT2D#*)interface_element;

interface_next_macro()

This routine gets the next macro element of a given macro element. If there is no next macro
element the used INTERFACE_ELEMENT is returned to the free list.

static HELEMENT2D* interface_next_macro(HELEMENT2D* helement,
MESH_ELEMENT_FLAGS flags)
{
INTERFACE_ELEMENT* interface_element = (INTERFACE_ELEMENT*)helement;
USER_MACRO_ELEMENT* user_macro = ...;

if (user_macro){
fill_interface_element_with_user_macro_element (interface_element,
user_macro,
flags);
}
else{
free_interface_element (interface_element);
interface_element = NULL;

}

return (HELEMENT2D#*)interface_element;

This translates into:

static HELEMENT2D* interface_next_macro (HELEMENT2D* helement,
MESH_ELEMENT_FLAGS flags)
{
INTERFACE_ELEMENT* interface_element = (INTERFACE_ELEMENT*)helement;
BELEMENT_MACRO=* belement_macro =
((BELEMENT_MACRO%*) interface_element->belement)->next;

if (belement_macro){
fill_interface_element_with_user_macro_element (interface_element,
belement_macro,

flags);
}
elseq{
free_interface_element (interface_element);
interface_element = NULL;
}

return (HELEMENT2D#*)interface_element;

interface_first_child()

This routine gets the first child element of a given element.

static HELEMENT2D* interface_first_child (HELEMENT2Dx* helement,
MESH_ELEMENT_FLAGS flags)
{
INTERFACE_ELEMENT* interface_child_element;
INTERFACE_ELEMENT* interface_parent_element = (INTERFACE_ELEMENT*)helement;

USER_ELEMENT* user_element = ...;
int level_of_interest = ((HMESH2D*)helement->mesh)->level_of_interest;

4 AN INTERFACE RECIPE 29

if (user_element && (interface_parent_element->level < level_of_interest)){

interface_child_element = get_interface_element ((HMESH2D*)helement->mesh) ;
fill_interface_element_with_user_child_element (interface_child_element,
interface_parent_element,
user_element,
flags) ;
return (HELEMENT2D#*)interface_child_element;
}
else
return NULL;

In our example this reads as follows:

static HELEMENT2D* interface_first_child (HELEMENT2Dx* helement,
MESH_ELEMENT_FLAGS flags)
{
INTERFACE_ELEMENT* interface_child_element;
INTERFACE_ELEMENT* interface_parent_element = (INTERFACE_ELEMENT*)helement;

BELEMENT* belement = interface_parent_element->belement->child[0];
int level_of_interest = ((HMESH2D*)helement->mesh)->level_of_interest;

if (belement && (interface_parent_element->level < level_of_interest))q{

interface_child_element = get_interface_element ((HMESH2D*)helement->mesh) ;
fill_interface_element_with_user_child_element (interface_child_element,
interface_parent_element,
belement,
flags);
return (HELEMENT2D#*)interface_child_element;
}
else
return NULL;

interface_next_child()

This routine returns the next child element of the parent of the given (child) element. If there
is no next child element the used INTERFACE_ELEMENT is returned to the free list.

static HELEMENT2D* interface_next_child (HELEMENT2Dx* helement,
MESH_ELEMENT_FLAGS flags)
{
INTERFACE_ELEMENT* interface_child_element = (INTERFACE_ELEMENT*)helement;
INTERFACE_ELEMENT* interface_parent_element
(INTERFACE_ELEMENT*)helement->parent;

USER_ELEMENT* user_element = ...;

if (user_element){
fill_interface_element_with_user_child_element (interface_child_element,
interface_parent_element,
user_element,
flags);
return (HELEMENT2D#*)interface_child_element;
}
else{ /* there exists no further child_element */
free_interface_element (interface_child_element);
return NULL;
}
}

To adapt this to our BISMESH case we have to modify it as follows:

static HELEMENT2D* interface_next_child (HELEMENT2Dx* helement,
MESH_ELEMENT_FLAGS flags)
{
INTERFACE_ELEMENT* interface_child_element = (INTERFACE_ELEMENT*)helement;
INTERFACE_ELEMENT* interface_parent_element =
(INTERFACE_ELEMENT*)helement->parent;

4 AN INTERFACE RECIPE 30

if (interface_child_element->belement ==
interface_parent_element->belement->child[0]){

fill_interface_element_with_user_child_element (interface_child_element,
interface_parent_element,
interface_parent_element->belement->child[1],
flags);

return (HELEMENT2D#*)interface_child_element;
}
else{
free_interface_element (interface_child_element);
return NULL;
}
}

interface_select_child()

The purpose of this routine is explained in 1. In our sample case we have:

static HELEMENT2D* interface_select_child (HELEMENT2D* parent_helement,

doublex* local_parent_coord,
double* local_child_coord,
MESH_ELEMENT_FLAGS flags)
{
HELEMENT2D* child_helement;
INTERFACE_ELEMENT* interface_child_element;
BELEMENT * belement;
if (local_parent_coord[1] < local_parent_coord[2]){
belement = ((INTERFACE_ELEMENT*)parent_helement)->belement->child[0];
if (belement){
local_child_coord[0] = local_parent_coord[1] * 2.0;
local_child_coord[2] = local_parent_coord[0];
local_child_coord[1] = 1.0 - local_child_coord[0] -local_child_coord[2];
}
}
elsed{
belement = ((INTERFACE_ELEMENT*)parent_helement)->belement->child[1];
if (belement){
local_child_coord[0] = local_parent_coord[2] * 2.0;
local_child_coord[1] = local_parent_coord[0];
local_child_coord[2] = 1.0 - local_child_coord[0] -local_child_coord[1];
}
}
if (belement){
interface_child_element =
get_interface_element ((HMESH2D*)parent_helement->mesh) ;
fill_interface_element_with_user_child_element (interface_child_element,
(INTERFACE_ELEMENT*)parent_helement,
belement,
flags);
return (HELEMENT2D#*)interface_child_element;
}
elsed{
return NULL;
}
}

interface_first_element()

This is a standard-mesh2d-routine and returns the first element on the deep-
est level described by hmesh->level_of_interest. It is independent of
the wuser’s data structures and does not need to be changed in any way.

static ELEMENT2D* interface_first_element (MESH2D* mesh,
MESH_ELEMENT_FLAGS flags)
{
HMESH2D* hmesh (HMESH2D*)mesh;
HELEMENT2D* helement = hmesh->first_macro (hmesh,flags);

4 AN INTERFACE RECIPE 31

HELEMENT2D# auxiliary_helement;
INTERFACE_ELEMENT* interface_element = (INTERFACE_ELEMENT*)helement;
while(auxiliary_helement = hmesh->first_child(helement,flags))q{
helement = auxiliary_helement;
interface_element = (INTERFACE_ELEMENT*)helement;
}

return (ELEMENT2D*)helement;

interface_next_element()

Like interface_first_element () this is a standard-mesh2d-routine and it returns the next
element on the deepest level described by hmesh->level_of_interest. It is independent of
the user’s data structures, too. Therefore it does not need to be changed either.

static ELEMENT2D* interface_next_element (ELEMENT2D* element,
MESH_ELEMENT_FLAGS flags)
{
HMESH2D* hmesh = (HMESH2D*)helement->mesh;
HELEMENT2D* helement = (HELEMENT2D*)element;
HELEMENT2D* helement_next;

if (helement->parent){
helement_next = hmesh->next_child(helement,flags);
if ('helement _next)
helement_next = (HELEMENT2D*)interface_next_element ((ELEMENT2D*)
helement->parent,flags) ;
}
else
helement_next = hmesh->next_macro(helement,flags);

if (helement _next){
while (helement = hmesh->first_child(helement_next,flags))
helement_next = helement;

}

return (ELEMENT2D*)helement_next;

4.6 Handling INTERFACE_ELEMENTS

Now we list and describe fundamental procedures which support the handling of elements in
the interface.

get_interface_element()

This routine returns a new INTERFACE_ELEMENT. Either there is an empty one in the free list
or a completly new one is generated. As the additional data in the INTERFACE_ELEMENT in
our example does not need any special memory treatment there are no modifications necessary.

static INTERFACE_ELEMENT* get_interface_element (HMESH2D* hmesh)
{
INTERFACE_ELEMENT* interface_element;

if (interface_free_list_first_entry){
/*
We have an interface_element in our free list. It was generated
somewhen in the past and freed afterwards. So we can use the
allocated memory again.

4 AN INTERFACE RECIPE 32

*/

interface_element
interface_free_list_first_entry
}
else {
/*
There is no interface_element in our free list, so we have to
generate a new one.

*/

interface_free_list_first_entry;
interface_element->next;

interface_element =
(INTERFACE_ELEMENT*)mem_alloc (sizeof (INTERFACE_ELEMENT)) ;

interface_element->next = NULL;

(MESH2D*)hmesh;

(double**)interface_element->point_coords;

int_alloc(MAX_NUMBER_OF _VERTICES_PER_ELEMENT) ;

mem_alloc (MAX_NUMBER_OF_VERTICES_PER_ELEMENT *
sizeof (VINHERIT));

interface_element—>mesh
interface_element->vertex
interface_element->vindex
interface_element->vinh

}

return interface_element;

}

free_interface_element()

If data stored in interface_element are no longer used, the INTERFACE_ELEMENT can be
appended to the free list. The routine does not need to be changed.

static void free_interface_element (INTERFACE_ELEMENT* interface_element)

{
interface_element->next = interface_free_list_first_entry;
interface_free_list_first_entry = interface_element;
return;

}

Let us emphasize that all free list entries contain useful initialized values which will be reused
in future requests.

fill interface_element_with_user_macro_element()

This routine fills an INTERFACE_ELEMENT with the data of a user macro element.

static void fill_interface_element_with_user_macro_element (
INTERFACE_ELEMENT* interface_element,
USER_MACRO_ELEMENT* user_macro,
MESH_ELEMENT_FLAGS flags)

int number_of_vertices = ...;
int i;

/* element2d-entries */

if (flags & hefVindex)
for (i=0;i<number_of_vertices;i++)
interface_element->vindex[i] = ...;

interface_element->eindex
interface_element->descr
interface_element->present
interface_element->user_data

(ELEMENT2D_DESCRIPTION*)...;
flags;
NULL;

/% helement2d-entries */

4 AN INTERFACE RECIPE 33

interface_element->parent = NULL;
interface_element->ref_rule e

/* interface_element-entries */
if (flags & hefVertex)
for (i=0;i<number_of_vertices;i++)

interface_element->point_coords[i] = ...;

interface_element->user_element = (USER_MACRO_ELEMENT*)user_macro;
interface_element->level = 0;

return;

The BISMESH version of it looks like:

static void fill_interface_element_with_user_macro_element (
INTERFACE_ELEMENT* interface_element,
BELEMENT_MACRO* belement_macro,
MESH_ELEMENT_FLAGS flags)

{
HMESH2D* hmesh = (HMESH2D*)interface_element->mesh;
BISMESH* bismesh = (BISMESH*)hmesh->user_data;
double norm = 0.0;
int number_of_vertices = 3;
int i;

/* element2d-entries */

for (i=0;i<number_of_vertices;i++)
interface_element->vindex[i] = belement_macro->node[i];

interface_element->descr = (ELEMENT2D_DESCRIPTION*)&helement_description;
interface_element->present = flags;
interface_element->user_data = NULL;

/% helement2d-entries */

interface_element->parent = NULL;

/* interface_element-entries */

for (i=0;i<number_of_vertices;i++)
interface_element->point_coords[i] =
bismesh->macro_coord[belement_macro->node[i]];

interface_element->belement = (BELEMENT*)belement_macro;
interface_element->level = 0;

for(i=0;i<3;i++){
interface_element->coord_of_new_node[i] =
0.5 * interface_element->point_coords[1][i] +

0.5 * interface_element->point_coords[2][il;
norm += interface_element->coord_of_new_node[i] *
interface_element->coord_of_new_node[i];
norm = g_sqrt(norm) / 0.5;

for(i=0;i<3;i++)
interface_element->coord_of_new_node[i] /= norm;

return;

At the bottom of the routine the coordinates of the new node are calculated. Here we have to
take the geometry of the mesh into account. In our example the mesh geometry is simply a
sphere with the radius 0.5.

4 AN INTERFACE RECIPE 34

fill_interface_element_with_user_child_element()

This routine serves the purpose of filling an INTERFACE_ELEMENT with
a mnon macro element. The necessary data either comes from the re-
spective user element or is derived from the parent INTERFACE_ELEMENT.

static void fill_interface_element_with_user_child_element (
INTERFACE_ELEMENT* interface_child_element,
INTERFACE_ELEMENT* interface_parent_element,
USER_ELEMENT * user_element,
MESH_ELEMENT_FLAGS flags)

int number_of_vertices = ...;
int i;

/* element2d-entries */

if (flags & hefVindex)
for (i=0;i<number_of_vertices;i++)
interface_element->vindex[i] = ...;

interface_element->eindex e
interface_element->descr = (ELEMENT2D_DESCRIPTION%)...;
interface_element->present = flags;
interface_element->user_data = NULL;

/% helement2d-entries */

interface_element->parent = (HELEMENT2D*)interface_parent_element;
if (flags & hefVinh)
for (i=0;i<number_of_vertices;i++)
interface_element->vinh[i] = ...;

interface_element->ref_rule = ...;
/* interface_element-entries */
if (flags & hefVertex)

for (i=0;i<number_of_vertices;i++)

interface_element->point_coords[i] = ...;

interface_element->user_element = user_element;
interface_element->level = ...;

return;

The necessary modifications in our example are listed below:

static void fill_interface_element_with_user_child_element (
INTERFACE_ELEMENT* interface_child_element,
INTERFACE_ELEMENT* interface_parent_element,
BELEMENT * belement,
MESH_ELEMENT_FLAGS flags)

double norm = 0.0;
int number_of_vertices = 3;
int i;

/* element2d-entries */

interface_child_element->vindex[0] =
interface_parent_element->belement->newnode;

if (belement == interface_parent_element->belement->child[0]1){
interface_child_element->vindex[1] =
interface_parent_element->vindex[2];
interface_child_element->vindex[2] =
interface_parent_element->vindex[0];
}
elsed{
interface_child_element->vindex[1] =
interface_parent_element->vindex[0];
interface_child_element->vindex[2] =
interface_parent_element->vindex[1];

4 AN INTERFACE RECIPE 35

interface_child_element->descr =
(ELEMENT2D_DESCRIPTION*)&helement_description;

interface_child_element->present flags;

interface_child_element->user_data NULL;

/% helement2d-entries */

interface_child_element->parent = (HELEMENT2D#)interface_parent_element;
if (flags & hefVinh){
if (belement == interface_parent_element->belement->child[0]){
for (i=0;i<number_of_vertices;i++)
interface_child_element->vinh[i] = inheritance_rule_in_child_0[i];
}
elseq{
for (i=0;i<number_of_vertices;i++)
interface_child_element->vinh[i] = inheritance_rule_in_child_1[i];
}
}

/* interface_element-entries */

if (belement == interface_parent_element->belement->child[0]){
interface_child_element->point_coords[0] =
interface_parent_element->coord_of_new_node;
interface_child_element->point_coords[1] =
interface_parent_element->point_coords[2];
interface_child_element->point_coords[2] =
interface_parent_element->point_coords[0];
}
else{
interface_child_element->point_coords[0] =
interface_parent_element->coord_of_new_node;
interface_child_element->point_coords[1] =
interface_parent_element->point_coords[0];
interface_child_element->point_coords[2] =
interface_parent_element->point_coords[1];

}

for(i=0;i<3;i++){
interface_child_element->coord_of_new_node[i] =
0.5 * interface_child_element->point_coords[1][i] +
0.5 * interface_child_element->point_coords[2][i];

norm += interface_child_element->coord_of_new_node[i] *
interface_child_element->coord_of_new_node[i];
}

norm = g_sqrt(norm) / 0.5;

for(i=0;i<3;i++)
interface_child_element->coord_of_new_node[i] /= norm;

interface_child_element->belement = belement;
interface_child_element->level = interface_parent_element->level + 1;
return;

}

Here like in fi11_interface_element_with_user_macro_element () we have chosen a sphere
geometry.

4.7 Helement Description

Remark: If you are only interested in the use of the standard GRAPE display methods on
HMESHes (as to depict function values, extract isolines resp. isosurfaces, clip objects) you

don’t have to support the routines in the structure HELEMENT_DESCRIPTION. (for these
methods the routines are not used at all)

element_world_to_coord()

For given world coordinates x = world[0], y = world[1] and z = world[2] the routine calculates
the coordinates in the local coordinate system of the element. The result is written into

4 AN INTERFACE RECIPE 36

coord[].The return value is identical to that from check_inside ().

static int element_world_to_coord (HELEMENT2D* helement,

doublex* world,
double* coord)
{
coord[0] = H
coord[1] = ...;
coord[2] = ...;

return(helement->descr->check_inside (helement,coord));

In our example we have only triangles as elements and this routine reads:

static int element_world_to_coord (HELEMENT2D* helement,

doublex* world,
double* coord)
{
double a[2]1[2];
VEC2 b,c;
int i,j;
ASSURE (helement,

"hmesh2d: triangle_world_to_coord: no element!",
return(0));

ASSURE (helement->vertex,
"hmesh2d: triangle_world_to_coord: no coordinates!",
return(0));

for(i=0;i<2;i++)
for (j=0;3j<2; j++)
a[jI[i] = helement->vertex[i][j] - helement->vertex[2]1[j];

for(j=0;3j<2; j++)
b[j] = world[j] - helement->vertex[2][j];

if (!g_solve2(a,b,c)){
fprintf (stderr,"hmesh2d-world-to-coord: point not in helement!\n");
return(-2);

}

coord[0] = c[0];

coord[1] = c[1];

coord[2] = 1.0 - c[0] - c[1] ;

return(helement->descr->check_inside (helement,coord));

element_coord_to_world()

For given coordinates in the local coordinate system x = coord[0], y = coord[1] and z = coord|2]

of an element the routine calculates the coordinates in world coordinates. The result is written
into world[].

static void element_coord_to_world (HELEMENT2D* helement,

double* coord,
double* world)
{
world[0] = ;
world[1] = ...;
world[2] = ...;
return;
}

For our case that translates to:

4 AN INTERFACE RECIPE

static void element_coord_to_world (HELEMENT2D* helement,

double* coord,
double* world)
{
int i,j;
ASSURE (helement,
"hmesh2d: triangle_coord_to_world: no element!",

return);
ASSURE (helement->vertex,
"hmesh2d: triangle_coord_to_world: no coordinates!",

return) ;

for(i=0;i<3;i++){
world[i] = coord[0] * helement->vertex[0][i];

for(j=1;3<3;j++)
world[i] += coord[j] * helement->vertex[jl1[il;
}

return;

helement_description_check_inside()

37

returns INSIDE (-1), if the point with local coordinates coord[] is inside of the element’s
parameter range. Otherwise, at least one plane of a local face separates the element and the

given point. In this case the local index of such a face is returned.

static int helement_description_check_inside (HELEMENT2D* helement,
doublex* coord)
{

return_index = ...;

return(return_index) ;

}

We could write it as:

static int helement_description_check_inside(HELEMENTQD* helement,

doublex* coord)
{
double minimum = -1.0E-5;
int return_index = -1;
int i;
ASSURE (helement,
"hmesh2d: helement_description_check_inside: no element!",

return) ;

for(i=0;i<3;i++){
if (coord[i] < minimum){
minimum = coord[il;
return_index = i;
}
}

return(return_index) ;

helement_description_neighbour()

Returns a pointer to the adjacent element of the element across the edge with the given number

at a point with local coordinates coord. After the call, coord contains the coordinates of

the point transformed to the neighbouring element’s local coordinate system. The structure

helement2d may be overwritten.

coord = NULL is possible, then one of the neighbouring elements across the face will be

returned.

4 AN INTERFACE RECIPE 38

flag :

EXACT_NEIGHBOUR -1 (coord has to be on the element boundary, then the neighbouring
element with the coord point as a boundary point is returned)

FIRST_NEIGHBOUR 0 (return the first neighbour on this face)

NEXT_NEIGHBOUR 1 (succesively returns the list of neighbours)

static HELEMENT2D* helement_description_neighbour(HELEMENTQD* helement,
int edge,
int flag,
doublex coord,
doublex* world,
MESH_ELEMENT_FLAGS flags)
{
INTERFACE_ELEMENT* interface_element;
USER_ELEMENT * user_element;
USER_ELEMENT* neighbour_element = NULL;
ASSURE (helement,
"hmesh2d: helement_description_neighbour: no element!",
return(NULL)) ;
interface_element = (INTERFACE_ELEMENT*)helement ;
user_element = interface_element->user_element;
e /* get the appropriate neighbour */
neighbour_element = ...; /% element, if possible. */
if (neighbour_element){
.3 /* fill interface_element with the */
. /* necessary data */
/* remark: in the hierarchical setting some data on an element are obtained
from the data on its parent element by inheritance;
so to fill the interface_element with the appropriate
neighbour_element data you have to supply the interface_element
belonging to neighbour_element->parent too.
*/
}
else{
e /% free the element */
}
return(helement) ;
}

helement_description_boundary()

Returns 0, if edge is an inner edge of the mesh, or a nonzero integer, if edge is part of the
mesh’s boundary.

static int helement_description_boundary (HELEMENT2D* helement,int edge)
{

INTERFACE_ELEMENT* interface_element;

USER_ELEMENT * user_element;

ASSURE (helement,
"hmesh2d: helement_description_boundary: no element!",
return(NULL)) ;

interface_element = (INTERFACE_ELEMENT*)helement;
user_element = interface_element->user_element;

A /% see if there is a neighbour across */
/* the edge */
if (/* neighbour exists */)
return 0;
else
return 1;

4 AN INTERFACE RECIPE

39

We modify this into:

static int helement_description_boundary (HELEMENT2D* helement,int edge)
{
ASSURE (helement,
"hmesh2d: helement_description_boundary: no element!",
return(NULL)) ;

if (helement_description_neighbour (helement,edge,NULL,NULL,NULL))
return O;

else
return 1;

helement_description_coord_of_parent()

Given a point in an element by its local coordinates this routine calculates the local coordinates

of this point in the parent element

static void helement_description_coord_of_parent (HELEMENT2D* helement,

double* coord,
double* parent_coord);
{
int i;
ASSURE (helement,
"hmesh2d: helement_description_coord_of_parent: no element!",

return(NULL)) ;

for(i=0;i<3;i++)
parent_coord[i] = ...;

return;

For our BISMESH consisting of triangles we can formulate this like:

static void helement_description_coord_of_parent(HELEMENTQD* helement,

double* coord,
doublex* parent_coord) ;
{
INTERFACE_ELEMENT* interface_element = (INTERFACE_ELEMENT*)helement;
BELEMENT * belement = interface_element->belement;

parent_coord[0] = coord[0];

if (belement->node[1] == belement->parent->newnode){
parent_coord[1] = .5 * coord[1];
parent_coord[2] = 1 - parent_coord[0] - parent_coord[1];

}

else{
parent_coord[2]
parent_coord[1]

}

return;

.5 % coord[2];
1 - parent_coord[0] - parent_coord[2];

4.8 Geometry Error Estimator

get_geometry_vertex_estimate()

This routine fills the array results with the error estimators of the vertices of the element.

static void get_geometry_vertex_estimate (HELEMENT2D* helement,
doublex results,
void* geometry_data)

4 AN INTERFACE RECIPE 40

int number_of_vertices = ...;
int i;

for (i=0;i<number_of_vertices;i++)
results[i] = ...;

return;

In our example we have a point based error estimator, which is calculated in a pre-roll step and
stored in the array geometry_data.
static void get_geometry_vertex_estimate(HELEMENTQD* helement,

doublex* results,

voidx geometry_data)

int number_of_vertices = 3;
int i;

for (i=0;i<number_of_vertices;i++)
results[i] = ((double*)geometry_data) [helement->vindex[il];

return;

get_geometry_element_estimate()

This routine returns the error estimator of the element.

static double get_geometry_element_estimate(HELEMENT2D* helement,
void* geometry_data)
{
return ...;

}

The element estimator we choose is defined as the vertex estimator of the new node.

static double get_geometry_element_estimate(HELEMENT2D* helement,
void* geometry_data)

{
BELEMENT* belement = ((INTERFACE_ELEMENT*)helement)->belement;

return ((double#*)geometry_data)[belement->newnode];

}

If different refinement rules with more new nodes on the next grid level are applied all these
nodal error indicators have to be taken into account.

4.9 Routines for Functions on hmeshes
get_new_fhdata()

In analogy to get_new_hmesh() this routine generates a f_hdata2d struc-

ture. GRAPE uses f_hdata2d structures to access data on a func-
tion on a hmesh2d-object. In the interface mask this looks like:

F_HDATA2D* get_new_fhdata(...)
{
F_HDATA2D* f_hdata2d = (F_HDATA2D#*)mem_alloc(sizeof (F_HDATA2D));

f_hdata2d->name
f_hdata2d->dimension_of_value
f_hdata2d->continuous_data
f_hdata2d->f
f_hdata2d->f_el_info

"name of function";
.
..; /* 0 or 1 %/
data_access_function;
local_information;

4 AN INTERFACE RECIPE 41

f_hdata2d->user_data

f_hdata2d->last /% if there are other */

f_hdata2d->next /* functions */
f_hdata2d->function_data A
f_hdata2d->get_bounds get_bounds;

f_hdata2d->get_vertex_estimate
f_hdata2d->get_element_estimate

get_function_vertex_estimate;
get_function_element_estimate;

f_hdata2d->threshold 0.0;
f_hdata2d->hp_threshold 0.0;
f_hdata2d->hp_maxlevel 0;

return f_hdata2d;

In the sample program it has been adapted to:

F_HDATA2D* get_new_fhdata(double* function_values,double* error_estimates)
{
F_HDATA2D* f_hdata2d = (F_HDATA2D#*)mem_alloc(sizeof (F_HDATA2D));
USER_FUNCTION_DATA* user_function_data;

user_function_data =
(USER_FUNCTION_DATA*)mem_alloc(sizeof (USER_FUNCTION_DATA));

user_function_data->function_values = function_values;
user_function_data->error_estimates = error_estimates;

f_hdata2d->name
f_hdata2d->dimension_of_value
f_hdata2d->continuous_data
f_hdata2d->f
f_hdata2d->f_el_info

"name of function";
1;

1; /% 0 or 1 x/
data_access_function;
local_information;

f_hdata2d->user_data NULL;

f_hdata2d->last NULL; /% if there are other */
f_hdata2d->next NULL; /% functions */
f_hdata2d->function_data (void*)user_function_data;
f_hdata2d->get_bounds get_bounds;

f_hdata2d->get_vertex_estimate
f_hdata2d->get_element_estimate

get_function_vertex_estimate;
get_function_element_estimate;

f_hdata2d->threshold 0.0;
f_hdata2d->hp_threshold 0.0;
f_hdata2d->hp_maxlevel 0;

return f_hdata2d;
}

Here USER_FUNCTION_DATA is defined as:

typedef struct user_function_data {
double* function_values;
double* error_estimates;

} USER_FUNCTION_DATA;

After creating the f_hdata2d structure, you have to fill the hmesh with:

hmesh->f_data = (GENMESH_FDATA*)f_hdata2d;

If you want to handle more than one function on the hmesh, you create several structures of
the type F_HDATA2D (function_1, function 2, ...) like above and add them to the hmesh by:

GRAPE (hmesh,"add-function") (&function_1);
GRAPE (hmesh,"add-function") (&function_2); ...

In our application we calculate the function values at the nodes and point based function
error estimates in advance and store them in the function_values and error_estimates
respectivly.

data_access_function()

The function specified by the pointer f_hdata2d->f is used to get the value(s) of
a function at a given point. As can been seen above f_hdata2d->f points to the
data_access_function(). The point for which the function value should be returned

4 AN INTERFACE RECIPE 42

is specified either by the element and local coordinates or by the element and a lo-
cal vertex index. The resulting function value is stored in the argument array result.

static void data_access_function (HELEMENT2D* helement,

int index,
double coord[],
double result[],
voidx* function_data)
{
if (coord){
e /% calculate the function value at local coord
coord[O0, .. ,max]
*/
}
else{
e /% calculate the function value at
x = helement->vertex[i][0],
y = helement->vertex[i][1],
z = helement->vertex[i][2].
*/
}
return;
}

As explained above we can access the nodal function values via the function_data argument.
If coord is not NULL we apply a linear interpolation scheme.

static void data_access_function(HELEMENT2D* helement,

int index,
double coord[],
double result[],
voidx* function_data)
{

doublex* function_values;

USER_FUNCTION_DATA* user_function_data;

int i;

(USER_FUNCTION_DATA%*)function_data;
user_function_data->function_values;

user_function_data
function_values

if (coord){
*result = 0.0;
for (i=0;i<3;i++)
*result += coord[i] * function_values[helement->vindex[il];
}
else
sresult = function_values[helement->vindex[index]];

return;

local_information()

This routine provides element-dependent information about the function. Currently only the
polynomial degree is supported.

static void local_information(HELEMENT2D* helement,
F_HEL_INF02D* result,
void* function_data)
{

result->polynomial_degree = ...;

return;

}

We choose to have only a piecewise linear function on our mesh so the polynomial degree is
always 1.

4 AN INTERFACE RECIPE 43

static void local_information(HELEMENT2D* helement,

{

F_HEL_INF02D* result,
void# function_data)

result->polynomial_degree = 1;

return;

}

4.9.1 get_bounds()

This routine calculates the maximum and the minimum of the function on an element. In the

mask we find:

static void get_bounds(HELEMENTQD* helement,

doublex* min,
doublex* max,
void# function_data)
{
*min = A
*max = ...;
return;
}

And we adapt this to our piecewise linear function:

static void get_bounds (HELEMENT2D* helement,

doublex* min,
doublex* max,
void* function_data)

USER_FUNCTION_DATA* user_function_data;

double*
int i;

user_function_data
function_values

*min =
*max = *min;

for(i=0;i<2;i++){

function_values;

(USER_FUNCTION_DATA*)function_data;
user_function_data->function_values;

function_values[helement->vindex[0]];

if (function_values[helement->vindex[i]] < *min)
*min = function_values[helement->vindex[i]];
if (function_values[helement->vindex[i]] > *max)
*max = function_values[helement->vindex[i]];

}

return;

get_function_vertex_estimate()

The handling of function error estimators is analogous to the treatment of the geome-
try error estimators. We have stored the precalculated point estimators in the structure
f_hdata2d->function_data. So this routine becomes:

static void get_function_vertex_estimate (HELEMENT2D* helement,

doublex results,
void* function_data)

USER_FUNCTION_DATA* user_function_data;

doublex*

error_estimates;

int number_of_vertices = 3;

int i;

user_function_data
error_estimates

(USER_FUNCTION_DATA*)function_data;
user_function_data->error_estimates;

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 44

for (i=0;i<number_of_vertices;i++)
results[i] = error_estimates[helement->vindex[i]];

return;

}

get_function_element_estimate()

Again we have basically the same code as in get_geometry_element_estimate.

static double get_function_element_estimate (HELEMENT2D* helement,
void# function_data)
{
USER_FUNCTION_DATA* user_function_data;
double* error_estimates;

user_function_data = (USER_FUNCTION_DATA*)function_data;
error_estimates = user_function_data->error_estimates;

return error_estimates[((INTERFACE_ELEMENT*)helement)->belement->newnode];

5 Fundamental Methods on Hierarchical Meshes

In this chapter the methods on procedural hierarchical interfaces as they are implemented in
the software environment GRAPE are discussed in detail. This documentation only represents
the current state of development. Continuously new methods are included in the library.

5.1 GenMesh
5.1.1 Memory Methods on GenMesh

(GENMESH *)GRAPE(GenMesh, ”new-instance”)(name)
CLASS *GenMesh char *name

This method creates a new instance of class GenMesh with name name by allocating the necessary
memory. The current_function-pointer of the created GenMesh is initialized and the zero-
function is set to be the actual function.

(GENMESH *)GRAPE(mesh, ”free”)()
GENMESH *mesh

This method frees the instance mesh by deleting the structures allocated by new-instance, that
means the GLIST *current_function, the list of functions in mesh—f_data and the instance
itself.

(GENMESH *)GRAPE(mesh, ”softcopy”)(copy)
GENMESH *mesh,*copy

Copies the instance mesh into copy by calling method on superclass and filling additional
structure-pointers and variables, in particular the function-selector and the list of functions are
copied. copy is returned.

(GENMESH *)GRAPE(mesh, ”get-object”)(obj,t)

GENMESH *mesh,*obj
double t

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 45

This method softcopies the instance mesh and its function-selector into the pointer obj and
sets the time of obj to t. This obj is returned.

(GENMESH *)GRAPE(mesh, ”copy-functions”)(copy)
GENMESH *mesh,*copy

This method hardcopies the f_data list of the instance mesh to copy. If there are already
some functions present in copy’s f_data-list, these are removed. The instance mesh is returned
completely unchanged.

(GENMESH *)GRAPE(mesh, ”copy-function-selector”)(copy)
GENMESH *mesh,*copy

The function-selector of instance copy is deleted and the one of instance mesh is copied com-
pletely to copy. The instance mesh is returned unchanged.

(GENMESH *)GRAPE(mesh, ”clear-function-selector”)()
GENMESH *mesh

This method clears every slot in the list current_function of instance mesh.

5.1.2 Other Methods on GenMesh

GRAPE(mesh, ”xdr”)(xdr)
XDR *xdr

This method implements XDR interface of GRAPE for the class GenMesh. To use the
read /write facilities of GRAPE, one has to overload this method.

(GLIST *)GRAPE(mesh, ”get-function-list”)()
GENMESH *mesh

The list f_data of instance mesh is copied into a GLIST * and this is returned. The method
recognizes eventual occurance of circular lists and corrects it.

(GENMESH FDATA *)GRAPE(mesh, ”get-function”)(create, preferred_ slot, next_slot, ..

least_slot, NULL)

GENMESH *mesh
char *create, *preferred_slot, *next_slot, *least_slot

This method fulfils two tasks: First a new slot is created with name given by the string create,
if this is not NULL and a slot with that name does not already exist. Second the slots of
mesh’s function selector given by the following parameter-strings are inspected one by one. If
a function has been selected for one of these slots, the data of this function is copied into the
return parameter.

(GENMESH *)GRAPE(mesh, ”select-function”)(slot,function)

GENMESH *mesh
char *slot,*function

*9

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 46

This method selects function for the given slot. If the slot does not exist, it is created.

mesh, ”get-info ist
GENMESH *)GRAPE h,” info”) (li

GENMESH *mesh
XLIST *list

Generates list with structure-dependent information of mesh like all GenMesh-entries and
names of all functions in mesh’s f_data-list.

(GENMESH *)GRAPE(mesh, ”get-access-mode”)(flags)

GENMESH *mesh
MESH_ACCESS_FLAGS *flags

This method gets the actual access_mode entry of instance mesh. Valid values are combinations
of predefined flags mafNone, mafSorted and mafBoundary. The result is returned in flags.

(GENMESH *)GRAPE(mesh, ”set-access-mode”)(flags)

GENMESH *mesh
MESH_ACCESS_FLAGS *flags

This method sets the parameter flags as actual access_mode entry of instance mesh. Valid
values are combinations of predefined flags mafNone, mafSorted and mafBoundary.

(GENMESH *)GRAPE(mesh, ”get-picked-point”)(element,coord,point,key)

GENMESH *mesh
void **element
double *coord
VEC3 *point

int *key

This method allows picking a point either directly in the output-window by clicking left mouse-
button or pressing 'p’ while pointing on the output-window. In this case a layer for entering
the point’s coordinates pops up. This point is then searched in the given mesh by calling the
appropriate search-method. All parameters are return-parameters: point contains the world-
coordinates of the picked point, key contains 1001 if left mouse-button was pressed, 1002 or
1003 for other mouse-buttons and ’p’ if this key was pressed. The element that contains the
picked point and its local coordinates are returned in element and coord.

5.2 Mesh2d
5.2.1 Memory Methods on Mesh2d

(MESH2D *)GRAPE(Mesh2d, ”new-instance”)(name)

CLASS *Mesh2d
char *name

This method creates a new instance of class Mesh2d with name name and allocates the necessary
memory.

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 47

(MESH2D *)GRAPE(mesh, ”free”)()
MESH2D *mesh

Just calls identical method on superclass GenMesh.

(MESH2D *)GRAPE(mesh, ”softcopy”)(copy)
MESH2D *mesh,*copy

Copies the instance mesh into copy by calling the method on the superclass and additionally
fills structure-pointers in copy, copy is returned.

(MESH2D *)GRAPE(mesh, ”add-function”)(f_data)
MESH2D *mesh
F_DATA2D *f data

Adds the function given by f_data by copying and inserting it as first entry in the linked list
given by mesh—f _data. Finally the function-selector is updated.
(MESH2D *)GRAPE(mesh, ”remove-function”)(name)

MESH2D *mesh

char *name

This method frees the first entry of the linked list mesh—f_data which corresponds to the given
string name. The function-selector is updated afterwards.

5.2.2 Display Methods on Mesh2d

(MESH2D *)GRAPE(mesh, ”display”)()
MESH2D *mesh

The Mesh2d instance mesh is rendered on the standard device in a default manner. In patch
and texture mode the elements are displayed as flat shaded patches, in grid mode the edges of
the elements are drawn.

(MESH2D *)GRAPE(mesh, ”isoline”)(select, highscal, colorbar)
(MESH2D *)GRAPE(mesh, ”isoline-disp”)()

(MESH2D *)GRAPE(mesh, ”isoline-select-disp”)()

MESH2D *mesh

int select

double highscal
COLORBARY¥* colorbar

These two display-methods draw isolines and iso-patches on the mesh. For having nearly the
same functionality the drawing is done in both cases by one method "isolines" just dif-
fering in the flag select: select=0 means call from "isoline-disp", select=1 indicates
call from "isoline-select-disp". In grid-mode "isoline-disp" draws equidistant isolines
with respect to the colorbar, that means line-distance, colors and min/max-values are taken

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 48

from colorbar. "isoline-select" just draws selected isolines. In patch-mode iso-patches are
drawn, the select-display version additionally draws the selected lines. Texture mode offers the
same functionality as the HMesh2d-version, see 5.3.2 for details. All modes additionally allow
to extrude the mesh in z-direction according to the function-values. By this a simultaneous
function-graph /isoline-display can be obtained.

(MESH2D *)GRAPE(mesh, ”vect”)(double length, double width, double dist,
double color_scal, double offset_scal, double min, double max)

(MESH2D *)GRAPE(mesh, ”vect-disp”)()
MESH2D *mesh

These methods offer the same functionality as the Fe2d-analogon.

(MESH2D *)GRAPE(mesh, ”function-graph-disp”)()
MESH2D *mesh

This method draws the instance mesh not as a plain mesh but the nodal z-coordinates are
shifted by a multiple of the nodal function-values. The factor of this multiple can be changed
in the options-layer for this display-method.
(MESH2D *)GRAPE(mesh, ”"geometry-graph-disp”)()

MESH2D *mesh

Similar to the "isoline-disp" method, this method also draws isolines/iso-patches on the
mesh. Instead of corresponding to the current function, these isolines belong to the z-coordinate-
function of the mesh. Thus real geometry-isolines are drawn. This method is faster than using
the function-selector and choosing the function z-coordinate, which gives the same result.

(MESH2D *)GRAPE(mesh, ”shrink-disp”)()
MESH2D *mesh

Similar to the standard display-method this one draws each element by a shrinked patch or
shrinked polygon depending on the grid-patch mode. The shrink-factor can be changed by a
corresponding ruler.

5.2.3 Other Methods on Mesh2d

GRAPE(mesh, ”xdr”)(xdr)
XDR #xdr

This method implements XDR interface of GRAPE for the class Mesh2d. Of course neither
function pointers nor the underlying user data can be handled, but all scalar values are con-
verted, so it is an abstract method. To use the read/write facilities of GRAPE, one has to
overload this method.

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 49

(MESH2D *)GRAPE(mesh, ”get-info”)(list)

MESH2D *mesh
XLIST *list

Fills 1ist with structure-dependent information-strings. Actually it calls "GenMesh-get-info"
and adds the information mesh—dimension_of _world.

(GLIST *)GRAPE(mesh, ”get-function-list”)()
MESH2D *mesh

Generates list of functions including default-functions.

(MESH2D *)GRAPE(mesh, ”get-min-max”)(pmin,pmax)

MESH2D *mesh
double *pmin,pmax

Evaluates the current data-function in all nodes of the mesh and determines the extremal values
of these.

(MESH2D *)GRAPE(mesh, ”value-min-max-send”)()
MESH2D *mesh

This method calls "get-min-max" and prints the values to stdout.

(MESH2D *)GRAPE(mesh, ”get-bnd-box”)(xmin,xmax,ymin,ymax,zmin,zmax)

MESH2D *mesh
double *xmin,*xmax,*ymin,*ymax,*zmin,*zmax

Determines the bounding-box of the instance mesh and returns it by its extremal coordinates.

(MESH2D *)GRAPE(mesh, ”search”)(v,c,el)

MESH2D *mesh
VEC3 v

double *c
ELEMENT2D **el

This method searches within a mesh for a given point with world-coordinates v. The search
applies neighbourhood-relationship if this is provided by an element—descr—neighbour func-
tion. Otherwise it uses straightforward mesh-traversal. If successful, the method returns in el
the element which contains the given point and in ¢ the local coordinates of this point. The
pointer ¢ has to be allocated with enough memory before calling the method. If the search
failed, el will be NULL.

(MESH2D *)GRAPE(mesh, ”find-pick-intersec”)(v,u,w,el,c)
MESH2D *mesh
VEC3 v
double u,w

ELEMENT2D **el
double *c

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES a0

For a mesh with dimension_of world equal 2 this method determines for given screen-
coordinates u,w which point on the mesh is hit by these pick-coordinates. The world coordinates
of this point are returned in v, the element which contains this point and its local-coordinates
are returned in el and c.

5.3 HMesh2d
5.3.1 Memory Methods on HMesh2d

(HMESH2D *)GRAPE(HMesh2d, ”new-instance”)(name)
CLASS *HMesh2d char *name

This method creates a new instance of class HMesh2d with name name and allocates the necessary
memory. The function pointers first_element and next_element are set to default procedures.

(MESH2D *)GRAPE(hmesh, ”softcopy”)(copy)
HMESH2D *hmesh,*copy

Copies the instance hmesh by calling the method on the superclass Mesh2d and fills additional
structure-pointers in copy. copy is returned.

(HMESH2D *)GRAPE(hmesh, ”add-function”)(f_hdata)
HMESH2D *hmesh
F_HDATA2D *f _hdata

Adds the function given by f_hdata by copying and inserting it as first entry in the linked list
given by hmesh—f_data. Finally the function-selector is updated.
(HMESH2D *)GRAPE(hmesh, "remove-function”)(name)

HMESH2D *hmesh

char *name

This method frees the first entry of the linked list hmesh—f_data which corresponds to the
given string name. The function-selector is updated afterwards.
(HMESH2D *)GRAPE(hmesh, ”get-object”)(obj,t)

HMESH2D *hmesh,*obj

double t

This method returns the instance hmesh at time t. This happens by softcopying hmesh and its
function-selector to the pointer obj, setting obj’s time to t and returning obj. If obj already
is filled, its level of interest and threshold are kept. (To be precise: hmesh’s parameters
are set to these values.)

(HMESH2D *)GRAPE(hmesh, ”hmesh-interactive-send”)()
HMESH2D *hmesh

This method sets up the project uif-hm2, see 5.4.

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 51

(HMESH2D *)GRAPE(hmesh, ”calc-lenstimators”)(lens)

HMESH2D *hmesh
HMESH2D LENS *lens

This method calculates lens-estimators for all nodes of the hmesh up to the leaf-level and
returning them in lens—1lens_data. The calculation of the estimators is based on the distance
of parent-nodes to child-nodes. These estimators are saturated by a blow-up procedure assuring
that estimators of nodes of an element are bigger than all nodes of the elements’s children. It
is necessary that elements have access to their global vertex-indices in vindex. If this is not
the case all estimators are set to zero.

5.3.2 Display Methods on HMesh2d

All display-methods on HMeshes offer the possibility of adaptive visualization with regard to
various thresholds and error estimates which have to be provided by the user in a prescribed
way or can also for example in case of lens-estimators be calculated by default-routines. See
the example-HMesh-interfaces for further details. Without any error-estimates the HMesh
is always drawn up to the level given by its level_of_interest entry, whereas with error-
estimates some elements may be extracted on a higher hierarchy-level without losing essential
detail-information but gaining a speedup because of this partial inspection of the mesh.

(HMESH2D *)GRAPE (hmesh, ”display”)()
HMESH2D *hmesh

The HMesh2d instance hmesh is rendered on the standard device in a default manner. In patch
and texture mode the elements are displayed as flat shaded patches, in grid mode the edges of
the elements are drawn. If geometry-estimators or lens-estimators are provided, these are used
for adaptive visualization. An options-layer allows to activate/deactivate the lens-adaptivity.

(HMESH2D *)GRAPE(hmesh, ”vect-disp”)()
HMESH2D *hmesh

This method draws a 2d or 3d vector-valued function as arrow-field on the mesh. The mesh
is drawn in a default manner, the arrows as flat arrows in 3d-space starting from points of a
virtual equidistant grid put on the instance hmesh.

The options-layer shown in Figure 4 allows changing diplay-parameters.

The ruler distance determines the z-shift of all arrows, the mesh-width is the distance between
the arrows. Length gives a scale-factor which is applied to each function-value-vector. If the
resulting length is bigger than the value max length, the vector is shortened to this value. If
lens-estimators are provided, a lens can be activated/deactivated and a final ruler called lens
factor allows to enlargen the mesh-width automatically in case of activated lens. An example
is shown in figure 5.

(HMESH2D *)GRAPE (hmesh, ”rgb-disp”)()
HMESH2D *hmesh

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 52

hmesh2d- vect
Activate Lens

I N (i stance | 0.0001
| msh-wdth\ | 0.1
N max Tength | tes2 |
- length /T

_|IN Tens factor o

Figure 4: Options Layer for HMesh2d-vect-disp

Figure 5: example of "vect-disp"

This method draws vector-valued functions encoding the data in rgb-space. This is done by
cutting the function-vectors componentwise to the unit-interval and taking these values as rgb-
vector. Every element is patched with these colors in its vertices. A lens is automatically
initialized based on the estimates generated by the method "calc-lenstimators". Grid-mode
is not supported. An example is shown in Figure 6.

Figure 6: Example of "rgb-disp"

(HMESH2D *)GRAPE(hmesh, ”shrink-disp”)()
HMESH2D *hmesh

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 93

Similar to the standard display-method this one draws each element by a shrinked patch or
shrinked polygon depending on grid-patch mode. The shrink-factor can be changed by a
corresponding ruler. Additional a lens can be activated/deactivated. An example is shown in
Figure 7.

q
1%@%54
fiiid
i
Qoo
MK
R
s
P
0

Figure 7: example of "shrink-disp"

(HMESH2D *)GRAPE(hmesh, ”geometry-graph-disp”)()
HMESH2D *hmesh

Similar to the "isoline-disp" method, this method also draws isolines/isopatches on the
hmesh. Instead of corresponding to the current function, these isolines belong to the z-
coordinate-function of the hmesh. Thus real geometry-isolines are drawn. This method is
faster than using the function-selector and choosing the function z-coordinate, which gives the
same result. With the options-layer shown in Figure 8 a lens can be activated/deactivated, the
display can be switched to a projection on the x/y-plane and the colorbar can be accessed. An
example is shown in Figure 9.

hmesh2d- geonet ry- ar aph

Activate Lens Project to x-y-Pl ane]

modi fy col or shading and isolines |

Figure 8: Options Layer for HMesh2d-geometry-graph-disp

(HMESH2D *)GRAPE(hmesh, ”function-graph-disp”)()
HMESH2D *hmesh

This method draws the instance hmesh not as a plain mesh but the nodal z-coordinates are
shifted by a multiple of the nodal function-values. The factor of this multiple can be changed
as graph-height in the options-layer for this display-method shown in figure 10. A lens can

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 54

Figure 9: example of "geometry-graph-disp"

be activated/deactivated if lens-estimators are supported in the instance hmesh. An example
is shown in figure 11.

hnesh2d- f unct i on- gr aph
Activate Lens

= graph-height N |1 |

Figure 10: Options Layer for HMesh2d-geometry-graph-disp

Figure 11: example of "function-graph-disp"

(HMESH2D *)GRAPE (hmesh, ”isoline-disp”)()
(HMESH2D *)GRAPE(hmesh, ”isoline-select-disp”)()
HMESH2D *hmesh

These two display-methods draw isolines and iso-patches on the mesh. In grid-mode
"isoline-disp" draws equidistant isolines with respect to the actual colorbar, that means

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 35

line-distance, colors and min/max-values are taken from the colorbar. "isoline-select-disp"
just draws selected isolines. In patch-mode iso-patches are drawn, the select-display version ad-
ditionally draws the selected lines. The following figure shows the options-layer for this method
in texture mode. In other modes some buttons/rulers are hidden, if they are not used. In

hmesh2d-i sol | ne
Activate Lens | Modus || hn disp
Texture vith Li ght model I

|7\ Texel per Pixel 0
| p-Geg A
[& raph-heignt .\ |1

modi fy col or shading and isolines

Figure 12: Options Layer for HMesh2d-isoline-disp

texture-mode the surface of the mesh is patched with textures which are able to react on light-
sources. This ability can be activated/deactivated by the button Texture with lightmodel.
The button modus activates/deactivates the ruler graph-height and an additional extruding
of the mesh in z-direction according to a multiple of the nodal function-values, the factor given
by graph-height. The button hp disp activates the remaining two rulers Texel per Pixel
and p-deg. This mode draws higher polynomial textures on each element. The polynomial
degree and resolution of the textures are determined by these rulers. An example of this
display-method is shown in Figure 13.

Figure 13: example of "isoline-disp"

(HMESH2D *)GRAPE (hmesh, ”debug-disp”)()
HMESH2D *hmesh

This method is a debug-tool for hmesh-interfaces. It displays the hmesh like the shrink-method
and the element’s boundaries by blue lines. Therefore the shrink-options-layer is shown. The

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 96

traversal-functions of the hmesh-interface can now be called by pressing the corresponding
buttons of the options-layer for this method shown in Figure 14.

hmesh2d- debug
| show nesh show functi on val ues |
show i ndeces || show coord’s |
first macro next macro
first child next child
first el enent next el ement
A Tevel scale o N

Figure 14: Options Layer for HMesh2d-debug-disp

The resulting element and its parents-path to a macro-element is highlighted by white bound-
aries. Child-elements are shifted from their parents in z-direction according to the value of the
ruler level-scale. Additional information is shown for the actual element by activating one
of the buttons show indices, show coord’s or show function-values. The drawing of the
mesh can be enabled/disabled by the button show mesh. An example is shown in Figure 15.

Figure 15: example of "debug-disp"

5.3.3 Other Methods on HMesh2d

GRAPE(hmesh, ”xdr”)(xdr)
XDR *xdr

This method implements XDR interface of GRAPE for the class HMesh2d. Of course neither
function pointers nor the underlying user data can be handled, but all scalar values are con-
verted, so it is an abstract method. To use the read/write facilities of GRAPE, one has to
overload this method.

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 57

(HMESH2D *)GRAPE(hmesh, ”get-bnd-box”)(xmin, xmax, ymin, ymax, zmin, zmax)

HMESH2D *hmesh
double *xmin,*xmax,*ymin,*ymax,*zmin,*zmax

Determines the bounding-box of the instance mesh and returns it by its extremal coordinates.
This method is faster than the Mesh2d-version because only macro-elements have to be in-
spected.

(HMESH2D *)GRAPE (hmesh, ”search”)(v, ¢, el)

HMESH2D *hmesh
VEC3 v

double *c
HELEMENT2D **e]

This method searches within the hmesh for a given point with world-coordinates v. If el is
not NULL local search is performed starting at the element el. This means walking up in the
hierarchy until an element is found, which contains v, and then walking down to the wanted
element. If el is NULL at the beginning, hierarchical search is applied by walking over the
macro-elements and then walking down the hierarchy.

If successful, the method returns in el the element on level level_of_interest which con-
tains the given point v, and in ¢ the local coordinates of this point. The pointer varc has to
be allocated with enough memory before calling the method. If the search failed, el will
be NULL. The search relies on the HMesh2d-method "select_child". On one hand this
means that this pointer has to be filled in the interface at least with the default-method
"g_hmesh2d_def_select_child". On the other hand it implies that implementing this method
efficiently is a possibility of speeding up the search.

(HMESH2D *)GRAPE(hmesh, ”find-pick-intersec”)(v,u,w,el,c)

HMESH2D *hmesh
VEC3 v

double u,w
HELEMENT2D **el
double *c

For hmesh with dimension_of world equal 2 this method determines for given screen-
coordinates u,w which point on the mesh is hit by these pick-coordinates. The world coor-
dinates of this point are returned in v, the element on level mesh—1level_of_interest which
contains this point and its local-coordinates are returned in el and c. The only difference to
the Mesh2d-version is the use of improved hierarchical searching.

5.4 Projects for Meshes

All meshes can be accessed interactively by the projects wif-gm, uif-hm2 and wif-hm3. The first
of these projects generates an options layer as in Figure 16. It is an interface for the function-
selector of the mesh. The leftmost button pops up a menu to select the slot, according to this
the selected function automatically is displayed on the right button. This button also allows

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 98

H\esh3d: "hexa"
def aul t | hexa | |

Figure 16: Layer for Project uif-gm

to change the selected function for the given slot by pressing it. The list of possible choices
popping up after pressing contains the user-defined ones and additional some default-functions
like coordinate-functions.

The project wuif-hm2 generates the same layer, but additional a second one to change the
entries of a HMesh2d instance like level-of-interest and various threshold-values like
geometry-threshold, threshold and hp-threshold for adaptive visualization with regard
to the geometry, the function-values and polynomial-degree. This layer is shown in Figure 17.

Hvesh2d: "name of hnesh"

H I\ threshold [

E geomet ry-t hreshol d

B Tevel of igerest |
H N o threshold >
E I toomx subdiv ekl |

Figure 17: Additional Layer for Project uif-hm2

O O | O O

5.5 Methods on other classes related to meshes

(HMESH2D LENS *)GRAPE(lens, ”get-lens”)(name)

HMESH2D_LENS *lens
char *name

This method creates a new instance of Class Hmesh2d Lens with name given as parameter
name and initializes it with default values. In particular the estimators and thresholds are set
to default-functions. The lens is assigned to an own interactive layer which allows to manipulate
the lens-parameters.

(HMESH2D LENS *)GRAPE(lens, ”display”)()
HMESH2D _LENS *lens

This method draws an icosaeder related to the parameters of the lens as a wire-frame-model.
The center is the entry coord of the instance lens. The radius is a convex-combination de-
pending on show_threshold between the inner and outer region of the mesh.

(MESH2D *)GRAPE(sc, ”convert-to-mesh-send”)()
SCENE *sc

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 99

This method tries to convert the instance sc—object to one of class Mesh2d. If successful,
this new instance is taken as sc’s object. The old structure is still accessible via the created
mesh’s user_data pointer.

(MESH2D *)GRAPE(tr, ”convert-to-mesh2d”)()
TRIANG2D *tr
This method generates a Mesh2d instance based on the data of tr. Especially the original

Triang2d structure remains unchanged and is accessible from the returned mesh via its
user_data pointer. The resulting mesh carries no functions.

(MESH2D *)GRAPE(fe, ”convert-to-mesh2d”)()
FE2D *fe

This method generates a Mesh2d instance based on the data of fe. Especially the original
Fe2d structure remains unchanged and is accessible from the returned mesh via its user_data
pointer.

5.6 HMesh3d

5.6.1 Memory Methods on HMesh3d

(HMESH3D *)GRAPE(HMesh3d, ”new-instance”)(name)
CLASS *HMesh3d char *name
This method creates a new instance of class HMesh3d with name "name” and allocates the

necessary memory. The function pointers first_element and next_element are set to default
procedures.

GRAPE (hmesh, ”free”)()
HMESH3D *hmesh;

The associated memory of the instance variables is freed and the instance is deleted.

GRAPE(hmesh, ”softcopy”)(copy)
HMESH3D *hmesh;
HMESH3D *copy;

Make a softcopy of a HMesh3d instance. If copy is not NULL then this instance is used to store
the copy otherwise a new HMesh3d instance is created.

(HMESH3D *)GRAPE(hmesh, ”add-function”)(f_hdata)

HMESH3D *hmesh
F_HDATA3D *f _hdata

Adds the function given by f_hdata by copying and inserting it as first entry in the linked list
given by hmesh—f_data. Finally the function-selector is updated.

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 60

(HMESH3D *)GRAPE(hmesh, "remove-function”)(name)
HMESH3D *hmesh
char *name

This method frees the first entry of the linked list hmesh—f_data which corresponds to the
given string name. The function-selector is updated afterwards.

Figure 18: Adaptive visualization of the boundary of a domain.

(HMESH3D *)GRAPE(hmesh, ”get-object”)(obj,t)

HMESH3D *hmesh,*obj
double t

This method returns the instance hmesh at time t. This happens by softcopying hmesh and its
function-selector to the pointer obj, setting obj’s time to t and returning obj. If obj already
is filled, its level of interest and threshold are kept. (To be precise: hmesh’s parameters
are set to these values.)

5.6.2 Display Methods on HMesh3d

All display-methods on HMeshes offer the possibility of adaptive visualization with regard to
various thresholds and error estimates which have to be provided by the user in a prescribed
way or can be calculated by default-routines. See the example-HMesh-interfaces for further
details. Without any error-estimates the HMesh is always drawn up to the level given by its
level of _interest entry, whereas with error-estimates some elements may be extracted on a
higher hierarchy-level without losing essential detail-information but gaining a speedup because
of this partial inspection of the mesh.

(HMESH3D *)GRAPE (hmesh, ”display”)()
HMESH3D *hmesh

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 61

The HMesh3d instance hmesh is rendered on the standard device in a default manner. All the
boundary faces of the elements are displayed as flat shaded patches in patch mode and in grid
mode the edges of these faces are drawn. If boundary-estimators are provided, these are used
for adaptive visualization.

9] [T

Figure 19: Colorshading on a slice.

(HMESH3D *)GRAPE(hmesh, *clip”) (£, var, draw_clip, scal)
GRAPE (mesh, ”clip-ball-disp”)()

GRAPE (mesh, ”clip-plane-disp”)()

GRAPE (mesh, ”clip-deg-fine-disp”)()

GRAPE (mesh, ”clip-isoline-disp”)()

GRAPE (mesh, ”clip-vect-disp”)()

HMESH3D *hmesh

MESH3D *mesh

double (*f)(VEC3 x,void *var)
void *var

int (*draw _clip)(CLIPM3D _PAR)
void *scal

These methods are designed to support general clipping facilities with varying hyper surface
and local rendering function. The most basic method with the greatest flexibility is the method
"clip”. The others are special predefined interactive methods derived from the latter one. The
domain of the mesh is split by the implicitly given clipping function finto a visible (f > 0)
and an invisible (f < 0) part. The zero level of this clipping function defines the intersection
surface. The method "clip” on HMesh3d supports hierarchical search algorithms for extracting
the intersection surface and uses adaptive resolution strategies, if the error estimator of the
underlying function data is supplied.

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 62

The variable var in the parameter list of the method call and of this function f must be of the
same type. The parameter *var allows an interactive varying of the clipping function. The
implicit functions describing a plane or a ball are predefined:

typedef struct MPLANE_PARM = { double n_z, n_y, n_z, distance;};
double mplane(VECS x, MPLANE_PARM *var)

typedef struct MBALL_PARM = { double cx,cy,cz,radius;};

double mball(VEC3 x, MBALL_PARM *var)

The pointer draw_clip points to a function which renders the surface of intersection on a single
element. This function works on the data corresponding to one single clipped element. A NIL
pointer causes the standard visualization of the surfaces including normal shading.

There are some predefined local rendering functions:

e draw_clipm_isoline: generates an isoline image of a one dimensional FEM function or
of the absolute value of a vector-valued function.

e draw_clipm_deg_fine: shows the size of each clipped element in colour.

e draw_clipm_vect: draws a mesh of vector valued function values projected onto the tan-
gent plane of the intersection surface, where the colour represents the component normal
the tangent plane (only applicable if the function is three dimensional).

misol i ne-parm
nodi fy col or shading and isolines |

H_ I oraph height Jo |

Figure 20: Interactive layer of the ”clip-isoline-disp” method.

” » ”

The interactive methods ”clip-isoline-disp”, ” clip-deg-fine-disp”, ” clip-vect-disp” use these rou-
tines while calling the standard clipping method "clip”. Figure 20 shows the interactive layer
of the "clip-isoline-disp” method. With the rulers "normal x/y/z” the normal of a clipping
plane is chosen, whereas the ”"distance” ruler adjusts the plane to the desired position. The
ruler "graph height” gives a scaled height to the graph of the displayed isolines. Finally the
"clolorbar” interface can be used to adjust the colours of the isolines to the given function
values.

To construct a new private rendering method working on the surface of intersection, the user
can add new clipping methods by using other and different surfaces or by adding new local
rendering functions. Therefore we now explain the parameter structure for the local rendering
function draw_clip. The general ’clip” method calls this function in the following way:

draw _clip((CLIPM3D_PAR *clip3d_par)
The structure clip3d_par with the following typedef is filled by the general ”clip” method.

typedef struct clipm3d_par
{ ELEMENT3D *e;

int n;

VEC3 x*v;

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 63

double *coord;

double (*f)();

void *var;

void *scal;

int flag ;

int dimension_of_value;
} CLIPM3D_PAR;

This structure describes the intersection of the hyper surface with a single element. The filled
structure is delivered by the actual method "clip”. The variable e points to the intersected
element and n gives the number of intersection points of one connected intersection patch. The
array v[0---n — 1][0- - 2] contains the global Euclidean coordinates of these points. They are
located on edges of the element’s boundary at a linearly interpolated intersection position. In
all the listed interactive methods a plane is used as the clipping function. coord is a pointer to
a list of the local coordinates of the intersection points , which are stored in global coordinates
in v. In this 1D array the i’th coordinate vector starts at position (coord + i x d) where d
is the dimension of coordinate space on the current element. The pointer var points to the
parameters of the function describing the intersecting hyper surface. At the memory address
scal the function draw_clip finds a user defined structure filled with parameters for the specific
rendering style. These parameters can be influenced interactively, if the user supports this in
an appropriate interactive method (see also the GRAPE reference manual).

Figure 21: Adaptive visualization of an iso—surface.

(HMESH3D *)GRAPE(hmesh, ”level”)(func, lev, mode)

GRAPE (mesh, ”level-disp”)()

HMESH3D *hmesh

MESH3D *mesh

void (*func)(ELEMENT3D *el, int, double *coord, double *val, void *func-
tion_data)

double lev

int mode

The slices of those elements where the one-dimensional finite element function func has the
level lev are calculated and displayed. The parameters of func are equal to those used for a

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 64

one dimensional FEM function on a HMesh3d instance: f(HELEMENTSD *el, double *coord,
double *val, void *function_data). If func is NULL and hmesh includes a function then this
finite element function is taken into account. If its dimension of value is greater than 1 the
absolute value of the value vector defines the function under consideration. The resulting 2D
level surface consists of a polygonal approximation. If "mode = 1” or "mode = -1” the super
or sub volumes of the function on the volume geometry are shown.

HVesh3d- | evel
[TTat shaded | mollifyif smoth |
statistics | Tevel stat___|
[do post-process | post-processing |

< | A\ Tevel | 318234

Figure 22: Interactive layer and ruler of the ”level-disp” method.

The method ”level-disp” calls the method ”level” with the standard finite element function and
inserts a ruler (cf. Figure 22) into the options menu to adjust the value "lev” interactively.
The method "level” on HMesh3d supports hierarchical and adaptive search algorithms, if the
error estimators of the underlying function data is supplied. Furthermore an interactive layer
with the following buttons is added:

e flat shaded Turns on/off the flat shading mode.

e mollify if smooth If the flat shading mode is turned off the extracted grid of the isosurface
is smoothed by an mollify algorithm.

e statistics Prints the threshold value and the number of actually rendered elements into
the graphic window. Three rulers to adjust the position of the information in the graphic
window appear.

e level stat Writes some information about the hierarchical and adaptive extraction of the
isosurface onto the standard output.

e do post-process Calls the routine ”g PostProcessCurrSurfMesh” if ”"flat shaded” is
turned off. If this routine is selected the extracted surface mesh is smoothed and small
cracks in the surface are closed. Such cracks may occure in the case of hexahedrons, where
data is interpolated trilinear.

e post-processing Calls the method ”post-processing-send”, which is described below.

(HMESH3D *)GRAPE(hmesh, ”post-processing-send”)()
HMESH3D *hmesh

The method ”post-processing-send” inserts a post processing layer into the options menu,
which enables the user to activate one or more cutting planes, which cut off certain areas of
the isosurface (cf. Figure 23). In detail there is the following functionality:

e edit Inserts the interfaces of the actual cutting planes.

e add plane Adds a cutting plane. An interface to adjust the position of the plane appears.

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 65

i Sosurf act :Il
edi t

add plane |
reset |

di sm ss |

Figure 23: The interface inserted by the method ”post-processing-send”.

e reset Resets to a default status.

e dismiss Closes the interactive interface.

GRAPE (hmesh,”shrink-disp”)()
HMESH3D* hmesh

This method draws all elements of the mesh shrinked by a factor which can be changed by
the corresponding ruler. The elements are drawn as a grid or as patches depending on the
grid-patch mode. The method uses the threshold and get_element_estimate of the meshs
f _data to determine whether it displays elements on a coarser level.

(HMESH3D*) GRAPE(hmesh,”inspect-disp”)()
HMESH3D* hmesh

The "inspect-disp" method works similar to its twodimensional pendant. It displays the
complete mesh with shrinked elements (as grid or as patches) and a grid of the boundary-faces
of the mesh using blue lines. It is possible to traverse the mesh hierarchically via the buttons
of the group select element to inspect.

Inspect features two different traversal modes, which can be selected via the use function
threshold button: When the checkbox is turned off, the user can traverse the whole hierarchical
mesh and the grid is displayed on the level of the current element. When turned on, the
threshold of f_data and the current level of_interest select the subtree which can be
traversed and is displayed. The boundary error estimator is used to draw the blue boundary
grid.

The current element is always highlighted in red. Additional debugging-information can be
shown in the graphic window or in the shell: Boundary faces can be marked with orange color
and global vertex indices can be shown in the graphics window. It is also possible to print some
information about the current element and the function on it to stderr.

5.6.3 Boundary Display Methods on HMesh3d

GRAPE(hmesh, ”bnd-isoline-disp”)()

GRAPE(mesh, ”bnd-isoline-select-disp”)()
HMESH3D *hmesh

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 66

hnesh3d- i nspect
sel ect el ement to inspect
first mero | next mcro |
first child | next child |
par ent | noelemnt |

graphi ¢ out put
| show mesh || showelenents |

show boundary faces | show i ndi ces |

shel | out put

vertex coor di nates function val ues
funct. error est. | geom error est. |
parent informtion | element type ||

use function threshold |
| shrink-factor inspect [0.9 |

Figure 24: The options layer for inspect-disp.

Figure 25: An example of inspect-disp.

These methods produce an isoline image of a one dimensional FEM function (or of the absolute
value of a vector valued function) at the boundary of the HMesh3d-Instance. The method
bnd-isoline-select-disp displays only those isolines whose values are stored in the array colorbar—
>walues. This method also supports the texture mode of GRAPE making it possible to use a
light model together with the use of colors.

The method works especially efficient if the used mesh supports an explicit boundary traversal.
To this end there are flags in the Mesh3d struct (the super-class of HMesh3d) to indicate the cur-
rently set traversal mode (access.mode) and the supported traversal modes (access_capability).

typedef struct mesh3d{

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 67

Figure 26: Colorshading of the pressure at the surface of an artery.

MESH_ACCESS_FLAGS access_mode;
MESH_ACCESS_FLAGS access_capability;
} MESH3D;

It is the user’s responsibility to set the flag access_capability and to program the mesh traver-
sal routines (first_element, next_element, etc.) so that the set access capabilities are indeed
supported. At the moment there are only two possible access flags for different types of mesh
traversal:

typedef enum {

mafNone =0,
mafSorted = 1<<0,
mafBoundary = 11

} MESH_ACCESS_FLAGS;

If the method bnd-isoline-disp can set the flag access_mode to mafBoundary then it will not be
checked again if the element is really part of the boundary. Otherwise the method checks each
element during the mesh traversal.

Setting or testing the access flags should be done with the methods

GRAPE (hmesh, "get-access-mode") (flags)
GENMESH *hmesh
MESH_ACCESS_FLAGS x*flags

GRAPE (hmesh, "set-access-mode") (flags)
GENMESH *hmesh
MESH_ACCESS_FLAGS flags

GRAPE (hmesh, ”bnd-vect-disp”)()
HMESH3D *hmesh

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 68

Figure 27: First and second order visualization of a vector field at the boundary of an object.

This method visualizes the data on the boundary of an HMesh3d object by drawing random-
distributed arrows. If the dimension of the data is less than 3 then the method draws vectors
which are orthogonal on the boundary and whose length indicates the absolute value of the data.
If the dimension of the data is greater than 3 a warning is printed and the first 3 coordinates
of the data are used for the display; it is always possible to force the use of vectors orthogonal
to the boundary by pressing the button ”"Use Normal Vectors”. By pressing the button ”Use
Second Order” curved arrows are drawn giving a second order approximation for the data.

hmesh3d- bnd- vect

Use Normal Vectors || Use Second Qrder |
P\ vector Tength 005 |
[vector density]
A vector discr >
& vetwwan | o0 |

Figure 28: Interactive layer of the ”bnd-vect-disp” method when the second order mode is not used.

Description of the rulers:
e "vector length” chooses the length of the drawn vectors.
e "vector density” affects the number of arrows drawn.

e "vector discr” determines the discretization level of the drawn arrows (e.g. 1 = line, 2 =
flat arrows etc.)

e "vector width” chooses the thickness of the drawn arrows.

New rulers:

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 69

hmesh3d- bnd- vect
Use Normal Vectors || Use First Oder |

| A " path steps]
A mxctine >
_|[A vector density >
A vector discr >
_|IN T vector width Jo N

Figure 29: Interactive layer of the ”bnd-vect-disp” method when the second order mode is used.

e "path steps” chooses the number of straight segments with which the second order ap-
proximation is drawn.

e "max time” determines the end time of the path of a particle moving along the vector
field; since the drawn arrow represents a second order approximation to that path, this
ruler controls the length of the arrow.

5.6.4 I/0 Methods on HMesh3d

GRAPE(hmesh, ”xdr”)(xdr)
XDR *xdrp

This method implements XDR interface of GRAPE for the class HMesh3d. Of course neither
function pointers nor the underlying user data can be handled, but all scalar values are con-
verted, so it is an abstract method. To use the read/write facilities of GRAPE, one has to
overload this method.

5.6.5 Other Methods on HMesh3d

(HMESH3D *)GRAPE(hmesh, ”get-bnd-box”)(xmin,xmax,ymin,ymax,zmin,zmax)

HMESH3D *hmesh
double *xmin,*xmax,*ymin,*ymax,*zmin,*zmax

Determines the bounding-box of the instance mesh and returns it by its extremal coordinates.
This method is faster than the Mesh3d-version because only macro-elements have to be in-
spected.

(HMESH3D *)GRAPE(hmesh, ”search”)(v, c, el)

HMESH3D *hmesh
VEC3 v

double *c
HELEMENT2D **el

This method searches within the hmesh for a given point with world-coordinates v. If el is
not NULL local search is performed starting at the element el. This means walking up in the

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES 70

hierarchy until an element is found, which contains v, and then walking down to the wanted
element. If el is NULL at the beginning, hierarchical search is applied by walking over the
macro-elements and then walking down the hierarchy.

If successful, the method returns in el the element on level level_of_interest which con-
tains the given point v, and in ¢ the local coordinates of this point. The pointer varc has to
be allocated with enough memory before calling the method. If the search failed, el will
be NULL. The search relies on the HMesh3d-method "select_child". On one hand this
means that this pointer has to be filled in the interface at least with the default-method
"g_hmesh3d_def_select_child". On the other hand it implies that implementing this method
efficiently is a possibility of speeding up the search.

(HMESH3D *)GRAPE(hmesh, ”find-pick-intersec”)(v,u,w,el,c)
HMESH3D *hmesh
VEC3 v
double u,w

HELEMENT2D **el
double *c

This method determines for given screen-coordinates u,w the point on the mesh which is hit by
these pick-coordinates. The world coordinates of this point are returned in v, the element on
level mesh—1level _of _interest which contains this point and its local-coordinates are returned
in el and c. The only difference to the Mesh3d-version is the use of improved hierarchical
searching.

(HMESH3D *)GRAPE(hmesh, ”hmesh-interactive-send”)()
HMESH3D *hmesh

This method sets up the project uif-hmd3, which is described below.

5.6.6 Affiliate Projects

HVesh3d: "hexa"

[Ja/ threshold Jo I
H_|IN boundary threshold | 0|
H_ I Tevel ofNnterest | 15|
H_ 1N hp threshold o
Bl Nhomcsubdiv el |1 |

Figure 30: With the HMesh3d interface of the uif-hm3 project certain parameters of the HMESH3D and
F_HDATA structures can be adjusted interactively.

The project uif-hm3 is the interactive user interfaces for HMesh3d instances. It allows editing
max_level_of_interest and all threshold values of the HMESH3D and F_HDATA structure
of the current object (cf. Figure 30). One can add them by hand, when needed, or they can be
used in the user code with the function g_project_use(name,batch) or g_project_add(name).
For instance:

5 FUNDAMENTAL METHODS ON HIERARCHICAL MESHES

main ()

{

g_project_use ("uif-hm3", g_batch_mode);

71

REFERENCES 72

References

[1] R. E. Bank and A. Weisser. Some a priori error estimators for elliptic partial differential
equations. Math. Comp., 44:283-301, 1985.

[2] Bornemann, F. and Erdmann, B. and Kornhuber, R. Adaptive multilevel methods in three
space dimensions. Int. J. Numer. Methods Eng., 36, No.18:3187-3203, 1993.

[3] H.-J. Bungartz, M. Griebel, D. Roschke, and C. Zenger. Pointwise convergence of the com-
bination technique for the laplace equation. Fast- West Journal of Numerical Mathematics,
2(1):21-45, 1994.

[4] A. Certain, J. Popovi¢, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive
multiresolution surface viewing. In SIGGRAPH 96 Conference Proceedings, pages 91-98,
1996.

[5] P. Ciarlet and J. Lions. Handbook of numerical analysis. Vol. V: Techniques of scientific
computing. Elsevier, 1997.

[6] P. Cignoni, L. De Floriani, C. Montoni, E. Puppo, and R. Scopigno. Multiresolution mod-
eling and visualization of volume data based on simplicial complexes. In 199/ Symposium
on Volume Visualization, pages 19-26, 1994.

[7] D. S. Dyer. A dataflow toolkit for visualization. Computer Graphics € Applications,
10(4):60-69, 1990.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multires-
olution analysis of arbitrary meshes. In SIGGRAPH 95 Conference Proceedings, pages
173-182, 1995.

[9] B. Falcidieno, S. Orgolesu, C. Pizzi, A. Sanguineti, and M. Spagnuolo. High fidelity digital
terrain modelling for the reconstruction of the antarctic sea floor. Journal of Visualization
and Computer Animation, 7(3):177-188, 1996.

[10] Froehlich, J. and Schneider, K. An adaptive wavelet-vaguelette algorithm for the solution
of pdes. J. Comput. Phys., 130, No.2:174-190, 1997.

[11] M. Griebel. Eine kombinationsmethode fiir die 16sung von diinngitter-problemen auf
multiprozessor-maschinen. In W. Bader, Rannacher, editor, Numerische Algorithmen auf
Transputer-Systemen, pages 66—78. Teubner, 1992.

[12] M. Griebel. Adaptive sparse grid multilevel methods for elliptic pdes based on finite
differences. Computing, 1998. to appear.

[13] M. H. Gross and R. G. Staadt. Fast multiresolution surface meshing. In Proceedings of the
Visualization, pages 135-142, 1995.

[14] R. Grosso, C. Luerig, and T. Ertl. The multilevel finite element method for adaptive mesh
optimization and visualization of volume data. In Proceedings Visualization, 1997.

[15] R. B. Haber, B. Lucas, and N. Collins. A data model for scientific visualization with
provisions for regular and irregular grids. In Proc. IEEE Visualization, 1991.

[16] W. Hackbusch. Multi-grid methods and applications. Springer, Berlin/Heidelberg, 1985.

REFERENCES 73

[17] B. Hamann. A data reduction scheme for triangulated surfaces. Computer Aided Geometric
Design, 11:197-214, 1994.

[18] Hemker, P.W. On the structure of an adaptive multi-level algorithm. BIT, 20:289-301,
1980.

[19] N. Heusser and M. Rumpf. Efficient Visualization of Data on Sparse Grids. In Proceedings
VisMath Conference, Berlin, 1997.

[20] H. Hoppe. Proegressive meshes. In SIGGRAPH 96 Conference Proceedings, pages 99-108,
1996.

[21] T. Ttoh and K. Koyamada. Automatic isosurface propagation using an extrema graph
and sorted boundart cell lists. Transactions on Visualization and Computer Graphics,
1(4):319-327, 1995.

[22] R. Klein, G. Liebich, and W. Strafier. Mesh reduction with error control. In Proceedings
Visualization, 1996.

(23] D. Kroener. Numerical schemes for conservation laws. Series Advances in Numerical
Mathematics. Wiley-Teubner, 1997.

[24] U. Lang, R. Lang, and R. Riihle. Integration of visualization and scientific calculation in
a software system. In Proc. IEEE Visualization '91, 1991.

[25] D. Laur and P. Hanrahan. Hierarchical splatting: A progressive refinement algorithm
for volume rendering. In T. W. Sederberg, editor, Computer Graphics (SIGGRAPH 91
Proceedings), volume 25, pages 285-288, July 1991.

[26] Y. Livnat, H. W. Shen, and C. R. Johnson. A near optimal isosurface extraction algorithm
using the span space. Transaction on Visualization and Computer Graphics, 2(1):73-83,
1996.

[27] B. Lucas and et. al. An architecture for a scientific visualization system. In Proc. IEEE
Visualization, 92.

[28] S. Muraki. Volume data and wavelet transform. Computer Graphics and Applications,
13(4):50-56, 1993.

[29] R. Neubauer, M. Ohlberger, M. Rumpf, and R. Schworer. Efficient Visualization of Large—
Scale Data on Hierarchical Meshes. In W. Lefer and M. Grave, editors, Visualization in
Scientific Computing. Springer, 1997.

[30] H. Neunzert, W. Sack, and G. Koppenwallner. Development of a particle method for
reactive flows in rarefied gases. In Hoffmann, Karl-Heinz (ed.) et al., Mathematik:
Schluesseltechnologie fuer die Zukunft. Verbundprojekte zwischen Universitaet und Indus-
trie. Springer, 1997.

[31] M. Ohlberger and M. Rumpf. Hierarchical and Adaptive Visualization on Nested Grids.
Computing, 59 (4):269-285, 1997.

[32] M. Ohlberger and M. Rumpf. Adaptive projection methods in multiresolutional scientific
visualization. Report 20, Sonderforschungsbereich 256, Bonn, 1998.

REFERENCES 74

[33] M. Rumpf, A. Schmidt, and K. Siebert. On a unified visualization approach for data
from advanced numerical methods. In R. Scateni, J. Van Wijk, and P. Zanarini, editors,
Visualization in Scientific Computing, pages 35-44. Springer, 1995.

[34] M. Rumpf, A. Schmidt, and K. Siebert. Functions Describing Arbitrary Meshes. Computer
Graphics Forum, 15 (2):129-141, 1996.

[35] P. Schréder and W. Sweldens. Spherical wavelets: Efficiently representing functions on the
sphere. In SIGGRAPH 95 Conference Proceedings, pages 161-172, 1995.

[36] W. J. Schroeder, J. A. Zarge, and W. A. Lorensen. Decimation of triangle meshes. In
Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 65-70, 1992.

[37] Schwab, C. and Suri, M. The p and hp versions of the finite element method for problems
wi th boundary layers. Math. Comput., 65, N0.216:1403-1429, 1996.

[38] U. o. B. SFB 256. Grape manual. pages http://www.iam.uni-bonn.de/main.html.

[39] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill. Octree-based decimation of marching
cubes surfaces. In Proceedings Visualization. IEEE, 1996.

[40] H.-W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosurfacing in span space with
utmost efficiency (ISSUE). In Proceedings Visualization, 1996.

[41] Stenberg, R. and Suri, M. Mixed hp finite element methods for problems in elasticity and
Stoke s flow. Numer. Math., 72, No.3:367-389, 1996.

[42] L. A. Treinish. Data structures and access software for scientific visualization. Computer
Graphics, 25:104-118, 1991.

[43] G. Turk. Re-tiling polygonal surfaces. In Computer Graphics (SIGGRAPH 92 Proceed-
ings), volume 26, pages 55—64, July 1992.

[44] C. Upson and et. al. The application visualization system: A computational environment
for scientific visualization. Computer Graphics € Applications, 9(4):30-42, 1989.

[45] J. P. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. In Computer
Graphics (San Diego Workshop on Volume Visualization), volume 24, 5, pages 57-62, 1990.

[46] S. Yang and C. Cooke. Data compression based on the cubic B-spline wavelet with uniform
two-scale relation. Math. Comput. Modelling, 23, No.7:73-88, 1996.

[47] C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for PDE, Proc. 6th
GAMM Seminar Kiel, Notes on Numerical Fluid Mechanics, volume 31, pages 241-251.
Vieweg, 1991.

