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Abstract

Shape optimization of the fine scale geometry of elastic objects is investigated under
stochastic loading. Thus, the object geometry is described via parametrized geometric de-
tails placed on a regular lattice. Here, in a two dimensional set up we focus on ellipsoidal
holes as the fine scale geometric details described by the semiaxes and their orientation. Opti-
mization of a deterministic cost functional as well as stochastic loading with risk neutral and
risk averse stochastic cost functionals are discussed. Under the assumption of linear elastic-
ity and quadratic objective functions the computational cost scales linearly in the number of
basis loads spanning the possibly large set of all realizations of the stochastic loading. The
resulting shape optimization algorithm consists of a finite dimensional, constraint optimization
scheme where the cost functional and its gradient are evaluated applying a boundary element
method on the fine scale geometry. Various numerical results show the spatial variation of the
geometric domain structures and the appearance of strongly anisotropic patterns.

1 Introduction

Shape optimization under deterministic loading is a well-developed field in PDE-constrained infi-
nite-dimensional optimization, see e. g. the books [9, 33]. In this paper we investigate shape
optimization problems for elastic bodies O ⊂ R2 with a special kind of geometry, namely two
dimensional perforated plate like domains with possibly many fine holes on a regular lattice (cf.
Fig. 1). Motivation for these objects may be drawn from the inner structure of bones, the so-called

Figure 1: The optimized fine scale geometry for a bridge type scenario with color-coded von Mises stress
distribution.

substantia spongiosa. Studies suggest that it forms characteristic structures depending on the typ-
ical loads the specific bone usually has to withstand. Also from an engineering view point such
materials are interesting because of their mechanical producibility. An alternative model for such
a simplified geometry could be to build a lattice of tiny elastic rods, cf. the very early work of
Michell [25] dating back to 1904.
The elastic body will be subject to volume and surface loadings which may be fixed but may also
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vary stochastically over time. The latter is a prevailing issue in many real-world shape optimiza-
tion problems, in which unlikely but dramatic failures must be appropriately taken into account.
The aim of this paper is to derive a finite dimensional constraint optimization scheme to identify
the spatially varying, optimal geometric structures under deterministic or stochastic loading con-
ditions. Before we start our analysis, let us briefly review some background and related work.

The impact of stochastic loading. If we assume stochastic loading the objective function, or
shape functional, becomes random. Furthermore, the selection of the shape must be made prior
to observing the realizations of the stochastic loading. This requirement, also called nonantici-
pativity, induces a natural two-stage setting in the optimization problem: In the first stage the
decision on the shape is taken. Then stochasticity is unveiled by the realizations of the random
loadings. These random realizations, together with the shape, determine an elasticity PDE whose
solution, the displacement, is viewed as the second-stage “decision”. Replacing the elasticity PDE
by its equivalent variational formulation of minimizing the elastic energy, makes the second-stage
“decision” the solution to a second-stage optimization problem.
Together with the nonanticipative shape, the random displacement enters the shape objective
which, e. g., could be compliance or deviation from a target shape. From this point of view, the
shape functional is a random variable “indexed” by the shapes. The search for an optimal shape
thus amounts to finding a “best” random variable. In finite-dimensional two-stage stochastic pro-
gramming the same setting occurs with Euclidean decision variables taking the roles of the present
shapes and displacements, [28, 29, 30]. This motivates the following transfer of solution concepts.
First of all, selection of “best” random variables requires some ranking as a prerequisite, for in-
stance assigning real numbers resulting from statistical parameters. If risk neutral, one would take
the expected value. If risk averse, some risk measure would be applied.
In the present paper the emphasis is on risk averse optimization models. In various practical
applications, there are possible realizations of the random variables that are rather unlikely but
which, in case they do occur, have catastrophic consequences. Because of their low probability
such scenarios would not have a significant impact on the expectation value. We refine the risk
measurement and consider the expectation with respect to suitable nonlinear functions of the cost
for each stochastic realization. In particular, we address the expected excess, which reflects the
expectation of the costs exceeding a given threshold, or the excess probability, which measures the
probability of a failure, i. e., of a realization with a cost value above the threshold.

Algorithmic treatment of stochastic shape optimization. Robust optimization offers mod-
els and algorithms for optimization under uncertainty if there is no distributional information about
uncertain parameters but rather information about their ranges, [8]. This may lead to overly con-
servative models when enforcing constraints for the full ranges of parameters. As a remedy, robust
optimization models with controllable level of conservativeness have been proposed. For robust
optimization approaches to shape optimization consult, e. g., [11, 12, 17, 22].
Another means to generalize the single-load assumption in shape optimization is multiload ap-
proaches: A fixed (usually small) number of different loading configurations is considered and
optimization refers to this set of configurations, see e. g. [3, 20, 37] and references therein. Then
each evaluation of the objective functional requires a separate computation for each of the possible
stochastic forces, which renders them infeasible if the set of possible forces is large. In [15] and
[16] shape optimization of elastic bodies under random loading is viewed from the same stochastic
programming perspective as in the present paper. In both articles, with [15] confining to risk
neutral models, the numerical backbone is level set methods with composite finite elements, in [16]
enhanced by topological shape derivatives. Shapes are described as volumetric macroscopic objects
with a piecewise smooth boundary. In the present paper, we consider a fixed domain perforated
with a large number of holes, and we optimize the geometry of the holes inside the domain.

Microscopic structure of optimal materials. Shape optimization problems like the afore
mentioned are usually equipped with some volume constraint to avoid trivial solutions. However,
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if the shape is allowed to evolve freely, these problems are generically ill-posed since microstruc-
tures tend to form. As a remedy several regularization techniques have been applied. The simplest
way is to use the spatial discretization which, however, leads to highly mesh-dependent results. As
a more adequate possibility, one might restrict the number of holes. For a two-dimensional setting
existence of a solution to the compliance minimization problem is shown in [10]. Another approach
is the penalization of the shape perimeter which (if outside the object there is some weak material
instead of void) also results in existence of optimal shapes, see e. g. [6] for a scalar problem and [27]
for shape optimization. Finally one might relax the problem and define a set of admissible shapes
allowing for microstructures. The so-called homogenization method is a prominent representative
of this approach, see [1, 2, 4]. Here, an indicator function χO is relaxed, such that it can attain any
intermediate value between 0 and 1, thus becoming a function describing the relative material den-
sity of an elastic body. Restricting the allowed microstructures to sequential laminates, material
properties for compliance minimization can be computed explicitly based on homogenization. The
fine scale geometries investigated in this paper may be considered a first step towards a two-scale
model, where the microstructure is restricted to parametrized geometries as those discussed here.

The paper is organized as follows. In section 2 we briefly describe the geometric properties of the
investigated materials and introduce the elastic state equation. We will review shape optimization
for the deterministic case in section 3 and define suitable cost functionals for a fixed realization of
the loading. The shape derivative will be obtained by using the adjoint technique. Our numerical
algorithm is described in section 4 and some illustrative outcomes for the deterministic case will be
presented in section 5. Section 6 will then introduce a general class of risk averse shape optimization
models, and the examples of expected excess and excess probability as well as proper smooth
approximations. We will elaborate on how to use basis loads and a corresponding basis of primal
and dual solutions to compute the shape gradient efficiently even in the presence of a large number
of realizations of the stochastic loading. Finally we will present our computational results. A
short comparison to the setting and the obtained results of Allaire’s homogenization method will
be drawn in section 7.

2 Shape description and elasticity

Let us first describe the particular fine scale geometry of the elastic bodies O ⊂ R2 investigated in
this paper. We consider a fixed domain D perforated with a possibly large number of ellipsoidal
holes. Surely, one might consider — with minor modifications of the numerical scheme — other
types of parametrized geometric details. We restrict ourselves here to the class of ellipses as a
simple class allowing for anisotropic pattern formation. In contrast to usual shape optimization
procedures we do not optimize the outer boundary of D but the fine scale geometric structures
inside. We further assume these ellipsoidal holes to be centered at nodes of a regular lattice covering
the domain D. Thus we consider N ellipsoidal holes B(ci, αi, ai, bi) (1 ≤ i ≤ N) located in boxes
of diameter h and parametrized by a rotation αi and two scaling factors ai and bi for the two
semiaxes. The boundary of the i-th hole is then given by

x(s) = ci + h

(
ai cos(αi) cos(s)− bi sin(αi) sin(s)
ai sin(αi) cos(s) + bi cos(αi) sin(s)

)
where the center points ci fulfill ci

h + 1
2 ∈ Z, cf. Fig. 2. To avoid overlapping of adjacent ellipses

or completely vanishing holes, we require the scaling parameters to be bounded, i. e.

δ ≤ ai, bi ≤
1

2
− δ (1)

with δ > 0 being a small additional offset to prevent numerical instability. The rotation angle
however we leave unbounded. Furthermore we suppose the total 2D volume of the elastic body
O := D \ (

⋃
i=1,...,N B(ci, αi, ai, bi)) to be fixed. Thus, we impose the equality constraint

|D| −
N∑
i=1

πh2aibi = V . (2)
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Figure 2: Sketch of the elastic body and the contained ellipsoidal holes.

Any shape O fulfilling these requirements is called admissible and we shortly write O ∈ Uad. Using
this description of shapes the resulting shape optimization problem turns into a finite dimensional
optimization problem in R3N with inequality constraints for ai and bi and one equality constraint
due to the prescribed total 2D volume.

Let us now describe the underlying mechanics of the elastic body. In shape optimization one
seeks the realization O of an elastic body which optimizes a particular mechanical cost functional.
Here, we consider the case of linearized elasticity. Given an admissible shape O ⊂ R2 we assume
the outer boundary ∂D to be partitioned into ΓD on which homogeneous Dirichlet boundary
conditions are prescribed and ΓN on which a sufficiently regular surface load g is applied. The
inner boundary of the holes ∂O \ ∂D is considered as a homogeneous Neumann boundary. For the
sake of simplicity we neglect volume forces. In case of stochastic loading we consider a random
variable ω following a discrete distribution with scenarios ωi and probabilities πi with i = 1, . . . , Ns
(
∑Ns
i=1 πi = 1). The applied surface loads will depend on the random variable and we will denote

them by g(ω). For a single realization or a fixed deterministic load the displacement u : O → R2

is determined as the solution of the system of linear partial differential equations

−div(Cε(u)) = 0 (3)

in O with u = 0 on ΓD, (Cε(u))n = g on ΓN , and (Cε(u))n = 0 on ∂O \ ∂D. Here, n denotes the
outer normal, ε(u) = 1

2 (∇u+∇u>) is the linearized strain tensor, and C = (Cijkl)ijkl the elasticity
tensor. Standard results show that for any connected open set O with Lipschitz boundary and any
fixed realization ω the elasticity problem (3) has a unique weak solution u = u(O, ω) ∈ H1(O;R2)
[13, 24]. It can be equivalently characterized as the unique minimizer of the quadratic functional

E(O, u, ω) :=
1

2
A(O, u, u)− l(O, u, ω) (4)

on the Hilbert space H1
ΓD

(O;R2) :=
{
u ∈ H1(O;R2) : u = 0 on ΓD in the sense of traces

}
with

A(O, ψ, θ) :=
∫
OCijklεij(ψ)εkl(θ) dx and l(O, θ, ω) :=

∫
∂O gi(ω)θi dH1, see [13, 19, 24] for details.

Here and below we implicitly sum over repeated Cartesian indices.

3 Deterministic cost functional and shape derivative

Let us first focus on deterministic shape optimization and derive the corresponding objective
functional and shape derivative in a single load case, which will later also serve as ingredients in
the stochastic approach.

Cost functionals. We consider a general objective functional J which depends on both the
shape O and the resulting elastic displacement u(O), and is given by

J (O) := J (O, u (O)) =

∫
ΓN

k (u (O)) dH1 . (5)
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Let us emphasize that the surface load is integrated only over the fixed Neumann boundary ΓN
which does not undergo any optimization here. We consider a linear or quadratic function k(.),
which will later ensure that even large numbers of stochastic scenarios can be treated efficiently.
As particular instances of the general formulation (5), we study the compliance

J1 (O) := l(O, u(O)) =

∫
ΓN

g · u(O) dH1 , (6)

and the squared difference to a target displacement u0

J2 (O) :=
1

2

∫
Γ

|u− u0|2 dH1 (7)

integrated on a subset Γ of the domain boundary ∂D. In the context of the parametrized geometries
described in section 2 the objective functional for the deterministic case of a single realization of
the loading actually reads

J ((αi, ai, bi)i=1,...,N ) := J
(
D \

( ⋃
i=1,...,N

B(ci, αi, ai, bi)
))
. (8)

Shape derivative. For the algorithm to be described in section 4, a gradient of the shape
functional in the objective has to be computed. This shape derivative in direction v, [18], initially
takes the form

J′(O)(v) = J,O(O, u(O))(v) + J,u(O, u(O))(u′(O)(v)).

The vector field v describes variations of the domain O and will later be induced by variations of the
parameters presented in section 2. To avoid an evaluation of u′(O)(v) for any test vector field v the
dual or adjoint problem is taken into account. Thereby, the dual solution p = p(O) ∈ H1

ΓD

(
O;R2

)
is given as the minimizer of the dual functional

Edual (O, p) :=
1

2
A (O, p, p) + ldual (O, p) , (9)

with ldual(O, p) =
∫

ΓN
k′(u)p dH1. Note that for the compliance objective (6) one obtains p = −u.

Given p for fixed u and O the shape derivative of the deterministic cost functional can be rephrased
in the following computationally feasible form:

J′(O)(v) = J,O(O, u(O))(v)− ldual,O(O, p(O))(v) +A,O(O, u(O), p(O))(v)

=

∫
∂O

(v · n)Cijklεij(u(O))εkl(p(O)) dH1 (10)

Finally, we obtain the shape gradient

J ′((αi, ai, bi)i=1,...,N ) =
(

(∂αjJ , ∂ajJ , ∂bjJ )((αi, ai, bi)i=1,...,N )
)
j=1,...,N

as a vector in R3N .

4 The numerical algorithm in the deterministic case

This section is devoted to the numerical optimization algorithm. We will briefly review the bound-
ary element method (BEM) which is taken into account to compute the primal and dual solutions
as minimizers of (4) and (9) and comment on some technical issues regarding the implementation.
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The boundary element method. Main ingredient of the boundary element method is the
fundamental solution of the investigated elasticity model [14]. It uses the complex logarithm and
thus requires to map points x ∈ R2 onto the complex plane via the linear function z(x) = x1 +p x2

for a complex constant p. With Akn, Nnj , Dijn, dti being further appropriately chosen constants,
the fundamental solution and its normal derivative are given by

u∗ki =
1

2π

∑
t

<

{∑
n

AknNnt ln (zn(x− y))

}
dti, v∗ki = − 1

2π

∑
j,t

<

{∑
n

DkjnNnt
zn(x− y)

}
dti nj .

We now consider the equation A(O, u, θ) = l(O, θ, ω), apply Green’s formula, substitute θ by the
fundamental solutions u∗i and arrive at

ui(x) =

∫
∂O

(Cε(u)n) · u∗i dH1(y)−
∫
∂O

(Cε(u∗i )n) · udH1(y) . (11)

For x ∈ ∂O these are singular integrals to be defined in an appropriate way. (For details we refer
to [21].) Finally, for the displacement u on ∂O and for the normal tension σn = Cε(u)n on ∂O
one obtains from (11) the integral equation

u = U [σn]− V [u] , (12)

where U is a so called single layer operator and V a double layer operator. For the discretization we
consider a polygonal approximation Oh of the domain O and on the boundary ∂Oh we fix a set Nh
of collocation points ξi and approximate u as well as σn via linear interpolation of corresponding
values. Effectively, the collocation points depend on the free parameters ci, αi, ai, and bi of the
ellipses. We now require (12) to hold for every ξi leading to a linear system of equations for
the values of the displacements and the normal tensions at each collocation point. The boundary
integral operators U and V applied to affine basis functions on ∂O can be computed analytically so
that our algorithm does not require any numerical quadrature. Notice that we typically consider
mixed boundary value problems requiring a rearrangement of the discretized analogon of (12)
according to known and unknown displacements and tensions.

In the BEM approach displacements and tensions need only be computed on the polygonal
boundary. Furthermore, the objective functionals (6) and (7) and the corresponding shape deriva-
tives in (10) are also phrased as boundary integrals. To evaluate these integrals however full
gradients ∇u and ∇p are required whereas we only have discrete approximations of the normal
stresses at our disposal so far. To reconstruct the full gradient ∇u = PTx∂O∇u + ∂nu n (with
PTx∂O being the orthogonal projection onto the tangent space Tx∂O at x ∈ ∂O) we use piecewise
constant approximations of the missing tangential derivative based on a piecewise linear recon-
struction of the displacement on edges of ∂Oh for given collocation data on nodes. Finally, the
normal derivative can be recovered by solving a 2×2 system of linear equations for each collocation
point resulting from (Cε(u))n = σn and the given tangential derivative PTx∂O∇u.

Implementation. As already stated in section 2 we finally have to solve a finite dimensional
nonlinear optimization problem in which the 3N parameters (αi, ai, bi)i=1,...,N of the ellipsoidal
holes appear as variables and additional constraints are given by (1) and (2). The treatment of
such constrained optimization problems is a classical and well-developed field, see e. g. [26]. Here,
we rely on the software package Ipopt [35, 36] which implements a Primal-Dual Interior Point
Filter Line Search algorithm. The considered cost functionals are in general non-convex. Thus,
we expect to compute only local minimizers and thus at least locally optimal geometric domain
patterns using such an SQP-type method.

We employ the C++ interface of Ipopt and supply routines for the evaluation of our (stochastic)
cost functionals and the corresponding derivatives. For the Hessian we make use of the built-in
approximation by the SR1 update strategy. This especially guarantees positive definiteness which
is of importance here because the Hessian becomes singular if the scaling parameters for one cell
are equal and the local geometry is invariant with respect to the rotation parameter. In Fig. 3 we
plot the objective functional over the descent iterations of the algorithm. Notice that the objective
drops slightly below the final value at some point. This is due to the filter approach which accepts
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Figure 3: Objective during optimization by Ipopt. The final value is indicated by the dashed line.

an optimization step if either the cost or the constraint violation is improved.
For the solution of the primal and dual problems as well as for the management of our domain
boundary we apply a C++ library [23] taylored to 2D BEM applications. A typical optimization
problem like in Fig. 4 below comes with 1200 parameters to be optimized and about 5000 collocation
points, leading to about 10,000 degrees of freedom. Around 40 relaxation steps are performed
by Ipopt until convergence is detected. Each step on average requires 1.2 evaluations of the cost
functional and one gradient evaluation. As cached solutions are retrieved not every evaluation of the
cost functional requires the solution of the underlying elastic system. However the corresponding
matrix is dense and we have to use a direct solver - in the case currently QR-decomposition -
amounting to about 98% of the overall CPU time of 30 hours on moderate desktop hardware. The
computational complexity can be drastically reduced by using hierarchical preconditioning of the
discretized integral equation via the concept of H-matrices. We refer to [23] where the integration of
the AHMED library into our framework is discussed. The AHMED library provides an implementation
of the adaptive cross approximation for the construction of hierarchical matrices [7]. Based on the
measurements in [23] we may expect a speedup of factor 200.
In the result sections we will also show stress plots of our investigated domains (cf. Fig. 5).
Solely for this post processing purpose a triangulation of the computational domain is generated
using the software Triangle [31, 32]. At each interior vertex the linearized strain tensor is then
computed using (11). Indicator values are finally color-coded and interpolated on each triangle
using a self-written software based on The Visualization Toolkit (VTK).

5 Deterministic structure optimization

As a counterpart to subsequent discussion of stochastic models and the optimal shapes in a risk
averse setup let us at first present some illustrative outcomes of the optimization algorithm from
section 4 for a carrier plate and a cantilever under deterministic loadings.

Carrier Plate. Consider a 2D carrier plate D = [0, 1]× [0, 1] with 20× 20 ellipsoidal holes on a
regular lattice. The shape to be optimized is a supporting construction between a fixed floor plate,
where homogeneous Dirichlet boundary conditions are prescribed, and an upper plate, where the
loading attacks. Everywhere else, i. e. especially on ellipses’ boundaries, homogeneous Neumann
boundary values are assumed. Fig. 4 shows three different loading scenarios and the corresponding
outcomes of our shape optimization algorithm. In Fig. 5 different types of loading indicators for
the shearing case are displayed.

Cantilever. As a second application, we study shape optimization of a 2D cantilever. Here
D = [0, 2]× [0, 1], now perforated with 40× 20 holes and we aim at modeling a cantilever that is
fixed on the left side and has a deterministic downward pointing force applied on a centered, small
part of the boundary on the right. Fig. 6 displays the result together with the von Mises stress.
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Figure 4: Different deterministic loadings and the resulting locally optimal shapes.

Figure 5: Different types of loading indicators: determinant of the displacement gradient det∇u, trace of
the displacement gradient tr∇u, integrand of the compliance energy J1, von Mises stress and an additional
blow-up of the square marked in red.

Figure 6: Locally optimal fine scale structure of a cantilever, color-coded with the von Mises stresses on
the right.

Let us point out that, although the above shapes have a fixed topology and lack flexibility to
evolve when compared to the level-set description in [15, 16], one can clearly recognize characteristic
structures in the obtained results. Relatively sharp interfaces between “void” and “non-void”
regions are formed and small elongated ellipses are approximately aligned with the main loading
directions in the trusses.

6 Risk averse stochastic structure optimization

We now turn to shape optimization under stochastic loadings. The aim is to find shapes of elastic
bodies withstanding in some “best way” not just an individual load but rather a multitude of
loads arising with certain probabilities. When exposed to some fixed shape O, the stochastic
loading induces stochastic displacements and finally, in (5), stochastic costs J(O, ω). Thus, for
any admissible shape O, the optimization criterion yields a random cost variable J(O, ω). Shape
optimization then is rephrased as minimization over the family of random cost variables {J(O, ω) :
O ∈ Uad}. Minimizing over this set requires a concept of how to rank its members. In the present
paper this is achieved by applying statistical parameters.

Expected value. The most apparent approach might be to consider the expected value QE(O) :=
E (J (O, ω)) which was investigated in a classical shape optimization setup in [15]. This model al-
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ready yields significantly different results compared to optimization of the (deterministic) expected
value of the applied loadings. Still it is risk neutral; critical realizations of J(O, ω) with little im-
pact on the expected value are given only little priority.
To remedy this, a risk averse point of view was introduced for macroscopic geometry optimization
in [16] which we will pick up here in the context of fine scale structure optimization. Minimiza-
tion of the expectation of the objective function is replaced by minimization of the expectation of
suitable nonlinear transformations of the objective function

min

{
Q(O) := E (q(J(O, ω))) =

Ns∑
i=1

πiq(J(O, ωi)) : O ∈ Uad

}
, (13)

where q : R → R is a monotonically increasing function. Here, we recall that ωi are stochastic
realizations with probabilities πi for i = 1, . . . , Ns. For q(t) = t this obviously reduces to minimizing
the expected value. In the following we will however consider two different risk measures, namely
the expected excess and the excess probability.

Expected excess. Let us assume we are given a threshold value η ∈ R reflecting some critical
level of loading. The expected excess then arises by using the weight function q(t) = max{t−η, 0}:

QEEη (O) := E (max{J(O, ω)− η, 0}) . (14)

Effectively this expectation “ignores” realizations ω whose cost is below the threshold, thereby
paying more attention to those exceeding it. To improve numerical tractability we replace the
max-function by a smooth approximation

Qε
EEη (O) := E (qε(J(O, ω)))

where qε(t) := 1
2

(√
(t− η)2 + ε+ (t− η)

)
, ε > 0.

Excess probability. If, for a given threshold η, it only matters whether the cost threshold η
is exceeded or not, one ends up with the weight function q(t) = H(t − η) with H denoting the
Heaviside function defined by H(t) = 1 for t > 0 and 0 otherwise. The excess probability then
reads:

QEPη (O) := E (H (J(O, ω)− η)) . (15)

In fact, this objective just adds up the probabilities of the realizations exceeding the threshold. A
suitable smooth approximation is given by

Qε
EPη (O) := E (Hε(J(O, ω)))

for Hε(t) :=
(

1 + e−
2(t−η)
ε

)−1

.

Evaluation of objectives and derivatives. To be able to evaluate the various objective func-
tionals and their gradients the primal and dual solutions u(O, ω) ∈ H1

ΓD
(D;R2) and p(O, ω) ∈

H1
ΓD

(D;R2) need to be known for all ω. However under our requirement that k(·) is a linear or
quadratic function, we can employ a significant shortcut for Ns � 1, which was broken down in
[15]. The crucial point is that the dependence of the primal and dual solution on ω is linear. We
can therefore consider a “basis” of (deterministic) surface loads g1, . . . , gK and write the actual
loads g(ω) as linear combinations

g(ω) =

K∑
j=1

cgj (ω)gj

with uncertain coefficients cgj (ω) ∈ R, j = 1, . . . ,K. Doing so we only need to solve as many PDEs
as there are basis forces, which will significantly reduce the computing cost in case Ns � K. Let
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us assume we obtain primal solutions uj for surface loads g := gj and j = 1, . . . ,K. Then for
linearity reasons

u (O;ω) :=

K∑
j=1

cgj (ω)uj (16)

is the unique minimizer of (4) with surface load g := g(ω). If we additionally assume
∑K
j=1 c

g
j (ω) =

1 — which can always be achieved by altering the basis forces appropriately — a similar relation
holds for the adjoint solution. Here it is important that because of k depending linearly or quadrat-
ically on u, the dependence of k,u on u is linear. Therefore, given the dual solutions for the basis
forces pj one obtains

p (O;ω) :=

K∑
j=1

cgj (ω)pj (17)

as the unique minimizer of (9) belonging to u (O;ω).
With the primal and dual solutions at hand we can compute the stochastic shape derivative of the
objective functionals. Because of the transformations q the chain rule has to be applied and we
finally obtain

(QE)
′
(O) (v) = E (J′(O, ω)(v)) =

Ns∑
i=1

πiJ
′(O;ωi)(v) ,

(
Qε

EEη

)′
(O) (v) =

Ns∑
i=1

πi
2

J′ (O;ωi)(v)

 J (O, ωi)− η√
(J (O, ωi)− η)

2
+ ε

+ 1

 ,

(
Qε

EPη

)′
(O) (v) =

Ns∑
i=1

2

ε
πiJ
′ (O, ωi)(v) e−

2
ε (J(O,ωi)−η)

(
1 + e−

2
ε (J(O,ωi)−η)

)−2

.

To assemble the cost functional and the gradient of the cost in the optimization algorithm one has
to compute for the current discretized domain Oh once the K discretized primal base deformations
U j(Oh) and the corresponding discretized dual base states P j(Oh). From these, we can efficiently
compute the effective deformations U(O, ωi) and the effective dual states P (O, ωi) for a possibly
very large set of scenarios and then evaluate the stochastic shape derivative.

Results. In the remainder of this section we will present results for two applications already
considered with respect to macroscopic geometry optimization in [16]. The first one features two
fixed bearings which are loaded in different directions from the top whereas the bottom of the
investigated domain is kept fixed. We consider the compliance cost and search for the optimal
construction of trusses underneath these bearings. The second one models a cantilever fixed on
the left hand side with a vertical load distribution applied on the lower boundary. Here we look
for an optimal design minimizing the displacement of the loaded surface. All computations are
performed on the domain D = [0, 2]× [0, 1] perforated with 40×20 ellipsoidal holes and start from
the initial configuration shown in Fig. 7 and Fig. 12 respectively. To ensure an effective minimiza-
tion of the stochastic cost functional, it turned out that in the excess probability case a substantial
regularization is indispensable. In fact, here we have chosen the regularization parameter ε such
that the transition range between Hε = 0.2 and Hε = 0.8 takes place on an approximate fraction
of 0.3 of the total cost range in the application. The regularization in the expected excess model
is less critical. Indeed, we have chosen values for ε between 10−5 and 10−8.

Trusses underneath two fixed bearings. The loading scenario we consider here is depicted
in Fig. 7. Five loads act on the right bearing with probability 0.19. Corresponding loads on the
left bearing are twice as strong but only appear by a chance of 0.01. These loads are supposed
to be the critical ones. However, on average, they only have minor impact. All of them can be
combined using four basis forces consisting of the two unit vectors on top of the left and the right
bearing.
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Figure 7: Initial configuration with a sketch of the applied stochastic loading.

In Fig. 8 we compare the shapes which (locally) minimize the expected value of the compliance
cost functional for different volumes V . As expected the results differ significantly from those that
would have been obtained when optimizing for the expected value of the applied loadings. In the
latter case the resulting shape would actually consist of two vertical trusses which have a very
weak response to transversal loadings.

(a) V = |D| − 0.32π (b) V = |D| − 0.352π (c) V = |D| − 0.42π (d) V = |D| − 0.452π

Figure 8: Results for optimization with respect to the expected value for different values of volume V .

Next, we investigate risk averse shape optimization for this setting. In Fig. 9 a family of opti-
mized shapes for varying excess parameter η is depicted. Here and below we used V = |D|−0.3752π
for the volume constraint. We experimentally observe a continuous evolution of the geometry with
η, even though each of the computations has been restarted from the same initial configuration
(cf. Fig. 7). For small values of η the observed shapes are still close to the one obtained when
optimizing for the expected value. However as the threshold parameter is increased scenarios with
low objectives, i. e. the ones on the right, become more and more disregarded, see also Fig. 10.
Because of the regularized formulation of the stochastic cost functional they are still taken into
account but only with decreasing weight. As a consequence less “material” is needed for these
realizations permitting more flexibility for the specific optimization of the critical scenarios on the
left bearing. Beyond a certain threshold value even those are no longer relevant, which becomes
apparent in the last two images.

(a) η = 0.0001 (b) η = 0.0003 (c) η = 0.0005 (d) η = 0.0007

(e) η = 0.0009 (f) η = 0.0013 (g) η = 0.0023 (h) η = 0.0029

Figure 9: A sequence of results for the optimization with respect to the expected excess for varying η. The
underlying loading is shown in Fig. 7.
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Figure 10: Objective values (scaled by 103) are rendered with bar charts for the shapes in Fig. 9. The bar
thickness is chosen proportional to the probability of the corresponding scenario.

We now turn to the excess probability risk measure. Albeit somewhat related to the expected
excess different phenomena can be observed. Because the amount of excess is completely irrelevant,
low weighted scenarios with high objective values (the ones on the left) are considered to be “lost”
for small values of η, thereby leaving the left part of the computational domain unoptimized (cf.
Fig. 11). Indeed one observes that objective values for the 5 scenarios on the left increase while
the algorithm focuses on pushing the costs for the high-probability realizations on the right below
the threshold.

(a) η = 0.0009 (b) η = 0.0011 (c) η = 0.0021 (d) η = 0.0023

Figure 11: A sequence of results for the optimization with respect to the excess probability for varying η.
The underlying loading is shown in Fig. 7.

To sum up we remark that the expected value causes a weighted averaging over all optimal
shapes for single scenarios. In contrast for the expected excess there is no further need to optimize
scenarios whose objective values have already been pushed below the threshold thereby allowing
more flexibility for cost reduction of the other realizations. Finally the excess probability only ad-
dresses how likely scenarios exceed the threshold leading to full ignorance of scenarios high above.
As to the used regularization for the risk measures Qε

EEη
, Qε

EPη
one has to bear in mind that

the threshold behavior discussed above is smeared out. Cost reduction of single scenarios in the
vicinity of η is therefore always favorable.

Cantilever with vertical loading distribution. Our second investigated example deals
with a cantilever construction fixed at a Dirichlet boundary on the left whose lower boundary is
subject to vertical loads with a random spatial distribution. We use five basis loads and build up
two different random loading schemes, each consisting of ten scenarios with varying probability
(cf. Fig. 12). The two different loading schemes have the same expected value of the loads (cf.
bottom sketch of the load distribution in both loading schemes of Fig. 12). Their main difference
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is that the first configuration is characterized by a single, high probability load scenario on the
right end of the lower beam whereas the second configuration has a single, high probability load
scenario acting on the left.
For this example we use the deflection of the lower beam ((7) with u0 = 0) as objective func-
tional leading to an adjoint problem truly different from the primal problem. We have chosen
V = |D| − 0.3752π for the volume constraint.

Loading scheme 1

0.19

0.01

0.2

0.04

0.06

0.05

0.05

0.09

0.01

0.3

expected value

QεEEη
−→ min

QεEPη
−→ min

Loading scheme 2

0.19

0.01

0.2

0.04

0.06

0.05

0.05

0.09

0.01

0.3

expected value

QεEEη
−→ min

QεEPη
−→ min

Figure 12: Top: Initial configuration, basis loads on lower boundary and result for deterministic optimiza-
tion with respect to the expected value of the applied loadings. Bottom: Sketch of the loadings for the two
different loading schemes consisting of 10 scenarios each and results of the optimization with respect to the
expected excess (top) and excess probability (bottom) for η = 1.

In this example the basis loads are applied spatially separated and only positive weights are used
for building up the load for each scenario. Therefore no cancellation effect as in our first example
can occur and the resulting shapes for the expected value measure differ only slightly from the one
obtained by optimizing for the expected value of the loads. On the other hand the stochastic load-
ings are applied on a continuous part of the boundary which seems to bring up a more complicated
energy landscape than in the example before. Let us emphasize that we are able to search only
for local minima and that we started all our computations from the same initial domain shown
in Fig. 12. In contrast to the first example, we are dealing with at least one dominating scenario
in each of the two schemes leading to a broader range of objective values. We therefore drop an
analysis of the shapes for varying threshold η here and use this example to again underline the
differences of the considered risk measures for η = 1 being fixed.
For the first loading scheme all scenarios except the last one have an objective value close to the
threshold already for the initial configuration. Optimization with respect to the expected excess
therefore focuses on improving the structure for the scenario loading the right end of the lower
boundary. This especially results in a thicker truss on the right when compared to the outcome of
the optimization with respect to the expected value (cf. Fig. 12). For the excess probability how-
ever the last scenario is out of reach and therefore “lost”. Because of the regularization parameter
several other scenarios still have influence on the overall cost. Among these scenarios 1 and 3 have
significantly higher probabilities than the rest and optimization is therefore basically carried out
for their loads.
For the second loading scheme scenario 2 imposes a high load on the right end of the lower border
and thereby clearly exceeds the threshold. Its probability however is among the lowest and so
it enters the expected excess only with a negligible weight. The optimization is rather steered
by the dominating scenario 10 leading to massive support in the left area of the domain. This
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scenario also characterizes the outcome for the excess probability risk measure. Like in the first
scheme, scenario 2 gets very low priority in the optimization. High probability scenarios near the
threshold are again considered for optimization showing a structure similar to the one obtained for
the expected excess. However due to the fact that the amount of excess is not crucial, scenario 10
is less dominant resulting in a less dense structure than before.
To conclude we present a cross-check of the results for each scheme in the following tables which
list values for each of the considered risk measures on each of the different domains obtained by
running our optimization algorithm for the different cost functionals.

Loading scheme 1 QE(·) QEEη (·) QEPη (·)
OE 1.177 0.402 0.466
OEEη 1.205 0.377 0.511
OEPη 1.501 0.808 0.418

Loading scheme 2 QE(·) QEEη (·) QEPη (·)
OE 1.102 0.279 0.495
OEEη 1.127 0.259 0.532
OEPη 1.181 0.384 0.483

7 A brief comparison of perforated materials and laminates

As mentioned earlier our computed shape optimization results reveal two interesting phenomena:
On the one hand one can observe the formation of macroscopic geometries represented by the
region with holes with radii below ( 1

2 − δ)h. On the other hand fine anisotropic structures are de-
veloping within these (macroscopic) shapes. Although our model presented here aims at allowing
many fine holes it is still a one-scale approach. However when looking at the results (e. g. Fig. 4) a
periodic pattern with respect to the shape of the ellipsoidal holes attracts attention and a two-scale
approach assuming a periodic mircostructure seems natural.
Such a setting is related to the homogenization method introduced by Allaire and coworkers [1] in
the field of shape optimization. The main difference being the type of admissible microstructure.
In [2, 4] nested sequential laminates as microstructure were taken into account. The resulting
macroscopic material properties can be computed explicitly and hence a relaxing variational ap-
proach could be used on the macroscale. Indeed, optimization is then carried out for the lamination
directions and the relative material density. In particular, for a single fixed load rank-2 sequential
laminates with the lamination directions aligned with the stress eigendirections are known to be
optimal for compliance minimization in 2D. However, different from the perforated domains they
are difficult to manufacture. For this reason, optimization is often followed by a postprocessing
step in which composite regions are penalized. The outcomes reveal similar structures to the ones
we observed for our results, compare for instance Fig. 1 with [1, Fig. 5.28, p. 399]. Furthermore it
seems that the orientations of the ellipses’ semi-major axes also aligned with the main directions
of stress. Similar observations for numerical optimization results have been made e. g. in [34].
In the context of the homogenization method employing laminates [5] formally derives an inter-
esting relation: If the Lagrange multiplier related to the volume constraint tends to infinity the
relaxed optimization problem is asymptotically equivalent to the Michell truss problem [25]. In
this setting one optimizes a network made up of arbitrarily many hinge joints connected by elastic
rods. It is assumed that the cross-section of the rods is proportional to the tensile or compressive
stress the rod can withstand. To achieve an optimal design the rods have to be aligned with the
principal stress directions and have to be able to bear a load proportional to the corresponding
principal stresses. Thus, searching for the lightest structure one has to minimize the integral over
the sum of the principal stresses. Indeed, up to material constants this minimization problem
coincides with the limit of the relaxed formulation in the context of laminates in [5]. It is therefore
not surprising that the results obtained here share characteristic features with optimal Michell
truss networks.
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matics. Birkhäuser Verlag, Basel, Boston, Berlin, 1995.

[22] Huyse, L. Free-form airfoil shape optimization under uncertainty using maximum expected
value and second-order second-moment strategies. ICASE report ; no. 2001-18. ICASE, NASA
Langley Research Center Available from NASA Center for Aerospace Information, Hampton,
VA, 2001.

[23] Lenz, M. Modellierung und Simulation des effektiven Verhaltens von Grenzflächen in Met-
alllegierungen. Dissertation, Universität Bonn, 2007.

[24] Marsden, J., and Hughes, T. Mathematical foundations of elasticity. Dover Publications
Inc., New York, 1993.

[25] Michell, A. LVIII. The limits of economy of material in frame-structures. Philosophical
Magazine Series 6 8, 47 (1904), 589–597.

[26] Nocedal, J., and Wright, S. J. Numerical Optimization. Springer Series in Operations
Research, 1999.

[27] Penzler, P., Rumpf, M., and Wirth, B. A phase-field model for compliance shape
optimization in nonlinear elasticity. ESAIM: COCV 18, 1 (2012), 229–258.

[28] Pflug, G. C., and Römisch, W. Modeling, Measuring and Managing Risk. World Scientific,
Singapore, 2007.

[29] Schultz, R., and Tiedemann, S. Conditional value-at-risk in stochastic programs with
mixed-integer recourse. Math. Program. 105, 2-3 (2006), 365–386.

[30] Shapiro, A., Dentcheva, D., and Ruszczyński, A. Lectures on Stochastic Programming.
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