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Abstract

Nowadays, multiresolution visualization methods become an indis-
pensable ingredient of real time interactive post processing. We will
here present an efficient approach for tetrahedral grids recursively gener-
ated by bisection, which is based on a more general method for arbitrary
nested grids. It especially applies to regular grids, the hexahedra of which
are procedurally subdivided into tetrahedra. Besides different types of
error indicators, we especially focus on improving the algorithm’s per-
formance and reducing the memory requirements. Furthermore, paral-
lelization combined with an appropriate load balancing on multiprocessor
workstations is discussed.

1 Introduction

A variety of multiresolution visualization methods has been designed to serve
as tools for interactive visualization of large data sets. The local resolution of
the generated visual objects, such as isosurfaces, is thereby steered by error in-
dicators which measure the error due to a locally coarser approximation of the
data. On one hand, post processing methods are based on already extracted
surfaces and turn them into multiresolutional objects, which can then be inter-
actively inspected [2, 5, 7, 14]. On the other hand, we can already adaptively
extract the considered isosurfaces from the 3D data set. Thereby, starting at
a coarse approximation of the data, we recursively add details in areas where
some error indicator points out a large local error with respect to the exact
data values. If the error is below a user prescribed threshold, the algorithm
locally stops the successive refinement and extracts the surface on the current
level. Different approaches have been presented to solve the outstanding conti-
nuity problem, i.e. to avoid cracks in the adaptive isosurfaces. In the Delaunay
approach by Cignoni et al. [3] and in the nested mesh method by Grosso et
al. [6] the successive remeshing during the refinement guarantees the continu-
ity. On the other hand, Shekhar et al. [15] rule out hanging nodes by inserting
additional points on faces with a transition from finer to coarser elements due
to an adaptive stopping criterion.

We will here consider a method, which is based on tetrahedral grids gener-
ated by bisection. These meshes are widespread and well known from adaptive



numerical methods [1]. We will especially focus on the recursive bisection [8] of
originally hexahedral grids. Compared to an octree approach the tetrahedral
strategy has several advantages:

- Adaptive octree strategies require some elaborated matching of local iso-
surfaces at transition faces [15] between cubes of different resolution.
Even if a continuous adaptive projection [12] is generated, the bilinearity
on faces requires special care [11]. In the tetrahedral frame such difficul-
ties are ruled out.

- A mesh generated by tetrahedral bisection consists of typically three times
more grid levels than a standard octree with the same data resolution.
Therefore, the granularity of adaptive grids is more flexible.

- Furthermore, the multilevel algorithm attains a compact form. The op-
erations to be performed in each refinement step are very simple.

- Tetrahedral bisection is not restricted to structured grid data. Although
we here focus to this case, an essential advantage of tetrahedral grids is
their potential in complex domain approximation. By pushing refinement
nodes onto the actual curved boundary such grids may also be generated
by recursive bisection, starting with a coarse initial grid.

Our approach presented here, can be seen as a special case and a very
efficient implementation of a universal concept of multiresolutional visualization
on arbitrary nested grids [10, 11, 12, 13]. The core of our approach is identical
to the method presented by Zhou et al. [17]. Tt can be regarded as a 3D
generalization of the techniques presented by Livnat et al. [9] and in [4]. Besides
a discussion of different types of error measurement, we will focus on improving
the algorithm’s performance and its memory requirements. This invokes hash
table techniques for smooth shading and the application of error indicators to
evaluate data bounds on coarse grid tetrahedra which prevents us from storing
min/max values. Furthermore, gauss map estimation enables us to implement
a multilevel backface culling.

Finally, we will explain a load balancing concept on multiprocessor graphic
workstations, which leads to near optimal speed up concerning the triangle
generation rates. High resolution interactive visualization of very large data sets
thus becomes a feasible option. To give an example, the presented algorithm
is able to extract adaptive isosurfaces on large grids with about 800k triangles
per second on a 4 processor SGI R10000 with infinite reality graphics.

2 Outline of the adaptive algorithm

Let us consider a family of nested, conforming, tetrahedral meshes {7 }0<l<lmax‘
The tetrahedra are assumed to be refined by recursive bisection. For a tetra-
hedron T the midpoint of a predestined edge e,..(T) is thereby picked up as
a new node z,.(7T), and the tetrahedron is cut at the face F..(T) spanned by
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Figure 1: Recursive decomposition of a tetrahedron.

2,.(T) and the two nodes of T opposite to e,.(T) into two child tetrahedra
C(T) = {12, T2} (cf. Figure 1). In the considered applications we restrict our-
selves to a specific case of such tetrahedral meshes, i.e. to originally regular
hexahedral grids with n? nodes for n = 2¥ 4+ 1. These regular grids are only
procedurally converted to a hierarchy of tetrahedral bisection grids, the nodes
of which coincide with the regular grid nodes [8, 17]. A simple alternating
scheme for the refinement edge e,., guarantees the conformity of the resulting
grids. Straightforward index arithmetic enables us to identify data values U (z)
at the nodes z of the tetrahedra in a recursive grid traversal. Let U’ denote
the piecewise linear function on 7" uniquely described by the data values on
the corresponding nodes.

Multiresolutional visualization methods can now be implemented on the hi-
erarchy of tetrahedral grids. Here we restrict ourselves to isosurface extraction.
Other visualization methods such as the generation of slices, or a projective
volume rendering can be implemented analogously. In the latter case, the in
general required back to front processing of tetrahedra is straightforward. The
ordering of children in the recursive grid traversal solely depends on the viewing
direction and the type of bisection. It can be determined in advance.

The adaptive isosurface algorithm is based on a depth first traversal of the
grid hierarchy. On every tetrahedron we check for a stopping criterion. If
it is true we stop and extract the local isosurface. Otherwise, we recursively
proceed on the child set C(T). If we stop on a specific tetrahedron T' and refine
another tetrahedron T which shares the refinement edge with T, i.e. €,.+(T) =
eref(T), an inconsistency occurs at the hanging node z,.,. This leads to cracks
in the isosurface. In the case of general nested grids we can apply adaptive
projection operators to guarantee consistency. For details we refer to [12]. Here
we simple have to ensure that, whenever a tetrahedron is refined, all tetrahedra
sharing its refinement edge are refined as well. This can be achieved defining
error indicators n(z) on the grid nodes and choosing as a stopping criterion
n(2,.+(T)) < € for some user prescribed threshold value e. For an arbitrary
error it still might happen that, although 7(z..(T)) < ¢, n(rref(T)) > € on
some descendant 7', whose refinement point mref(T) is located on the boundary
of T. Therefore, the adjacent tetrahedron will possibly be refined, and an
inconsistency occurs again. To avoid this we assume the following saturation
condition on the error indicators (cf. [12]):

(Saturation Condition)

N(2.ee(T)) > n(2.ee(Tt)) for al T € T' withl < L., and Te € C(T).



An error indicator 7 is called admissible if it fulfills the saturation condition.
Otherwise it can easily be adjusted in a preroll step. By using a bottom up
traversal of the hierarchy we construct the saturated indicator as the smallest
indicator larger than the original indicator respecting the saturation condition.
Let us emphasize that a depth first traversal of the hierarchy in the adjustment
procedure would not be sufficient.

Now we are able to formulate the adaptive algorithm. The depth first
traversal of the grid hierarchy can be sketched in pseudo code as follows:

Inspect(T) {
if TetrahedronIsOfInterest(7T')
if C(T) #OAn(z,..) > ¢
{ Inspect(T7 ); Inspect(TZ); }
else Extract(T);

}

The function TetrahedronlsOfInterest() checks whether the tetrahedron is
a candidate for the intersection with an isosurface or not. In our case, it is
checked if the current isovalue is contained in a certain data interval. For
an implementation of such a routine considering the already available error
indicator values see Sect. 3.

3 Error Measurement

The visual impression and a sufficient resolution of the numerical data in the
visualization process is closely related to the specific type of error measurement
applied in the adaptive traversal of the tree structure. In our case, error indi-
cators will be defined on grid nodes. All nodes, except those on the coarsest
level, are refinement nodes z,.(T) on a refinement edge e,..(T) with respect to
a tetrahedron T. Therefore, an indicator value n(z) measures the error on all
the tetrahedra, which share the corresponding edge. In what follows we will
present different types of error indicators and explain some of their benefits.

Instead of considering the true data values U(z) at the grid nodes we can
consider the offset values Us(z) corresponding to the approximation on the
next coarser level. They are related to the original data values by the recursive
formula

el T)) = =5

+ Us(2..(T))

where 1 and z are the end points of the edge e..(T). For smooth data,
e.g. U(z) = u(z) for all nodes z with u € C?, |Us(z,..(T))| = O(diam(T)?)
which implies the saturation condition holds asymptotically on grids 7* for !
sufficiently large. Let us emphasize that the handling of the Us—values would
therefore allow an economical J—compression of the data and the original values
can easily be retrieved during the recursive tree traversal. Now, we define the
hierarchical error indicator ng(z) := |Us(z)|. As before it is admissible if the



saturation condition is fulfilled. The resulting isosurfaces are shown in Figure 2
and 4. Polygon and frame rates are listed in Table 5. Instead of isosurfaces we
can analogously extract arbitrary slices and visualize data adaptively on these
slices (cf. Figure 3).

As an alternative to the above saturation procedure we can compute a
robust upper bound for the offset values on elements by the recursive formula

t(p) = ) + /. T 1
ni (@) = m (@) + mas oy (2,.(Te) (1)
where for nodes appearing on the second finest grid level nf(z) := ng(z).

These values can also be used to perform the necessary intersection test during
the hierarchical extraction of an isosurface. We thereby avoid the expensive
storing of min/max-values as discussed in [16].

With a focus on an isosurface’s geometric shape, we will now consider a
curvature estimation. We ask for a discrete curvature quantity which locally
measures the quality of the data approximation from the viewpoint of the visual
appearance [11, 12]. In isosurface images consisting of linear patches we can
easily recognize folds on the surface. In each tetrahedron the data gradient VU
is always perpendicular to an isosurface. Therefore, at any face F' the normal
component of the jump of the normalized gradient, denoted by [%]F, locally
measures the fold in the data function (cf. Figure 5). Here, the jump operator
[]F is defined as the difference of the argument on both sides of the face. This
jump obviously serves as a well-founded graphical error criterion and motivates
the following definition of an error indicator for a refinement node z,.(T) with
TeT'

vU'

wiet) = [,

After a possible saturation it serves as an admissible indicator related to the vi-
sual appearance. Alternatively, we can saturate this error indicator recursively
by adding finer level indicator values as in the hierarchical case (cf. Eq. 1).
Thereby, we obtain a new indicator 77}'{,. Besides the representation of a vi-
sual error this indicator allows an adaptive backface culling. Let N denote
the normal of some triangle of the final isosurface triangulation on the tetrahe-
dron T € 7' and V the viewing vector from the object to the eye (we confine
ourselves here to parallel projection). Then, the triangle is faced towards the
viewer, if N -V > 0, it will not be drawn otherwise. Now, we obtain a signifi-
cant acceleration of our isosurface algorithm, if on a much coarser grid level we
recognize tetrahedra containing only isosurface triangles which are faced away
from the viewer. Then we are already able to stop the local traversal on this
level. Thereby,

N -V 4k (2..(T)) <0

serves as an appropriate, additional stopping criterion. It can easily be seen
that, on average, while arbitrarily rotating the object, we save up to one half
of the computing time for an isosurface (cf. Table 1).



Figure 2: Flat (top row) and smooth (bottom row) shaded adaptive isosurfaces
are extracted from a 1293 sized Bucky Ball data set. We consider the hierar-
chical error indicator for threshold values € = 0.02, 0.005, 0.0, where 80 k, 211
k, respectively 590 k triangles are generated.

Figure 3: A color shading on slices (left) and the drawing of intersection lines
on faces of the corresponding adaptively extracted tetrahedra (right) is shown
for the Bucky Ball data set. For a threshold value of ¢ = 0.005 about 16 k
triangles are shaded.

Figure 4: Three isosurfaces are extracted from a 220 x 220 x 100 (resampled
to 1293) regular CFD data set, the velocity of a turbulent flow field above a
white dwarf star (courtesy A.Kercek, MPA Garching) for £ = 0.01 and isovalues
0.5, 1.5 and 2.5. The horizontal structure corresponds to the surface of the star.



Figure 5: The jump of the normalized gradient is a suitable error criterion.
Here the analogous 2D case is depicted.

Unfortunately, the evaluation of normals on every tetrahedron traversed in
the adaptive algorithm is computationally expensive. Therefore we ask for a
modification, which still ensures an adaptive backface culling. We consider an
error indicator which measures non—normalized gradient jumps, i.e.

Moo (Zeee(T)) 1= [VUp 1y »

and analogously construct a saturated indicator 77{00. Then the backface re-
jection criterion can be modified to

VO -V 4 11 o (2e(T)) < 0.

The gradients Vj\i of the barycentric coordinates {5\2-}052-53 with respect to a
reference tetrahedron T for each class of up to translation and scaling identical
tetrahedra can be precomputed. If a(T) is the corresponding scaling factor for
a specific tetrahedron T the backface test reduces to

_Z UiWi < =a(T) 01,00 (0e(T))

where W; = V - V\; is also precomputable. Table 1 shows the effect of this
strategy in reducing the number of visited cells. Asymptotically, we obtain a
saving of nearly % for fine grid resolutions.

For details on further types of error indicators we refer to [12]. Here we
have focused on above two types in order to emphasize that error indicators
serve other purposes as well, such as the evaluation of data bounds or adaptive
backface culling.

4 Reducing the storage requirements

Independently of the concrete type, error indicators have to be precomputed
and stored on the grid nodes. A naive approach requires the same memory
as the numerical data set itself. Let us now discuss an improvement which
significantly reduces storage requirements. First, we recognize that slightly
increasing the indicator values does not affect the overall performance of the
algorithm. Typically, we do not need the true values but the ordering of nodes



without backface culling with backface culling
triangles visited triangles visited

€ drawn | tetrahedra drawn | tetrahedra
1.6 72076 181616 56918 169270
0.8 92955 227874 65485 205010
0.4 126463 301332 81081 252936
0.2 224522 521472 130262 380627
0.1 342173 781218 188072 519739
0.05 463443 1026587 256757 650741
0.0 590018 1259669 317024 772752

Table 1: Number of generated triangles and visited tetrahedra with and without
multilevel backface culling for different threshold values £ using the normalized
gradient jump error indicator 77]‘(,.

corresponding to their indicator value. We are therefore able to classify the
indicator values according to the intervals
(am-}-l

;o]

in which they are contained for a fixed @ € (0, 1). Then, we only have to store
m which is a small integer and only needs some bits in storage instead of several
bytes for a floating point number. A lookup table enables us to retrieve the o™
values efficiently.

The appearance of the extracted isosurfaces is significantly improved when
smooth shading is used. Therefore, normals on vertices of the isosurface trian-
gulation are required. For data sets of moderate size normals can be calculated
on the grid nodes of the original mesh in advance and be stored. But on finer
grids, it is undesirable to provide three times the storage of the actual data
set to store normals derived from the data. Thus, they have to be calculated
when needed at runtime. The normals are required at vertices on edges of the
original grid. They can be obtained by linear interpolation of discrete gradi-
ents on the edge end points. Discrete gradients at these nodes are typically
calculated by central differences in case of regular hexahedral grids, or by local
averaging of cell normals. Such a normal is requested several times, once for
each tetrahedron sharing the edge. We enable a retrieval of already calculated
normals using a hash table for them. On a n3 sized data set the number of
vertices on the isosurface triangulation, which equals the number of intersected
edges is at most O(n?) depending on the smoothness module of the discrete
function U. A hash table of size O(n?) is therefore sufficient for our purpose.
The pair of index vectors for the end points of the intersected edge serves as
an appropriate hash key.



Figure 6: Two process subtrees are sketched. The dark grey process has already
finished his job passing over all its tetrahedra of interest. The light grey nodes
indicate tetrahedra which are not reached due to the adaptive stopping and the
hierarchical testing. Now the dark grey process resets its mark (indicated by a
thickened circle), taking over part of the originally black process subtree. The
black mark is correspondingly shifted downwards.

5 Parallel Implementation

In what follows we will address the question of how to run the presented algo-
rithm efficiently in parallel on a workstation with several processors. The very
first idea would be to apply a domain decomposition method with respect to the
tetrahedral grid. But this approach is not able to manage the complicated be-
haviour of our adaptive and hierarchical isosurface extraction algorithm. Small
and large portions of the isosurface will both be located in regions of the same
size. Therefore, the number of traversed tetrahedra by the algorithm in each
region — which is proportional to the required computing time — will signifi-
cantly differ. The problem is therefore how to prevent processors from getting
idle.

Here, we present an efficient solution to this problem, independent of the
concrete isosurface shape and straightforward to implement. Interactive visu-
alization in mind, we confine ourselves here to the case of a shared memory
workstation where processes (threads) are assumed to have comparable access
times to arbitrary local information in the complete data set. The exchange
of domain data turns out to be critical in distributed environments, although
unavoidable in certain cases of very fine grids. Then, load balancing decisions
have to be taken more carefully.

Initially, we set up several processes, each of which is given a subtree of
the complete tetrahedral hierarchy which can be handled independently of the
other processes subtrees. We denote the entry node of the current subtree of
a process by its mark. In particular, we assume that the right subtree of a
process has not yet been processed. If the process is going to enter his right
subtree, the corresponding mark has to be shifted downwards into the right
subtree.

Now, if a process has already finished its whole subtree, a new task has
to be found. Therefore, the entry node of a right subtree of another process
subtree is chosen as the currently idle process’s new mark. We always select the
process whose mark is on the coarsest level of the grid. The mark of the process



triangles visited f/sec f/sec

€ drawn | tetrahedra | (1 proc) | (4 proc)

0.02 81184 201757 3.45 8.33
0.01 128709 307384 2.27 5.26
0.005 211219 487107 1.43 3.44
0.0025 | 315440 727419 0.98 2.43
0.00125 | 439230 984029 0.74 1.78
0.0 590018 1259669 0.58 1.36

Table 2: Number of generated triangles, visited tetrahedra, frames per second
in the scalar, and in the parallel case for different threshold values € using the
hierarchical error estimator 771‘5.

dealing with the complete subtree before, is shifted recursively downwards to
the right, starting at the left child node of the former mark until it reaches a
node in the right subtree which is yet unvisited (cf. Figure 6). This strategy
ensures that a process which becomes idle is supplied with the largest unvisited
subtree.

Let us finally remark on the actual implementation in case of 6 tetrahe-
dra on the coarsest level of the grid hierarchy, e.g. for a cube subdivided into
tetrahedra. We index them with integers 6,...,11. The other tetrahedra are
numbered recursively. Left and right child are indexed 2i, respectively 2z + 1
for a tetrahedron with index i. We solely have to store an array of such indices,
one for each process. If a process has finished a left subtree, his mark index is
set to the right subtree index until the complete tree has been processed. An
idle process looks for the smallest mark index i,;, in a list of indices for all
processes, sets its mark index to 2i,,;, + 1, and modifies the other index.

If the graphic workstation is equipped with m processors, we may start m
processes. One of them has to be reserved to push graphic patches from some
buffer into the graphics hardware. The other m — 1 processes can be occupied
with actual isosurface extraction. Thereby, they collect patches to be drawn in
buffers which they hand over to the first process. On a 4 processor SGI R10000
workstation with infinite reality graphics a speedup of 2.4 and a rate of 800k
triangles can thus be achieved. Detailed results are listed in the Table 2. There
we considered the hierarchical error estimator.
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