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Abstract

Nowadays computing and post processing of simulation data is often based on effi-
cient hierarchical methods. While multigrid methods are already established stan-
dards for fast simulation codes, multiresolution visualization methods have only
recently become an important ingredient of real-time interactive post processing.
Both methodologies use local error indicators which serve as criteria where to refine
the data representation on the physical domain. In this article we give an overview
on different types of error measurement on nested grids and compare them for
selected applications in 2D as well as in 3D. Furthermore, it is pointed out that
a certain saturation of the considered error indicator plays an important role in
multilevel visualization and computing on implicitly defined adaptive grids.

1 Introduction

Today, efficient adaptive multigrid methods are available for a large variety
of simulation problems [11]. Following this frontier a variety of multiresolu-
tion visualization methods has been designed to serve as tools for interactive
visualization of large data sets [3,9,12,21]. Here we will especially focus on
methods which are based on nested grids since they frequently appear in data
computed by multigrid methods [8]. The local resolution of the generated vi-
sual objects, such as 2D graphs, or isosurfaces and color shaded slices in 3D,
depends on error indicators which measure the error due to a locally coarser
approximation of the data.

Different approaches have been presented to solve the outstanding continuity
problem, i.e. to avoid cracks in adaptive isosurfaces. In the Delaunay approach
by Cignoni et al. [4] and in the nested mesh method by Grosso et al. [10]
the successive remeshing during the refinement guarantees continuity. Alter-
natively, Shekhar et al. [22] rule out hanging nodes by inserting additional
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points on faces with a transition from finer to coarser elements due to an
adaptive stopping criterion.

We apply the method of adaptive projection on nested grids, which has been
described in earlier publications. Thereby we do not explicitly generate an
adaptive grid, but during a hierarchical traversal of the whole nested grid,
error indicator values implicitly define those elements, which build up the
adaptive subset depending on a prescribed threshold value. For the general
concept we refer to [18]. Implementational aspects are especially described in
[17]. The core of our approach is identical to the method of Zhou et al. [25].
In 3D it can be regarded as a generalization of the techniques presented by
Livnat et al. [14] and in [7].

In this paper we give a detailed comparison of error indicators and the perfor-
mance of corresponding multilevel methods. Furthermore we outline the usage
of such error indicators also for computational purposes. We do not focus on
the methodology itself but on the indicators, their effect on cost reduction,
and their relation to the actual error in a corresponding norm. Therefore,
especially to simplify the exposition, we confine ourselves to simplicial grids
generated by bisection, which are well known from adaptive numerical meth-
ods [1,20]. In explicit, we deal with the recursive bisection of [15,16]. Let us
emphasize that the methodology is fairly independent of the selected grid type
(cf. Figure 4, which shows slices of a medical data set on adaptive tetrahedral
and hexahedral grids, respectively).

2 A general multilevel algorithm on nested grids

We confine ourselves here to hierarchical simplicial grids which carry a piece-
wise linear data function. Let us consider a family of nested, conforming,
simplicial meshes {7 }o<i<in.. I two or three dimensions. Here, conforming
means that hanging nodes do not arise. We denote by A(T') the diameter of a
simplex T' € T* and by h(e) the diameter of its longest edge e. Furthermore,
N(T), N(T") denote nodal sets of single simplices, respectively entire simpli-
cial grids. The simplices, triangles in 2D, respectively tetrahedra in 3D are
assumed to be refined by recursive bisection. For a simplex T', the midpoint
of a predestined edge e,.,(T) is thereby picked up as a new node z,,(T), and
the simplex is cut at the edge, respectively face, F,(T) spanned by z,.(T)
and the nodes of T, which are not endpoints of the refinement edge e,..(T),
into two child simplices C(T) = {T¢,T¢}. A simple alternating scheme for
the refinement edge e, [1,15] guarantees the conformity of the resulting grids.
Finally, let U' denote the piecewise linear function on 7" uniquely described
by the data values on the corresponding nodes.



The multilevel algorithm for computing or postprocessing is based on a depth
first traversal of the grid hierarchy. During such a depth first traversal of the
binary tree structure we check for a stopping criterion on every simplex 7T'.
If it is true we stop and visualize locally. Otherwise, we recursively proceed
on the child set C(T'). If we stop on a specific simplex T and refine another
simplex T which shares the refinement edge with T, ie. €,,(T) = eref(f'),
an inconsistency occurs at the hanging node z,.;. This leads to jumps in the
current adaptive data projection. In the case of general nested grids we can
apply a specific adaptive projection operators to ensure consistency [18]. Here,
we simply have to ensure that, whenever a simplex is refined, all the simplices
sharing its refinement edge — in 2D only the one triangle opposite to T at
the edge €,.(T) — are refined as well. This can be achieved by defining error
indicators n(z) on the grid nodes and choosing n(z..(T)) < ¢ as stopping
criterion on a simplex for a user—prescribed threshold value . Since all nodes,
except those on the coarsest level, are refinement nodes z,.(7') on a refinement
edge €,.(T), the indicator value n(z) measures the approximation error or a
“visual” error on those simplices sharing the edge. Therefore, the recursive
traversal would stop not only on T but — if visited — on all other simplices
sharing the refinement edge if their common stopping criterion is true.

However, for an arbitrary error indicator it might still occur that, although
n(2..(T)) < ¢, n(xref(T)) > ¢ on some descendant T of a neighbouring sim-
plex of T" whose refinement node :cref(T) is located on the boundary of T.
The adjacent simplex will possibly be visited and then refined, whereas on T'
the stopping criterion already holds. To avoid this we assume the following
saturation condition on the error indicator (for a generalization compare [18]):

Saturation condition on an error indicator 7:

n(x,(T)) > n(z,,(Te)) for ol T € T" with | <1, and Te € C(T).

An error indicator 7 is called admissible, if it fulfills the saturation condition.
Otherwise, it can easily be adjusted in a preroll step (cf. section 3). The
adaptive algorithm can be sketched in pseudo code as follows

AdaptTraverse(T') {
if SimplexIsOfInterest(T)
HC(T)#DAn(z.(T)) > ¢
{ AdaptTraverse(T;); AdaptTraverse(T7); }
else SimplexAction(T);

}

where the function SimplezlsOfinterest() checks whether the simplex is a can-
didate for the local processing or not. For example, in multilevel isosurface
extraction this function checks whether the isosurface intersects the current
simplex (see Section 5 for an efficient implementation of such a function).



3 Principle aspects of nodal error indicators

At first, let us discuss several principle techniques of local error measurement.
The starting point will be some actual local error measure on the grid hier-
archy. The local resolution and the visual impression of the numerical data
are closely related to the specific type of error measurement applied in the
adaptive traversal of the tree structure.

Let n*(x) be a measure on nodes z, which weights the effect of stopping for
some local rendering already on a simplex T with = = z,4(T) instead of
traversing the locally finest grid level. Furthermore, let us denote by S(z) the
support of the piecewise linear base function corresponding to the node =x.
Then, given a fine grid data function U and a coarse grid function U* on level
[ with T € T, we assume n*(z) to be the distance between U and U' measured
locally on S(z) by some metric dg(), i.e.

n(z) = ds@ (U, U7)
Let us consider several widely used metrics:

e We can choose some local norm of the difference functions such as
1 (2):=|U = U'lp,s)

where || - ||, 5(s) is the usual L? norm for p € [1, 0] restricted to the do-
main S(z). Due to Holder’s inequality the error indicators obviously become
sharper for increasing values of p.

o Instead of function values we can consider derivatives and define

0" (2):=[VU = VU'||p,5() -

In general the resulting error measurement is sharper then the one based
on function values. By some worst case analysis based on inverse estimates
we obtain the estimate |VU — VU'||, s@) < Cht||U — U'||p,s(s), where
Pnin:=minre, TCS(2) R(T). This estimate is asymptotically sharp on fine
grid levels for a function U, which is the interpolation of some smooth func-
tion. Frequently, the norm of the gradient is taken as an error indicator.
Especially in post processing this is questionable, because rendering is ”lin-
early exact” and therefore refinement in areas of uniformly large gradient

norms does not improve the graphical representation.

e Third — a smooth graphical representation in mind — we may be interested in
measuring the geometric smoothness of the approximation independently of
the true function values. A possible measure is a discrete curvature quantity.

For surfaces this should be related to the absolute curvature x = y/k? + &2
where the k; are the principle curvature terms. As clearly indicated in the



case of minimal surfaces with vanishing mean curvature or cylinders with
vanishing Gaussian curvature, mean or Gaussian curvature discretization
does not make sense in terms of general error control.

e A fourth choice of a suitable measure is closely related to geometric shapes
[13]. In the simple case of a scalar function U a suitable approach is to
compare the graphs of U, respectively U* on S(z). If dist(-,-) is a geometric
distance metric on graphs, we are lead to n*(z):=dist(graph(U), graph(U")) .
Let us emphasize that for rather flat surface graphs this error indicator only
slightly differs from measuring the difference of the function values.

Furthermore, the viewing direction and distance may enter the error metric
[14], or the error measurement may depend on the distance to a specific region
of interest [2,5,18]. We will here restrict ourselves to the basic error norms and
discrete curvature measurement.

4 Different hierarchical error indicators

Usually, an error measurement which locally compares coarse grid functions
with the functions on the finest grid is expensive to evaluate even in a pre-
processing step. We will apply an often used simplification, which only com-
pares data on the current grid level to data on the next finer grid level. We
will denote the corresponding “one level look ahead” error indicator by n(z).
However, the saturation condition as a minimum precondition to guarantee
continuity of the adaptive projection may fail for 7.

e Hierarchical offset error indicators: In analogy to the norm of the
difference function we can consider the hierarchical offset function Us defined
on a simplex as

Uslp = Ul lp = U7

The values of Us on N''\ N7 are related to the original data values by the
following recursive formula

0(o() = A (o7

where x; and x5 are the end points of the edge corresponding to z,.(T)
on a simplex T. For smooth data, i.e. U(z) = u(x) for all nodes x with
u € C% |Us(x,(T))| = O(R(T)?*), which implies the saturation condition
holds asymptotically on grids 7' for [ sufficiently large. Hence, we define
the hierarchical L® error indicator

Neo (2):=|Us ()]



Instead of the L™ norm we can analogously consider different integral norms
applied to the difference function which corresponds to a new node. Using
lumped mass integration one obtains for a d—dimensional simplex T'

1

W) = T ( s, |T|)p ]

T,zeN

for 1 < p < oo, where |T| is the volume of the simplex. Decreasing p leads
to an earlier stopping of the tree traversal on simplices of small size.

Gradient type error indicators: Instead of measuring the error with
respect to function values, we can consider the error of the function gradient:

( 3 |T|) |VUs|r|| for 1 <p < oo,
1717p(1;);: T,zeN(T)
p e IVUs|z|| for p = oo.

The evaluation of these error indicators takes some effort in the precom-
puting step. If we replace simplices by simplex refinement edges without
modifying the scaling we gain at least for p = 0o

A )]
YT el T))

Discrete curvature type indicators: With a focus on the geometric
shape of an isosurface, we will now consider an error indicator related
to curvature. Let us recall that the continuous curvature vector of a iso—
hypersurface [6] can be evaluated by

Vu
- di .
|Vu|div (|Vu|)

Now, we ask for some discrete counterpart. We replace the divergence by a
discrete difference and scale it by the inverse grid size. Thus, we obtain a
scaled discrete curvature quantity which locally measures the quality of the
data approximation from the perspective of the visual appearance [18].

On each simplex the data gradient VU! is always perpendicular to an

isoline or isosurface. Therefore, at any face F' the normal component of the
vU!

jump of the normalized gradient, denoted by [WZI]F’ locally measures the
fold in the data function and motivates the definition

VU
T]N(xref(T)) = [ ] .
|VUZ| Fref(T)
Here the jump operator [-|r is defined as the difference of the argument on
both sides of the face. We can also apply the simplification of the previous
indicator here and denote the resulting error indicator by ny..



5 Saturated error indicators

As pointed out above, the hierarchical error indicators in general do not ful-
fill the saturation condition. We can overcome this drawback by defining a
modified error indicator 7, which is defined as the minimal saturated error
indicator larger or equal than . This definition is constructive in the sense
that in a bottom up, breadth first traversal of the grid, we can blow up the
original error indicator values. In pseudo code this blow up mechanism looks
as follows:

for (I =lp—1;1>0;1——)
forall T € T' and = = z,.+(T)
N - I .
() maX{Tgelg(g)n(fﬂref( c)):n(z)};

Let us emphasize that a depth first traversal of the hierarchy in the adjustment
procedure would not be sufficient. But, if the error indicators are adjusted as
proposed above continuity problems are solved automatically.

Alternatively, we can ensure saturation of an indicator n by recursively defin-
ing:

17 (@) = n(x) + max 0 (e(Te))  for @ = 2u(T).

On the finest grid level, where C(T') = ), we simply set n*(z) = n
different error measures are obviously related to each other by n < n < n*.
Applying the triangle inequality we obtain n%, < nf and nf_ < nioo. The
indicator n*, although the largest one derived from the original indicator n*,
and thus the weakest, can have other desirable properties. For instance, an
easy computation of min/max—values for isosurface extraction or criteria for
multilevel backface culling are possible:

e On the one hand, we are able to compute a bound 3y(T') for the difference of
the true function and its linear approximation on a simplex T on level [. This
can be applied in the implementation of the SimplezlsOfInterest()-function.
We obtain

min U'(z) — Bo(T) < U < maxU'(z) + Go(T) .

z€T z€T

In the hierarchical offset case and for the choice nt we simply define

5o(T) %njo(xref(T)), for hierarchical offset indicators
M0 =
h(T)0f oo (@wer(T)), for gradient type indicators



In both cases, the expensive storing of min/max-values, which was necessary
to prevent us from missing certain components of the isosurface (cf. [24])
can be avoided.

e On the other hand, we may check in an isosurface extraction algorithm
— based on coarse grid simplices — whether all polygons extracted by the
algorithm will be backfaces. Let N' = % denote the normal of some
triangle of the final isosurface triangulation on the simplex T' € T, and V
the viewing vector from the object to the eye (we confine ourselves here to
parallel projection). If N*-V > 0, the triangle is faced towards the viewer.
Otherwise it does not need to be drawn. We obtain a significant acceleration
of our isosurface algorithm, if on a much coarser grid level we recognize
simplices containing only isosurface triangles which are faced away from the
viewer. In this case we are already able to stop the local traversal at this
level. If Bn(T') is a bound of the variation of N* in T' € T, we obtain the
multilevel backface test N'-V + Gy(T') < 0. One possible choice for Gn(T')
is N} (7.¢(T)). Skipping the normalization and considering instead a bound
B1(T') which measures the possible offset in ||VU||, we alternatively obtain
the rejection criterion VU' -V + 31(T) < 0, with 31(z) = n{ o (2.o(T)) . It
can easily be seen that, on average, while arbitrarily rotating the object,
we save up to one half of the computing time by traversing only half of the
tetrahedra for the extraction of an isosurface (Fig. 5).

6 A quantitative comparison

So far, qualitative aspects of error measurement and provisions for different
applications have been discussed. In what follows, we focus on a detailed
quantitative discussion. Therefore, we study certain test problems in 2D as
well as in 3D.

In 2D we consider different examples from different classes of data sets. On
the one hand, we choose a typical measurement data set, which represents a
geographical map, originally sampled on a 257% regular grid, which we after-
wards cover with a hierarchical triangular grid (cf. Fig. 7(b)). It consists of
regions with a significant roughness and other areas which are almost planar.
On the other hand, we apply multilevel visualization to a typical numerical
data set already computed on a triangular grid hierarchy. It is characterized
by smooth, less steep areas which alternate with thin transition zones where
the data function is rather steep. Here we consider a timestep of a Cahn-—
Hilliard simulation on the same 257% regular grid (cf. Fig. 7(c)). It represents
the density of an alloy after quenching (rapidly cooling), which leads to phase
separation [23]. Nevertheless, this numerical data set is much smoother than
the geographical map.



In the 3D case we consider isosurface extraction and color slicing on the well

known 129° bucky ball data set (cf. Fig. 7(f) and 7(d)).

The cost of the visualization method is mainly controlled by the number of
visited grid cells in the recursive traversal. As there are different ranges of
indicator values on the grid nodes, we ensure comparability by normalizing
the maximal indicator value to 1. An alternative measure of the cost would
be the number of rendered primitives. Not surprisingly both measures are
closely related and therefore it does not really matter which one we choose.
The following results are based on the visited—cell-count cost measure.

The crucial measure of the quality of an adaptive projection in visualization
is the visual impression of the rendered image. However, this is impossible
to quantify. So in order to get a comparable notion of the quality we chose
the reciprocal of the corresponding global norm of the difference between the
adaptively extracted function and the function on the finest grid. In this con-
text the efficiency E of an error indicator is the quotient of quality and cost
and would thus be

1
12U = Ul

ETZ(U7€) = k‘ A

where k is the number of visited cells used for the adaptive projection P,U.

Fig. 1 and 2 compare results obtained for the different classes of error indica-
tors. The scaling on the y axes is logarithmic. For the geographical data the
different characteristics of the hierarchical offset error indicators compared to
the error indicators based on derivatives are clearly visible.

The smoother numerical data show a similar behaviour. Not surprisingly, the
graphs for ny and 7y . are especially for the geographical data set nearly the
same. Therefore, the simplification incorporated in 7y . seems to be admissible
and as ny . 1s easier to calculate, it is more favourable for practicable purposes
than ny. As expected, the indicators 7; and 7, are — in comparison to 7, —
rather similar.

The efficiency of these indicators is depicted in Fig. 3. It becomes clear that
Moo 18 less efficient than 7; and 73. In the case of the geographical data set and
also for not too high threshold values in the case of the numerical data, the
qualities of the three error indicators differ only slightly. So the main reason for
the low efficiency of 74, 1s that even for high threshold values a large number
of cells is visited. In the 3D—case the results are similar.

Finally, we compare the different methods for ensuring the saturation con-
dition in the case of the n,—indicator. In our experiments the differences in
smoothness between the geographical and the numerical data are clearly vis-



ible in the characteristic if 74, is used. However, these differences are lost for
nt . This is also true for other indicators as for example 5y compared to 7,.
Hence, an application of an nt-type saturated indicator is only reasonable if
the advantages concerning min/max-bounds or backface culling are exploited.

We also want to show that for reasonable threshold values the visual impres-
sion of the original and adaptively projected images are rather close (Fig. 7(a)
and 7(b)). For the geographical map, the adaptive image consists of 13666
patches whereas the original image has a size roughly ten times larger (131072
patches). Additionally, we show extracted isosurfaces of the bucky ball data
set with 128709 and 590018 triangles, respectively (cf. Fig. 7(e) and 7(f)). In

all these figures we used the 7, error indicator.

7 Computing on implicitly defined grids

Frequently, a graph structure managing the hierarchy of elements — explic-
itly stored in memory — serves as the algorithmical base of an adaptive finite
element method. For very large applications with several million elements,
such a strategy is characterized by an enormous memory consumption. The
typical memory requirement for a single node in such a structure is several
hundred bytes, much more than the four or eight bytes needed for the nodal
value itself. On the other hand, information which elements have to be refined
already uniquely defines the adaptive grid. Thus, the alternative for an explic-
itly stored element graph is to generate the actual grid elements temporarily
and locally during a recursive grid traversal also in the numerical algorithm.
Thereby nodal values are either stored in an array corresponding to a fixed
fine grid, or they are retrieved on demand from a hash table. In case of sim-
plicial grids the hash key corresponding to a new node z,.(7') can be taken
as the concatenation of the known indices of the parent nodes. Every time a
new node is generated a new nodal index is provided as well.

Furthermore, the basic operations on the grid and on the nodal vectors which
are performed in a finite element code can be implemented with the help of
the general traversal algorithm of Section 2. To give an impression how this
can be done concretely let us briefly study the implementation of a prodcut
of a finite element matrix with a vector z = Aw. Such a product is the key
ingredient of any interative solver. Here A is a discretization matrix (e.g. a
stiffness matrix) and w a nodal vector. Finite element matrices split up into
local element matrices which consider local basis functions only. Thus we are
able to replace the iteration over the nodal indices by an outer grid traversal
running over all elements of the grid and an inner iteration running only over
the local nodes. After an initialization z = 0 we invoke the traversal routine
with the following local action on every simplex:

10



SimplexAction(E) {
assemble local matrix on F;
compute local matrix vector product;
for all z € N(E)
update z(x);

}

Here the update consists in the identification of global nodes corresponding to
local indices and adding the corresponding local z vector components to the
already assembled global vector component z(z). For details we refer to [11].

Figure 6 shows an image smoothing application solved by nonlinear diffusion
[19]. In each timestep one is lead to a linear system (M + 7B)u = f which
has to be solved in the nodal vector u. Here, M is the mass matrix, 7 is
the timestep, B is a nonlinear stiffness matrix and f the nodal vector on the
right hand side. Edge indicators (i.e. n1 ) are used as error indicators for this
application. They ensure a sufficient grid refinement at edges in the images.

8 Concluding remarks

In this paper we have considered several error indicators which are used in
multiresolutional visualization and compared their quantitative as well as their
qualitative properties. We have specifically looked at local norms of difference
functions, differences of gradients and discrete curvature measures. We have
employed the saturation condition as an important prerequisite for interactive
visualization since it solves the continuity problem.

It has been shown how this condition can be fulfilled by a blowup of 1. We
have thereby defined minimal saturated hierarchical error indicators 7, which
indeed give good results concerning the ratio of triangle count to global error.

On the other hand, by a minor modification of the blowup mechanism, we
have defined the error indicators n* which have a slightly worse efficiency
but other desirable properties. For instance, based on the error indicator data
bounds on simplices can be computed which then serve as stopping criteria
for multiresolutional isosurface extraction. We have also shown how gradient
type error indicators allow multilevel backface culling. In a series of numeri-
cal experiments on application data the different error indicators have been
compared and their mutual advantages have been outlined.

Let us finally remark that the user can choose which error indicator to use. He
or she may be interested in robust maximum error bounds (7. ), local mass
measurement (11, 72), surface shading (71 ) or discrete curvature control (nx).

11
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Fig. 1. Error indicators 7; (dashed), 7z (solid) and 7. (dotted) based on the different
local L', L? and L™ norms of the hierarchical offset are compared, concerning the
count of visited simplices for varying threshold values.
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Fig. 2. The visited cell count is compared for the error indicators 7 o (solid),
nn (dotted), and 7y (dashed, only in 2D above) respectively.
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Fig. 3. Efficiency as function of threshold value for local 7.,—error (dotted), 7;—error
(solid) and local 7y—error (dashed)
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Fig. 4. Adaptive slices through an MRI head data set on a tetrahedral and a hexa-
hedral grid.

Fig. 5. The effect of multilevel backface culling using the error indicator nf:oo is
shown. The actual viewing direction is from the left. The threshold values are 0.0,
0.1, and 0.4.
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Fig. 6. Anisotropic image smoothing after 0, 10, 40, and 160 time steps. For each
time step the smoothed image and the underlying grid is shown.
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(a) Adaptive projection of the geo- (b) Original data
graphical map

(c) Timestep of Cahn- (d) Color shaded slice of
Hilliard Equation the bucky ball

(e) Adaptive projection (f) Original data
of the isosurface

Fig. 7. Above the graph of a geographic height field (b), its adaptive projection
(a) and a timestep of the Cahn-Hilliard-Equation (c) are shown. Of the bucky ball
data set we show a color shaded diagonal slice (d), an adaptive projection (e) and
a full resolution isosurface (f).
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