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Abstract

In this paper, we introduce a new scheme for the efficient numerical treatment of
the electronic Schrödinger equation for molecules. It is based on the combination
of a many-body expansion, which corresponds to the bond order dissection Anova
approach introduced in [35, 42], with a hierarchy of basis sets of increasing order.
Here, the energy is represented as a finite sum of contributions associated to subsets
of nuclei and basis sets in a telescoping sum like fashion. Under the assumption
of data locality of the electronic density (nearsightedness of electronic matter),
the terms of this expansion decay rapidly and higher terms may be neglected.
We further extend the approach in a dimension-adaptive fashion to generate quasi-
optimal approximations, i.e. a specific truncation of the hierarchical series such that
the total benefit is maximized for a fixed amount of costs. This way, we are able
to achieve substantial speed up factors compared to conventional first principles
methods depending on the molecular system under consideration. In particular,
the method can deal efficiently with molecular systems which include only a small
active part that needs to be described by accurate but expensive models.

1 Introduction

The idea of so-called QM/MM hybrid approaches is to combine highly accurate quantum
mechanical (QM) methods and fast molecular mechanics (MM) methods in a cost efficient
manner [4]. Such methods make use of the fact that, in many applications, it is sufficient
to model a small part of a system in great detail and the rest of the system in less
detail only [64, 69]. Numerically, the microscale with its reactive part is usually treated
with QM approaches like e.g. Hartree-Fock (HF), configuration interaction (CI), Möller-
Plesset (MP2), coupled cluster (CC) or density functional theory (DFT) methods which
yield approximate solutions to the underlying quantum-mechanical electronic Schrödinger
equation. The mesoscale with its non-reactive part is described by classical MM methods
which use Newton’s mechanics with empirically fitted potential functions. Here, one of
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the main challenges is to define the QM region, the MM region and the interactions
between them [4]. The ultimate goal would be a seamless coupling of QM computations
where needed and classical MM simulations where sufficient. Such approaches are usually
referred to as multiscale methods [9, 13, 14, 54, 59].1

In this article, we introduce a new method for a seamless coupling of different mod-
els. In our so-called adaptive multilevel BOSSANOVA approach, we follow the idea of
general sparse grids to combine, on the one hand, an appropriate many-body expansion
and, on the other hand, a hierarchy of models in a cost-efficient manner. The so-called
regular sparse grid combination technique [11, 36] is well-known from high-dimensional
integration, interpolation and the solution of elliptic PDEs [10, 27]. More generally, the
construction of a sparse grid can be formulated as a knapsack problem [10]. Here, the ben-
efit and the cost of each hierarchical surplus in an appropriate hierarchical representation
is estimated. Then, a quasi-optimal sparse grid approximation can be achieved [10, 60] by
a proper truncation of the hierarchical expansion such that the total benefit is maximized
for a given total work load. This procedure can be applied using a priori estimates or a
posteriori estimates, like in dimension-adaptive sparse grid approaches [28].

After the presentation of our new approach in a general setting, we discuss the case
of the approximation of the Born-Oppenheimer energy in more detail. To this end, we
use the systematic bond order dissection Anova (BOSSANOVA) algorithm proposed in
[35, 42] and consider a hierarchy of models which results from the use of an appropriate
systematically convergent hierarchy of one-electron basis sets, like e.g. cc-pVDZ, cc-pVTZ,
cc-pVQZ, cc-pV5Z, cc-pV6Z, . . . , within a specific QM method like e.g. HF or DFT. We
discuss both, a priori truncation schemes and dimension-adaptive algorithms which are
based on a local cost model and a posteriori local benefit estimators. We apply our new
method to approximate the energy of several molecules, where we are able to achieve
substantial speed up factors compared to the conventional electronic structure method.
In addition, we apply our new adaptive approaches to three large molecules, which can
not be treated with any conventional method at all in a reasonable time.

The remaining article is organized as follows. In Section 2 we briefly summarize the
basics of the underlying Schrödinger equation and shortly review additive models. In
Section 3 we describe our new multilevel Anova-like decomposition scheme. In Section 4
we give numerical results for a broad range of organic molecules. We conclude with some
remarks in Section 5.

2 Additive model approaches

In general, any starting point for an approximation or a coupled model must be the full
Schrödinger equation for the electrons and nuclei of the system under consideration. But
since the time-dependent Schrödinger equation lives in 3(M +N) + 1 dimensions, where
M denotes the number of nuclei and N denotes the number of electrons, a direct nu-
merical treatment is impossible due to the curse of dimension. Thus one has to resort to
model approximations. As a first step, in the Born-Oppenheimer molecular dynamics ap-
proach, the wave functions of the nuclei and electrons are separated, the subsystem of the

1Note that the 2013 Nobel Prize in chemistry was awarded to Karplus, Levitt and Warshel for the
development of multiscale models for complex chemical systems [4].
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nuclei is treated classically with Newton’s mechanics and the remaining 3N -dimensional
electronic Schrödinger equation is further approximated by one of the aforementioned
QM methods [54]. The potential needed for Newton’s mechanics is obtained from the
electronic solution by the Hellmann-Feynman theorem. Then, the resulting equations of
motion for the degrees of freedom of the nuclei, i.e. their positions R, read as follows:

mkR̈k(t) = −∇RkV
BO(Z,R(t)), (1)

V BO(Z,R(t)) := inf
‖φ‖=1

{∫
φ∗(r)He(Z,R(t), r)φ(r)dr

}
. (2)

Here V BO denotes the Born-Oppenheimer ground state energy and He denotes the elec-
tronic Hamiltonian which reads as

He(Z,R, r) := Hee(Z; R, r) +
M∑
i<j

ZiZj
|| Ri −Rj ||

,

Hee(Z,R, r) := −1

2

N∑
k=1

∆rk +
N∑
k<l

1

|| rk − rl ||
−

N∑
k=1

M∑
j=1

Zj
|| rk −Rj ||

,

where Z = (Z1, . . . , ZM)) denotes the atomic numbers and r are the positions of the
electrons. Here, all information on the dynamics of an atomic system is encoded in the
associated high-dimensional Born-Oppenheimer potential V BO. Note that for neutral or
positively charged systems, i.e. N ≤ ∑M

j=1 Zj, Zhislin’s theorem states that V BO(Z,R)
is an isolated eigenvalue of finite multiplicity of the operator Hee(Z,R, r) for all R [26].
Note furthermore that difficulties may in general arise for the Born-Oppenheimer ground-
state molecular dynamics from the fact that ∇RV

BO is unbounded (because of Coulomb
singularities at nuclei cusps) and from the fact that ∇RV

BO might be discontinuous even
away from the positions of Coulomb singularities (because of possible eigenvalue crossings
of the electronic Hamiltonian Hee) [2]. In the following, we will omit the parameter Z if
it is clear from the context.

Let us remark that a global electronic QM solution is, at least for larger molecules,
still too expensive since conventional methods scale at best with O(M3) due to the under-
lying problem of matrix diagonalization. Therefore, specific electronic structure methods
[7, 29, 71] are employed which scale linearly and thus overcome this complexity prob-
lem. There exist for example divide and conquer DFT [70, 76, 79] and partition DFT
(PDFT) [22]. Such approaches are based on a partition of the global system into em-
bedded spatial local parts [44], which can be solved separately and then combined to
approximate the global solution. This is also the underlying idea of various decompo-
sition and fragmentation approaches, where the full global electronic structure problem
is decomposed into appropriate local subproblems, while the local results are linearly
combined to generate a consistent energy expression for the global system [31]. For
example, there exist the sum of interactions between fragments computed ab initio pro-
cedure (SIBFA) [32], the fragmentation reconstruction method (FRM) [3], the fragment
molecular orbital method (FMO) [49, 51, 58], additive model approaches [16, 19] and
many-body expansions [1, 12, 17, 18, 30, 53, 66, 67, 72]. Note that the linear scaling
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QM methods and fragmentation based QM methods all take advantage of a data locality
principle which involves the so-called nearsightedness of electronic matter [50, 65].

Although these QM based methods are very powerful, they are still too costly for
many applications, where large systems have to be treated with high accuracy. Hence,
in order to further reduce the costs without losing much accuracy, one tries to somehow
use different levels of models (e.g. HF and CCSD(T)) in a decomposition approach.

For example in incremental methods, a many-body expansion

E(R1, . . . , RM) = F∅ +
∑
i

F{i}(Ri) +
∑
i<j

F{i,j}(Ri, Rj) + . . .+ F{1,...,M}(R1, . . . , RM),

can be used to couple different models. Here, the leading low-order terms in the many
body expansion are treated with a high level method, while all higher-order terms are
treated at a low level model [77], like e.g. the multilayer hybrid approach [6], the multilevel
fragment-based scheme [83] or the many-body integrated fragmentation technique [5, 74].

There exist several methods, which apply different models to different parts of an
atomic system, while combining the results to produce a consistent energy expression.
This is the case for example in the conventional QM/MM methods [25] and several vari-
ants like e.g. the IMOMM ansatz [57] and the ONIOM approach [75]. The common basic
idea of most hybrid QM/MM approaches is to use a sum over two nested regions, like
e.g. Ω2 and Ω1 ⊆ Ω2, to represent the total energy as

EQM(Ω2) ≈ EMM(Ω2) + (EQM(Ω1)− EMM(Ω1))︸ ︷︷ ︸
model improvement

. (3)

While all these hybrid methods and fragmentation procedures have promising features,
they involve stringent chemical knowledge to choose the regions (or cuts) as best as
possible while keeping the underlying ground-state electronic density intact.

Furthermore, in quantum chemistry composite methods [20, 61] an additive model
approximation is used to couple different levels of models and different levels of basis sets
in a cost-efficient manner. Here, for a low level method E1, a high level method E2, a
small basis set B1 and a large basis set B2, the energy of the high level method using the
large basis, i.e. E2(B2), is approximated by the sum

E2(B2) ≈ E1(B1) + (E1(B2)− E1(B1))︸ ︷︷ ︸
basis set improvement

+ (E2(B1)− E1(B1))︸ ︷︷ ︸
model improvement

(4)

= E1(B2) + (E2(B1)− E1(B1)).

This approximation provides in many cases a substantial reduction of computational costs
but results in just a slight degradation of accuracy [55].

Let us remark that the additive approximations (3) and (4) can be used as basic build-
ing blocks which lead in a recursive fashion formally to the so-called sparse grid combina-
tion technique [11, 36], which is the basis for our new adaptive multilevel BOSSANOVA
approach.

3 Adaptive multilevel bond order dissection Anova

First of all, let us note that, in many typical applications, it is sufficient to accurately
describe just a restricted specific subdomain of the Born-Oppenheimer surface. Therefore,
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we assume that the error of the quantity of interest of an approximation Ṽ to the Born-
Oppenheimer surface V BO can be described by |E [V BO − Ṽ ]|, where E is an appropriate
linear functional. Examples would be energies, forces or Hessians at specific coordinates
or on specific subdomains. In this paper we restrict our numerical experiments to the
case of the energy at a specific fixed configuration R. To this end, one can define E [V ]
just by the convolution of V and the delta distribution δ, i.e.

E [V ](R) :=

∫
V (R′)δ(R−R′) dR′ = V (R)

Our new approach is based on the conventional BOSSANOVA method [35, 42] and
on a hierarchy of models resulting from sequences of correlation-consistent basis sets that
are well-known in quantum-chemistry [21, 24]. These methods are coupled using the idea
of the optimized sparse grid technique by balancing benefit-cost ratios of hierarchical
surpluses, for details, see [10, 60].

In the following subsections, we will first discuss the so-called complete basis set limit,
then recall the conventional BOSSANOVA scheme and finally describe our new multilevel
and adaptive multilevel BOSSANOVA schemes. Moreover, we will discuss the estimation
of local benefit and local cost associated to a hierarchical surplus whose quotient serves
as error indicator in the adaptive scheme.

3.1 Complete basis set limit

Now let us shortly recall the full configuration interaction (FCI) method, which corre-
sponds to the application of the Galerkin scheme for the numerical treatment of the
electronic Schrödinger equation (2). To this end, let B1 ⊆ B2 ⊆ . . . be a sequence of
appropriate finite basis sets of one-electron functions in H1(R3 × {±1

2
}) such that the

family {span{Bp}}p∈N is dense in L2(R3 × {±1
2
}).2 Then, starting from such a family

of one-electron basis functions, Slater determinants (which are generated by the outer
anti-symmetric product ∧) are used to construct a family of N -electron bases functions
and an associated dense family of finite dimensional N -electron subspaces {Vp}∈N for the
N -electron space

V := H1(R3 × {±1
2
})N ∩

N∧
i=1

L2(R3 × {±1
2
})N ,

for details, see [33, 39, 68]. This leads to an associated family of potential energy functions
{V FCI

p }p∈N. Here, for a fixed R = (R1, . . . , RM) with pair-wise distinct components,
V FCI
p (R) is given as

V FCI
p (R) := inf

φ∈Vp,‖φ‖=1

∫
φ(r)He(R; r)φ(r)dr, (5)

which results from the discretization of V by Vp, i.e. from a Galerkin-Ritz approximation
of the exact ground-state energy V BO(R) of (2).

2Except for the completion with respect to a chosen Sobolev norm,
∑

p∈N span{Bp} is just the asso-

ciated Sobolev space H1(R3 × {± 1
2}).
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In particular, the FCI method fulfills the Rayleigh-Ritz variational principle and thus
it holds V BO(R) ≤ V FCI

p (R). Furthermore, if the exact lowest eigenvalue V BO(R) with
associated eigenfunction φSE has multiplicity one, then there exist a p0 ∈ N and functions
φFCIp (R) ∈ Vp which solve the discrete Galerkin eigenvalue problem (5) and obey the
following error bounds

‖φBO(R)− φFCIp (R)‖H1 ≤ C1(R) inf
φ∈Vp,‖φ‖=1

‖φBO(R)− φ‖H1 ,

0 ≤ V FCI
p (R)− V BO(R) ≤ C2(R)‖φBO(R)− φFCIp (R)‖2H1

for all p > p0, see e.g. [33, 68, 81], where C1(R) and C2(R) denote constants which
are independent of p. Moreover, since φBO is at least in H1 and fulfills certain decay
properties, the use of an appropriate sequence of bases of sufficient order leads to an
error estimate of type

V FCI
p (R)− V BO(R) ≤ C(R)p−2,

compare e.g. [81, 82].
In the following, we will assume that, for all ε > 0, there exists a pε ∈ N with∣∣E [V BO − V FCI

pε ]
∣∣ < ε

and thus also the convergence of the quantity of interest E [V BO] is provided. Unfortu-
nately, the applicability of the FCI method is limited by the curse of dimensionality, since
the number of involved degrees of freedom grows exponentially with the number of elec-
trons N . Using the specific regularity of the electronic eigenfunction and provided that
its decay properties are present, this curse of dimension can be circumvented to a certain
extent by sophisticated sparse grid techniques. But these methods are still restricted to
small systems [34, 52, 80, 81].

Thus, we more generally consider electronic structure methods (ESM) which are also
based on a discretization of the one-electron space H1(R3 × {±1

2
}), but represent model

approximations to the electronic Schrödinger equation, like in particular HF, CI, CC
and DFT. Here, an appropriately chosen family {Bp}p∈N of one-electron basis function
sets again results in a family of associated potential energy functions {V ESM

p }p∈N. We
furthermore assume that the telescopic series

V ESM
∞ :=

∞∑
p=1

(
V ESM
p − V ESM

p−1
)
,

is point-wise absolute convergent. Then, we can estimate the error of an approximation
V ESM
p by ∣∣E [V BO − V ESM

p ]
∣∣ ≤ ∣∣E [V BO − V ESM

∞ ]
∣∣+
∣∣E [V ESM

∞ − V ESM
p ]

∣∣ , (6)

where
∣∣E [V BO − V ESM

∞ ]
∣∣ is the model error and

∣∣E [V ESM
∞ − V ESM

p ]
∣∣ is the discretization

error, respectively. In the following, we will just consider the approximation of the so-
called complete basis set limit V ESM

∞ for a given electronic structure method.
To this end, let us shortly review complete basis set limit extrapolation schemes

which are well known in computational chemistry [47]. For a specific system R with
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pair-wise distinct particle coordinates, the procedure is as follows: First, a sequence of
energies is computed using an appropriate ESM with a hierarchical sequence of basis
sets. Then, these energy values are used to fit a model equation for the error decay and
finally this decay model is applied to extrapolate to the complete basis set limit. For
example, correlation-consistent basis sets like e.g. cc-pVnZ with n ∈ {2, 3, 4, 5, 6, . . .} are
appropriate.3 Note that extensive numerical studies [23, 38, 47, 63] have demonstrated
that in many cases the HF energy converges asymptotically as e−n and the correlation
energy, i.e. the difference between the HF energy and the total energy, converges as n−3,
respectively. Here, n is the maximal angular momentum present in the basis set. Since
the total energy is a sum of the HF and the correlation energy, the extrapolation to the
CBS limit V ESM

∞ (R) = V HF
∞ (R) + V corr

∞ (R) can be done separately for both components
[48]. To this end, for the HF limit, exponential formulae are popular [46], like e.g.

V HF
n (R) = V HF

∞ (R) + Ae−αn.

For the correlation energy, limit formula are common which involve rational functions [73],
like e.g.

V corr
n (R) = V corr

∞ (R) +Bn−β,

often with β = 3. Besides, also other types of formulae are used for extrapolation which
involve, e.g., a mixture of an exponential and a squared exponential [62]

V ESM
n (R) = V ESM

∞ (R) + ane−(n−1) + bne−(n−1)
2

.

Analogously to such extrapolation schemes, we assume in the following that we have a
family of potential functions {Vp}p∈N for which it holds

|E [Vp − Vp−1]| . g(p)

for the error of a considered quantity of interest, where the series
∑∞

p g(p) < ∞ is
absolute convergent.

Note here that g represents an upper limit of the decay behavior of the so-called
hierarchical surplus [10] which comes into play for a telescopic sum expansion of V∞.
Then, we can estimate the approximation error for p > 0 from above by

|E [Vp − V∞]| .
∞∑
p′>p

g(p′).

3.2 BOSSANOVA

Next, let us shortly recall the bond order dissection Anova (BOSSANOVA) approach as
introduced in [35, 42]. To this end, we introduce the notation

Vp(X1, . . . , XM) := Vp(Z,R), Xi := (Zi, Ri),

which denotes the energy computed with a specific ESM at level p of the charge neutral
system that consists of N =

∑M
i Zi electrons and M nuclei, each with coordinate vector

3Note that n is 2 for cc-pVDZ, n is 3 for cc-pVTZ, n is 4 for cc-pVQZ and so on.
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Ri ∈ R3 and atomic number Zi ∈ N. We now decompose the energy Vp into a mul-
tivariate telescopic sum, i.e. as a finite series expansion in the nucleic parameters, in a
similar way as in the Anova decomposition. The analysis of variance (Anova) approach is
well-known from statistics and is closely related to the high-dimensional model represen-
tation (HDMR) [40], the multimode approach [15] and many-body expansions [66]. This
decomposition involves a splitting of the high-dimensional function into contributions
which depend on the positions of single nuclei and associated charges, of pairs of nuclei
and associated charges, of triples of nuclei and charges, and so on. Here, we consider the
subset of the nuclei parameters {Xi}i∈u described by a set of labels u ⊆ {1, . . . ,M} with
cardinality |u| = k and call it the molecular fragment associated to u with size k. Then,
we consider the many-body expansion of Vp by

Vp(X1, . . . , XM) = wp,∅ +
M∑
i1

wp,{i1}(X{i1}) +
M∑

i1<i2

wp,{i1,i2}(X{i1,i2}) + . . .

. . .+ wp,{i1,...,iM}(X{i1,...,iM})

=
∑

u⊆{1,...,M}

wp,u(Xu) (7)

where Xu denotes the set of variables {Xi}i∈u and u ⊆ {1, . . . ,M}. Each term wp,u is
defined by an inclusion-exclusion-type combination of potential functions that belong to
all associated fragments by

wp,u(Xu) :=
∑
v⊆u

(−1)|u|−|v|V̂p,v(Xv). (8)

Alternatively it can recursively defined as

wp,u(Xu) := V̂p,u(Xu)−
|u|−1∑
k=0

∑
v⊆u,|v|=k

wp,v(Xv). (9)

The constant function wp,∅ is set equal to zero since it corresponds to the energy of

an empty molecular system. Here, V̂p,u(Xu) should be an approximation to the energy
associated with fragment Xu, where the fixed level p relates to the basis set order used
by the ESM, and therefore to the accuracy it can achieve. Note at this point that we set

V̂p,{1,...,M}(X) := Vp(X), (10)

whereas in general all V̂p,u with |u| < M could be chosen arbitrarily since (7) and (8)

amount to just the identity. Thus, independent of the specific definition of V̂p,u for
|u| < M , decomposition (7) is exact and contains 2M different terms due to the power
set construction, i.e. u ⊆ {1, . . . ,M}.

In case of a general splitting it might be that all terms wp,u are equally important.
But let us now assume that there is a decay of the terms |E [wp,u]| with increasing order
|u|. Then, a suitable truncation of the sum (7) opens the possibility to avoid the curse
of dimensionality. For example, if for a small k < M all higher order terms wp,u with
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|u| > k vanish, only the lower dimensionality of the kth order terms, i.e. the effective
dimension, exponentially enters the work count complexity.

It was observed in [35] that, for a proper choice of the V̂p,u as good approximation to
the ground-state energy associated to the submolecule Xu, the hierarchical surpluses wp,u
indeed decay for most organic molecules fast with their order k = |u|. Thus, a proper
truncation of the series expansion (7), e.g.∑

u⊆{1,...,M},|u|≤k

wp,u(Xu),

results in a substantial reduction in computational complexity. We then only have to deal
with a sequence of lower-dimensional subproblems which are associated to the remaining
lower-dimensional energy terms of the decomposition. This leads us to the following
assumption which is central to our further approach: The associated energy functions V̂p,u
for |u| < M can be chosen properly such that there is a certain decay in the contribution
of each order k = |u| of the Anova expansion which results in a monotone convergence
of the approximation error with rising order. Consequently, from a certain order onward,
we may neglect the higher higher-order terms in the Anova decomposition. Let us remark
that the energy contribution functions wp,u in (7) may be recognized as an expansion of
many-body interaction contributions, as in [56], and thus our assumption on the decay
is also strongly supported by the success of conventional two- and many-body potential
functions used in classical molecular dynamics [8, 18, 37, 72].

Let us now discuss our specific choice of V̂p,u(Xu) = Vp(Xu) according to the BOSS-
ANOVA approach as presented in [35, 42], which is aimed at the approximation of the

potential energy surface of a molecule. A simple choice would be to set V̂p,u(Xu) = Vp(Xu)
for all u ⊆ {1, . . . ,M}. However, the involved cutting of molecules into fragments may
break bonds. Furthermore, a cut-out fragment may have a total spin unequal zero while
the molecular system itself has a total spin of zero. This situation would complicate
the proposed linear-scaling ansatz and usually would result in a slow decay with bond
order k of the terms in the many-body expansion (7). A way to remedy this situation
is a saturation of the dangling bonds of the fragments by adding hydrogen at the places
where bonds were cut, causing the total spin of each augmented fragment system to be
zero. This way, only closed-shell calculations are performed, which are algorithmically
both simpler and more stable.

To be more precise, let G = (P,E) be the graph which is associated to the organic
molecule under consideration and which represents the bond structure of the molecule.
For reasons of simplicity we assume that this graph is connected. Then, a saturation
procedure for a molecular fragment associated to subset u can be described by hG(u)
additional hydrogen vertices, bonds and their graph-dependent positions RG

i (u), 1 ≤ i ≤
hG(u). Note here that each set u = {i1, . . . , i|u|} of indices of nuclei is directly associated
to an induced subgraph Gu = (Pu, Eu) of the total graph G with Pu = {vi}i∈u and
Eu = {{v1, v2} ⊆ K : v1 ∈ u, v2 ∈ u}. Now, for a subset u with a connected induced
subgraph Gu, we define a modified energy function by

V̂ G
p,u(Xu) := Vp

(
Xi1 , . . . , Xi|u| , R

G
1 (u), . . . , RG

hG(u)(u)
)
, (11)

9



while, according to (10), we keep the energy for the total system unmodified, i.e.

V̂ G
p,{1,...,M}(X) := Vp(X).

This saturation correction is described in detail in [35, 42]. In the case of a subset u
where the induced subgraph Gu decomposes into at least two connected components,,
we define the modified energy function V̂ G

p,u as the sum over the modified energy of all
connected components of Gu. It follows in particular that the corresponding hierarchical
surplus wp,u indeed vanishes. This is discussed in more detail in Appendix A.4 This
elimination step is motivated by the locality of the electronic wave functions: Atoms that
share a bond with a nearby atom will be strongly influenced by changes in the chemical
vicinity of nearest or next-nearest bonding partners whereas atoms that share no bond
to a nearby atom will not.

Altogether, to a given appropriate bond or interaction graph G, we define the con-
ventional BOSSANOVA approximation energy up to order k by

V BN
p,k (X) :=

∑
k′≤k

DG
p,k(X). (12)

Here, DG
p,k denotes the hierarchical surplus according to bond order k, which is the sum

of all wGp,u of bond order k = |u| and level p, i.e.

DG
p,k(X) :=

∑
u⊆{1,...,M},|u|=k

wGp,u(Xu), (13)

where wGp,u(Xu) is given by (8) using the modified energy functions V̂ G
p,u from (11). Note

that in [35, 42] the conventional BOSSANOVA approach has been successfully applied
to a large range of organic molecules where in most cases a systematic decay of the size
of the decomposition terms DG

p,k with an increase of the order k = |u| has been observed.
In the following we will omit the parameter G to simplify notation.

The BOSSANOVA approach is general in the sense that the local energies can be
approximated with any electronic structure method at hand, e.g. HF, CI, CC or MP.
This is often referred to as a non-intrusive approach, which means that existing methods
and their implementation can be re-used straightforwardly without any modifications.
Let us finally remark that the BOSSANOVA method can not be directly applied to
metallic systems, since the necessary assumptions do not hold there, a further discussion
is given in [42].

3.3 Multilevel BOSSANOVA

Now, we describe our new approach to couple the two different approximation schemes
according to (6) and (12), respectively. Here, the idea is to introduce an approximation
that is associated to the two corresponding discretization parameters p and u, where
for each single parameter, a systematic improvement of the approximation is expected.
Then, we follow the basic idea of sparse grids [10] and decompose the associated energy
approximation in a telescopic sum like fashion and finally truncate the expansion in such
a way that its local error and cost contributions are balanced, for details see [10, 60].

4For example in case of two connected (and disjunctive) components v∪w = u we set V̂ G
p,u = V̂ G

p,v+V̂ G
p,w.

Then it follows wp,u = V̂ G
p,v + V̂ G

p,w − V̂ G
p,v − V̂ G

p,w = 0 by Lemma A.1.
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3.3.1 Hierarchical series expansion

Up to this point we used the same basis set of fixed degree q for all BOSSANOVA
terms wq,u. Now we employ electronic structure methods with basis sets of varying order

p ∈ N to approximate the subsystem’s ground state energies V̂p,u. To this end, we further
decompose the conventional BOSSANOVA terms (8) with fixed basis set order q as

wq,u(Xu) =

q∑
p=0

ωp,u(Xu),

where the hierarchized ANOVA terms ωp,u are given by

ωp,u(Xu) := wp,u(Xu)− wp−1,u(Xu), (14)

with w−1,u = 0. We further assume that the series

V∞(X1, . . . , XM) :=
∑
p∈N

∑
u⊆{1,...,M}

ωp,u(Xu) (15)

is point-wise absolute convergent. Then, according to definition (10), it holds V∞ =
V EMS
∞ . An example of such a decomposition which corresponds to a linear molecule of

length three is given in Appendix B.
Analogously, we can define hierarchical surpluses

∆p,k(X) := Dp,k(X)−Dp−1,k(X), (16)

with Dp,k from equation (13) for p ∈ N and D−1,k = 0 and obtain an alternative hierar-
chical series representation of the complete basis set limit in the form

V∞(X1, . . . , XM) =
∑
p∈N

∑
0≤k≤M

∆p,k(X). (17)

Here, (15) is a multilevel expansion with contributions associated to the indices (p, u) ∈
N × P({1, . . . ,M}), while expansion (17) is a multilevel expansion with contributions
associated to the indices (p, k) ∈ N× {0, . . . ,M}.

3.3.2 General multilevel approximation

Now, we can truncate the infinite sum (17) that represents the complete basis set limit
using a properly chosen downward-closed5 index set I ⊆ N× {1 . . . ,M} and obtain

VI(X) :=
∑

(p,k)∈I

∆p,k(X) (18)

as an approximation to V∞(X). Here, in the most simple case, the index set I can be
chosen as

ITDL,a := {(p, k) : ap+ k ≤ L} , (19)

5A set of indices I ⊆ N × {0, . . . ,M} is called downward-closed or admissible, if for all (p, k) ∈ I it
follows (max{p− 1, 0}, k) ∈ I and (p,max{k − 1, 0}) ∈ I, see e.g. [28].
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i.e. as an `1-ellipse with scaling parameter L which is related to the desired accuracy and
where a prescribes a certain weighting between p and k.

Alternatively, a more general approximation than (18) can be obtained by truncation
of the infinite hierarchical series (15) using a properly chosen downward-closed6 index set
I ⊆ N× P({1, . . . ,M}), i.e.

VI(X) :=
∑

(p,u)∈I

ωp,u(X). (20)

Note that the concept of downward-closedness is applicable here, since the power set is a
partially ordered set. Note furthermore that every approximation (18) can be expressed
in form of approximation (20), but this does not hold vice versa.

Now, let us shortly discuss the cost involved in the approximations (18) and (20),

respectively. To this end, we assume that the local energies V̂p,u(Xu) are computed with
a cost of

c(p, u). (21)

Then, it is clear that the cost of computing a term ωp,u is O(c(p, u)), because all values

V̂p,u(Xu) for v ( u have been computed before, due to the downward-closedness of I.
Therefore, the total cost of employing the multilevel BOSSANOVA method (20) with a
predefined index-set I ⊆ N× P({1, . . . ,M}) is given by

Cost(I) =
∑

(p,u)∈I

c(p, u).

Analogously, in case of (18) with I ⊆ N× {0, . . . ,M} the total cost read as

Cost(I) =
∑

(p,k)∈I

C(p, k),

where

C(p, k) :=
∑
|u|=k

c(p, u). (22)

The advantage of the multilevel BOSSANOVA method stems from neglecting the energy
contributions and thus the costs of the less relevant subproblems.

3.3.3 Quasi-optimal approximations

Let us now discuss a proper choice of a finite index sets with respect to an appropriate
benefit-cost setting similar to the sparse grid construction [10]. Here, for reasons of
simplicity, we will discuss in detail the case of a finite index set I in expansion (18)
only. The case of a set I works analogously. To this end, let us assume that it holds
V∞ = V EMS

∞ and that

|E [∆p,k]| . B(p, k), (23)

6A set of indices I ⊆ N×P({1, . . . ,M}) is called downward-closed or admissible, if for all (p, u) ∈ I
it follows (max{p− 1, 0}, u) ∈ I and (p, v) ∈ I for all v ( u.
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where B : N× {0, . . . ,M} → R+ denotes an upper bound of |E [∆p,k]|, which we call the
local benefit. Then, we obtain the upper estimate

|E [V EMS
∞ − VI ]| = |E [

∑
(p,k)∈N×{0,...,M}\I

∆p,k]| .
∑

(p,k)∈N×{0,...,M}\I

B(p, k). (24)

Let us further assume that the cost contribution associated with a hierarchical sur-
plus ∆p,k can be estimated from above by an appropriate local cost function C : N ×
{1, . . . ,M} → R+, compare (22).

Now, we assume that we are allowed to spend just a limited total specific cost. Then,
the goal is to determine an index set (with at most this associated total cost) such that
the overall benefit is maximized. The corresponding associated binary knapsack problem
consists in the determination of an index set Iopt ⊂ N × {0, . . . ,M} that maximizes the
total benefit under the constraint of a maximally allowed total cost Cmax, i.e.

max
I

∑
(p,k)∈I

B(p, k) with
∑

(p,k)∈I

C(p, k) ≤ Cmax. (25)

Its solution can be reduced to the discussion of the local benefit-cost ratios B(p,k)
C(p,k)

. Those

indices (p, k) with the largest benefit-cost ratios are taken into account first. This is
similar in spirit to the best n-term approximation. In the framework of Sobolev spaces of
dominating mixed smoothness such a construction leads e.g. to quasi-optimal sparse grids.
For a more detailed discussion see e.g. [10, 28, 60]. Note that the described construction
is called quasi-optimal [60], since, amongst other issues, the estimate of the total error
(24) involves the triangle inequality only but no norm-equivalency.

Analogously to (25), the problem of the determination of an index set Iopt ⊂ N ×
P({1, . . . ,M}) that maximizes the total benefit

∑
(p,u)∈Iopt b(p, u) under the constraint of

maximal allowed total cost
∑

(p,u)∈Iopt c(p, u) ≤ Cmax reduces to the discussion of local

benefit-cost ratios b(p,u)
c(p,u)

.

3.3.4 Local cost model

In electronic structure calculations with standard correlation consistent cc-pVnZ basis
sets, the number of one-electron basis functions per atom scales as [38, 43, 73]

Ncc-pVnZ = 1
3
(n+ 1)(n+ 3

2
)(n+ 2). (26)

Roughly speaking, the number of basis functions in the cc-pVnZ basis sets grows with
third order, i.e. n3. In this article, we consider a hierarchy of models which results from
the basis sets cc-pVnZ with n ∈ {3, 4, 5, 6, . . .} of Dunning et al. [21, 78]. Here, cc-pVTZ
corresponds to the energy level p = 0, cc-pVQZ corresponds to the energy level p = 1,
cc-pV5Z corresponds to the energy level p = 2 and cc-pV6Z corresponds to the energy
level p = 3. Higher values of p correspond to better quality.

Furthermore, we assume that the cost of the applied electronic structure method,
e.g. HF and DFT, scales with third order in the number of one-electron basis functions.
Hence, we estimate the cost of a single calculation for an M -atomic molecule by

Cost(M,n) .M3n9,
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in case of HF and DFT, respectively. Note that there are several energy evaluations
involved in the computation of a hierarchical surplus ωp,u. However, as already noted
in the previous sections, we assume that the computations for all backward neighbors
in definition (14) have already been performed and their results have been stored by a
simple book-keeping procedure once and for all. Thus, we assume that the local cost
according to (21) can be estimated by

c(p, u) ≤ β|u|3(p+ 3)9, (27)

where β denote method dependent constant. Note that we neglect here the additional
hydrogen atoms resulting from the saturation scheme.

3.4 Adaptive multilevel BOSSANOVA

To construct a quasi-optimal approximation as in Section 3.3.3, a priori local cost and
benefit estimators are needed. Let us now discuss the case when there is no suitable
a priori estimate for the local benefit available. Then, a possible methodology are so-
called dimension-adaptive approaches, which are adaptive greedy-type algorithms using a
posteriori estimates [28]. Under the assumption that the benefit-cost ratios obey some
kind of appropriate decay, these type of algorithms try to find quasi-optimal index sets
in an iterative procedure. To this end, as always for an adaptive heuristics, two main
ingredients are needed – an error indicator and a refinement rule. Here we propose a
hybrid a priori/a posteriori approach, since we determine the local benefit a posteriori
and the local cost a priori.

3.4.1 Adaptive index sets in N× {0, . . . ,M}
First, we introduce Algorithm 1 which builds up a set of indices (p, k) such that the
infinite sum (17) is approximated by a quasi optimal approximation (18) up to the desired
accuracy at minimal cost. To this end, we refine in each step of our approach the current
index set I by adding those indices (p, k) ∈ N× {0, . . . ,M} \ I with a benefit-cost ratio
greater or equal than an a priori chosen factor [1−α] times the highest benefit-cost ratio
max(p,k)∈A η(p, k). Here, it is not necessary to consider all of the possible candidates
(p, k) ∈ N×{0, . . . ,M}\I (which would be too many), but in each iteration step we only
take those indices into account which are in the direct neighborhood of the actual set Iα
and which result in downward-closed sets. Algorithm 1 uses the local cost estimate (22)
and computes the local benefit a posteriori according to (23) by

|E [∆p,k]|.
Thus, for an index (p, k) ∈ N× {0, . . . ,M}, the associated benefit-cost ratio is given by

η(p, k) :=
|E [∆p,k]|
C(p, k)

. (28)

Altogether, to a given factor α ∈ [0, 1] and a maximal cost Cmax, Algorithm 1 tries to
generate a quasi-optimal index set Iα and an associated approximation

VIα(X) :=
∑

(p,k)∈Iα

∆p,k(X). (29)
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Algorithm 1 Adaptive algorithm to construct a quasi-optimal index sets Iα ⊆ N ×
{0, . . . ,M} for a molecule with interaction graph G to a given maximal allowed cost
Cmax, where α ∈ [0 1] is an input parameter.

Initialize: Iα := ∅, cost := 0, A := {(0, 1)}
while cost < Cmax do

1. Compute the values η(p, k) := |E [∆p,k]|/C(p, k) for all (p, k) ∈ A for which
η(p, k) has not been computed yet and set cost := cost+ C(p, k) respectively.

2. Select new indices {(p, k) ∈ A : η(p, k) ≥ (1 − α) max(q,l)∈A η(q, l)} and move
them from A to I.

3. Generate new admissible active index set A for Iα, i.e. A := {(p, k) ∈ N ×
{0, . . . ,M} \ Iα : (p, k) ∪ Iα is downward-closed}

end while

3.4.2 Adaptive index sets in N× P({1, . . . ,M})
An alternative algorithm, which provides the application of different basis sets at different
local parts of a molecule is as follows: Instead to rely on set of indices I ⊆ N×{0, . . . ,M}
as before, we now construct an index-set I ⊆ N× P({1, . . . ,M}), considering the whole
power set P({1, . . . ,M}) of {1, . . . ,M}. This allows a much better adaption to the
specific molecule in consideration. This straightforward generalization of Algorithm 1 is
presented in Algorithm 2.

In contrast to Algorithm 1, Algorithm 2 is based on the expansion (15) and uses
benefit-cost ratios associated with indices (p, u) ∈ N× P({1, . . . ,M}) defined by

θ(p, u) :=
b(p, u)

c(p, u)
, (30)

where the local benefit is defined by

b(p, u) := |E [ωp,u]|

and the local cost is given according to (21). Analogously to Algorithm 1, Algorithm 2
tries to generate a quasi-optimal index set Iα where the corresponding approximation is
given by

VIα(X) :=
∑

(p,u)∈Iεi

ωp,u(Xu). (31)

Let us finally remark that in contrast to the relation (22) for the local costs C(p, k)
and c(p, k), the local benefit |E [∆p,k]| is not equal to the associated sum of local-benefits∑

u⊆{1,...,M},|u|=k b(p, u).

3.4.3 Parallel cost model

Note here that using a simple book-keeping procedure, all involved energy evaluations
V̂p,u(Xu) only have to be computed once and for all and can in particular be performed
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Algorithm 2 Adaptive algorithm to construct a quasi-optimal index sets Iα ⊆ N ×
P({1, . . . ,M}) for a molecule with interaction graph G to a given maximal allowed cost
Cmax, where α ∈ [0 1] is an input parameter.

Initialize: Iα := ∅, cost := 0, A := {(0, 1)}
while cost < Cmax do

1. Compute the values θ(p, u) := |E [ωp,u]|/c(p, u) for all (p, u) ∈ A for which
θ(p, u) has not been computed yet and set cost := cost+ c(p, u) respectively.

2. Select new indices {(p, u) ∈ A : θ(p, u) ≥ (1− α) max(q,v)∈A θ(q, v)} and move
them from A to I.

3. Generate new admissible active index set A for Iα, i.e. A := {(p, u) ∈ N ×
P({1, . . . ,M}) \ Iα : (p, u) ∪ Iα is downward-closed}

end while

in parallel. In such a parallel cost model, the total cost of employing the multilevel
BOSSANOVA method with a predefined index-set I ⊂ N×{0, . . . ,M} can be estimated
from above by

CPA(I) := max
(p,k)∈I

max
u⊆{1,...,M},|u|=k

c(p, u).

Analogously, the total costs in case of a predefined index-set I ⊂ N×P({1, . . . ,M}) can
be estimated from above by

CPA(I) := max
(p,u)∈I

c(p, u).

In case of the adaptive Algorithm 2 all benefits and respective benefit-cost ratios can
be computed in parallel in step 1 of the while loop. Therefore, the total cost of Algorithm 2
in the parallel cost model can be computed by setting cost := cost + max(p,u) c(p, u) in
step 1 of the while loop. In an analogous way Algorithm 1 can also be modified according
to the parallel cost model.

4 Numerical experiments

Now we present the results of our numerical experiments. This section is divided into
two parts. In the first part, we perform a numerical study on the decay properties of
the hierarchical surpluses of several molecules. In the second part, we will present and
discuss the numerical results corresponding to the different approximation approaches
which were presented in Section 3.

In all involved electronic structure calculations we apply the Massively Parallel Quan-
tum Chemistry (MPQC) Program [45]. In addition, we use the software package Mole-
Cuilder - a molecular builder [41] for the fragmentation and saturation process involved in
the various multilevel BOSSANOVA approaches. Moreover, in the numerical experiments
applying the DFT method we use the common B3LYP exchange-correlation functional.
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4.1 Numerical study of benefit-cost ratios

In a first step we analyze the benefit-cost ratios η(p, k), involved in Algorithm 1, which are
defined according to (28). We first study two small molecules. Our results for heptane
(C7H16 - a small linear molecule) and acrylamide (C3H5NO - a small molecule with
branches) applying the HF method within the decomposition (17) are given in Figure 1.
We clearly see that the benefit-cost ratios η(p, k) decay with p+ k and are in particular
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Figure 1: Benefit-cost ratios η(p, k) using the HF method corresponding to basis sets cc-pVTZ
to cc-pV6Z, i.e. p = 0, . . . , 3. Left: heptane (C7H16). Right: acrylamide (C3H5NO).

approximately constant along the lines l = p+ k for a given fixed l. This corresponds to
the decay behavior in the regular sparse grids case.

Moreover, for acrylamide, acetanilide (C8H9NO - a small molecule with a ring struc-
ture) and several alkanes (C5H12, C6H14, C7H14, C20H42), we depict the benefit-ratio
η(p, k) in dependence of the sum p + k in Figure 2. In addition, we show there the
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Figure 2: Benefit-cost ratios η(p, k) versus the sum p + k for several alkane, acrylamide
(C3H5NO), acetanilide (C8H9NO) applying the HF method (left) and three proteins applying
the DFT approach (right).

benefit-cost ratio η(p, k) for three large molecules, i.e. an anti-freeze protein (992 atoms),
an interferon-α protein (2698 atoms) and a prion (1688 atoms). It can be seen from
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Figures 1 and 2 that indeed our numerical results show a decay of the benefit-cost ra-
tio η(p, k) with an increase of the sum of the discretization parameters p + k, whereas
acetanilide exhibits some outliers probably due to its specific structure including a ring.
Also for the three large molecules, we observe roughly a decay of η(p, k) with p + k.
Here, however, the situation is much more less clear. The prion molecule seems to ex-
hibit a somewhat different behavior. Altogether this advocates the more refined adaptive
approaches of Algorithm 1 and especially Algorithm 2.

Therefore, in a second step, we study the benefit-cost ratios θ(p, u) given in equa-
tion (30) and used in Algorithm 2. Our numerical results given in Figure 3 also exhibit a
decay of the benefit-cost ratio θ with an increase of the sum p+|u|. However, compared to
the range of the values of the benefit-ratios η(p, k) with p+k = l, we observe a much larger
range of deviation of the values of the benefit-cost ratios θ(p, u) with p+ |u| = l in most
cases, which holds in particular for acetanilide and the proteins for e.g. l ∈ {3, 4, 5, 6}.
This suggests that for simple chain-like molecules the indicators η(p, k) and thus Al-
gorithm 1 are probably sufficient. For more complex molecules however the indicators
θ(p, u) and thus Algorithm 2 promise more refined results and indeed might be superior.
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Figure 3: Benefit-cost ratios θ(p, u) versus the sum p + |u| for several alkane, acrylamide,
acetanilide and three proteins.

4.2 Numerical results for the approximation of energy

Now we consider the approximation of the energy of heptane by the approaches introduced
in Section 3. To this end, we will shortly recall our notation of the energy approximations
associated to the considered methods: V HF

p denotes the energy of the conventional HF
method using a cc-pV(n)Z basis set with n = p + 3 and V BN

p,k denotes the energy of the
BOSSANOVA approach with basis set level p and bond order k according to equation
(12). The energy of the multilevel BOSSANOVA approach for a general admissible index
set I is defined in (18) and is denoted by VI . Here, inspired by the observations in
Section 4.1, we first restrict ourselves to use the index sets I = ITDL,1 as defined in (19),
which correspond to the regular sparse grids approach. Furthermore we consider the
energy approximations VIα and VIα according to the adaptive Algorithm 1 with equation
(29) and the adaptive Algorithm 2 with equation (31), respectively.
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Figure 4: Relative error versus costs of different approximation methods for heptane, where we
choose V HF

4 as reference energy, i.e. the HF energy computed with the help of the cc-pV6Z basis
set. Shown are for p = 0, 1, 2 the energies V HF

p of the HF method, for k = 1, . . . , 6 the energies

V BN
p,k of the BOSSANOVA approach and for L = 1, . . . , 9 the energies VITDL,1

of the the multilevel

BOSSANOVA method. For the adaptive multilevel BOSSANOVA approach the energy of each
step of Algorithm 1 and Algorithm 2 for VI0.9 and VI0.9 are shown, respectively.

For the heptane example we choose the HF approach as the local electronic struc-
ture method. The results are given in Figure 4. We observe that the three multilevel
BOSSANOVA approaches, i.e. VITDL,1 , VI0.9 and VI0.9 , exhibit a substantially better conver-

gence behavior than the HF and the standard BOSSANOVA method, i.e. than V HF
p and

V BN
p,k , respectively. Furthermore, we see that the adaptive variants, i.e. VI0.9 and VI0.9 ,

give almost the same results (for values with a relative error larger than 1.e-5 they are
even exactly the same) and that both indeed show even a slightly better convergence
behavior than the variant with a priori chosen index sets, i.e. VITDL,1 .

Table 1: Comparison of the costs of the different methods to obtain a relative error less than
a value of 1.e-5 for heptane. In addition the speed up factor for each method compared to the
cost of the conventional HF method is given.

rel. err. cost speed-up parallel cost parallel speed-up
V HF
2 2.02e-6 6.7e+08 1.0 6.7e+8 1.0
V BN
2,3 6.67e-6 3.7e+08 1.8 5.3e+7 12.7
VITD4,1

1.88e-6 2.4e+08 2.8 1.6e+7 42.9

VI0.9 2.75e-6 3.7e+07 18.1 2.9e+6 230.2
VI0.9 2.75e-6 3.7e+07 18.1 2.9e+6 230.2

In addition, we compare in Table 1 the costs of all methods to obtain a specific accu-
racy. We obtain a speed-up factor of about 18 for the cost of the two adaptive multilevel
BOSSANOVA energies, i.e. VI0.9 and VI0.9 , compared to the energy value computed by
the conventional HF method, i.e. V HF

2 . For the multilevel BOSSANOVA energy VITD4,1
we

still get a speed up factor of about 2.8 compared to the cost of V HF
2 . In the parallel cost

model we obtain even a speed-up factor of about 230 for VI0.9 and of about 43 for VITD4,1
.

We thus see that, already for a small molecule like heptane, the gain of our new method
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is substantial. For larger molecules it should be even more profound.
Therefore, we apply our new adaptive approaches to the more complex molecules

acetanilide (C8H9NO) and acrylamide (C3H5NO). Moreover, we varied the parameter α
in a wider range of values. It turned out that values greater than α = 0.75 perform quite
well. Thus, we considered α = 0.9 and α = 0.99 in the following. Our numerical results,
given in Figure 5, show that the convergence behavior of both algorithms is similar.
However, the results for acetanilide suggest that for more complex molecules the more
general dimension-adaptive approximation approach according to (31) and Algorithm 2
is potentially superior compared to the more restrictive dimension-adaptive technique
corresponding to Algorithm 1 and (29). Note that each approximation in form of equation
(29) can be represented also in the form corresponding to (31), but this does not hold
vice versa.
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Figure 5: Relative error versus costs of Algorithm 1 and Algorithm 2. The solid lines correspond
to the errors of the energies VIα of Algorithm 2, while the dashed lines correspond to the errors
of the energies VIα of Algorithm 1.

The larger the molecules are, the more profound the gain for our BOSSANOVA ap-
proach is compared to the conventional methods applied to the overall molecule. To show
this we finally apply our new adaptive multilevel method to molecules which consist of so
many atoms such that the conventional methods can no longer be applied in practice. To
this end, as in Section 4.1, we will consider the anti-freeze protein, the interferon-α protein
and the prion, where we now use the DFT method within our multilevel BOSSANOVA
approach. The numerical results are given in Figure 6. There we choose as the reference
energy to compute the relative error the BOSSANOVA energy V BN

3,3 , apply the parallel
cost model and choose α = 0.99.

Altogether, the results of our numerical experiments suggest that indeed the adaptive
multilevel BOSSANOVA approaches can be efficiently and successfully applied to larger
molecules. Especially Algorithm 2 promises, due to its local refinement property, to
enable systematic quasi-optimal approximations in a cost-efficient manner.
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Figure 6: Relative error versus parallel costs of Algorithm 2, where we choose V BN
3,3 as reference

energy, i.e. the energy of the BOSSANOVA approach for basis set cc-pV6Z and bond order
three.

5 Concluding Remarks

In this article we presented the adaptive multilevel BOSSANOVA decomposition ap-
proach for the approximate ground state solution to the electronic Schrödinger equation
for a given molecular system. Here, we followed the idea of sparse grids and the adap-
tive combination technique to obtain systematically quasi-optimal approximations, i.e. a
specific truncation of the hierarchical series such that the total benefit is maximized for
a fixed amount of costs.

We described and discussed an a priori truncation scheme and in particular two a
posteriori dimension-adaptive algorithms for a seamless coupling of local computations
whith a high level basis set where needed and low level basis sets where locally sufficient.
We gave numerical results for small chain molecules, where we obtained substantial speed
up factors compared to the cost of the conventional HF method. We furthermore pre-
sented numerical results for three large proteins. Here, the more general variant of the
dimension-adaptive approach, which allows for local adaptivity, seems to be superior com-
pared to the more restrictive variant, which does not allow for local adaptivity. Let us
point out that our approach is trivial to parallelize since the evaluation of each fragment
by an appropriate solver can be done independently, see e.g. [42].

In this article, for reasons of simplicity, we did not investigate the treatment of aro-
matic systems with delocalized electrons with ring structures in more detail. For such
problems, there is surely room for further improvement of our algorithms. A simple mod-
ification of the conventional BOSSANOVA approach was already successfully applied to
such systems in [35, 42]. The impact of the neglected long-range Coulomb energy on the
accuracy of the method and techniques to recover this contribution were given elsewhere,
see [42].

Note furthermore that the BOSSANOVA approach is not free of empirical parameters
due to the necessity to saturate dangling bonds with hydrogen in the fragmentation
process. But the typical bond lengths and angles of hydrogenated systems are well
assessed by measurements.
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Appendix

A Modified energy terms V̂ G
p,u

LetG be an connected interaction graph of a molecule. Then, according to the BOSSANOVA
approach, the modified energy associated with a fragment u is given by

V̂ G
p,{i1,...,ik}(X{i1,...,ik}) :=

∑
u∈C(G)

Vp

(
Xi1 , . . . , Xik , R

G
1 (u), . . . , RG

hG(u)(u)
)
,

where

C((P,E)) :=
{
u ⊆ P : (Pu, Eu) ⊆ (P,E) is connected and

for all v ) u subgraph (Pv, Ev) is not connected
}
.

Thus, it holds the relation

V̂ G
p,A∪B(XA∪B) = V̂ G

p,A(XA) + V̂ G
p,A(XA),

for all p ∈ N and for all pairs of subsets A,B ⊆ {1, . . . ,M} with disconnected induced
subgraphs GA, GB ⊆ G. Moreover, we can derive that the corresponding hierarchical
surplus wp,A∪B vanishes:

Lemma A.1. Let G = (P,E) be an interaction graph. Let A,B ⊆ P , A∩B = ∅ and let
the subgraphs GA and GB induced by A and B, respectively, be disconnected. Then

WG
p,A∪B(XA∪B) = 0.

Proof. We use induction: The base case can be easily seen for graphs G = (P,E) with
sets |P | ≤ 2. Let us assume that the statement holds for graphs G = (P ′, E ′) with
|P ′| ≤ n. Now let G = (P,E) with |P | = n + 1. Note that from the recursive definition

of V̂ G
p,a it immediately follows that

V̂ G
p,a(Xa) =

∑
b⊆a

wp,b(Xb)

holds for all a ⊆ P . With V̂ G
p,A∪B(XA∪B) = V̂ G

p,A(XA) + V̂ G
p,B(XB) and WG

p,∅ = 0, we then
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obtain

WG
p,A∪B(XA∪B) = V̂ G

A∪B(XA∪B)−
∑

a⊆A,a 6=∅

WG
p,a(Xa)−

∑
b⊆B,b 6=∅

WG
p,b(Xb)

−
∑

a⊆A,b⊆B
a6=∅,b6=∅,|a∪b|<|A∪B|

WG
p,a∪b(Xa∪b)−WG

p,∅

= V̂ G
p,A(XA) + V̂ G

p,B(XB)

−
∑
a⊆A

WG
p,a(Xa)−

∑
b⊆B

WG
p,b(Xb)−

∑
a⊆A,b⊆B

a6=∅,b 6=∅,|a∪b|<|A∪B|

WG
p,a∪b(Xa∪b).

Now, we apply the induction hypothesis to each WG
p,A∪B: |a∪ b| < |A∪B| ≤ |P | = n+ 1

and finally obtain

WG
p,A∪B(XA∪B) = V̂ G

p,A(XA)−
∑
a⊆A

WG
p,a(Xa) + V̂ G

p,B(XB)−
∑
b⊆B

WG
p,b(Xb)

−
∑

a⊆A,b⊆B
a6=∅,b 6=∅,|a∪b|<|A∪B|

WG
p,a∪b(Xa∪b)

= −
∑

a⊆A,b⊆B
a6=∅,b6=∅,|a∪b|<|A∪B|

WG
p,a∪b(Xa∪b) = 0.

B Example (small linear molecule)

In the following, let us shortly give an example corresponding to a linear molecule of
length three. Let G = ({1, 2, 3}, {{1, 2}, {2, 3}}. Then, from (14) and (8) it results for
level p = 0:

ω0,{1}(X{1}) := V̂0(X{1}),

ω0,{2}(X{2}) := V̂0(X{2}),

ω0,{3}(X{3}) := V̂0(X{3}),

ω0,{1,2}(X{1,2}) := V̂0(X{1,2})− (ω0,{1}(X{1}) + ω0,{2}(X{2}))

ω0,{2,3}(X{2,3}) := V̂0(X{2,3})− (ω0,{2}(X{2}) + ω0,{3}(X{3})),

ω0,{1,2,3}(X{1,2,3}) := V̂0(X{1,2,3})− (ω0,{2,3}(X{2,3}) + ω0,{1,2}(X{1,2}) + ω0,{1} + ω0,{2} + ω0,{3}).
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For level p = 1 we obtain:

ω1,{1}(X{1}) := V̂1(X{1})− ω0,{1}(X{1}),

ω1,{2}(X{2}) := V̂1(X{2})− ω0,{2}(X{2}),

ω1,{3}(X{3}) := V̂1(X{3})− ω0,{3}(X{3}),

ω1,{1,2}(X{1,2}) := V̂1(X{1,2})− (ω1,{1}(X{1}) + ω1,{2}(X{2}))− (ω1,{1}(X{1}) + ω1,{2}(X{2}))

ω1,{2,3}(X{2,3}) := V̂1(X{2,3})− (ω1,{2}(X{2}) + ω1,{3}(X{3}))− (ω0,{2}(X{2}) + ω0,{3}(X{3})),

ω0,{1,2,3}(X{1,2,3}) := V̂1(X{1,2,3})− (ω1,{2,3}(X{2,3}) + ω1,{1,2}(X{1,2}) + ω1,{1} + ω1,{2})

− (ω0,{2,3}(X{2,3}) + ω0,{1,2}(X{1,2}) + ω0,{1} + ω0,{2}).

Note here that the induced subgraph G{1,3} is not connected. Hence, the contributions
ωp,{1,3} are zero for all p ∈ N.
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