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Fast Discrete Fourier Transform on Generalized
Sparse Grids

Michael Griebel and Jan Hamaekers

Abstract In this paper, we present an algorithm for trigonometric interpolation
of multivariate functions on generalized sparse grids and study its application for
the approximation of functions in periodic Sobolev spaces of dominating mixed
smoothness. In particular, we derive estimates for the error and the cost. We construct
interpolants with a computational cost complexity which is substantially lower than
for the standard full grid case. The associated generalized sparse grid interpolants
have the same approximation order as the standard full grid interpolants, provided
that certain additional regularity assumptions on the considered functions are fulfilled.
Numerical results validate our theoretical findings.

1 Introduction

In many application areas of numerical simulation, like e.g. physics, chemistry,
finance and statistics, high-dimensional approximation problems arise. Here, a con-
ventional numerical approach encounters the so-called curse of dimensionality [4],
i.e. the rate of convergence with respect to the number of degrees of freedom deterio-
rates exponentially with the dimension n. For example a conventional discretization
on uniform grids with O(2L) points in each direction would involve M = O(2nL)
degrees of freedom. Moreover, only a convergence rate of the type

∥ f − f FG
L ∥Hr ≤ c ·M− s−r

n ∥ f∥Hs
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2 Michael Griebel and Jan Hamaekers

can be achieved, where ∥·∥Hr is the usual Sobolev norm in Hr, s denotes the isotropic
smoothness of f and c is a constant which may depend on n and the underlying
domain Ω but not on the discretization parameter L.

So-called sparse grid based approaches have emerged as useful techniques to
tackle higher dimensional problems, since they open the possibility to break the curse
of dimensionality under certain conditions. They date back to [47]. For example, if f
is in a Sobolev space of bounded mixed smoothness Ht

mix(Ω), i.e. if the t-th mixed
derivatives of f are bounded, and Ω is a product domain, an error estimate of the
type

∥ f − f SG
L ∥Hr ≤ c ·2−(t−r)LLn−1∥ f∥Ht

mix

can be achieved using so-called regular sparse grids where O(2LLn−1) degrees of
freedom are involved.1 Here, the rate of convergence with respect to the number
of degrees of freedom does no longer exponentially deteriorate with the number n
of dimensions, except for the logarithmic terms Ln−1. Moreover, in specific cases,
the use of so-called energy-norm based sparse grids [6] may even result in an error
estimate of type

∥ f − f ESG
L ∥Hr ≤ c ·2−(t−r)L∥ f∥Ht

mix
,

where only O(2L) degrees of freedom are involved. Hence, compared to the regular
sparse grid case even the logarithmic terms Ln−1 are eliminated. 2

For the discretization with sparse grids, Galerkin type methods, finite difference
approaches and the so-called combination technique have been developed over the
last two decades [6]. Furthermore, these approaches were used in the context of
moderate higher-dimensional elliptic, parabolic and hyperbolic differential equations.
In addition, sparse grid techniques were successfully applied for the solution of
integral equations [25], for quadrature [14], for regression [12] and for time series
prediction [5]. Moreover, the sparse grid method was supplemented with adaptive
refinement schemes [5, 14, 22], was used for the construction of anisotropic sparse
tensor product spaces [21, 20] and was applied in the context of weighted mixed
spaces [19, 22]. Sparse grid based collocation schemes were for example discussed
in [2, 26, 29, 30, 33, 39]. They recently found widespread use in the important field
of uncertainty quantification [38]. On a theoretical level, sparse grids are closely
related to ANOVA-like decompositions [11, 16, 27] which are well-known from
statistics. A detailed survey on sparse grids is for example given in [6].

Note that the adaption of the sparse grid techniques to Fourier based methods
is done by means of Fourier polynomials from the hyperbolic cross and hence
sparse grid methods are also known under the name hyperbolic cross approximation

1 Here, in case of the best linear approximation, estimates of type ∥ f − f SG
L ∥Hr ≲

2−(t−r)LL(n−1)/2∥ f∥Ht
mix

and even of type ∥ f − f SG
L ∥Hr ≲ 2−(t−r)L∥ f∥Ht

mix
could be achieved

for certain types of basis sets [25, 34, 49]. This holds, e.g. for wavelets and the Fourier basis,
respectively.
2 The constants in the cost and accuracy estimates still depend on n, though.
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[43, 48]. The properties of such approximations of functions in Sobolev spaces on
the n-dimensional torus Tn have been studied by several authors [7, 9, 15, 31, 32, 34,
36, 41, 44, 45, 48]. In particular, spaces of generalized mixed Sobolev smoothness

Ht,r
mix(T

n) :=

{
f :

√
∑

k∈Zn

n

∏
d=1

(1+ |kd |)2t(1+ |k|∞)2r| f̂k|2 < ∞

}

and a specific generalization of the regular sparse grid spaces based on Fourier
polynomials eikT x with frequencies k from the generalized hyperbolic cross

Γ
T

L :=

{
k ∈ Zn :

n

∏
d=1

(1+ kd) · (1+ |k|∞)−T ≤ L(1−T )

}

were introduced in [34], further discussed in [23, 24, 27, 35] and a generalization
to Banach spaces is given in [8]. Here, T ∈ [−∞,1) is an additional parameter that
controls the mixture of isotropic and mixed smoothness: The case T = 0 corresponds
to the conventional hyperbolic cross (or regular sparse grid). In that case for example
the Hr-error of the best linear approximate f HC

L in the conventional hyperbolic
cross discretization space of a function in a periodic Sobolev space of dominated
mixed smoothness Ht,r(Tn) is of order O(2−tL), where O(2LLn−1) frequencies are
involved. Furthermore, the case T =−∞ corresponds to the full grid, the case T → 1
corresponds to a latin hypercube and the case 0 < T < 1 resembles energy-norm
based sparse grids where the order of the amount of included frequencies does not
depend on the number of dimensions n, i.e. it is O(2L). But let us note here that it is
in general not clear, if the approximation error of an interpolant exhibits the same
convergence rates as that of the best linear approximation.

In this paper, we now mainly deal with trigonometric interpolation on generalized
sparse grids and its application for the approximation of multivariate functions
in certain periodic Sobolev spaces of bounded mixed smoothness. For functions
on the torus, regular sparse grid interpolation methods based on the fast Fourier
transform were for example introduced by Hallatschek in [26] and also discussed
in [3, 15, 30, 31, 36, 44]. For example, for a function in a Korobov space of mixed
smoothness t > 1 it is proved in [26] that the approximation error in the maximum
norm of its regular sparse grid interpolant is of the order O(2−L(t−1)Ln−1) and
in [15] a (suboptimal) upper bound estimate of the same order is shown for the
approximation error in the L2 norm. Here, the involved degrees of freedom are
of the order O(2LLn−1) and the computational cost complexity is of the order3

O(2LLn). Based on the results of [48] it was furthermore shown in [36, 37] that
the approximation error in the Hr-norm of the interpolant associated with a regular
sparse grid is of the order O(2−(t−r)LLn−1), if the function is in a periodic Sobolev
space Ht

mix with t > 1
2 .

3 We here do not have O(2LLn−1) but we have O(2LLn) since one L stems from the computational
complexity of the one-dimensional FFT involved.
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In this work, we present an extension of the algorithm of Hallatschek given in [26]
to the case of interpolation on the generalized sparse grids as introduced in [23]. We
will further study its best linear approximation error and will give cost complexity
estimates for functions in different variants of periodic Sobolev spaces of dominating
mixed smoothness. Moreover, for functions of mixed Sobolev smoothness Ht

mix, we
will show estimates for the approximation error of the interpolant in the Hr-norm.
To our knowledge this has been done so far only for the regular sparse grid case
T = 0, but not yet for the case of generalized sparse grids with 0 < T < 1, which
resemble the energy-norm based sparse grids. Note further that the behavior of the
approximation error of the interpolant versus the computational complexity of the
interpolant is of practical interest. This holds especially with possible applications in
the field of uncertainty quantification in mind. Therefore, we give also estimates for
its computational complexity. Altogether, it turns out that under specific conditions
the order rates of the error complexity and computational complexity are independent
of the dimension n of the function. For example, let f ∈H2

mix(Tn) and let us measure
the approximation error in the H1-norm, where Tn denotes the n-dimensional torus.
Then, an error of the order O(2−L) and a computational complexity of the order
O(2LL) can be achieved4 for interpolants corresponding to a generalized sparse grid
with 0 < T < 1

2 for any dimension n.
The remainder of this paper is organized as follows: In section 2 we introduce the

fast Fourier transform on general sparse grids with hierarchical bases. In particular,
we will recall the conventional Fourier basis representation of periodic functions in
subsection 2.1 and the so-called hierarchical Fourier basis representation in subsec-
tion 2.2. Furthermore, in subsection 2.3, we will present generalized sparse grids and
discuss the construction and application of associated trigonometric interpolation
operators and computational complexities. In section 3 we will introduce different
variants of periodic Sobolev spaces and will discuss their associated best linear
approximation error in subsection 3.2, the approximation error of the trigonometric
general sparse grid interpolants in subsection 3.3 and its overall complexities in
subsection 3.4. Then, in subsection 3.5, we will give some short remarks on further
generalizations of sparse grids like, e.g. periodic Sobolev spaces with finite-order
weights and dimension-adaptive approaches. In section 4 we will apply our approach
to some test cases. Finally we give some concluding remarks in section 5.

2 Fourier transform on general sparse grids with hierarchical
bases

To construct a trigonometric interpolation operator for generalized sparse grids, we
will follow the approach of Hallatschek [26]. To this end, we will first recall the
conventional Fourier basis and then introduce the so-called hierarchical Fourier basis
and its use in the construction of a generalized sparse grid interpolant.

4 Here, also the L stems from the involved FFT algorithm.
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2.1 Fourier basis representation

First, let us shortly recall the usual Fourier basis representation of periodic func-
tions. To this end, let Tn be the n-torus, which is the n-dimensional cube Tn ⊂ Rn,
T= [0,2π], where opposite sides are identified. We then have n-dimensional coordi-
nates x := (x1, . . . ,xn), where xd ∈ T. We define the basis function associated with a
multi index k = (k1, . . . ,kn) ∈ Zn by

ωk(x) :=

(
n⊗

d=1

ωkd

)
(x) =

n

∏
d=1

ωkd (xd), ωk(x) := eikx. (1)

The set {ωk}k∈Zn is a complete orthogonal system of the space L2(Tn) and hence
every f ∈ L2(Tn) has the unique expansion

f (x) = ∑
k∈Zn

f̂kωk(x), (2)

where the Fourier coefficients are given by

f̂k :=
1

(2π)n

∫
Tn

ω
∗
k(x) f (x)dx. (3)

Note that it is common to characterize the smoothness classes of a function f by
the decay properties of its Fourier coefficients [28]. In this way, we introduce the
periodic Sobolev space of isotropic smoothness as

Hr(Tn) :=

{
f (x) = ∑

k∈Zn
f̂kωk(x) : ∥ f∥Hr :=

√
∑

k∈Zn
(1+ |k|∞)2r| f̂k|2 < ∞

}

for r ∈ R.
Let us now define finite-dimensional subspaces of the space L2(Tn) =H0(Tn)

for discretization purposes. To this end, we set

σ : N0 → Z : j 7→
{
− j/2 if j is even,
( j+1)/2 if j is odd.

(4)

For l ∈ N0 we introduce the one-dimensional nodal basis

Bl := {φ j}0≤ j≤2l−1 with φ j := ωσ( j) (5)

and the corresponding spaces Vl := span{Bl}. For a multi index l ∈ Nn
0 we define

finite-dimensional spaces by a tensor product construction, i.e. Vl :=
⊗n

d=1 Vld . Fi-
nally, we introduce the space5

5 Except for the completion with respect to a chosen Sobolev norm, V is just the associated Sobolev
space.
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V := ∑
l∈Nn

Vl.

In the following we will shortly recall the common one-dimensional trigonometric
interpolation. Let the Fourier series ∑k∈Z f̂kωk be pointwise convergent to f . Then, for
interpolation points Sl := {m 2π

2l : m = 0, . . . ,2l −1} of level l ∈N0, the interpolation
operator can be defined by

Il : V →Vl : f 7→ Il f := ∑
j∈Gl

f̂ (l)j φ j

with indices Gl := {0, . . . ,2l −1} and discrete nodal Fourier coefficients

f̂ (l)j := 2−l
∑

x∈Sl

f (x)φ ∗
j (x). (6)

This way, the 2l interpolation conditions

f (x) = Il f (x) for all x ∈ Sl

are fulfilled. In particular, from (6) and (2) one can deduce the well-known aliasing
formula

f̂ (l)j = ∑
k∈Z

f̂k2−l
∑

x∈Sl

ω
∗
σ( j)(x)ωk(x) = ∑

m∈Z
f̂
σ( j)+m2l . (7)

Next, let us consider the case of multivariate functions. To this end, let the Fourier
series ∑k∈Zn f̂kωk be pointwise convergent to f . Then, according to the tensor product
structure of the n-dimensional spaces, we introduce the n-dimensional interpolation
operator on full grids as

Il := Il1 ⊗·· ·⊗ Iln : V →Vl : f 7→ Il f = ∑
j∈Gl

f̂ (l)j φj,

with
Gl := Gl1 ×·· ·×Gln ⊂ Nn

0

and multi-dimensional discrete nodal Fourier coefficients

f̂ (l)j := 2−|l|1 ∑
x∈Sl

f (x)φ ∗
j (x), (8)

where
Sl := Sl1 ×·· ·×Sln ⊂ Tn.

Similar to (7) it holds the multi-dimensional aliasing formula

f̂ (l)j = ∑
m∈Zn

f̂σ(j)+m2l , (9)

where σ(j) := (σ( j1), . . . ,σ( jn)) and m2l :=
(
m12l1 , . . . ,mn2ln

)
.
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2.2 One-dimensional hierarchical Fourier basis representation

Now we discuss a hierarchical variant of the Fourier basis representation. Let us first
consider the one-dimensional case. To this end, we introduce an univariate Fourier
hierarchical basis function for j ∈ N0 by

ψ j :=

{
φ0 for j = 0,
φ j −φ2l−1− j for 2l−1 ≤ j ≤ 2l −1, l ≥ 1,

(10)

and we define the one-dimensional hierarchical Fourier basis including basis func-
tions up to level l ∈ N0 by

Bh
l := {ψ j}0≤ j≤2l−1.

Let us further introduce the difference spaces

Wl :=

{
span{Bh

0} for l = 0,
span{Bh

l \Bh
l−1} for l > 0.

Note that it holds the relation Vl = span{Bl} = span{Bh
l } for all l ∈ N0. Thus, we

have the direct sum decomposition Vl =
⊕l

v=0 Wl . Now, let l ∈ N0 and u ∈Vl . Then,
one can easily switch from the hierarchical representation u = ∑0≤ j≤2l−1 u′jψ j to
the nodal representation u = ∑0≤ j≤2l−1 u jφ j by a linear transform. For example for
l = 0,1,2,3, the corresponding de-hierarchization matrices read as

(
1
)
,

(
1 −1
0 1

)
,


1 −1 0 −1
0 1 −1 0
0 0 1 0
0 0 0 1

 ,


1 −1 0 −1 0 0 0 −1
0 1 −1 0 0 0 −1 0
0 0 1 0 0 −1 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ,

respectively. For all l ∈ N0 the de-hierarchization matrix can be easily inverted and
its determinant is equal to one. Here, the corresponding hierarchization matrices read
as

(
1
)
,

(
1 1
0 1

)
,


1 1 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ,

for l = 0,1,2,3 respectively. Simple algorithms with cost complexity O(2l) for
hierarchization and de-hierarchization are given in [26].

Let us now define an operator

Ĭl := (Il − Il−1) : V →Wl , for l ≥ 0,
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where we set I−1 = 0. Note that the image of Ĭl is a subspace of Wl . Hence, we define
the corresponding hierarchical Fourier coefficients f̆ j by the unique representation

Ĭl f = ∑
0≤v<l

∑
j∈Jv

( f̂ (l)j − f̂ (l−1)
j )φ j + ∑

j∈Jl

f̂ (l)j φ j = ∑
j∈Jl

f̆ jψ j (11)

with

Jv :=

{
{0} for v = 0,
{2v−1, . . . ,2v −1} for v ≥ 1.

(12)

Moreover, we can write the interpolation operator associated with a level l in the
form

Il f = (Il − Il−1 + Il−1 −·· ·− I0 + I0 − I−1) f

= (Ĭl + · · ·+ Ĭ0) f

= ∑
0≤v≤l

∑
j∈Jv

f̆ jψ j = ∑
0≤ j≤2l−1

f̆ jψ j.

In particular, let us note that the following interpolation relation holds:

Ĭl f (x) = f (x)− Il−1 f (x) for all x ∈ Sh
l

and

Ĭl f (x) = 0 for all x ∈ Sl−1,

where
Sh

l := Sl \Sl−1,

with S−1 := /0.
For l ∈ N0 it follows by the definitions (10) and (11) the equation

∑
0≤v<l

∑
j∈Jv

( f̂ (l)j − f̂ (l−1)
j )φ j + ∑

j∈Jl

f̂ (l)j φ j =− ∑
0≤v<l

∑
j∈Jv

f̆2l−1− jφ j + ∑
j∈Jl

f̆ jφ j

and with it for j ∈Jl that the hierarchical Fourier coefficient f̆ j is equal to the discrete
nodal Fourier coefficient f̂ (l)j associated with level l. Hence in the case l ∈N0, j ∈ Jl
we obtain the relation

f̆ j = f̂ (l)j = ∑
m∈Z

f̂
σ( j)+m2l (13)

with the help of the aliasing formula (7).
Let us remark that the one-dimensional standard Fourier basis representation is

sufficient to define multi-dimensional full grids, but the hierarchical Fourier basis
representation is indeed necessary for the definition of sparse grids.



Fast Discrete Fourier Transform on Generalized Sparse Grids 9

2.3 Generalized sparse grids

Now we consider the case of multivariate functions. Here, we use a tensor product
ansatz to construct n-dimensional basis functions as well as spaces. This way, we
set ψj :=

⊗n
d=1 ψ jd and Wl :=

⊗n
d=1 Wld for l ∈ Nn

0. In particular, we have the direct
sum decomposition

V =
⊕
l∈Nn

Wl.

Moreover, we define WI :=
⊕

l∈I Wl for an index set I ⊂ Nn
0. For the general sparse

grid construction, we restrict ourselves to index sets, which obey the following
condition [14, 26]: An index set I ⊂ Nn

0 is called admissible if it holds the relation

{v ∈ Nn
0 : v ≤ l} ⊂ I, (14)

for all l ∈ I. Here, the inequality v ≤ w is to be understood componentwise, i.e.
v ≤ w :⇔ vd ≤ wd for all 1 ≤ d ≤ n. Now, for an admissible index set I, we define
generalized sparse grid spaces by

VI := ∑
l∈I

Vl =
⊕
l∈I

Wl =WI . (15)

Due to property (14) of I we are able to introduce the corresponding general sparse
grid trigonometric interpolation operator by

II := ∑
l∈I

Ĭl : V →VI , where Ĭl := Ĭl1 ⊗·· ·⊗ Ĭln : V →Wl.

This way, the associated set of interpolation points is given by

SI :=
⋃
l∈I

Sh
l ,

where
Sh

l := Sh
l1 ×·· ·×Sh

ln .

Let us note that this general sparse grid construction includes generalized sparse
grids as introduced in [23], i.e. we may employ for I the index set

IT
L := {l : |l|1 −T |l|∞ ≤ (1−T )L}, T < 1. (16)

Hence also full grids, i.e. I−∞

L = {l : |l|∞ ≤ L} and conventional sparse grids, i.e.
IL := I0

L = {l : |l|1 ≤ L} of level L ∈N0 are covered as special cases. For a function
f with a pointwise convergent Fourier series, the multi-dimensional hierarchical
coefficients f̆j are given by the unique representation

Ĭl f = ∑
j∈Jl

f̆jψj,
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where
Jl := Jl1 ×·· ·×Jln .

In particular, the hierarchical Fourier series

∑
l∈Nn

0

∑
j∈Jl

f̆jψj (17)

converges pointwise to f on all grids Sl, l ∈ Nn
0. Furthermore, with the help of

the multi-dimensional aliasing formula (9) a relation similar to (13) can easily be
deduced, that is, for l ∈ Nn

0 and j ∈ Jl, it holds

f̆j = f̂ (l)j = ∑
m∈Zn

f̂σ(j)+m2l . (18)

According to definition (15) of the general sparse grid space VI , we can estimate
its number of degrees of freedom by

|VI |≲ ∑
l∈I

2|l|1 . (19)

Starting from relation (19) the following complexity estimate is shown in the case of
the general index sets IT

L of (16) in [23, 24]:

Lemma 1. Let L ∈ N0 and T < 1. The number of degrees of freedom of the general
sparse grid spaces VIT

L
with respect to the discretization parameter L is

∣∣∣VIT
L

∣∣∣≲ ∑
l∈IT

L

2|l|1 ≲


2L for 0 < T < 1,
2LLn−1 for T = 0,

2L T−1
T/n−1 for T < 0,

2Ln for T =−∞.

(20)

Furthermore, analogously to the well-known case of a multi-dimensional discrete
Fourier transform, we can utilize the tensor product structure of the underlying spaces
and operators to efficiently compute the general sparse grid interpolant II f for a
f ∈ V . Here, the multi-dimensional transformation is expressed in terms of one-
dimensional discrete Fourier transforms, hierarchizations and de-hierarchizations of
different size, cf. [26] and Algorithm 1. Note that the application of a fast Fourier
transform algorithm for the computation of a one-dimensional discrete Fourier trans-
form of length 2l results in a computational complexity of order O(l2l). Note further-
more that the complexity for a one-dimensional hierarchization or de-hierarchization
of length 2l is of linear order O(2l). In this way, one can give an upper estimate of
the order O(2|l|1 |l|1) for the overall computational complexity in the case of a full
grid Vl.

In Algorithm 1 we give a procedure to apply the general sparse grid interpolation
operator II associated to an admissible index set I , where we define for d ∈{1, . . . ,n}
the set
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Algorithm 1 A procedure analog to [26] to apply the general sparse grid interpola-
tion operator II for a given admissible index set I and given interpolation values
{uj ∈ C}j∈Jl,l∈I associated to the general sparse grid interpolation points SI . The
algorithm works in-place on the given input coefficients, where we use an additional
temporary array to perform the involved one-dimensional FFTs.

for d = 1 to n do
for all l ∈Md do

for all j ∈ Jl1 ×·· ·×Jld−1 ×J0 ×Jld+1 ×·· ·×Jln do
One-dimensional FFT for (u j1,..., jd−1,0, jd+1,..., jn , . . . ,u j1,..., jd−1,2

ld −1, jd+1,..., jn
)

Hierarchization for (u j1,..., jd−1,0, jd+1,..., jn , . . . ,u j1,..., jd−1,2
ld −1, jd+1,..., jn

)

end for
end for

end for
// At this stage, the hierarchical Fourier coefficients are given in {uj}j∈Jl,l∈I .
for d = n to 1 do

for all l ∈Md do
for all j ∈ Jl1 ×·· ·×Jld−1 ×J0 ×Jld+1 ×·· ·×Jln do

De-hierarchization for (u j1,..., jd−1,0, jd+1,..., jn , . . . ,u j1,..., jd−1,2
ld −1, jd+1,..., jn

)

end for
end for

end for
// Finally, the non-hierarchical sparse grid Fourier coefficients are given in {uj}j∈Jl,l∈I .

Md(I) := {l ∈ I : l+ ed /∈ I},
with the d-th unit vector ed . Now, an upper estimate for the resulting overall compu-
tational complexity T [II ] of Algorithm 1 can be easily deduced in the form

T [II ]≲
n

∑
d=1

∑
l∈Md(I)

2ld ld2|l|1−ld =
n

∑
d=1

∑
l∈Md(I)

2|l|1 ld ≤
n

∑
d=1

lmax ∑
l∈Md(I)

2|l|1

≤ nlmax ∑
l∈I

2|l|1 , (21)

where lmax := maxl∈I |l|∞. Note that the inverse operator I−1
I can easily computed by

performing the algorithm in a reverse way [26]. In the case of the general sparse grid
index sets IT

L , relation (21) and Lemma 1 lead directly to the following computational
complexity estimate:

Lemma 2. Let L ∈ N0 and T < 1. An upper estimate for the computational com-
plexity of the general sparse grid interpolation operator IIT

L
with respect to the

discretization parameter L is given by

T [IIT
L
]≲ L ∑

l∈IT
L

2|l|1 ≲


L2L for 0 < T < 1,
L2LLn−1 for T = 0,

L2L T−1
T/n−1 for T < 0,

L2Ln for T =−∞.
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Let us remark that the case T = 0 is already presented in [26], i.e. T [IIL ] =O(Ln2L).
Note in particular that both, the asymptotic number of degrees of freedom of V T

L in
Lemma 1 and the asymptotic computational complexity of IIT

L
in Lemma 2, are not

exponentially dependent on the dimension n in the case 0 < T < 1.2

Let us finally note that, alternatively, the interpolation operator II can be applied
using the so-called combination technique or the blending scheme [3, 13, 34]. For an
admissible index set I it holds

II f = ∑
l∈I

rI(l)Il f , (22)

where
rI(l) := ∑

v∈{0,1}n
(−1)|v|χI(l+v),

with the characteristic function

χI(l) :=

{
1 for l ∈ I,
0 otherwise.

The computational complexity of the combination technique (22) can be estimated
by

T [II ]≲ ∑
l∈I,rI(l)̸=0

2|l|1 |l|1.

3 Approximation estimates

In this section, we first define different variants of (periodic) Sobolev spaces on
the torus via Fourier series, i.e. we classify functions via the decay of their Fourier
coefficients and hence by their smoothness. Then, we give approximation estimates
for these spaces. Here, we will first discuss the best linear approximation error and
then the approximation error of the interpolant. Based on the derived estimates we
further study the resulting error and cost complexities.

3.1 Periodic Sobolev spaces

As already noted in section 2.1 we characterize the smoothness classes of a function
f by the decay properties of its Fourier coefficients [28]. To this end, let w : Zn →R+

be a continuous and positive weight. Then we define

Hw(Tn) :=

{
f (x) = ∑

k∈Zn
f̂kωk(x) : ∥ f∥w :=

√
∑

k∈Zn
w(k)2| f̂k|2 < ∞

}
. (23)
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Here, e.g. for r, t ∈ R the weights

w(k) = λiso(k)r, where λiso(k) := 1+ |k|∞,

and

w(k) = λmix(k)t , where λmix(k) :=
n

∏
d=1

(1+ |kd |),

result in the conventional isotropic Sobolev spaces Hr [1] and in the standard Sobolev
spaces with dominating mixed smoothness Ht

mix [42], respectively. A further example
is the multiplicative combination of these weights, i.e.

w(k) = λiso(k)r
λmix(k)t ,

which leads to generalized Sobolev spaces of dominating mixed smoothness [23]

Ht,r
mix(T

n) :=

{
f (x) = ∑

k∈Zn
f̂kωk(x) :

∥ f∥Ht,r
mix

:=
√

∑
k∈Zn

(λmix(k)tλiso(k)r)2 | f̂k|2 < ∞

}
. (24)

In particular, these spaces include the conventional spaces as special cases, i.e.

Hr(Tn) =H0,r
mix(T

n) and Ht
mix(T

n) =Ht,0
mix(T

n),

respectively. Hence, the parameter r from equation (24) governs the isotropic smooth-
ness, whereas t governs the mixed smoothness. The spaces Ht,r

mix give us a quite
flexible framework for the study of problems in Sobolev spaces.

Moreover, the spaces Ht,r
mix(T

n) can be generalized to the case of n-dimensional
smoothness parameters t,r ∈Rn with r ≥ 0 [24]. To this end, for t,r ∈Rn with r ≥ 0
we set w(k) = λ

(t)
mix(k)λ

(r)
iso (k), where

λ
(t)
mix(k) :=

n

∏
d=1

(1+ |kd |)td and λ
(r)
iso (k) :=

n

∑
d=1

(1+ |kd |)rd

and introduce the spaces

Ht,r
mix(T

n) :=

{
f (x) = ∑

k∈Zn
f̂kωk(x) :

∥ f∥Ht,r
mix

:=

√
∑

k∈Zn

(
λ
(t)
mix(k)λ

(r)
iso (k)

)2
| f̂k|2 < ∞

}
. (25)
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In this way, for r ≥ 0 the spaces Ht,r
mix are up to norm equivalency6 special cases of

the spaces Ht,r
mix, i.e. Ht,r

mix =H(t,...,t),(r,...,r)
mix . We use the short form Hr :=H0,r

mix and
Ht

mix :=Ht,0
mix.

Furthermore, following [46, 50], for a set of weights Γ := {γu}u⊂{1,...,n} with
γu ≥ 0 and a weight function w we introduce a weighted periodic Sobolev space by

HΓ
w(Tn) :=

{
f (x) = ∑

k∈Zn
f̂kωk(x) :

∥ f∥HΓ
w

:=

√
∑

u⊂{1,...,n}

1
γu

∑
l∈Ωu

∑
j∈Jl

w(σ(j))2| f̂σ(j)|2 < ∞

}
, (26)

where
Ωu := {l ∈ Nn

0 : ld = 0 for all d ∈ {1, . . . ,n}\u} .
Let us remark that the orthogonal decomposition

f = ∑
u⊂{1,...,n}

fu, with fu := ∑
l∈Ωu

∑
j∈Jl

f̂σ(j)ωσ(j) (27)

is well-known in statistics under the name ANOVA (analysis of variance) [10], where
fu in particular depends on the coordinates {xd}d∈u only. Note that for f ∈HΓ

w the
weight γu prescribes the importance of the term fu and hence the importance of
different dimensions and of correlations between dimensions. In particular for a
weight γu → 0 the norm ∥ fu∥Hw is forced to be zero. If the size of terms ∥ fu∥Hw

decays fast with e.g. |u|, then a proper restriction onto certain lower dimensional
functions results in a substantial reduction in computational complexity. For example
a set of weights Γq := {γu}u⊂{1,...,n} with γu = 0 for all u ⊂ {1, . . . ,n}, |u|> q results
in a periodic Sobolev space of finite-order q, cf. [46, 50, 51]. Thus, all terms fu with
|u| > q are either not present at all or can be neglected due to the decay with |u|.
Then, the problem of approximating a n-dimensional function reduces to the problem
of approximating q-dimensional functions.

Note further that the introduced periodic Sobolev spaces, i.e. Ht,r
mix(T

n), Ht,r
mix(T

n)
and HΓ

w , can be straightforward generalized to the case of many-particle spaces
[17, 18, 19, 27].

6 For r ≥ 0 we could also use the weight ∏
n
d=1(1 + |kd |)t (∑n

d=1(1+ |kd |)r) instead of
∏

n
d=1(1 + |kd |)t (1+ |k|∞)r to define the space Ht,r

mix. This weight is equal to the special case

λ
(t,...,t)
mix (k)λ (r,...,r)

iso (k) and hence also the associated spaces Ht,r
mix and H(t,...,t),(r,...,r)

mix would be equal.
However, many of the given proofs would get more technical and thus for reasons of simplicity we
restrict ourselves to the definition (24).
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3.2 Best linear approximation error

In the following, we will consider the error of the best linear approximation in finite-
dimensional general sparse grid discretization spaces. Here, we will restrict ourselves
to some specific Sobolev spaces of dominating mixed smoothness.

For l ∈ Nn
0 we define an approximation operator Ql with respect to the L2-norm

by

Ql := Ql1 ⊗ . . .⊗Qln : L2(Tn)→Vl,

where

Ql : L2(T)→Vl : f 7→ ∑
0≤ j≤2l−1

f̂σ( j)φ j.

For an admissible index set I , as introduced in section 2.3, we define a general sparse
grid approximation operator QI : L2(Tn)→VI by

QI f := ∑
l∈I

∑
j∈Jl

f̂σ(j)ωσ(j).

Now let us consider two weight functions w and w̃ with associated Sobolev
spaces Hw and Hw̃ and norms ∥ f∥Hw and ∥ f∥Hw̃ , respectively. It should hold
Hw ⊂Hw̃ ⊂ L2 and thus w(k)≲ w̃(k). Then, let us consider f ∈Hw(Tn)⊂ L2(Tn)

with the unique representation f = f̂kωk. Now, if maxl∈Zn\I,j∈Jl
w̃(σ(j))2

w(σ(j))2 < ∞, we
obtain for the best linear approximation in VI the estimate

inf
f̃∈VI

∥ f − f̃∥2
Hw̃

≤ ∥ f −QI f∥2
Hw̃

= ∥ ∑
l∈Zn\I

∑
j∈Jl

f̂σ(j)ωσ(j)∥2
Hw̃

= ∑
l∈Zn\I

∑
j∈Jl

w̃(σ(j))2| f̂σ(j)|2

= ∑
l∈Zn\I

∑
j∈Jl

w̃(σ(j))2

w(σ(j))2 | f̂σ(j)|2w(σ(j))2

≤
(

max
l∈Zn\I,j∈Jl

w̃(σ(j))2

w(σ(j))2

)
∑

l∈Zn\I
∑

j∈Jl

| f̂σ(j)|2w(σ(j))2

≤
(

max
l∈Zn\I,j∈Jl

w̃(σ(j))2

w(σ(j))2

)
∑

l∈Zn
∑

j∈Jl

| f̂σ(j)|2w(σ(j))2

=

(
max

l∈Zn\I,j∈Jl

w̃(σ(j))2

w(σ(j))2

)
∥ f∥2

Hw
. (28)

This general result allows us to derive error estimates for a wide range of situa-
tions. We shortly consider two specific cases, namely the pairings (Ht ′,r′

mix ,H
t,r
mix) and

(Hr,Ht
mix).
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First, for the linear approximation in general sparse grid spaces VIT
L

with the index
IT

L set given in (16) the following error estimate for functions in optimized Sobolev
spaces of dominating mixed smoothness Ht,r

mix can be derived:

Lemma 3. For L ∈ N0, T < 1, t ′+ r′ < t + r, t − t ′ ≥ 0 and f ∈Ht,r
mix(T

n) it holds:

inf
f̃∈VIT

L

∥ f − f̃∥
Ht′,r′

mix
≤ ∥ f −QIT

L
f∥

Ht′,r′
mix

≲

2L((r′−r)−(t−t ′)+(T (t−t ′)−(r′−r)) n−1
n−T )∥ f∥Ht,r

mix
for T ≥ r′−r

t−t ′ ,

2L((r′−r)−(t−t ′))∥ f∥Ht,r
mix

for T ≤ r′−r
t−t ′ .

Proof. According to (28), the estimation of

max
l∈Zn\I,j∈Jl

λmix(σ(j))t ′λiso(σ(j))r′

λmix(σ(j))tλiso(σ(j))r

leads to the desired result, see also [24, 27]. □

Second, for t ≥ 1 we can define an anisotropic admissible index set by

It
L := {l ∈ Nn

0 :
n

∑
d=1

td ld ≤ L},

see also [21, 20]. Then, the following error estimate can be derived analogously to
Lemma 3:

Lemma 4. For L ∈ N0, t > 0, f ∈ Ht
mix, |t|min − r > 0 and with t′ := t

|t|min
, where

|t|min := minn
d=1 td , it holds:

inf
f̃∈V

It′
L

∥ f − f̃∥Hr ≤ ∥ f −QIt′
L

f∥Ht
mix

≲ 2−(|t|min−r)∥ f∥Ht
mix

.

Note that, for e.g. t1 = |t|min < t2 ≤ . . . ≤ tn, the number of degrees of freedom
|VIt′

L
| is of order O(2L), which then results in an overall complexity rate which is

independent of the number of dimensions n.
So far we have considered the best linear approximation of a function. However, its

coefficients are given by Fourier integrals (3), which can only be evaluated by analytic
formulae in special cases. In practice, one possibility to compute an approximation
to the best linear approximation, is the numerical calculation of the interpolant of
the function. Here, however, it is in general not clear if the associated approximation
error exhibits the same convergence rate as that of the best linear approximation.
This issue will be discussed in the next section.
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3.3 Approximation error of interpolant

In the following we will consider the error of the approximation by trigonometric
interpolation. To this end, let us first recall the following two lemmata:

Lemma 5. For L ∈ N0, f ∈Hs, s > n
2 and 0 ≤ r < s it holds:

∥ f − II−∞

L
f∥Hr ≲ 2−(s−r)L∥ f∥Hs . (29)

Lemma 6. For L ∈ N0, f ∈Ht
mix, t > 1

2 and 0 ≤ r < t it holds:

∥ f − II0
L

f∥Hr ≲ 2−(t−r)LLn−1∥ f∥Ht
mix

. (30)

Let us remark that analogous lemmata are given in [36, 37] based on the works of
[40] and [48], respectively. We give proofs based on the estimation of the aliasing
error in the appendix.

Next, we will extend Lemma 6 to the case of general sparse grids. To this end,
we will estimate the hierarchical surplus. Let f ∈Hw obey a pointwise convergent
(hierarchical) Fourier series. Then, the relation

∥ f − II f∥Hw̃ = ∥ ∑
l∈Nn

0

∑
j∈Jl

f̆jψj − ∑
l∈I

∑
j∈Jl

f̆jψj∥Hw̃

= ∥ ∑
l∈Nn

0\I
∑

j∈Jl

f̆jψj∥Hw̃

≤ ∑
l∈Nn

0\I
∥ ∑

j∈Jl

f̆jψj∥Hw̃

holds. By definition of the hierarchical basis we obtain

∥ ∑
j∈Jl

f̆jψj∥2
Hw̃

= ∥ ∑
j∈Jl

∑
v∈{0,1}n

f̆j

n⊗
d=1

φ
µ

ld
vd ( jd)

∥2
Hw̃

= ∑
j∈Jl

∑
v∈{0,1}n,l−v≥0

| f̆j|2w̃(σ(µ l
v(j)))

2

= ∑
j∈Jl

∑
v∈{0,1}n,l−v≥0

∣∣∣∣∣ ∑
m∈Zn

f̂σ(j)+m2l

∣∣∣∣∣
2

w̃(σ(µ l
v(j)))

2

= ∑
j∈Jl

∑
v∈{0,1}n,l−v≥0

∣∣∣∣∣ ∑
m∈Zn

f̂σ(j)+m2l
w(σ(j)+m2l)

w(σ(j)+m2l)

∣∣∣∣∣
2

w̃(σ(µ l
v(j)))

2,

where µ l
0( j) = j,

µ
l
1( j) =

{
−1 if l ≤ 0,
2l −1− j if l ≥ 1,
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µ l
v = (µ l1

v1 , . . . ,µ
ln
vn) and φ−1 = 0. With Cauchy-Schwarz it follows

∣∣∣∣∣ ∑
m∈Zn

f̂σ(j)+m2l
w(σ(j)+m2l)

w(σ(j)+m2l)

∣∣∣∣∣
2

≤
(

∑
m∈Zn

∣∣∣ f̂σ(j)+m2lw(σ(j)+m2l)
∣∣∣2)( ∑

m∈Zn
w(σ(j)+m2l)−2

)
(31)

and hence it holds

∥ ∑
j∈Jl

f̆jψj∥2
Hw̃

≤ ∑
j∈Jl

∑
v∈{0,1}n,l−v≥0

(
∑

m∈Zn

∣∣∣ f̂σ(j)+m2l

∣∣∣2 ∣∣w(σ(j)+m2l)
∣∣2)×

×
(

∑
m∈Zn

w(σ(j)+m2l)−2

)
w̃(σ(µ l

v(j)))
2.

Now, let us assume that there is a function g : Nn
0 → R such that it holds

w̃(σ(µ l
v(j)))

2
∑

m∈Zn

∣∣w(σ(j)+m2l)
∣∣−2 ≤C2g(l)2 (32)

for all j ∈ Jl and v ∈ {0,1}n, l− v ≥ 0 with a constant C independent of j and v.
Then, with |{0,1}n|= 2n, we have

∥ ∑
j∈Jl

f̆jψj∥Hw̃ ≤ 2nCg(l)

(
∑

j∈Jl

∑
m∈Zn

| f̂σ(j)+m2l |2w(σ(j)+m2l)2

) 1
2

≲ g(l)∥ f∥Hw

and hence

∥ f − II f∥Hw̃ ≲ ∑
l∈Nn

0\I
g(l)∥ f∥Hw . (33)

Let us now consider the approximation error in the Hr-norm for approximating
f ∈Ht

mix in the sparse grid space VIT
L

by interpolation. To this end, let us first recall
the following upper bound:

Lemma 7. For L ∈ N0, T < 1, r < t and t ≥ 0 it holds:

∑
l∈Nn

0\IT
L

2−t|l|1+r|l|∞ ≲

{
2−((t−r)+(Tt−r) n−1

n−T )LLn−1 for T ≥ r
t ,

2−(t−r)L for T < r
t .

Proof. A proof is given in Theorem 4 in [34]. □

Now, we can give the following lemma:
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Lemma 8. Let L ∈N0, T < 1, r < t, t > 1
2 and f ∈Ht

mix with a pointwise convergent
Fourier series. Then it holds:

∥ f − IIT
L

f∥Hr ≲

{
2−((t−r)+(Tt−r) n−1

n−T )LLn−1∥ f∥Ht
mix

for T ≥ r
t ,

2−(t−r)L∥ f∥Ht
mix

for T < r
t .

(34)

Proof. For t > 1
2 , j ∈ Jl and v ∈ {0,1}n with l−v ≥ 0 it follows the relation

∑
m∈Zn

n

∏
d=1

(1+ |σ( j)+md2ld |)−2t ≲ ∑
m∈Zn

n

∏
d=1

(
2ld (1+ |md |)

)−2t

≲ 2−2t|l|1 ∑
m∈Zn

n

∏
d=1

(1+ |md |)−2t

≲ 2−2t|l|1

and hence

(1+ |σ(µ l
v(j))|∞)2r

∑
m∈Zn

n

∏
d=1

(1+ |σ( j)+md2ld |)−2t ≲ 2−2t|l|1+2r|l|∞ .

According to (32) and (33) this yields

∥ f − IIT
L

f∥Hr ≲ ∑
l∈Nn

0\IT
L

2−t|l|1+r|l|∞∥ f∥Ht
mix

and with Lemma 7 we obtain the desired result. □

Let us remark that for regular sparse grids, i.e. T = 0, there is a difference
in the error behavior between the best approximation and the approximation by
interpolation. That is, in the L2-norm error estimate for the interpolant resulting
from Lemma 8 with t > 1

2 , r = 0 and T = 0, there is a logarithmic factor present, i.e.
Ln−1. In contrast, for the best linear approximation error in the L2-norm, there is no
logarithmic term Ln−1 involved according to Lemma 3 with t > 0, t ′ = r′ = r = 0
and T = 0.

3.4 Convergence rates with respect to the cost

Now, we cast the estimates on the degrees of freedom and the associated error of
approximation by interpolation into a form which measures the error with respect
to the involved degrees of freedom. In the following, we will restrict ourselves to
special cases, where the rates are independent of the dimension:

Lemma 9. Let L ∈ N0, 0 < r < t, t > 1
2 , 0 < T < r

t , and f ∈Ht
mix with a pointwise

convergent Fourier series. Then it holds:
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∥ f − IIT
L

f∥Hr ≲ M−(t−r)∥ f∥Ht
mix

,

with respect to the involved number of degrees of freedom M := |VIT
L
|.

Proof. This is a simple consequence of the Lemmata 1 and 8. First, we use the
relation (20), that is

M = |VIT
L
| ≤ c1(n) ·2L

for 0 < T < r
t , which results in 2−L ≤ c1(n)M−1. We now plug this into (34), i.e.

into the relation

∥ f − IIT
L

f∥Hr ≤ c2(n) ·2−L(t−r) · ∥ f∥Ht
mix

and arrive at the desired result with the order constant C(n) = c1(n)t−r · c2(n). □

Analogously, we can measure the error with respect to the computational complexity,
which results in the following upper estimate:

Lemma 10. For 0 < r < t, t > 1
2 , 0 < T < r

t , and f ∈Ht
mix with a pointwise conver-

gent Fourier series, it holds:

∥ f − IIT
L

f∥Hr ≲ R−(t−r) log(R)t−r∥ f∥Ht
mix

,

with respect to the involved computational costs R := T [IIT
L
].

Proof. This is a simple consequence of the Lemmata 2 and 8. Analogously to the
proof of Lemma 9 the relation ∥ f − IIT

L
f∥Hr ≲ R−(t−r)Lt−r∥ f∥Ht

mix
, can been shown,

which yields the desired result. □

Note that in [18] a result analogous to Lemma 9 is shown in the case of measuring
the best linear approximation error with respect to the involved degrees of freedom.

Finally, let us discuss shortly two cases of regular sparse grids with involved
logarithmic terms. First, again a simple consequence of the Lemmata 2 and 8 is that
for L ∈ N0, t > 1

2 and f ∈Ht
mix with a pointwise convergent Fourier series it holds

the relation

∥ f − II0
L

f∥L2 ≲ M−tL(t+1)(n−1)∥ f∥Ht
mix

≲ M−t log(M)(t+1)(n−1)∥ f∥Ht
mix

. (35)

Second, for the case 1
2 < t −1 the relation

∥ f − II0
L

f∥H1 ≲ M−(t−1)L(t−1)(n−1)∥ f∥Ht
mix

≲ M−(t−1) log(M)(t−1)(n−1)∥ f∥Ht
mix
(36)

can be derived.
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3.5 Further generalizations of sparse grids

In the following we will give some brief remarks on periodic Sobolev spaces with
finite-order weights and dimension-adaptive approaches.

3.5.1 Finite-order spaces

First, we consider so-called periodic Sobolev spaces with finite-order weights. These
spaces are a special case of the weighted periodic Sobolev space HΓ

w , which we
introduced in section 3.1 by definition (26). Let us recall from section 3.1 that a set of
weights Γq = {γu}u⊂{1,...,n} is denoted to be of finite order q ∈ N0, if it holds γu = 0
for all γu ∈ Γ with |u|> q. Note that there are

(n
q

)
≲ nq possible subsets u ⊂ 1, . . . ,n

of order q. Therefore, the problem of the approximation of a n-dimensional function
f ∈HΓq

w (Tn) is reduced to the problem of the approximation of O(nq) functions of
dimension q. Hence, in that case the curse of dimensionality can be broken and in
particular for w(k) = λiso(k)rλmix(k)t the previous lemmata can be straightforwardly
adapted, compare also [27].

3.5.2 Dimension-adaptive approach

So far we considered admissible index sets IL
T and their associated generalized sparse

grid spaces VIL
T
, which are chosen such that the corresponding a-priori estimated

approximation error for all functions in a specific function class of dominating mixed
smoothness is as small as possible for a given amount of degrees of freedom [6].
The goal of a so-called dimension-adaptive approach is to find an admissible index
set such that the corresponding approximation error for a single given function is
as small as possible for a prescribed amount of degrees of freedom. To this end,
a scheme similar to that given in [14] for dimension-adaptive quadrature could be
applied.

Such a scheme starts with an a-priori chosen small admissible index set, e.g.
I(0) = {0}. The idea is to extend the index set successively such that the index sets
remain admissible and that an error reduction as large as possible is achieved. To this
end, a so called error indicator is computed for each index l ∈ Nn

0 and its associated
subspace Wl. In the case of approximation by interpolation we use the hierarchical
surplus to derive an error indicator [29], e.g. ηl = |∑j∈Jl f̆jΨj| with appropriate norm.
For further details of the dimension-adaptive sparse grid approximation algorithm
we refer to [5, 14, 29].

Let us note furthermore that in [16] a relation between the dimension-adaptive
sparse grid algorithm and the concept of ANOVA-like decompositions was estab-
lished. There, it was also shown that general sparse grids correspond to just a
hierarchical approximation of the single terms in the ANOVA decomposition (27)
see also [11, 22, 38].
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Note finally that various locally adaptive sparse grid approaches exist [6, 12, 29]
which are based on hierarchical multilevel sparse grid techniques. But, together with
fast discrete Fourier transforms, they are not easy to apply at all.

4 Numerical experiments and results

We implemented the generalized sparse grid trigonometric interpolation operator II
for general admissible index sets I ⊂ Nn

0 according to Algorithm 1 in a software
library called HCFFT. This library also includes the functionality for the application
of dimension-adaptive approaches. In addition to the fast discrete Fourier transform,
which we deal with in this paper, it includes actually the following variants: fast
discrete sine transform, fast discrete cosine transform and fast discrete Chebyshev
transform.

In the following, we present the results of some numerical calculations performed
by the HCFFT library. We restrict ourselves to the case of the FFT based application
of the interpolation operator IT

L . Here, we in particular study the dependence of
the convergence rates on the number of dimensions for the regular sparse grid case
T = 0 and the energy-norm like sparse grid case T > 0. To this end, we consider
the approximation by interpolation of functions in the periodic Sobolev spaces of
dominating mixed smoothness Ht

mix(T
n). As test cases we use the functions

Gp : Tn → R : x 7→
n⊗

d=1

gp(xd)

with

gp : T→ R : x 7→ Np · (2+ sgn(x−π) · sin(x)p)

for p = 1,2,3,4. Here, sgn denotes the sign function, i.e.

sgn(x) :=


−1 x < 0,
0 x = 0,
1 x > 0

and Np denotes a normalization constant such that ∥gp∥L2 = 1. Note that for ε > 0

we have gp ∈ H 1
2+p−ε(T) and thus Gp ∈ H

1
2+p−ε

mix (Tn). In particular, the L2- and
H1-error can be computed by analytic formulae and the relative L2-error is equal to
the absolute L2-error, i.e. ∥Gp− IIT

L
Gp∥L2/∥Gp∥L2 = ∥Gp− IIT

L
Gp∥L2 . Let us note

these test functions are of simple product form, but the decay behavior of its Fourier
coefficients reflects that of the considered Sobolev spaces of dominating mixed
smoothness. The numerical results for more complicated functions of non-product
structure from these Sobolev spaces were basically the same.
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Fig. 1 Convergence behavior for approximating the functions Gp ∈ H
1+2p

2 −ε

mix by trigonometric
interpolation on regular spare grids, i.e. ∥Gp − II0

L
Gp∥L2 versus |VI0

L
|. Left: Case of n = 1. Right:

Case of n = 3.

For validation we first performed numerical calculations in the one dimensional
case for Gp with p = 1,2,3,4. We show the measured error versus the number of
degrees of freedom in Figure 1. To estimate the respective convergence rates, we
computed a linear least square fit to the results of the three largest levels. This way, we
obtained rates of values about 1.50, 2.50, 3.51 and 4.40, respectively, which coincide
with the theoretically expected rates in the one-dimensional case, cf. Lemmata 1
and 8. Then, we performed calculations for the three dimensional case. The values
p = 1,2,3,4 result in numerically measured convergence rates of about 1.25, 1.87,
2.83 and 3.90, respectively. Moreover, for the approximation of the test functions G2
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Fig. 2 Convergence behavior for approximating the function G2 ∈H
5
2 −ε

mix by trigonometric interpo-
lation on regular spare grids. Left: Case of relative/absolute L2-error, i.e. ∥G2 − II0

L
G2∥L2 . Right:

Case of relative H1-error, i.e. ∥G2 − II0
L
G2∥H1/∥G2∥H1 .

for up to six dimensions by trigonometric interpolation on regular sparse grids, we
observe that the rates indeed decrease with the number of dimensions, see Figure 2.
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For example in case of the L2-error the rates deteriorate from a value of 2.50 for
n = 1 to a value of 1.56 for n = 6. All calculated rates are given in Table 1. Note
that this decrease in the rates with respect to the number of dimensions is to be
expected from theory, since the cost and error estimates in Lemmata 1 and 8 involve
dimension-dependent logarithmic terms for the regular sparse grid case, i.e. for T = 0.
We additionally give in Table 1 the computed rates associated to the relative errors

Table 1 Numerically measured convergence rates with respect to the number of degrees of freedom
according to the relative L2-norm error and the relative H1-norm for the approximation of the
function G2 ∈H5/2−ε

mix by trigonometric interpolation on regular spare grids, i.e. T = 0. In addition,
we present the rates according to the relative error divided by the respective logarithmic term versus
the number of degrees of freedom, see also estimates (35) and (36).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

L2-norm 2.50 2.17 1.87 1.73 1.60 1.56

L2-norm / L(
5
2 +1)(n−1) 2.50 2.55 2.49 2.55 2.60 2.76

H1-norm 1.50 1.38 1.30 1.23 1.19 1.15

H1-norm / L(
5
2 −1)(n−1) 1.50 1.64 1.63 1.65 1.76 1.69

divided by the respective logarithmic term versus the number of degrees of freedom.
Here, the derived values fit quite well to the rates which could be expected from
theory, that is, 2.5 and 1.5 for the error measured in the L2-norm and the H1-norm,
respectively.

Note that according to Lemma 9, we can get rid of the logarithmic terms in
some special cases. For example, if we measure the error of the approximation of
G2 by the general sparse grid interpolant IIT

L
G2 in the H1-norm, then Lemma 9

leads with r = 1, t = 5
2 − ε to a convergence rate of 3

2 − ε for 0 < T < 2
5+2ε

. Hence,
we performed numerical calculations for the generalized sparse grids with T = 1

8
and T = 1

4 . The obtained errors are plotted in Figure 3. The results show that the
rates are substantially improved compared to the regular sparse grid case. We give
all measured rates in Table 2. Note that we still observe a slight decrease of the
rates with the number of dimensions. This is surely a consequence of the fact that
we are still in the pre-asymptotic regime for the higher-dimensional cases. Note
furthermore that the constant involved in the complexity estimate in Lemma 9
probably depends exponentially on the number n of dimensions. This explains the
offset of the convergence with rising n in Figure 3.

In [34] it is noted that the involved order constant in the convergence rate estimate
for the case 0 < T < 1 is typically increasing with n and T and it is in particular
larger than in the case of regular sparse grids with T = 0. In contrast, under certain
assumptions, the convergence rate is superior in the case 0 < T < 1 to that of the
regular sparse grid with T = 0. Hence, in the pre-asymptotic regime, the effects of
constants and order rates counterbalance each other a bit in practice. For example, let
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Fig. 3 Convergence behavior for approximating the function G2 ∈H5/2−ε

mix by the general sparse
grid interpolation operator IIT

L
with respect to the relative H1-error. Left: Case of T = 1

8 . Right:

Case of T = 1
4 .

Table 2 Numerically measured convergence rates with respect to the number of degrees of freedom
for the approximation of the function G2 ∈H5/2−ε

mix by trigonometric interpolation on generalized
spare grids with 0 < T < 2

5 .

error T n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

H1 1
8 1.50 1.44 1.39 1.29 1.28 1.27

H1 1
4 1.50 1.41 1.36 1.39 1.37 1.49

us consider the H1-error of the interpolant IIT
L

G1 for T = 0, 1
8 ,

1
4 and n = 3,4. The

associated computed rates are given in Table 3. Here, a break-even point can be seen
from our numerical results depicted in Figure 4, i.e. for n = 4 the computed H1-error
is slightly smaller in the case T = 1

4 than in the cases T = 0 and T = 1
8 for a number

of involved degrees of freedom greater than about |VIT
L
| ≈ 106. A similar effect is

also present, albeit barely visible, for n = 3 and |VIT
L
| ≈ 105. Nevertheless, in any

case, the various rates are nearly the same anyway and these differences are quite
small.

Table 3 Numerically measured convergence rates with respect to the number of degrees of freedom
of the approximation of the function G1 ∈H3/2−ε

mix by trigonometric interpolation on regular and
generalized spare grids.

error T n = 3 n = 4

H1 0.0 0.45 0.42

H1 1
8 0.47 0.44

H1 1
4 0.49 0.47
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Fig. 4 Convergence behavior for the approximation of the function G1 ∈H3/2−ε

mix by trigonometric
interpolation on generalized spare grids, i.e. ∥G1 − IIT

L
G1∥L2 versus |VIT

L
|, where the error is

measured in the relative H1-error, i.e. ∥G1 − IIT
L

G1∥H1/∥G1∥H1 .

5 Concluding Remarks

In this article, we discussed several variants of periodic Sobolev spaces of dominating
mixed smoothness and we constructed the general sparse grid discretization spaces
VIT

L
. We gave estimates for their number of degrees of freedom and the best linear

approximation error for multivariate functions in Ht,r
mix(T

n) and Ht
mix(T

n). In addi-
tion, we presented an algorithm for the general sparse grid interpolation based on the
fast discrete Fourier transform and showed its computational cost and the resulting
error estimates for the general sparse grid interpolant IIT

L
of functions in Ht

mix(T
n).

Specifically, we identified smoothness assumptions that make it possible to choose
IIT

L
in such a way that the number of degrees of freedom is O(2L) compared to

O(2LLn−1) and O(2nL) for the regular sparse grid and full grid spaces, respectively,
while keeping the optimal order of approximation. For this case, we also showed
that the asymptotic computational cost complexities rates are independent of the
number of dimensions. The constants involved in the O-notation may still depend
exponentially on n however.

Let us finally note that we mainly discussed the sparse grid interpolation operator
IIT

L
in the present paper. However, our implemented software library HCFFT allows

us to deal with discretization spaces associated with arbitrary admissible index sets
and in particular also features dimension-adaptive methods. Furthermore, discrete
cosine, discrete sine and discrete Chebyshev based interpolation can be applied. We
presently work on its extension to polynomial families which are commonly used in
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the area of uncertainty quantification [38]. We will discuss these approaches and its
applications in a forthcoming paper.
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Appendix

In the following, we will give proofs for Lemmata 5 and 6 based on the estimation of
the aliasing error.

Let f ∈Hw obey a pointwise convergent Fourier series. Then, it holds the relation

∥ f − II f∥Hw̃ = ∥ f − II f +QI f −QI f∥Hw̃

≤ ∥ f −QI f∥Hw̃ +∥II f −QI f∥Hw̃ .
(37)

For the first term of the right hand side, an upper bound can be obtained according to
(28). For the second term, it holds with (22) the relation7

∥II f −QI f∥Hw̃ = ∥∑
l∈I

rI(l)Il f −QI f∥Hw̃ = ∥∑
l∈I

rI(l)(Il −Ql) f∥Hw̃

≲ ∑
l∈I,rI(l)̸=0

∥(Il −Ql) f∥Hw̃ .

With the help of the aliasing formula (9) and the Cauchy-Schwarz inequality, we
obtain for l ∈ Nn

0 the relation

∥Il f −Ql f∥2
Hw̃

= ∥ ∑
j∈Jl

( f̂ (l)j − f̂σ(j))φj∥2
Hw̃

= ∑
j∈Jl

| f̂ (l)j − f̂σ(j)|2w̃(σ(j))2

= ∑
j∈Jl

| ∑
m∈Zn\{0}

f̂σ(j)+m2l |2w̃(σ(j))2

= ∑
j∈Jl

| ∑
m∈Zn\{0}

f̂σ(j)+m2l
w(σ(j)+m2l)

w(σ(j)+m2l)
|2w̃(σ(j))2

≤ ∑
j∈Jl

(
∑

m∈Zn\{0}
| f̂σ(j)+m2l |2|w(σ(j)+m2l)|2

)
×

×
(

∑
m∈Zn\{0}

|w(σ(j)+m2l)|−2

)
w̃(σ(j))2 (38)

7 Note that analogously to (22) for II , it holds QI f = ∑l∈I rI(l)Ql f .
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Let us assume that there is a function F : Nn
0 → R such that it holds

w̃(σ(j))2
∑

m∈Zn\{0}
|w(σ(j)+m2l)|−2 ≤ cF(l)2 (39)

for all j ∈ Jl with a constant c independent of j. Then, (38) yields

∥(Il −Ql) f∥2
Hw̃

≤ cF(l)2
∑

j∈Jl

(
∑

m∈Zn\{0}
| f̂σ(j)+m2l |2|w(σ(j)+m2l)|2

)
≲ F(l)2∥ f∥2

Hw
,

and altogether we obtain

∥II f −QI f∥Hw̃ ≲ ∑
l∈I,rI(l)̸=0

F(l)∥ f∥Hw

≲

(
max

l∈I,rI(l)̸=0
F(l)

)(
∑

l∈I,rI(l)̸=0
1

)
∥ f∥Hw .

(40)

Let us now consider the approximation error in the Hr-norm for interpolating
f ∈Hs, s > n

2 in the full grid space VI−∞

L
and 0 ≤ r < s. According to (39), we may

estimate

∑
m∈Zn\{0}

(1+ |σ(j)+m2l)|∞)−2s ≲ 2−2s|l|min ∑
m∈Zn\{0}

(1+ |m|∞)−2s

≲ 2−2s|l|min ∑
m∈N

((mn − (m−1)n)|m|−2s

≲ 2−2s|l|min ∑
m∈N

m−2s+n−1

≲ 2−2s|l|min

for all j ∈ Jl. With (37), Lemma 3 and (40) we finally obtain

∥II−∞

L
f − f∥Hr ≲ 2−(s−r)L∥ f∥Hs , (41)

which proves Lemma 5.
Now, we consider the approximation error in the Hr-norm for interpolating

f ∈Ht
mix, t > 1

2 in the sparse grid space VIL and 0 ≤ r < t. Here, according to (39),
we may estimate

∑
m∈Zn\{0}

n

∏
d=1

(1+ |σ( jd)+md2ld |)−2t ≲ 2−2t|l|1 ∑
m∈Zn\{0}

n

∏
d=1

(1+ |md |)−2t

≲ 2−2t|l|1 .

With (37), Lemma 3, the identity
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IIL =
n−1

∑
d=0

(−1)d
(

n−1
d

)
∑

|l|1=L−d
Il

and (40), we finally obtain

∥IIL f − f∥Hr ≲ 2−(t−r)L∥ f∥Ht
mix

 ∑
l∈IL,rIL (l)̸=0

1


≲ 2−(t−r)LLn−1∥ f∥Ht

mix
, (42)

which proves Lemma 6. This is in particular a special case of Lemma 8. Let us finally
remark that the estimates (41) and (42) are also shown in [36, 37] based on the works
of [40] and [48], respectively.
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