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1 Introduction

With the discovery of pure carbon structures different from graphite and diamond, a
new and fast-developing area in nanomaterial science began [1]. In particular, tube-
like structures were first reported by Iijima in 1991; see [2]. The diameter of these
carbon nanotubes is in the nanometer range, but their length can be in the micrometer
range [3]. Meanwhile, their mechanical properties have been studied by theoretical
predictions and experimental measurements [4, 5]. Due to their structure and form,
they tolerate extreme distortion without fracture. They also show elastic bending,
twisting, buckling, and other reversible deformations. The bending stiffness is in the
range of 0.4TPa to 4TPa [6]; furthermore a local tension of hundreds of gigapascals
can be reached before fracture occurs [7]. Due to these properties, carbon nanotubes
can be used to reinforce polymer composites. Here, they possess the potential for
large increases in strength and stiffness in comparison to conventional carbon-fiber-
reinforced polymer composites. Thus, nanotube-polymer composites have gained
considerable interest in the materials research community.

Meanwhile, some nanotube composite materials have been characterized experi-
mentally [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. This is however a demanding and
expensive task. To this end, computational methods can be used to greatly facilitate
the development of nanotube composite materials. Computer simulations allow for
parametric studies of the influence of composite and geometry on the material prop-
erties. In particular, first-principle techniques [19, 20, 21, 22, 23], semi-empirical
schemes [24], and empirical potential methods [19, 21, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34] have been applied successfully to study nanostructures. Here, especially for
large systems with thousands of atoms and more, molecular dynamics simulations
that use empirical potentials are an important tool to better understand the prop-
erties of polymer-carbon nanotube composites. In this work, we derive stress-strain
curves from molecular dynamics simulations of polymer-carbon nanotube composites
to predict their macroscopic elastic moduli. We then compare these results to that
obtained with a rule-of-mixtures, which takes only the volume fraction of the fibers
into account, and an extended rule-of-mixtures, which takes also the distribution of
the fibers into account [35, 36]. Furthermore, we study the effect of cross-links be-
tween the matrix and the nanotube on the mechanical properties of the composite
material.

In several earlier works, molecular dynamics simulations have been successfully
applied to predict elastic properties of polymer-carbon nanotube composites [37, 38,
39]. To this end, the application of strain to a sample is a major requisite. In the most
simple approach, this can be accomplished by uniformly expanding the length of the
simulation cell in the direction of the deformation. To equilibrate the system for the
new cell size, the coordinates of the atoms are rescaled to fit to the new geometry, and
a molecular dynamics simulation or a potential energy minimization is performed.
This way, the stress at different strain values can be calculated successively. For
further details, see [40, 19, 25, 27, 24, 31, 32, 41]. Besides, there exist two methods to
apply strain, which are based on the Parrinello-Rahman [42] approach, namely the
so-called fluctuation method to calculate elastic constants [43, 44, 45, 46, 47, 48, 49,
41] and the dynamic method. The dynamic method uses constant stress molecular
dynamics to measure the stress-strain behavior of a material subjected to an applied
load [50, 51, 46, 52, 53].
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In the current work, we carry out the application of strain by employing a
Parrinello-Rahman-Nosé Lagrangian to control stress and temperature in an (N, P, T)
ensemble [42, 54, 55, 56, 57, 58]. Similar to the dynamic method, we apply an exter-
nal stress tensor within the equations of motion and measure the linear stress tensor.
We compute the stress-strain curves of different model systems, a periodically repli-
cated uncapped (10, 10) single-walled carbon nanotube, a finite (10, 10) single-walled
capped carbon nanotube, a functionalized finite (10, 10) single-walled capped carbon
nanotube embedded in a polyethylene matrix, and the polyethylene matrix itself. In
the case of the fully embedded capped carbon nanotube, we use polyethylene ma-
trices of different size, and in the case of the functionalized nanotube we consider
systems with a different amount of cross-links. To model the bonded interaction
within these hydrocarbon systems, we use a many-body bond order potential due to
Brenner [59, 60]. In the case of the composite materials without cross-links, we model
the polyethylene matrix by a united-atom potential [61] and use Brenner’s potential
just for the carbon nanotube. In both models, the non-bonded interaction of the
atoms is represented by a simple Lennard-Jones potential. We exploit the slopes of
the stress-strain curves to derive different elastic moduli and constants.

The remainder of this paper is organized as follows: In section 2 we discuss
the computational methods that we use in our study of polymer-carbon nanotube
composites. In section 2.1, we give the details of the molecular dynamics approach
in the framework of an (N, P, T) ensemble. In section 2.2, we discuss two different
models to represent hydrocarbon systems. In section 2.3, we describe a computational
method to derive the elasticity tensor. Section 3 gives the results of our numerical
experiments. We relate these results to two different rules-of-mixtures in section 4.
Finally we give some concluding remarks.
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2 Computational Methods

In this section, we describe the modeling and implementational aspects of our molec-
ular dynamics approach to determine the elastic properties of polyethylene-carbon
nanotube composites.

First, we give the basics of molecular dynamics in view of the simulation of
nanotube composites. In particular, we discuss an isobaric-isothermal ensemble due
to Parrinello-Rahman-Nosé and present some details on the application of periodic
boundary conditions. Then, we discuss the discretization in time of the correspond-
ing equations of motion. Furthermore, a conjugate gradient method to perform local
energy minimization is described. It is needed to initialize the systems for a simula-
tion run. Afterwards, we review the potentials we use to model hydrocarbon systems.
Here, we give some details on our implementation to efficiently evaluate the potential
energy and the forces on the particles. To deal with large systems over long times, a
parallelization of the method is necessary. Here, we discuss a classical domain decom-
position approach. Finally, we present an approach to generate stress-strain curves.
From these, we then can derive elastic moduli and constants using the generalized
Hooke’s law.

2.1 Molecular Dynamics Simulations

We consider a system of N particles with masses {m1, · · · ,mN}, which is character-
ized by coordinates {x1, · · · ,xN} and momenta {p1, · · · ,pN}. Here, the coordinates
x := (x1, · · · ,xN )T and momenta p := (p1, · · · ,pN )T are time-dependent vectors in
R
3N . The dynamics of the system is described by Hamilton’s equations of motion

ẋ = ∇pH(x,p) , ṗ = −∇xH(x,p) , (1)

with a so-called Hamiltonian H. We furthermore assume that the interaction of the
particles is given by a conservative potential

U = U(x) with
∂U

∂t
≡ 0 .

Then, the Hamiltonian can be written in the form

H(x,p) =
1

2

N∑

i=1

pT
i pi

mi
+ U(x1, . . . ,xN ) , (2)

with the kinetic energy Ekin := 1
2

∑N
i=1

pT
i pi

mi
and the potential energy Epot := U .

Moreover, Hamilton’s equations of motion (1) are then equivalent to Newton’s equa-
tions of motion together with the impulse relation pi(t) = miẋ(t). Newton’s equa-
tions of motion are given by Newton’s second law

miẍi = Fi(x, t) ,

where the force acting on particle i is defined as

Fi := −∇xi
U . (3)
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A Hamiltonian system that consists of the equations of motion (1) and the Hamilto-
nian (2) gives the general basis of molecular dynamics.

If we use Hamilton’s equations of motion (1) to calculate the total time derivative
of the Hamiltonian

d

dt
H (x,p) = ∇xH (x,p) ẋ+∇pH (x,p) ṗ

= ∇xH (x,p)∇pH (x,p)−∇pH (x,p)∇xH (x,p) ≡ 0 ,

we see that the total energy Etot = Ekin + Epot is conserved over time. Therefore,
we obtain the so-called microcanonical (N, V, E) ensemble, if we assume a simula-
tion domain with a finite volume V and appropriate boundary conditions. Here, the
number of particles, the volume, and the total energy are constant over time. Tem-
perature and pressure are not constant over time. They, however, are thermodynamic
quantities anyway, which are meaningful only at equilibrium [62]. If a microscopic
dynamic variable α takes on instantaneous values α(t) along a trajectory, then the
time average

〈α〉t := lim
t→∞

1

t

∫ t

0
α(τ) dτ

results in the related thermodynamic value due to the so-called ergodic hypothe-
sis [63]. This dynamic variable can be any function of the coordinates and momenta
of the particles of the system. The thermodynamic temperature T is related to the
average of the kinetic energy Ekin by the equipartition theorem

〈

1

2

N∑

i=1

pT
i pi

mi

〉

t

= 〈Ekin〉t =
NfkBT

2
, (4)

where Nf denotes the number of degrees of freedom of the physical system, and
kB is Boltzmann’s constant. In an unrestricted system with N atoms, Nf is 3N
because each atom has three velocity components. In particular, the thermodynamic
temperature T is given by the average over time of the instantaneous temperature
Tinst := 2

NfkB
Ekin. Furthermore, the thermodynamic pressure P is related to the

thermodynamic temperature T , the volume V , and the internal virial W = 〈Winst〉t
by the equation of state

PV =
1

3
NfkBT + 〈Winst〉t , (5)

which is derived from the classical virial theorem [62]. Here, the instantaneous inter-
nal virial Winst is related to the fluctuations of the potential energy U with respect
to the volume V by Winst

V
= − dU

dV
. If we define the instantaneous pressure in the form

Pinst :=
2

3V
Ekin +

1

V
Winst , (6)

then the thermodynamic pressure is also given by the average P = 〈Pinst〉t. This way,
we can perform molecular dynamics simulations for an (N, V, E) ensemble to obtain
equilibrium thermodynamic properties like temperature and pressure. In particu-
lar, temperature and pressure are first-order equilibrium thermodynamic properties
that are in the thermodynamical limit independent of the statistical ensemble used.
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An ensemble is specified by the external conditions describing an equilibrium state.
Beside the (N ,V ,E) or microcanonical ensemble, there is the (N, V, T) or canon-
ical ensemble, the (N, P, T) or isothermal-isobaric ensemble, and the (µ, V, T) or
grand canonical ensemble, where µ denotes the chemical potential. Here, the noted
properties are constant.

Now, second-order equilibrium thermodynamic properties like elastic constants
can be calculated using microscopic expressions in the form of fluctuations of first-
order properties. But in contrast to these, second-order properties are dependent on
the respective ensemble. Therefore, it is important to use the appropriate ensemble
in a simulation. The transformation and relation between different ensembles has
been discussed in the literature, see for example [64, 62, 65]. In the following, we
present in detail the use of an extended Hamiltonian system. This corresponds to an
isothermal-isobaric (N, P, T) ensemble, which is more convenient than the (N, V, E)
or the (N, V, T) ensemble to determine mechanical properties of nanocomposites by
molecular dynamics simulations.

2.1.1 (N, P, T) Ensemble

As known from classical mechanics textbooks [66, 67, 68, 69] the dynamics of a system
can also be described by a Lagrangian

L(x,v) = 1

2

N∑

i=1

miv
T
i vi − U(x1, · · · ,xN ) ,

with dynamical variables x := (x1, · · · ,xN )T and v := (v1, · · · ,vN )T for the coor-
dinates and velocities of the particles, respectively. In particular, the equation of
motion is given by the Euler-Lagrange equation

∇xL(x,v) =
d

dt
∇vL(x,v) .

If we introduce the momenta

pxi
= ∇vi

L(x,v) = mivi , (7)

the corresponding Hamiltonian can be written in the form

H(x,px) =
N∑

i=1

pT
xi
pxi

mi
− L

(

x1, · · · ,xN ,
px1

m1
, · · · , pxN

mN

)

=
1

2

N∑

i=1

pT
xi
pxi

mi
+ U(x1, · · · ,xN )

(8)

and Hamilton’s equations of motion of the system follow with equation (1).
We now want to follow this way to formulate an isothermal-isobaric (N, P, T)

ensemble which allows control of pressure and temperature. The degrees of freedom
of an (N, V, E) ensemble, which corresponds to an isolated physical system, are the
space coordinates and the velocities of the particles. The idea is to couple the physical
system to a fictitious external piston and a fictitious external heat bath; see Figure
1. To this end, additional degrees of freedom for the total coordinate-system in space
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isolated

system

physical

external heat bath

external

external heat bath

piston

Figure 1: From left to right: The microcanonical or (N, V, E) ensemble, the canonical
or (N, V, T) ensemble, and the isothermal-isobaric or (N, P, T) ensemble.

a1

a2

a3

h−1

h

e3

e2

e1

Figure 2: The simulation cell is spanned by the vectors a1, a2, and a3. The vectors
e1, e2, and e3 denote the standard orthonormal basis, which span the unit cube in
R
3. Here, h denotes the cell transformation matrix.

are introduced. This way, the volume and the shape of the system’s domain and
thus the pressure can be controlled [42, 50]. Analogously, an additional dynamical
variable with respect to rescaling of time is introduced to control the temperature
[54, 55, 57].

We assume a simulation cell that is spanned by three linear independent vectors
a1, a2, and a3. Now, to obtain dynamical variables to control the volume and the
shape of the cell, we combine the basis vectors a1, a2 and a3 into a 3 × 3 time-
dependent cell transformation matrix h̃ = [a1,a2,a3]. This way, we can write the
coordinate vector of particle i as

xi = h̃s̃i ,

where s̃i is the scaled coordinate vector of particle i. In particular, the scaled coor-
dinates s̃1, . . . , s̃N are located in the unit cube in R

3; see Figure 2. Moreover, the
volume of the simulation cell can be calculated as V = det h̃. To obtain a dynamical
variable to control the temperature, we rescale the time t to t̃ by

t(t̃) =

∫ t̃

0

dτ

γ(τ)
(9)

and thus
dt̃ = γ(t̃)dt .
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This way, the velocities of the particles are scaled according to

vi(t) = γ(t̃)h̃(t̃) ˙̃si(t̃) .

Here, the variables that are given in terms of the virtual time t̃ are labeled by a
tilde and are the so-called virtual variables. Analogously, the variables that are given
in terms of the real time t are the so-called real variables. Furthermore, we define
fictitious potentials of the additional dynamical variables

UP (h̃) = Pext det h̃ , UT (ln γ) = NfkBTtag ln γ . (10)

Here, Pext denotes the externally applied pressure and Ttag denotes the target tem-
perature we want to impose onto the system. The fictitious potentials (10) are related
to the equation of state (5) for the pressure and the equipartition theorem (4) for
the temperature. Now, we extend the Lagrangian of an (N, V, E) ensemble by nine
additional degrees of freedom

{

h̃ij | i, j ∈ {1, 2, 3}
}

for the so-called Parrinello-Rahman barostat and one degree of freedom γ for the so-
called Nosé thermostat. The associated Parrinello-Rahman-Nosé Lagrangian, which
corresponds to an (N, P, T) ensemble, is postulated as

LNPT(s̃, h̃, γ, ˙̃s,
˙̃
h, γ̇) =

1

2

N∑

i=1

miγ
2 ˙̃sTi

˙̃
hT

˙̃
h ˙̃si +

1

2
MPγ

2tr
(
˙̃
hT

˙̃
h
)

+
1

2
MT γ̇

2

− U(h̃s̃, h̃)− Pext det h̃−NfkBTtar ln γ ,

(11)

where tr(
˙̃
hT

˙̃
h) denotes the trace of the matrix

˙̃
hT

˙̃
h. Here, MP is a fictitious mass

or inertia parameter to control the time-scale of motion of the cell h̃, and MT is an
analogous parameter with respect to temperature. A high value of fictitious mass
determines a weak coupling to the external system. In analogy to equation (7), we
now have the conjugated momenta

ps̃i = ∇ ˙̃si
LNPT = miγ

2G̃ ˙̃si , ph̃ = ∇ ˙̃
h
LNPT = γ2MP h̃ , pγ = ∇γ̇LNPT = MT γ̇ .

Here, the matrix G̃ is defined as the metric-tensor G̃ = h̃T h̃. With equation (8) we
obtain the Parrinello-Rahman-Nosé Hamiltonian

H̃NPT(s̃, h̃, γ,ps̃, ph̃, pγ) =
1

2

N∑

i=1

pT
s̃i
G̃−1ps̃i

miγ2
+

1

2

tr
(

pT
h̃
ph̃

)

γ2MP
+

1

2

p2γ
MT

+ U(h̃s̃, h̃) + UP (h̃) + UT (ln γ) .

(12)

In order to derive the equations of motion, we apply equation (1) to the Hamiltonian
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(12) and obtain

d s̃i

dt̃
= ∇ps̃i

H̃NPT =
G̃−1ps̃i

miγ2
,

dps̃i

dt̃
= −∇s̃iH̃NPT = −∇s̃iŨ(s̃, h̃) ,

d h̃

dt̃
= ∇p

h̃
H̃NPT =

ph̃
MPγ2

,

dph̃

dt̃
= −∇h̃H̃NPT = −∇h̃

(

1

2

N∑

i=1

pT
s̃ G̃

−1ps̃

miγ2

)

−∇h̃Ũ(s̃, h̃)−∇h̃UP (h̃)

d γ

dt̃
= ∇pγH̃NPT =

pγ
MT

,

d pγ

dt̃
= −∇γH̃NPT =

1

γ





N∑

i=1

pT
s̃i
G̃−1ps̃i

miγ2
+

tr
(

pT
h̃
ph̃

)

miγ2
−NfkBTtag



 ,

(13)

where Ũ is defined as
Ũ(s̃, h̃) := U(h̃s̃, h̃) .

The equations of motion (13) could be solved numerically. To this end, an appropriate
time discretization scheme has to be applied. But the Hamiltonian (12) and the
equations of motion (13) are given in term of the virtual time t̃. Therefore, the use of
a constant time-step for the scaled or virtual time leads to a non-constant time-step
of the non-scaled real time. In order to avoid the difficulties that arise for a time
discretization scheme with varying time steps, we transform the equations of motion
(13) back to real time [55, 57, 58, 65]. To this end, we define new variables by

si(t) := s̃i(t̃) , h(t) := h̃(t̃) . (14)

Their derivative with respect to time reads as

d si
dt

(t) = γ(t̃)
d s̃i

dt̃
(t̃) ,

d h

dt
(t) = γ(t̃)

d h̃

dt̃
(t̃) , (15)

compare also equation (9). We transform the conjugated momenta accordingly by

psi :=
G̃−1ps̃i

γ
, ph :=

ph̃
γ

, (16)

and obtain for the time derivatives

dpsi

dt
(t) =

d
(

G̃−1ps̃i
1
γ

)

dt̃
(t̃) = G̃−1(t̃)

(

d G̃

dt̃
(t̃)G̃−1(t̃) +

dps̃i

dt̃
(t̃)− ps̃i(t̃)

γ(t̃)

)

,

d ph
dt

(t) = γ(t̃)
d
(

ph̃
1
γ

)

dt̃
(t̃) =

d ph̃
dt̃

(t̃)− ph̃(t̃)

γ(t̃)

d γ

dt̃
(t̃) .

(17)

Note that we multiplied the conjugated momenta of the particles by the inverse
metric-tensor to express the equations of motion in simple terms. For the same
reason, we took the logarithm of the variable for the temperature control

η(t) := ln γ(t̃) , pη(t) = pγ(t̃) . (18)
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We thus obtain

d η

dt
(t) = γ(t̃)

d

dt̃
ln γ(t̃) =

d γ

dt̃
(t̃) ,

d pη
dt

(t) =
d pγ

dt̃
(t̃) (19)

for the derivatives with respect to time. Finally, we use the equations of motion (13)
and the equations (14), (16), (18), together with G(t) := G̃(t̃), to express equations
(15), (17), and (19) in term of real time only, and obtain the transformed equations
of motion:

ṡi =
psi

mi
, ḣ =

ph
MP

, η̇ =
pη
MT

, (20)

ṗsi = −h−1∇xi
U −G−1Ġpsi −

pη
MT

psi , (21)

ṗh = −
N∑

i=1

∇xi
UsTi −∇hU +

N∑

i=1

mihṡiṡ
T
i − h−TPext deth− pη

MT
ph , (22)

ṗη =
N∑

i=1

pT
si
Gpsi

mi
+

tr(pTh ph)

MP
−NfkBT . (23)

In the same way, we can transform the Hamiltonian (12) to express it in term of real
time only. The resulting function can be written as

HNPT(s, h, η,ps, ph, pη) =
1

2

N∑

i=1

pT
si
Gpsi

mi
+

1

2

tr(pTh ph)

MP
+

1

2

p2η
MT

+ U(hs, h) + Pext deth+NfkBTtagη .

(24)

Like the Hamiltonian (2) of an (N, V, E) ensemble, the function HNPT remains
constant over time. But the non-fictitious physical energy term Ekin + Epot is not

conserved over time. Here, the physical kinetic energy reads as Ekin = 1
2

∑N
i=1

pT
si
Gpsi

mi

and the physical potential energy is given by Epot = U(hs, h). Note that the function
HNPT is not a Hamiltonian, because the equations of motion (20)–(23) can not be
derived from it. Thus, the functionHNPT together with the equations of motion (20)–
(23) correspond to so-called non-Hamiltonian dynamics [70]. However, analogous to
equation (4), the thermodynamic temperature T is given as the time average of the
instantaneous temperature

T = 〈Tinst〉t , Tinst =
2Ekin

NfkB
, Ekin =

1

2

N∑

i=1

pT
si
Gpsi

mi
.

The instantaneous pressure given in equation (6) now depends on the fluctuations of
the potential energy U with respect to the volume V . In particular, it can be written
in the form

Pinst =
2

3V
Ekin +

1

V
Winst =

2

3V
Ekin −

dU

dV
.

With the help of the relation V = deth and the chain rule, Pinst can also be obtained
from the so-called instantaneous internal stress tensor Πint by Pint =

1
3tr(Πint). Here,
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Πint is defined as

Πint =
1

deth

N∑

i=1

mihsis
T
i h

T +Πpot
int , Πpot

int =
1

deth
Fhh

T ,

(Fh)αβ := − d

d hαβ
U , α, β ∈ {1, 2, 3} .

(25)

We can express the equation of motion (22) in terms of the instantaneous internal
stress tensor as

ṗh = (Πint − PextI)h
−T deth− pη

MT
ph ,

where I denotes the 3 × 3 identity matrix. If we now assume that the potential U
does not depend explicitly on the cell matrix h, the 3× 3 matrix

Fh = − d

d h
U(hs1, . . . , hsN ) (26)

can be written as

Fh =
N∑

i=1

Fis
T
i (27)

by exploiting the chain rule. Here, Fi denotes the force that is contributed by the
potential U and acts on particle i. Analogous to equation (3) it reads as Fi =
−∇xi

U . To perform molecular dynamics simulations for nanocomposites, we usually
apply periodic boundary conditions. In that case, however, the potential is explicitly
dependent on the unit cell matrix h. We will discuss periodic potentials as well as
the related derivation of the term Fh in detail in the next section.

From a formal point of view, it is desirable to keep the Hamiltonian structure of
the equations of motion (13) which is however lost due to the noncanonical trans-
formation back to real time given by the definitions (14), (16), and (18) [70, 71].
To overcome this drawback, there exist some variants of the presented Parrinello-
Rahman-Nosé approach [71]. For example, in the so-called Nosé-Poincaré method
for constant temperature molecular dynamics, a Poincaré transformation, which is in
particular a canonical transformation, is used to obtain a Hamiltonian system that
provides trajectories at evenly spaced points in real time [72].

With regard to constant pressure molecular dynamics, the Parrinello-Rahman
formulation exhibits two difficulties. First, the choice of the artificial kinetic energy
term in equation (11) leads to unphysical symmetry breaking effects, because the
equations of motion are now not invariant under so-called modular transformations
[73, 74]. Second, three of the nine dynamical variables for the control of the size
and the shape of the simulation cell are redundant, as the absolute orientation of the
simulation cell is physically meaningless [54]. In the literature, several methods can
be found to get rid of nonphysically simulation cell rotations [54, 75, 76, 77]. In par-
ticular, the choice of the six independent degrees of freedom of the metric tensor G as
dynamical variables to control pressure leads to a method where the artificial kinetic
energy term is invariant under modular transformations and for which nonphysical
cell rotations do not appear [78]. Note that this metric-tensor based approach and
the Nosé-Poincaré method have been combined to obtain a Hamiltonian system that
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a1

a2

Figure 3: Periodically translated images of the simulation unit cell in two dimensions.
The black dots are particles within the unit cell and the gray dots are their periodic
images. To obtain uniqueness at the cell boundaries, see convention (28).

is related to an isothermal-isobaric ensemble [71]. As we will later discuss in sec-
tion 2.3, we follow a different approach and simply constrain the matrix ṗh to be
symmetric to avoid a nonphysical behavior of the simulation cell.

2.1.2 Periodic Boundary Conditions

In a molecular dynamics simulation for nanocomposites, it is natural to apply periodic
boundary conditions [79]. This way, an N -particle system in a simulation cell of finite
volume V is replicated infinitely throughout space by translations; see also Figure 3.
In particular, the ratio of the total number of particles and the total volume remains
constant for the induced infinite system. If periodic boundary conditions are used,
atoms in the unit cell interact not only with other atoms in the same unit cell but
also with their translated images. Here, to obtain uniqueness at the two dimensional
boundaries of the cell, we use the convention

s1, . . . , sN ∈ [0, 1)3 . (28)

To include the interactions of the particles with the translated images of the particles
correctly, a periodic potential must be used, which usually depends explicitly on the
cell matrix h. This dependence on h has to be carefully taken into account in the
evaluation of the potential contribution to the expressions Πpot

int and Fi. Note that a
periodic potential gives the potential energy per unit cell. We discuss in this section
how to apply periodic boundary conditions for two-body potentials of short range

12



as well as for bond potentials with static bond relations, which will later be used to
model hydrocarbon systems. Furthermore, we briefly discuss the treatment of angle-
and torsional-dependent potential terms.

First we consider a potential

Utwo(x1, . . . ,xN ) =
N∑

i=1

N∑

j=1
j>i

uijtwo(rij) ,

which only involves two-body terms uijtwo(rij) with uijtwo ≡ ujitwo. Here, rij denotes the
distance between particle i and j, which is given by the norm of the distance vector
rij := ‖rij‖. Furthermore, we define the distance vector rij in the form rij := xj−xi.
To deal with the periodic setting, we index a translated image of a particle i by iS,
with S ∈ Z

3. The coordinates of a translated image of a particle i are then written
with the help of a translation vector hS in the form xiS := xi + hS. Thus, the
distance vector rijS and the distance rijS between a particle i and a translated image
of a particle j read as

rijS = xjS − xi = xj + hS− xi , rijS = ‖rijS‖ .

This way, the periodic potential Uperiodic
two which is associated to the potential Utwo

can be written as

Uperiodic
two (x1, . . . ,xN , h) =

N∑

i=1







N∑

j=1
j>i

uijtwo(rij) +
N∑

j=1

∑

S∈S

uijtwo(rijS)







, (29)

where S is in the set S := Z
3\
(

0
0
0

)

. We first consider two-body potential terms of

short range with

uijtwo(r) = 0 , for all r > rc , (30)

where rc is positive; see Figure 4. Thus, only a finite number of terms in the infinite
sum of equation (29) are nonzero. For reasons of simplicity, we further assume that

0 < 2rc < ‖a⊥j ‖ =
1

‖bj‖
, with a⊥j :=

(

bT
j

‖bj‖
aj

)

bj

‖bj‖
, for j ∈ {1, 2, 3} , (31)

where the so-called reciprocal basis vectors bj are defined by

[b1,b2,b3] := h−T . (32)

and thus bT
j ai = δij for i, j ∈ {1, 2, 3}. Here, δij denotes the Kronecker delta with

δij =

{

0 if i = j ,

1 if i 6= j .

In equation (31), each vector a⊥i is defined as the orthogonal projection of ai onto
the linear span of the subset of the normalized reciprocal basis vectors given by
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S = ( 1
−1 )

S = ( 1
0 )

S = ( 1
1 )

a1

a2

xi

S = ( 0
−1 )

S = ( 0
1 )S = (−1

1
)

S = (−1
0

)

S =
(

−1
−1

)

rc

Figure 4: A two-body potential term of short range with periodic boundary condi-
tions. Distance vectors between a particle xi in the simulation unit cell and a particle
in a translated simulation cell are indicated by a dotted arrow. The translation vec-
tors are given by hS with h = [a1,a2] in the two-dimensional case.

a2

rc

xia
⊥
2

a
⊥
1

a1

Figure 5: A sheared simulation cell in two dimensions with periodic boundary con-
ditions; see also equation (31) and (32).
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{
bj

‖bj‖
: j 6= i , j ∈ {1, 2, 3}

}

. This way, also in the case of a sheared simulation cell,

there is no interaction sphere for a particle xi that contains a particle and any of its
translated images; see Figure 5. With the two-body forces Fij = − d

dxi
utwo(rij), the

potential contribution to the force on the particle i in equation (21) can be written
in the form

Fi = −∇xi
Uperiodic
two =

N∑

j=1
j 6=i

Fij +
N∑

j=1

∑

S∈S

FijS (33)

=
N∑

j=1
j 6=i

∑

S∈S′

FijS , (34)

with S ′ :=
{(

i
j
k

)

: i, j, k ∈ {−1, 0, 1}
}

. Note that for the last equality we make use

of the assumptions (30) and (31). Furthermore, the symmetry of the two-body terms
uijtwo(rij) = ujitwo(rji) leads to Newton’s third law

Fij = −Fji , (35)

and the corresponding relation

Fijx
T
i + Fjix

T
j = −Fijr

T
ij . (36)

To write the potential contribution of the internal stress tensor in equation (25) in
terms of two-body forces and distances, we apply the chain rule similar to equations
(26) and (27). We then use equations (35) and (36) and obtain

Πpot
int =

1

deth

N∑

i=1







N∑

j=1
j>i

−Fijr
T
ij +

N∑

j=1
j>i

∑

S∈S

−FijSr
T
ijS







(37)

=
1

deth

N∑

i=1







N∑

j=1
j>i

∑

S∈S′

−FijSr
T
ijS







. (38)

For the second equality we again make use of the assumptions (30) and (31). Note
that the expression of the potential contribution of the internal stress tensor given in
(27) is not sufficient for the periodic boundary case, because the contribution of the
translated images is not correctly included.

Now, we consider two, three, and four body potentials with static bond relations.
Note that these potential models are used to describe intramolecular forces; see also
Figure 6. Note further that for a wide range of molecules the necessary parameters
for these potentials can be obtained from databases like CHARMM [80] or AMBER
[81]. Now, a static bond model that involves only bond potential terms uijbond(rij)

with uijbond ≡ ujibond is defined by

Ubond(x1, . . . ,xN ) =
∑

(i,j)∈B

uijbond(rij) .
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Figure 6: Schematic diagram of bond stretching (left), bond angle bending (center),
and torsional (right) potentials to model intramolecular interactions.

S = ( 1
−1 )

S = ( 1
0 )

S = ( 1
1 )

xj

S =
(

−1
−1

)

S = ( 0
−1 )

S = ( −1
1

) S = ( 0
1 )

xiS = ( 0
0 )S = ( −1

0
)

a2

a1

r
bond
ij

Figure 7: A bond potential term in two dimensions with periodic boundary condi-
tions. Here, the bond distance vector rbondij is given by the distance vector rij( 1

0)
; see

also equation (39).

Here, we assume that the set of bonds B is a subset of the set of all pairs {(i, j) ∈
{1, . . . , N}2 : i < j}. In contrast to the two-body potential given in equation (29),
we no longer have to consider each of the pairs

{
(i, jS) : S ∈ Z

3
}
for a given particle

pair (i, j). Instead, in the case of a bond potential, we only have to choose one of the
pairs

{
(i, jS) : S ∈ Z

3
}
for a given bond (i, j) ∈ B. To this end, we define for each

bond (i, j) ∈ B a distance vector rijS with S ∈ S, which minimizes the distance rijS .
In particular, due to the convention (28) and the exclusion of bond pairs (i, i), the
bond distance vector

rbondij ∈
{

rijS : ‖rijS‖ = min
S∈Z3

{rijS}
}

(39)

is unique for each bond pair (i, j); see Figure 7. Thus, the corresponding periodic
potential can be defined in the form

Uperiodic
bond (x1, . . . ,xN , h) =

∑

(i,j)∈B

uijbond(r
bond
ij ) . (40)
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The potential contribution to the forces on the particles in equation (21) can then
be written in the form

Fk = −∇xk
Uperiodic
bond =

∑

(i,j)∈B
i=k∨ j=k

− d

dxk
ubond(r

bond
ij ) . (41)

Analogously to the two-body potential case in equation (37), the potential con-
tribution to the internal stress tensor in equation (25) reads with the bond forces
Fij = − d

dxi
ubond(r

bond
ij ) as

Πpot
int =

1

deth

∑

(i,j)∈B

−Fij

(

rbondij

)T

. (42)

In a way similar to two-body potential terms utwo and bond potential terms ubond,
we treat angle-dependent potential terms uang(θijk) and torsional-dependent terms
utor(φijkl). Here, θijk denotes the angle between rij and rik and φijkl denotes the so-
called torsional or dihedral angle ∢(rij × rjk, rjk × rkl). The corresponding periodic
potential can be defined in analogously to equation (40). For an angle-dependent

potential term, we define the force contribution in the form Fijk
n := − d

dxn
uang(θijk).

Then, relations similar Newton’s third law (35) and equation (36) hold with

Fijk
i = −Fijk

j − Fijk
k ,

Fijk
i ri + Fijk

j rj + Fijk
k rk = Fijk

j rTij + Fijk
k rTik .

(43)

In the torsional-dependent case, relations similar to Newton’s third law (35) and

equation (36) can be expressed with the help of potential force contributions Fijkl
n :=

− d
dxn

utor(φijkl) as follows:

Fijkl
i = −Fijkl

j − Fijkl
k − Fijkl

l ,

Fijkl
i ri + Fijkl

j rj + Fijkl
k rk + Fijkl

l rl = −Fijkl
i rTij − (Fijkl

i + Fijkl
j )rTjk + Fijkl

l rTkl .

(44)

Like in the case of two-body and bond potentials, the equations (43) and (44) can
be exploited to express the potential contribution expressions Πpot

int and Fi only in

terms of distance vectors and force terms Fijk
n and Fijkl

n . This is helpful for an
efficient implementation as we will discuss later. Note that the contribution of the
torsional-dependent potential to the trace of the stress tensor is zero and therefore the
contribution to the pressure is zero as well [82]. However, the contribution to the full
stress tensor must be taken into account. Note furthermore that the internal stress
tensor Πint is symmetric in the case of pair, angle-dependent and torsional-dependent
potentials.

2.1.3 Time Integration

For the numerical solution of the equations of motion (20)-(23), we have to employ a
time integration scheme. At first, we consider a Hamiltonian system with separable
Hamiltonian

H(q,p) = K(p) + U(q) =
1

2
pTm−1p+ U(q) .

17



Then, the corresponding Hamilton’s equations of motion are

q̇ = ∇pH(q,p) = m−1p , ṗ = F = −∇qH(q,p) = −∇qU(q) , (45)

with generalized coordinates q, momenta p and an invertible diagonal mass ma-
trix m [83]; see also equations (2) and (1). For the numerical solution of system (45)
of first-order ordinary differential equations, we have to discretize in time. Thus, we
consider the system (45) only at time points, tn := t0+n∆t with n ∈ {0, 1, . . . , nmax}.
By a Taylor expansion up to third order of the coordinates q(t+∆t) and q(t−∆t)
around time t, we obtain

q(t+∆t) = q(t) + ∆tm−1p(t) +
1

2
∆t2m−1F(t) +

1

6
∆t3

d3q(t)

dt3
+O(∆t4) (46)

and

q(t−∆t) = q(t)−∆tm−1p(t) +
1

2
∆t2m−1F(t)− 1

6
∆t3

d3q(t)

dt3
+O(∆t4) , (47)

under appropriate smoothness assumptions on q. The sum of equations (46) and
equation (47) gives

q(t+∆t) + q(t−∆t) = 2q(t) + ∆t2m−1F(t) +O(∆t4) (48)

and the difference results in

q(t+∆t)− q(t−∆t) = 2∆tm−1p(t) +O(∆t3) . (49)

Equation (48) leads to an approximation for the coordinates

q(t+∆t) ≈ 2q(t)− q(t−∆t) + ∆t2m−1F(t) , (50)

with an error of order O(∆t4). Equation (49) leads with help of equation (46) to an
approximation for the momenta

p(t+∆t) ≈ p(t) +
∆t

2
(F(t) + F(t+∆t)) , (51)

with an error of order O(∆t2). Equation (50) and equation (51) correspond to the
so-called velocity-Störmer-Verlet time-integration scheme [84]:

q0 := q(t0) , p0 := p(t0) ,

qn+1 := 2qn −∆tqn−1 +∆t2m−1Fn , (52)

pn+1 := pn +
∆t

2

(
Fn + Fn+1

)
. (53)

There are two more formulations of the velocity-Störmer-Verlet algorithm, the orig-
inal Störmer-Verlet scheme [85, 86] and the so-called Leapfrog scheme [87]. With
exact arithmetic, these time-integration schemes are all equivalent. Because the mo-
menta p are not used in equation (52), their comparatively low accuracy of the order
O(∆t2) has no impact on the accuracy of the coordinates q. It however affects the
calculation of the temperature and the kinetic energy. To improve the accuracy for
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these quantities, the so-called Beeman algorithm can be employed [88]. The third-
order Beeman scheme is also derived from Taylor expansions around time tn up to
third order. It is given by

qn+1 := qn +∆tm−1pn +
∆t2

6
m−1

(
4Fn − Fn−1

)
, (54)

pn+1 := pn +
∆t

6

(
2Fn+1 + 5Fn − Fn−1

)
. (55)

If we use equation (55) to eliminate the momenta pn in equation (54), we can see
easily that the Beeman scheme yields the same trajectories qn as the Störmer-Verlet
based algorithms. But now, the error of the momenta is of order O(∆t3) instead of
order O(∆t2), and thus the total energy conservation is better by one order than for
the Störmer-Verlet case [65].

Now, we consider the equations of motions (20)-(23), which are related to an
(N, P, T) ensemble. Note that these equations in particular correspond to a non-
Hamiltonian dynamics. With coordinates q = (s, h, η) and momenta p := (ps, ph, pη),
we see that the forces ṗsi , ṗh and ṗη given in (21)-(23) are now velocity-dependent.
Because the Störmer-Verlet schemes as well as Beeman’s third-order time-integration
method are based on the assumption that the forces depend on the coordinates only,
the appearance of velocities or momenta on the right-hand side of equations (21)-(23)
does not allow one to employ these algorithms directly. The velocity-Störmer-Verlet
algorithm can be modified to treat velocity-dependent forces with the help of the
Newton-Raphson iteration [65, 89]. The third-order Beeman scheme has to be gen-
eralized to a so-called predictor-corrector scheme [90, 91]. The variant due to Refson
[91] reads as follows:

(a) qn+1 := qn +∆tm−1pn +
∆t2

6
m−1

(
4ṗn − ṗn−1

)
(56)

(b) pn+1
(p) := pn +

∆t

2

(
3ṗn − ṗn−1

)
(57)

(c) ṗn+1 := F(qn+1,pn+1
(p) ) (58)

(d) pn+1
(c) := pn +

∆t

6

(
2ṗn+1 + 5ṗn − ṗn−1

)
(59)

(e) Replace pn+1
(p) with pn+1

(c) . If convergence goto f) else goto (c). (60)

(f) Replace pn+1 with pn+1
(c) . For next timestep set n := n+ 1 and goto (a).

(61)

Here, p(p) and p(c) represent the predicted and corrected momenta. Note that in the

case of non-Hamiltonian dynamics, the force term F(qn+1,pn+1
(p) ) cannot be derived

from the conserved energy functionHNPT given in equation (24) by−∇qH(qn+1,pn+1
(p) ).

The force expression F(qn+1,pn+1
(p) ) is instead given by the right-hand side of the

equations of motion (21)-(23). The predictor for the coordinates in step (a) is equiv-
alent to equation (54) and the corrector for the momenta is the same as in equation
(55). The expression for the predicted momenta p(p) in step (b) can also be derived
with the help of Taylor expansions. The predictor-corrector cycle (steps (c) to (e)) is
iterated until the predicted and corrected momenta p(p) and p(c) have converged with
respect to a relative precision. This iteration usually needs only two or three cycles in
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practice. Furthermore, the expensive evaluation of the coordinate-dependent terms
of the force term F(qn+1,pn+1

(p) ) in step (c) has to be performed just once per time
step. Only the relatively cheap evaluation of the velocity-dependent terms of the
force term has to be computed in every cycle. The iterative time-integration scheme
given in equations (56)-(61) now allows to compute the equations of motion (20)-(23)
related to an (N, P, T) ensemble.

There are several other time-integration schemes to compute the equations of mo-
tions related to Hamiltonian [83] and to non-Hamiltonian [70] dynamics [62, 65, 92].
The accuracy can be improved if either a smaller time step ∆t is used, or if a scheme
of higher order is employed. The global error of the trajectory ‖qn − q(tn)‖ and
the momenta ‖pn − p(tn)‖ can also be controlled by the choice of the timestep
and the order. But note that the global error increases exponentially with time,

that is, ‖qn − q(tn)‖ ≤ C∆tp e
M(tend−t0)−1

M
with constants C and M . Therefore,

any trajectory computed over long times is meaningless. Nevertheless, long-time
molecular dynamics simulations still make sense, because several statistical averages
are reproduced very well. For a further discussion on this subject, see [92] or [93].
Beside Beeman’s third-order scheme, there are other predictor-corrector and multi-
step methods of higher order [90, 88, 94, 95]. Furthermore, there exist partitioned
Runge-Kutta algorithms [96, 97]. A general construction method for time-integration
schemes is given by operator-splitting [98, 99, 100, 93, 101]. In the case of po-
tentials with different lengthscales and thus timescales, multiple time-step methods
like the impulse- or r-Respa schemes can be used to speed up the time-integration
[102, 103, 104, 105, 106, 107, 108]. In the case of high-frequency bond length and
bond angle potentials, constraints can be applied with the help of the Shake [109] or
the Rattle [110] algorithms. This way, larger time-step sizes can be employed without
loosing stability.

2.1.4 Local Minimization

Local minimization of the potential energy with respect to the coordinates is a helpful
tool to generate appropriate start configurations for molecular dynamic simulations
of polymer-carbon nanotube composites. The problem can be stated as follows: Find
a local solution q∗ of the problem:

minimize f(q) , with q ∈ R
n . (62)

With respect to the (N, P, T) ensemble, we define the function f : Rn → R as the
energy function HNPT given in equation (24) at a temperature of 0K

f(s1, . . . , sN , h) := U(hs, h) + Pext deth .

Thus, we are concerned with an unconstrained minimization problem in n = 3N+nh

dimensions, where nh denotes the number of degrees of freedom taken into account
from the transformation matrix h. Note that usually only symmetric matrices with
nh = 6 are considered, because the absolute orientation of the simulation cell is
physically meaningless.

There are several methods for the numerical solution of problem (62) [111, 112,
113, 114]. The so-called gradient methods are based on the evaluation of f(q) and
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∇qf(q). The so-called second derivative methods are additionally based on the Hes-
sian matrix. There are also derivative-free methods, which are based on the compu-
tation of f(q) only. Because we compute f(q) and ∇qf(q) in the framework of a
molecular dynamics simulation code anyway, we focus on the gradient based methods
in the following.

Iterative line search methods are of the form

q(k) :=

{

q(0) if k = 0 ,

q(k−1) + α(k−1)d(k−1) if k > 0 ,

where q(0) is an arbitrary start coordinate and α(k) is a positive step size that min-
imizes f(q(k) + α(k)d(k)). Here, finding α(k) is a one-dimensional subproblem. The
search directions are usually defined by

d(k) :=

{

−g(0) if k = 0 ,

−g(k) + β(k)d(k−1) if k > 0 ,

with g(k) := ∇qf(q
(k)). In the case of the steepest descent method, the scalar β(k)

is defined as zero for all k. In the case of the nonlinear conjugate gradient method,
well-known formula for β(k) are due to Fletcher-Reeves [115] and Polak-Ribiére [116].
They are given by

β
(k)
FR :=

g(k)T g(k)

g(k−1)T g(k−1)
,

β
(k)
PR :=

g(k)T
(
g(k) − g(k−1)

)

g(k−1)T g(k−1)
.

For a strictly convex quadratic function f , these methods are equivalent to the well-
known linear conjugate gradient scheme due to Hestenes and Stiefel [117].

The steepest descent method tends to converge slowly near a local minimum due
to oscillation of the search directions. One the other hand, the nonlinear conjugate
gradient schemes assume that the initial conformation is sufficiently close to a local
minimum where the potential energy surface is nearly quadratic. Therefore, these
methods can be unstable if the start conformation is far away from such a local
minimizer. To obtain a robust and efficient unconstrained minimization procedure,
the steepest descent method can be used for the first few iterations, and then a
conjugate gradient method is invoked. Also, a conjugate gradient scheme with regular
restarts can be applied [118, 119]. Here, the search direction d(k) are periodically
or automatically reset to the steepest descent direction s(k). A Polak-Ribiére based
method with automatic restart is performed, if the modified formula

β̃
(k)
PR := max

{

0, β
(k)
PR

}

(63)

is used [120].
To establish global convergence of line search methods for unconstrained mini-

mization the step size α(k) of the approximate one-dimensional minimization problem
has usually to satisfy some appropriate conditions [121, 122]. First there is the so-
called sufficient decrease or Armijo condition

f
(

q(k) + α(k)d(k)
)

≤ f
(

q(k)
)

+ µα(k)g(k)Td(k) (64)

21



to avoid too long step sizes [123]. Second there is the so-called curvature condition

(

∇qf
(

q(k) + α(k)d(k)
))T

d(k) ≥ νg(k)Td(k) (65)

to avoid too short step sizes. Here, the two parameters µ, ν with 0 < µ < ν < 1
are user-defined and can be employed to weight conditions (64) and (65) properly.
The Armijo condition (64) together with the curvature condition (65) are also called
Wolfe conditions [124, 125]. Moreover, when the curvature condition (65) is replaced
by

∣
∣
∣
∣

(

∇qf
(

q(k) + α(k)d(k)
))T

d(k)

∣
∣
∣
∣
≤ ν

∣
∣
∣g(k)Td(k)

∣
∣
∣ , (66)

we obtain the so-called strong Wolfe conditions. Like in the Wolfe conditions, the
Armijo condition fixes an upper limit on acceptable new function values, and the
second condition (66) imposes a lower bound on the step size α(k). Note that the
strong Wolfe conditions lead to an exact line search for ν chosen arbitrarily close to
zero.

Now, a backtracking line search algorithm to determine a step size α(k) that
fulfills the Armijo condition (64) can be obtained as follows: After an initial value

α
(k)
0 is chosen, the step size α

(k)
i is iteratively replaced by a new value α

(k)
i+1 from the

interval
[

γ1α
(k)
i , γ2α

(k)
i

]

, with 0 < γ1 < γ2 < 1, until the Armijo condition (64) is

satisfied. Here, a simple strategy for the choice of α
(k)
i+1 is given by α

(k)
i+1 := δα

(k)
i

with 0 < δ < 1. Because we have to determine the values f(q(k) + α
(k)
i d(k)) and

the slope g(k)Td(k) to test the Armijo condition (64) and we have to compute the
values f(q(k)) anyway, we can exploit these dates to obtain an improved strategy:
We interpolate the function f by a quadratic polynomial p and obtain the new step

size α
(k)
i+1 as a minimizer of that polynomial p. Moreover, we can use an additional

previous function value f(q(k) +α
(k)
i−1d

(k)) or the slope
(
∇qf

(
q(k) + α(k)d(k)

))T
d(k)

to interpolate the function f by a cubic polynomial p and can determine a new

value α
(k)
i+1 as a minimizer of that p. If the minimizer of the respective interpolation

polynomial p is not in the interval
[

γ1α
(k)
i , γ2α

(k)
i

]

, then simply one of the boundaries

of the interval can be chosen as α
(k)
i+1. Note that we also have to compute the slope

(
∇qf

(
q(k) + α(k)d(k)

))T
d(k) to verify the curvature condition (65) or the stronger

curvature condition (66). Here, a backtracking algorithm to find a step size α(k),
which also fulfills theses curvature conditions, can be performed in an analogous way,
but the details are more complex. For a further discussion see [111, 112, 113, 114].

Note that for conjugate gradient methods with exact line search the order of
convergence is linear and cannot be superlinear [126]. There exist other algorithms
with a local convergence order better than linear that still need a linear order storage
only, like limited memory preconditioned conjugate gradient methods, quasi-Newton-
Raphson schemes like the DFP [127, 128], or the BFGS methods [129, 130, 131, 132,
133]. However, these techniques are more complex and their storage requirements are
relatively demanding, because they are based on an approximate inverse of the Hes-
sian matrix. Note that, in the framework of our simulations, we have to deal with
hundreds of thousands of atoms to generate reference systems of polymer-carbon
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nanotube composites. Because the modified Polak-Ribiére method given in equa-
tion (63) compromises well between convergence and storage requirements, we use
it in the following. Here, we perform a backtracking algorithm together with cubic
interpolation to fulfill the strong Wolfe condition for every step size α(k).

2.2 Potentials for Hydrocarbons

In the framework of first principles methods, like the Born-Oppenheimer molecular
dynamics and the Car-Parrinello molecular dynamics [134], the nuclei move on a
potential energy surface given by the electronic Schrödinger equation [135]. Due
to the curse of dimension of the electronic Schrödinger equation for many-body
systems, these approaches are only useful for a small number of particles. To consider
large systems, as in the case of polymer-carbon nanotube composites, only classical
molecular dynamics can be performed. Here, the global potential energy surface is
approximated by a truncated expansion of many-body contributions

U exact ≈ U(r1, . . . , rN ) =
N∑

i=1

u1(ri) +
N∑

i<j

u2(ri, rj) +
N∑

i<j<k

u3(ri, rj , rk) + · · · .

This way, the number of degrees of freedom is reduced to the order of the number of
atoms. The interaction potentials un usually are simple analytical expressions, which
are parametrized by empirical data due to experiments or first principles calculations.
In the following, we discuss two different models to represent a carbon nanotube
together with a polyethylene matrix. In the atomistic model, which we denote here
as model I, we represent the nanotube as well as the polyethylene matrix by a reactive
empirical bond order (REBO) potential due to Brenner [59]. In the united-atom
approach, which we denote as model II, we represent the carbon nanotube with
Brenner’s potential too, but the polyethylene matrix is represented by a so-called
expanded collapsed atomic model with static bond relations [61].

2.2.1 Reactive Atomistic Model (Model I)

Here, we use a so-called atomistic model in which all the atoms of the nanototube
as well as all the atoms of the monomeric units of the polymer are treated explicitly.
To model the short-range chemical interactions, we employ Brenner’s potential. The
design of this REBO potential for hydrocarbons is based on a bonding formalism
due to Abell and Tersoff [136, 137, 138, 139, 140], which relies on Pauling’s bond
order ideas [141, 142]. Abell’s and Tersoff’s potential allows the formation and the
breaking of bonds. Furthermore, carbon-carbon single, double, and triple bond-
lengths and energies are well described. But in the special situation, where nonlocal
effects are involved, this potential leads to unphysical behavior, because only local
near-neighbor interactions are taken into account. As an example, consider the case
of a carbon atom that possesses three nearest neighbors and that is bonded to an
other carbon atom which has four nearest neighbors. Then the evaluation of Abell’s
and Tersoff’s potential would result in something between a single and a double
bond [59]. But such a configuration would be better modeled by a single bond plus
a radical orbital. By taking nonlocal effects into account, Brenner’s approach [59] is
able to accurately describe covalent bonding, including radicals, and can distinguish
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conjugated and nonconjugated double bonds. In fact, Brenner’s REBO potential
model has been successfully applied to simulate indentation and friction at nanoscale
[143, 144, 145, 146, 147, 148, 149], hydrogen abstraction reactions of organic films
[150], adhesion and compression of diamond surfaces [151], as well as abstraction of
hydrogen from a diamond surface [152]. Moreover, several reactions with surfaces
have been investigated [153, 154, 155], like the reaction of a surface molecule with a
gas-phase molecule [156]. Furthermore, the REBO potential model of Brenner has
been widely used to study the formation of carbon fullerenes and their properties
[157, 158, 19, 159], the energetics of carbon nanotubes [19], the growth of carbon
nanotubes [160, 161, 162, 163, 164, 165], carbon nanotube fracture [31], and the
mechanics of carbon nanotubes [26, 28, 21, 29, 33, 34] and filled carbon nanotubes
[166, 167, 30, 32]. In particular, Brenner’s potential has been successfully applied to
examine carbon nanotube composites [168], like carbon nanotube reinforced polymer
[39, 169] and functionalized carbon nanotube reinforced polymer [37, 38, 170]. To also
characterize nonbonded van der Waals interactions, we additionally apply a Lennard-
Jones potential parametrized for hydrocarbons [171, 168]. Then, the resulting REBO
potential model is given as a sum over bonds

UI =
N∑

i=1

N∑

j=1
j>i

fij(rij)
(
uR(rij)− B̄ijuA(rij)

)

︸ ︷︷ ︸

uB(rij)

+
N∑

i=1

N∑

j=1
j>i

uW (rij) . (67)

Here, Brenner’s bond potential term uB consists of a pair potential term uR to model
interatomic core-core repulsive interactions and a pair potential term uA to describe
the attractive interactions between valence electrons and cores. The factor B̄ij is
a so-called empirical bond-order term, which modulates valence electron densities
and depends on the bond lengths and the angles. Due to the fact that the factor
B̄ij varies subjected to the local configuration of atoms, Brenner’s potential is a
reactive many-body potential model. The potential term uB is restricted to nearest
neighbor interactions by a smooth truncation function fij . The term uW denotes the
contribution from van der Waals energy modeled by the Lennard-Jones potential. It
has a support different from that of the short-range diatomic potential term uB.

To be precise, the repulsive and the attractive pair terms uR and uA are defined
as

uR(rij) =
D

(e)
ij

Sij − 1
e
−
√

2Sijβij

(

rij−R
(e)
ij

)

,

uA(rij) =
D

(e)
ij

Sij − 1
Sije

−
√

2
Sij

βij

(

rij−R
(e)
ij

)

,

with parameters D
(e)
ij , R

(e)
ij and βij Sij . These constant parameters are specified

by the type of the atoms i and j (i.e. they are dependent on whether i and j
are carbon or hydrogen atoms). The possible combinations can be expressed by

D
(e)
ij ∈

{

D
(e)
CC, D

(e)
CH, D

(e)
HC, D

(e)
HH

}

and analogously for R
(e)
ij , βij and Sij . In particular,

the values of these constants are pairwise symmetric concerning the combination of
atom types. The detailed values for hydrocarbons are given in Table 1. Note that
in the case of Bij ≡ 1 and fij ≡ 1 the potential term uB in equation (67) reduces to
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Table 1: Pair potential parameters for the Brenner potential [59].

Carbon Hydrogen Hydrocarbons

D
(e)
CC = 6.325 eV D

(e)
HH = 4.7509 eV D

(e)
CH=D

(e)
HC = 3.6422 eV

R
(e)
CC = 1.315 Å R

(e)
HH = 0.74144 Å R

(e)
CH=R

(e)
HC = 1.1199 Å

βCC = 1.5 Å
−1

βHH = 1.9436 Å
−1

βCH=βHC = 1.9583 Å
−1

SCC = 1.29 SHH = 2.3432 SCH=SHC = 1.7386

R
(1)
CC = 1.7 Å R

(1)
HH = 1.1 Å R

(1)
CH=R

(1)
HC = 1.3 Å

R
(2)
CC = 2.0 Å R

(2)
HH = 1.7 Å R

(2)
CH=R

(2)
HC = 1.8 Å

the potential function

uMorse(rij) =
D

(e)
ij

Sij − 1
e
−
√

2Sijβij

(

rij−R
(e)
ij

)

−
D

(e)
ij

Sij − 1
Sije

−
√

2
Sij

βij

(

rij−R
(e)
ij

)

, (68)

which corresponds for the case Sij = 2 to the usual diatomic Morse potential model
[172]. Independent of the fitting parameters Sij > 0 and βij > 0, the energy function

(68) has a minimum of −D
(e)
ij at the equilibrium distance R

(e)
ij and the limit for

rij → ∞ is zero. Note that in contrast to the Coulomb potential, the Morse potential
is finite at rij = 0. But for typical values of the parameters Dij , Sij , and βij , the
Morse potential takes a value of more than 100Dij at rij = 0. Thus, its effect for
small distances rij ≈ 0 is nearly equivalent to that of the Coulomb case. Furthermore,
Brenner’s pair potential term uB is restricted to immediate neighbors or bonded
atoms by a factor fij . This smoothed truncation function fij reads as

fij(rij) =







1 if rij ≤ R
(1)
ij ,

1
2

[

1 + cos

(

π
rij−R

(1)
ij

R
(2)
ij −R

(1)
ij

)]

if R
(1)
ij < rij < R

(2)
ij ,

0 if R
(2)
ij ≤ rij ,

(69)

with cutoff parameters R
(1)
ij , and R

(2)
ij . Like the parameters D

(e)
ij , R

(e)
CC, βCC and SCC,

the cutoff parameters R
(1)
ij and R

(2)
ij are only dependent on the type of the atoms i

and j; see Table 1.
The most interesting term of Brenner’s model is the many-body empirical bond-

order term B̄ij . In analogy to the approach of Abell and Tersoff, it is defined as the
average of bond-order terms subjected to each atom of a bond. In Brenner’s model
nonlocal effects are included by using additional empirical correction terms. These
correction terms are added to avoid the overbinding of radicals as well as to deal
with conjugated versus nonconjugated bonds. To be precise, to describe the bonding

configuration of a carbon atom i, the number N
(C)
i of carbon atoms and the number

N
(H)
i of hydrogen atoms bonded to a carbon atom i are approximated by

N
(C)
i =

∑

j∈C

fij(rij) and N
(H)
i =

∑

j∈H

fij(rij) for i ∈ C. (70)
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Here, C denotes the set of indices of carbon atoms and H denotes the set of indices
of hydrogen atoms, respectively. Note that the smoothed truncation function fij can

also be seen as an enumerator for bonds: Inside the sphere defined by the radius R
(1)
ij

around particle i the function is just one and outside the sphere defined by the radius

R
(2)
ij it vanishes identically. In addition, we define the total number of atoms, which

interact with a carbon atom i, in the form

N
(t)
i = N

(C)
i +N

(H)
i for i ∈ C.

Now, we focus on conjugated bonds. For example, if all neigbors k of a carbon-carbon

bond are carbon bonds and have a coordination less than 4 (i.e. N
(t)
k < 4), then this

carbon-carbon bond is considered as being part of a conjugated system [59]. Hence,
we define a further smooth enumeration function

N
(c)
ij = 1 +

∑

k∈C
k 6=i∧k 6=j

fik(rik)F
(

N
(t)
k − fik(rik)

)

+
∑

l∈C
l 6=i∧l 6=j

fjl(rjl)F
(

N
(t)
l − fjl(rjl)

)

(71)

for each carbon-carbon bond (i ∈ C, j ∈ C), where

F (z) =







1 if z ≤ 2,
1
2 [1 + cos (π(z − 2))] if 2 < z < 3,

0 if 3 ≤ z,

is a smooth truncation function similar to fij given in equation (69). This way, a

bond (i, j) is not part of a conjugated system, if N
(c)
ij = 1. For N

(c)
ij ≥ 2, it is detected

as part of a conjugated system. Now, the enumeration functions N
(C)
i , N

(H)
i , N

(t)
i

and N
(c)
ij can be exploited to include second-neighbor effects and thus to adjust the

potential to various known bonding configurations by correction functions. To this
end, we define a bond-order term Bij , which is subjected to the atom i of a bond
(i, j), in the following way:

Bij =






1 +

N∑

k=1
k 6=i∧k 6=j

Gi(θijk)fik(rik)e
αijk

(

rij−R
(e)
ij −rik+R

(e)
ik

)

+Hij

(

N
(C)
i , N

(H)
i

)







−δi

,

(72)

where Hij is a correction term, which in particular smooths the transit from a bonded
to a nonbonded state. It is defined as a two-dimensional cubic spline that depends
on the atom type and the coordination numbers of atom i and atom j, respectively;
see Table 2. The parameter δi depends on the type of atom i and the parameter αijk

depends on the types of atoms i, j and k, respectively; see Table 3. Furthermore Gi is
a function of the type of atom i and the angle θijk between the bond distance vectors
rij and rik; see Table 3. Note that the bond-order terms Bij and Bji subjected to
each atom of a bond (i, j) are not symmetric in i and j. Now, the final symmetric
bond-oder term B̄ij is defined in the form

B̄ij =
1

2
(Bij +Bji) +K

(

N
(t)
i , N

(t)
j , N

(c)
ij

)

, (73)
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Table 2: Function values and values of the partial derivatives for the two dimensional

spline Hij

(

N
(H)
i , N

(C)
i

)

in equation (72) of the Brenner potential model [59, 60]. The

parameters not given are equal to zero.

(

N
(H)
i , N

(C)
i

)

HCC HCH
∂HCH

∂N
(H)
i

∂HCH

∂N
(C)
i

(1, 0) -0.0760
(2, 0) -0.0070 -0.2163 -0.13075 -0.07655
(3, 0) 0.0119 -0.3375
(0, 1) -0.1792
(0, 2) -0.2407 -0.13075 -0.07655
(0, 3) -0.3323
(1, 1) -0.0175 -0.2477 -0.07640 -0.12805
(1, 2) 0.0115 -0.3321
(2, 1) 0.0118 -0.3320

Table 3: The parameters for the bond-order term Bij given in equation (72) of
the Brenner potential model [59] and the parameters for the function GC(θ) =
a0
(
1 + c20/d20 − c20/(d20+(1+cos θ)2)

)
. Note that the function GH is constant.

Carbon Hydrogen Hydrocarbons

δC = 0.80469 δH = 0.80469

αCCC = 0.0 Å
−1

αHHH = 3.0 Å
−1

αHHC=αCHH = 3.0 Å
−1

αHCH=αHCC = 3.0 Å
−1

αCHC=αCCH = 0.0 Å
−1

a0 = 0.011304 GH = 4.0
c0 = 19
d0 = 2.5
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Table 4: Function values and values of the partial derivatives for the three-
dimensional spline K (n1, n2, n3) in equation (73) of the Brenner potential
model [59, 60]. The three dimensional spline has to fulfill the symmetry con-

ditions K
(

N
(t)
i , N

(t)
j , N

(c)
ij

)

= K
(

N
(t)
j , N

(t)
i , N

(c)
ij

)

and ∂K
∂n1

(

N
(t)
i , N

(t)
j , N

(c)
ij

)

=

∂K
∂n2

(

N
(t)
j , N

(t)
i , N

(c)
ji

)

. Furthermore, all function values K
(

N
(t)
i , N

(t)
j , N

(c)
ij

)

with

N
(c)
ij > 2 are equal to K

(

N
(t)
i , N

(t)
j , 2

)

. All other parameters that are not given are

equal to zero.

(

N
(t)
i , N

(t)
j , N

(c)
ij

)

K
(

N
(t)
i , N

(t)
j , N

(c)
ij

)
∂K
∂n1

(2, 3, 1) -0.0465 (2, 3, 1) 0.05650
(2, 3, 2) -0.0465 (2, 3, 2) 0.05650
(1, 2, 2) -0.0355 (1, 2, 2) 0.02225
(1, 1, 1) 0.1511 (3, 1, 1) -0.11600
(2, 2, 1) 0.0750 (3, 2, 1) -0.13205
(1, 2, 1) 0.0126 (3, 1, 2) -0.06100
(1, 3, 1) -0.1130 (2, 4, 2) -0.03775
(1, 3, 2) -0.1130 (3, 4, 2) 0.05650
(0, 3, 1) -0.1220 (3, 4, 1) 0.05650
(0, 3, 2) -0.1220 (3, 2, 2) -0.10650
(0, 2, 2) -0.0445 (2, 0, 1) -0.11600
(0, 2, 1) 0.0320 (2, 1, 1) -0.13205
(0, 1, 1) 0.1100 (2, 0, 2) -0.06100
(1, 1, 2) 0.0074 (1, 3, 2) 0.03775

(2, 1, 2) -0.6020

where K is a three-dimensional cubic spline, which is in particular symmetric in i
and j. Its data are given in Table 4. The correction term K depends on the bonding
connectivity and thus allows to fix the overbinding of radicals as well as to handle
conjugated versus nonconjugated bonds.

Now we consider the potential function uW . To obtain here a continuously dif-

ferentiable potential uW we use cubic spline functions S
(1)
ij and S

(2)
ij and define

uW (rij) =







0 if rij ≤ R
(2)
ij ,

S(1)(rij) if R
(2)
ij < rij ≤ R

(3)
ij

uLJ(rij) if R
(3)
ij < rij ≤ R

(4)
ij

S(2)(rij) if R
(4)
ij < rij < R

(5)
ij ,

0 if R
(5)
ij ≤ rij ,

(74)

where uLJ denotes the Lennard-Jones potential

uLJ(rij) = 4ǫij

((
σij
rij

)12

−
(
σij
rij

)6
)

.

The Lennard-Jones parameters ǫij and σij and the radii R
(2)
ij , R

(3)
ij , R

(4)
ij , and R

(5)
ij are
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Table 5: The parameters for the Lennard-Jones/van der Waals interaction uw. The

values for ǫij , σij , R
(2)
ij , R

(3)
ij and R

(5)
ij are taken from [171, 166]. Here the cutoff

parameter R
(2)
ij corresponds to the outer cutoff radius of the Brenner potential given

in Table 1. The parameters ǫCH and σCH are obtained by the Lorentz-Berthelot
mixing rules (75).

Carbon Hydrogen

ǫCC = 0.0042038 eV ǫHH = 0.0058901 eV
σCC = 3.37 Å σHH = 2.91 Å

R
(2)
CC = 2.0 Å R

(2)
HH = 1.7 Å

R
(3)
CC = 3.20 Å R

(3)
HH = 2.76 Å

R
(4)
CC = 9.875 Å R

(4)
HH = 9.875 Å

R
(5)
CC = 10.0 Å R

(5)
HH = 10.0 Å

Hydrocarbons

ǫCH=ǫHC = 0.0049760 eV
σCH=σHC = 3.14 Å

R
(2)
CH=R

(2)
HC = 1.8 Å

R
(3)
CH=R

(3)
HC = 2.98 Å

R
(4)
CH=R

(4)
HC = 9.875 Å

R
(5)
CH=R

(5)
HC = 10.0 Å

given in Table 5. The parameters ǫCH and σCH are obtained by the Lorentz-Berthelot
mixing rules

ǫij =
√
ǫiiǫjj , σij = (σii + σjj)/2 . (75)

To obtain a continuously differentiable potential uW , we use in (74) cubic splines S
(1)
ij

and S
(2)
ij with

S
(1)
ij

(

R
(2)
ij

)

= 0 ,
dS

(1)
ij

dr

(

R
(2)
ij

)

= 0 ,

S
(1)
ij

(

R
(3)
ij

)

= uLJ

(

R
(3)
ij

)

,
dS

(1)
ij

dr

(

R
(3)
ij

)

=
duLJ
dr

(

R
(3)
ij

)

,

S
(2)
ij

(

R
(4)
ij

)

= uLJ

(

R
(4)
ij

)

,
dS

(2)
ij

dr

(

R
(4)
ij

)

=
duLJ
dr

(

R
(4)
ij

)

,

S
(2)
ij

(

R
(5)
ij

)

= 0 ,
dS

(2)
ij

dr

(

R
(5)
ij

)

= 0 .

Note that the potential uW (rij) is non-zero for R
(2)
ij ≤ rij ≤ R

(5)
ij only. It thus has a

support different from that of uB in equation (67).
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2.2.2 United-Atom Model (Model II)

In our second model, we use a united-atom approach to represent the polyethylene
matrix. We employ the so-called expanded collapsed atomic model [61], where the
monomeric units C̃ := CH2 of a polyethylene chain within the matrix are treated as
single spheres. In contrast to the reactive Brenner potential model, the bond relations
are static here, and thus no breaking or forming of bonds within the polyethylene
matrix are possible. But as we will discuss in the next paragraph, the united-atom
approach with static bond relations allows more efficient computations than Brenner’s
REBO potential.

The model includes the usual bond stretching, bond angle bending, and torsional
potentials for the intramolecular interactions within the polyethylene matrix. Alto-
gether, the potential for the the bonded forces within the linear chains of monomeric
units C̃ reads as

UUA =
∑

(i,j)∈B

ubond(rij) +
∑

(i,j,k)∈A

uang(θijk) +
∑

(i,j,k,l)∈T

utor(φijkl) , (76)

where θijk denotes the angle between rij and rik and φijkl denotes the torsional or
dihedral angle ∢(rij × rjk, rjk × rkl); see also Figure 6. Here, the harmonic bond
stretching potential is given in the form

ubond(r) = b1 (r − rbond)
2

and the bond angle bending potential is defined by

uang(θ) = a1 (θ − θang)
2 − a2 (θ − θang)

3 .

The equilibrium bond length rbond, the equilibrium bond angle θang and the force
constants b1, a1 and a2 are given in Table 6. Furthermore, the torsional or dihedral
potential [173] reads as

utor(φ) = c1
(
d0 + d1 cosφ+ d2 cos

2 φ+ d3 cos
3 φ+ d4 cos

4 φ+ d5 cos
5 φ
)
,

with parameters given in Table 6.
We now model a polyethylene matrix with the united-atom approach. Here, each

CH2 unit of a polyethylene molecule is treated as a single particle C̃. Thus, each
polyethylene molecule corresponds to a set of particles of C̃’s that are bonded in
linear order and form a chain. We now discuss how to treat N of such linear chains,
where the nth chain is composed of Nn monomeric units C̃. To this end, we define
the static bond relations which correspond to the bond stretching forces by the set

B :=
{
(1, 2), (2, 3), . . . , (N1 − 1, N1), (N1 + 1, N1 + 2), . . . (

N∑

m=1

Nm − 1,
N∑

m=1

Nm)
}
,

which is just the set of index pairs of consecutively bonded particles. In an analogous
way, we define a set of index triplets

A :=
{
(2, 1, 3), (3, 2, 4), . . . , (N1 − 1, N1 − 2, N1),

(N1 + 2, N1 + 1, N1 + 3), . . . (

N∑

m=1

Nm − 1,

N∑

m=1

Nm − 2,

N∑

m=1

Nm)
}
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Table 6: Parameters for the bond stretching, the bond angle bending, and the
torsional or dihedral potentials to model the intramolecular interaction of a linear
polyethylene chain in the framework of an united-atom approach [61, 174, 175].

Bond stretching Bond angle bending

rbond = 1.53 Å θang = 109.47 deg
b1 = 13.74302 eV/Å2 a1 = 5.2038993× 10−4 eV/deg2

a2 = 4.9955775× 10−6 eV/deg3

Torsional

c1 = 0.010364269 eV
d0 = 9.279
d1 = -12.136
d2 = -13.120
d3 = 3.060
d4 = 26.240
d5 = 31.594

and a set of index quadruples

T :=
{
(1, 2, 3, 4), (2, 3, 4, 5), . . . , (N1 − 3, N1 − 2, N1 − 1, N1),

(N1 + 1, N1 + 2, N1 + 3, N1 + 4), . . .

. . . (
N∑

m=1

Nm − 3,
N∑

m=1

Nm − 2,
N∑

m=1

Nm − 1,
N∑

m=1

Nm)
}
,

which correspond to the bond angle and torsional static relations, respectively. These
sets are then used to invoke the bond stretching potential, the bond angle bending
potential and the torisional potential in (76).

To model the van der Waals interactions between the monomeric units C̃, we
additionally apply a smoothed Lennard-Jones potential

usLJ(rij) =







uLJ(rij) for rij ≤ R
(4)
ij

S(2)(rij) for R
(4)
ij < rij < R

(5)
ij

0 for R
(5)
ij ≤ rij

(77)

between the C̃’s in different polyethylene molecule chains. Within a polyethylene
molecule chain, we apply this potential if the C̃’s are three or more neighbors apart
on the chain. Note that the carbon nanotube is modeled as before using Brenner’s
potential. To model the interaction between the C̃’s of the polyethylene and the car-
bon atoms of the nanotube, we again employ the smoothed Lennard-Jones potential
(77) with the parameters given in table 7.

2.2.3 Efficient Implementation

To study the mechanical properties of polymer-carbon nanotube composites, we have
to perform molecular dynamics simulations for large systems over long times. To this
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Table 7: The parameters for the Lennard-Jones van der Waals interaction between
the monomeric units C̃ of the polyethylene and the carbon nanotube atoms C. The
parameters ǫC̃C and σC̃C can be derived from the Lorentz-Berthelot mixing rules
given in equation (75).

Monomeric units Matrix - Nanotube

ǫC̃C̃ = 6.2040512× 10−3 eV ǫC̃C = ǫCC̃ = 5.5562129× 10−3 eV
σC̃C̃ = 3.9230 Å σC̃C = σCC̃ = 3.6465 Å

R
(4)

C̃C̃
= 9.875 Å R

(4)

C̃C
= R

(4)

CC̃
= 9.875 Å

R
(5)

C̃C̃
= 10.0 Å R

(5)

C̃C
= R

(5)

CC̃
= 10.0 Å

end, we need an efficient implementation of model I and model II. This involves an
efficient implementation of the united-atom potential with static bond relations, of
the Lennard-Jones potential, and of the reactive potential model due to Brenner.
First, the contribution of the united-atom potential given in equation (76) can be
straightforwardly calculated with a complexity of linear order, because for the case
of a linear chain with static bond relations, the number of elements in the set of pairs
B, the set of triples A, and the set of quadruples T is only of the order the number of
particles. Second, to compute the contribution of the Lennard-Jones potential and
of the Brenner potential given in equation (67), we have to evaluate sums over all
pairs of particles and over all triples of particles due to the evaluation of the bond
order terms Bij in equation (72). Here, we can exploit that all involved contributions
are of short range. We then obtain an implementation that scales only linear in the
number of particles. In the following, we present some details of our implementation
of Brenner’s potential model, which is based on the linked cell technique [29, 92].

The idea of the linked cell method [176] is to decompose the simulation domain
into equally sized cells. This way, the interactions of the particles for one cell are
confined to the particles which at most belong to the neighboring cells. Let us first
consider how to obtain an appropriate decomposition of the simulation domain for
a given cutoff radius rc > 0. To this end, we define the number of cells for the dth
basis vector ad in the form

ncd =

⌊∥
∥a⊥d

∥
∥

rc

⌋

,

where a⊥d is given in equation (31) and ⌊x⌋ denotes the maximal integer less than or
equal to x. Then a particle i with scaled coordinates si is uniquely associated with
a cell Cm, if the condition

md

ncd

≤ sid <
md + 1

ncd

is fulfilled for all d ∈ {1, 2, 3}. Here, the indices m are in N
3 with 0 ≤ md < ncd .

Thus, the domain of a cell Cm is given by the staggered span of the vectors

lc1 =
a1
nc1

, lc2 =
a2
nc2

, lc3 =
a3
nc3

.
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Figure 8: A cell Cm and their neighboring cells related to a decomposition of the
simulation cell with h = [a1,a2] for a cutoff radius rc in two dimensions.

Note that the norm
∥
∥
∥

a⊥

d

ncd

∥
∥
∥ is greater than or equal to the cutoff radius rc. Thus, for

each particle i associated with a cell Cm, all particles j with a distance rij less than rc
are associated to the cell Cm or one of its 26 neighboring cells; see Figure 8. Note that
in the case of an orthogonal simulation cell, the vectors a⊥1 , a

⊥
2 , and a⊥3 are equal to

the basis vectors a1, a2, and a3. Consequently, the equations ncd =
⌊
‖ad‖
rc

⌋

=

⌊

‖a⊥

d ‖
rc

⌋

and lcd :=
∥
∥
∥

ad

ncd

∥
∥
∥ =

∥
∥
∥

a⊥

d

ncd

∥
∥
∥ hold for d = 1, 2, 3; see Figure 9. For example, if we assume

an approximately constant particle density ρ, we then can compute the contribution
of an pair potentials uij with cutoff radius rc with the complexity of the order O(ρ2N)
in the form

U =
1

2

nc1−1
∑

m1=0

nc2−1
∑

m2=0

nc3−1
∑

m3=0

∑

i∈Cm

∑

m′∈Nc

∑

j∈C
m+m′

j 6=i

uij (rij) , (78)

where Cm denotes the set of particles i which are associated to cell Cm and the set
of offsets Nc is given by

Nc =
{(

m1
m2
m3

)

: m1,m2,m3 ∈ {−1, 0, 1}
}

.

Note that in the case of periodic boundary conditions, the sum m+m′ in equation
(78) is defined as

(
m1
m2
m3

)

+

(
m′

1

m′

2

m′

3

)

:=

(
(m1+m′

1) mod nc1

(m2+m′

2) mod nc2

(m3+m′

3) mod nc3

)

.

Analogously, we can compute the forces with the complexity of the order O(ρ2N).
In Algorithm 1 we give the basic structure of a linked cell algorithm to compute the
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xi
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C( 2
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Figure 9: Decomposition related to a cutoff radius rc of an orthogonal simulation
cell with h = [a1,a2] in two dimensions. To obtain for all particles i of a cell Cm all
particles with rij less than rc, we only have to look over the particles associated with
the shaded cells.

Algorithm 1 Linked cell loop analog to equation (78) for the potential energy and
force evaluation in three dimensions in the case of a pair potential. Note that the
algorithm has to start with U = 0.

for all offsets m such that 0 ≤ md < ncd for each d = 1, 2, 3 do
for all particles i ∈ Cm do
set Fi := 0
for all offsets m′ ∈ Nc do

for all particles j ∈ Cm+m′ do
evaluate rij
if rij < rc then
evaluate uij(rij) and add it to U
evaluate Fij and add it to Fi

end if
end for

end for
end for

end for
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a2

a1

lc1

lc2

xi r1
c

Figure 10: Decomposition related to a cutoff radius rc of an orthogonal simulation
cell with h = [a1,a2] in two dimensions. To obtain all particles j with rij less than
r1c for all particles i of a cell Cm, we only have to look for the particles associated
with the shaded cells. The offset set N 1

c for the cutoff radius r1c corresponds to the
offset of the shaded cells with respect to the dark-shaded cell.

potential energy and the forces for each particle. In the following we will refer to
this kind of algorithm as linked cell loop. For a detailed implementation, an array or
a linked list data structure can be used for the cells. The particles of each cell with
their associated data are stored in a linked list. Note that we have to update the
linked cell structure in each timestep according to the cell matrix h(t) and the actual
particle distribution.

Let us now consider how to deal with several different cutoff radii r1c < r2c <
· · · < rlmax

c . Obviously, one possibility is to create one linked cell structure for the
largest cutoff radius rlmax

c . But because the number of particles in a cell depends on
the cutoff radius in third order, the resulting cost constant can be relatively large.
Another possibility is to create one linked cell structure for each cutoff radius rlc. This
however involves addtional storage and more complicated programming. Therefore,
we proceed as follows: We use only one linked cell structure with an appropriate
cutoff radius rc but now take more than just next-neighbor cells into account. To
this end, we have to generate an appropriate offset set N l

c for each cutoff radius rlc;
see Figure 10. Here, the sets N l

c can be defined by

N l
c :=

{

m′ ∈ Z
3 : dist (C0, Cm′) ≤ rlc

}

.

Now we can compute the contribution of pair potentials uij1 , u
ij
2 , . . . , u

ij
lmax

with cutoff
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Figure 11: Decomposition related to a cutoff radius rc of an orthogonal simulation cell
with h = [a1,a2] in two dimensions. (a) The offset set Ñc in the case of a symmetric
pair potential for the cutoff radius rc corresponds to the offsets of the shaded cells
with respect to the dark-shaded cell. (b) The offset set Ñ 1

c in the case of a symmetric
pair potential for the cutoff radius r1c corresponds to the offsets of the shaded cells
with respect to the dark-shaded cell.

radii r1c < r2c < · · · < rlmax
c in the form

U =
1

2

nc1−1
∑

m1=0

nc2−1
∑

m2=0

nc3−1
∑

m3=0

∑

i∈Cm

lmax∑

l=1

∑

m′∈N l
c

∑

j∈C
m+m′

j 6=i

uijl (rij) . (79)

Note that in the case of uijl ≡ ujil , and thus Fij = −Fji, the computational cost can
be reduced by the factor of two. To this end, the offset sets N l

c can be adapted such
that for each triple (i, j, l) either uijl (rij) or ujil (rij) is taken into account only; see

Figure 11. To this end, we can define a set of offsets Ñ l
c as the maximal subset of N l

c

which fulfills the following conditions:

1. 0 is in Ñ l
c .

2. If m 6= 0 is in Ñ l
c , then −m is not in Ñ l

c .

Note that this definition of a set Ñ l
c is not unique, but we can choose just any and

keep it fixed in a linked cell loop. Now, we can write equation (79) in the form

U =

nc1−1
∑

m1=0

nc2−1
∑

m2=0

nc3−1
∑

m3=0

∑

i∈Cm

lmax∑

l=1







∑

m′∈Ñ l
c\0

∑

j∈C
m+m′

uijl (rij) +
∑

j∈Cm
j>i

uijl (rij)







, (80)

where, with respect to offset 0, we still have to take either triple (i, j, l) or triple
(j, i, l) into account. It is now straightforward to adapt the linked cell loop given
in Algorithm 1 to equation (80) and to compute the potential energy as well as the
forces this way.

Altogether, in our implementation concerning the potential model I given in equa-
tion (67) we follow the above-explained approach in the framework of the linked cell

36



technique. We use one linked cell structure that is associated to a cutoff radius
rc = 2 Å. This way, we are able to compute all terms with respect to Brenner’s po-
tential model term uB with the help of the associated offset sets Nc and Ñc; see Table
1. In addition, we generate an offset set ÑW

c related to the cutoff radius rWc = 10 Å
for the van der Waals term uW ; see Table 5. Then, we are able to evaluate the
potential energy expression UI in four linked cell loops:

1. Linked cell loop with offset set Ñc to compute N
(C)
i and N

(H)
i for all i ∈ C.

(a) Evaluate fij(rij); see equation (70).

2. Linked cell loop with offset set Ñc to compute N
(c)
i defined by equation (81)

for all i ∈ C.

(a) Evaluate fij(rij)F
(

N
(t)
j − fij(rij)

)

; see also equation (71).

3. Linked cell loop with offset set Ñc to compute
∑N

i=1

∑N
j=1
j>i

uB(rij); see equation

(67).

(a) Evaluate Bij by local loop around particle i with offset setNc; see equation
(72).

(b) Evaluate Bji by local loop around particle j with offset setNc; see equation
(72).

(c) Evaluate N
(c)
ij with help of N

(c)
i and N

(c)
j according equation (82).

(d) Evaluate B̄ij ; see equation (73).

(e) Evaluate uB(rij).

4. Linked cell loop with offset set ÑW
c to compute

∑N
i=1

∑N
j=1
j>i

uW (rij); see equa-

tion (67).

(a) Evaluate uW (rij); see equation (74).

In the first linked cell loop, we compute the values N
(C)
i and N

(H)
i for all particles

i ∈ C according to equation (70). With help of the values N
(C)
i and N

(H)
i we calculate

the values

N
(c)
i :=

∑

j∈C
j 6=i

fij(rij)F
(

N
(t)
j − fij(rij)

)

(81)

for all particles i ∈ C in the next linked cell loop. This way, we are able to compute

the values N
(c)
ij given in equation (81) on the fly by the expression

N
(c)
ij = 1 +N

(c)
i − fij(rij)F

(

N
(t)
j − fij(rij)

)

+N
(c)
j − fji(rji)F

(

N
(t)
i − fji(rji)

)

.

(82)

In the third linked cell loop that uses the offset set Ñc, we then compute the contri-
bution of Brenner’s potential. To this end, for each unique pair of particles i and j
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Figure 12: Decomposition related to a cutoff radius rc of an orthogonal simulation
cell with h = [a1,a2] in two dimensions. Computation of expressions Bij and Bji for
a pair of particles i and j, which is taken into account in the third linked cell loop
to evaluate potential model I. (a) Local loop around particle i with offset set Nc to
calculate Bij . (b) Local loop around particle j with offset set Nc to calculate Bji.

that has to be taken into account, we perform a local loop with respect to the offset
set Nc around particle i to evaluate expression Bij and a local loop around particle j
to evaluate expression Bji; see also Figure 12. Note that the sum over all particles k
with k 6= i and k 6= j in the expression Bij is restricted to particles k with a distance
rik less than rc due to the factor fik(rik); see equation (72). Now we evaluate the
bond order term B̄ij given in equation (73) with the help of the values Bij , Bji and

N
(c)
ij . Then, we compute the contribution due to the van der Waals term uijW with the

help of the offset set Ñ 1
c in the fourth linked cell loop. Thus we obtain the potential

energy UI given in equation (67). The force evaluation can be incorporated into our
scheme in a straightforward way. We again use the linked cell technique and exploit
symmetries accordingly. For more details we refer to [29].

Altogether, if we assume an approximately constant particle density ρ, our im-
plementation for the potential models I and II, results in a complexity of the order
O(ρ3N). The ρ3-term stems here from the local loops to compute the expressions
Bij and Bji within the third linked cell loop.

2.2.4 Parallel Implementation

A meaningful simulation of polymer-carbon nanotube composites involves a very
large number of particles and long simulation times. Therefore a further acceleration
of our code is necessary. This can be achieved by using a parallel computer system.
To this end, our code must be parallelized properly. In the following, we give the
basis of the parallelization of our linked cell method for parallel computers with
distributed memory. We follow the classical domain decomposition approach [177,
92]. To this end, we assume that we have for each number of cells ncd a partition
(n1

cd
, n2

cd
, . . . , n

npd
cd ) with n1

cd
+n2

cd
+ · · ·+n

npd
cd = ncd . Now we obtain a decomposition

of the simulation domain into np1 × np2 × np3 subdomains DM by

DM :=

{

Cm :

Md−1
∑

i=0

ni+1
cd

≤ md <

Md∑

i=0

ni+1
cd

, d = 1, 2, 3

}

,
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Figure 13: Decomposition of a two-dimensional simulation domain into 6× 4 subdo-
mains DM by a partition of the 24× 15 cells Cm.

where the indices M are in N
3 with 0 ≤ Md < npd for d = 1, 2, 3; see Figure 13.

Then, each subdomain and its associated data is assigned to a processor. In principle,
each processor can now work in parallel. However, during the computation, data of
some cells are needed that belong to other processors. We therefore have to take
special care for the appropriate handling and communication of such necessary data.
To this end, additional layers of boundary cells, so-called ghost cells, are stored on
each processor; see Figure 14. In these ghost cells, copies of the associated particles
and their data are kept. In a first communication step, we exchange data between
the processors such that the ghost cells of each processor store copies of the data
that are associated to the layer cells of the neighboring subdomains adjacent to the
boundary; see Figure 15. Note that the number of boundary layers nbd for each
direction has to be chosen with respect to the offset sets used. In the case of the
offset sets N 1

c , . . . ,N lmax
c , the number of boundary layers for the dth direction can be

defined as
nbd := max

l=1,...,lmax

max
m∈N l

c

{|md|} .

This way, the size of the boundary related to the ghost cells is larger than the cutoff
radius rlmax

c in each direction. Thus, due to the copies of particle data in the ghost
cells, the different processors now can compute their part of the linked cell loops fully
in parallel. Then, depending on the details of the linked cell loop, communication of
data is necessary to update the values of the particle data located in the boundary
ghost cells; see Figure 16. Finally, additional communication is necessary in each time
step after the positions of the particles are changed in the time integration scheme.
Here, particles can move out of a subdomain into a neighboring one. Under the
assumption that particles can move at most to their next neighboring cells, we can use
the boundary ghost cells again to exchange these particles between the processors; see
also Figure 16. The exchange of data is done in a synchronized, bidirectional fashion,

39



DM

nM1+1
c1

= 16

nM2+1
c2

= 11

Figure 14: The subdomain DM corresponds to the 16 × 11 unfilled cells. The addi-
tional ghost cells are shaded. In this two-dimensional example, the boundary consists
of nbd = 2 layers of cells for d = 1, 2.

Figure 15: The communication pattern necessary to exchange and store copies of
particle data in the boundary ghost cells can be performed in two steps in the two-
dimensional case. Here, the number of boundary layers in the first direction is nb1 = 2
and in the second direction it is nb2 = 1. Only the communication pattern for one
subdomain and its neighbors is depicted.
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Figure 16: The communication to exchange data, which is situated in the boundary
ghost cells can be performed in two steps in the two-dimensional case. In particular,
its conjugated to the communication scheme represented in Figure 15. Only the
communication for a subdomain and its neighbors is depicted.

parallel between subdomains in d consecutive steps, one step for each coordinate
direction. Obviously, such communication of data is not performed cell by cell but
collectively for all cells which belong to one side or face of each subdomain in one
communication step; compare Figure 15 and Figure 16.

Altogether, our approach directly follows the well-known techniques from conven-
tional domain decomposition parallelization [177, 178, 92]. The presented commu-
nication schemes can easily be adapted to the use of offset sets Ñc, which take ad-
vantage of symmetries. Also, the modifications necessary due to Brenner’s potential
are straightforward. Our implementation results in an optimal parallel complexity
of the order O

(
ρ3N

P

)
, where P denotes the number of processors. The increase of

performance by using a parallel computer can be analyzed by the so-called speedup

speedup(P ) :=
runtime(1)

runtime(P )

and the so-called parallel efficiency

efficiency(P ) :=
speedup(P )

P
,

where runtime(P ) denotes the time of computation on P processors. Here, the op-
timal speedup is linear and the optimal parallel efficiency is one. We performed
simulations with 320000 carbon atoms on a CRAY T3E-1200 to demonstrate the
speedup and parallel efficiency of our parallel implementation. Our results show an
almost linear speedup and a parallel efficiency of almost one; see Figure 17.

2.3 Elastic Moduli and Constants

The stress-strain relationship provides the overall mechanical response of a mate-
rial when subjected to mechanical loading under certain conditions. One method to
generate stress-strain curves is to vary the strain and to measure the stress in the
framework of an (N, V, E) ensemble [37, 38, 39]. Alternatively, we can employ our

41



 1

 2

 4

 8

 16

 32

 64

 128

 256

 1  2  4  8  16  32  64  128  256

sp
ee

du
p

processors

 0.5

 0.75

 1

 1.25

 1.5

 1  2  4  8  16  32  64  128  256

ef
fic

ie
nc

y

processors

Figure 17: Speedup and parallel efficiency for up to 256 processors on a CRAY
T3E-1200.

(N, P, T) ensemble approach to apply external stress and to measure the correspond-
ing strain. For this purpose, we use an additional external stress tensor Πext within
the equation of motion (22)

ṗh = (Πint − diag (Pext) + Πext)h
−T deth− pη

MT
ph . (83)

This way, we are able to accomplish various tensile and compressive load cases to
study the elastic properties of a nanotube-polyethylene composite. To generate a
stress-strain curve for a tensile or compressive load at given temperature and pressure,
we first equilibrate the system with no external stress applied. We then increase or
decrease the external stress over a period of time and measure the induced stress π :=
−Πint and the induced strain. To determine the strain, we express the instantaneous
cell matrix

h = (1 + e)hequi

in terms of the unique displacement matrix e and the equilibrated cell matrix hequi.
With the displacement defined as u(v) = ev, the linear strain tensor ε is given as

εαβ =
1

2

(
∂uα
∂vβ

+
∂uβ
∂vα

)

,

which in particular equals the symmetric part 1
2

(
eT + e

)
of the displacement matrix

e = hh−1
equi− 1. The skew-symmetric part 1

2

(
eT − e

)
of e corresponds to the so-called

linear rotational strain tensor. Because the rotations of the unit cell do not convey
any physical meaning, only six (instead of nine; see section 2.1) degrees of freedom
are required to control the pressure within an (N, P, T) ensemble. Therefore, we
constrain the 3 × 3 matrix ṗh in the equation of motion (83) to be symmetric. We
further assume a symmetric cell matrix hequi. Then, the linear rotational strain tensor
vanishes, and the linear strain tensor ε equals the displacement matrix e.

In particular, we want to determine elastic constants. To calculate the compo-
nents of the elasticity tensor, the so-called elastic moduli Cαβγδ, we use the generalized
Hooke’s law [179]

παβ =
∑

γδ

Cαβγδεγδ , α, β ∈ {1, 2, 3} . (84)
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Here, we assume that παβ are homogeneous linear functions of εγδ and that C is a
positive-definite fourth-order tensor that obeys the major symmetry Cαβγδ = Cγδαβ

[180]. For most solid materials, such relations hold until the stress reaches the so-
called proportional limit. If the stresses exceed this limit, the deformation becomes
nonlinear, but the elastic behavior of the material continues until the stresses reach
the so-called elastic limit. The general fourth-order tensor C has 34 = 81 indepen-
dent constants Cαβγδ. But because π and ε are symmetric second-order tensors, the
number of independent elastic moduli reduces to 6 × 6 = 36. Because of the major
symmetry, it further reduces to 6(6+1)/2 = 21. Then, we can write the stress-strain
relation (84) in matrix form











π11
π22
π33
π12
π13
π23











=











C1111 C1122 C1133 C1112 C1113 C1123

C1122 C2222 C2233 C2212 C2213 C2223

C1133 C2233 C3333 C3312 C3313 C3323

C1112 C2212 C3312 C1212 C1213 C1223

C1113 C2213 C3313 C1213 C1313 C1323

C1123 C2223 C3323 C1323 C1323 C2323





















ε11
ε22
ε33
2ε12
2ε13
2ε23











. (85)

We can invert the stress-strain relations (85) by inverting the symmetric 6×6 elastic
constant matrix C. This results in











ε11
ε22
ε33
2ε12
2ε13
2ε23











=











S1111 S1122 S1133 S1112 S1113 S1123

S1122 S2222 S2233 S2212 S2213 S2223

S1133 S2233 S3333 S3312 S3313 S3323

S1112 S2212 S3312 S1212 S1213 S1223

S1113 S2213 S3313 S1213 S1313 S1323

S1123 S2223 S3323 S1323 S1323 S2323





















π11
π22
π33
π12
π13
π23











,

where S is the so-called compliance matrix. Suppose now that only one of the six
independent components of the induced stress is nonzero, say παβ . Then the compo-
nents

S11αβ =
ε11
παβ

, S22αβ =
ε22
παβ

, S33αβ =
ε33
παβ

,

S12αβ =
2ε12
παβ

, S13αβ =
2ε13
παβ

, S23αβ =
2ε23
παβ

,

can be determined by calculating the slopes of the corresponding stress-strain curves.
Here, the slopes can be easily computed by least squares linear regression [89]. This
way, we successively determine the components Sαβγδ and consequently the elastic
moduli Cαβγδ.

There is a special elastic constant, the so-called Young’s modulus E. If the stretch-
ing force is only applied in uniaxial direction, for example in longitudinal direction,
the constant Ell := πll/εll = 1/Sllll represents the ratio of the longitudinal stress to
the corresponding longitudinal strain. In other words, Ell is the slope of the stress-
strain curve under uniaxial tension. Furthermore, the ratio of transverse contraction
strain to longitudinal extension strain in the direction of the stretching force is known
as the Poisson ratio ν := −εtt/εll; see Figure 18. Here, tensile deformation is con-
sidered positive and compressive deformation is considered negative. Thus, normal
materials have a positive ratio. Furthermore, the generalized versions of the Poisson
ratio are given by νtt,ll := −Sttll/Sllll.
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Figure 18: (a) The Young’s modulus can be derived from the slope of the longitudinal
stress versus longitudinal strain curve. (b) The Poisson ratio can be derived from the
slope of the negative transversal strain versus longitudinal strain curve.

3 Numerical Experiments

In this section, we describe aspects and results of the numerical experiments we
performed to study the mechanical properties of polyethylene-carbon nanotube com-
posites. Here, we first give a summary of the systems we analyzed, where we outline
the creation of the initial structures as well as the initial equilibration process. Then,
we present the results of our tensile load test simulations.

We have incorporated the computational methods described in section 2 into
our molecular dynamics software package TREMOLO, which is a load-balanced dis-
tributed memory parallel code [92]. For details and further information see the web
page

http://www.ins.uni-bonn.de/research/projects/tremolo
All numerical experiments were performed on our PC cluster Parnass2 [181].

This parallel computing system consists of 128 Intel Pentium II 400MHz processors
connected by a 1.28GBit/s switched Myrinet.

3.1 Equilibrated Systems

Any molecular dynamics simulation should start with a relaxed, equilibrated sys-
tem. Basically, we generated such equilibrated reference systems in three subsequent
steps. First, we created an appropriate initial system, then we performed a nonlin-
ear conjugated gradient scheme in order to relax the system to its local potential
energy minimum. Finally, we conducted an isobaric-isothermal molecular dynamics
simulation for 100.0 ps under normal conditions (i.e. for a temperature of 273.15K
and for an external pressure of 1.01325 · 10−4GPa). The fictitious mass MT for the
thermostat was set to 10.0 uÅ2, and the fictitious mass MP for the barostat was set
to 10.0 u. We applied periodic boundary conditions for all systems.

3.1.1 Carbon Nanotubes

A single-walled carbon (n,m)-nanotube is a rolled-up sheet of graphene. The (n,m)
integer indices correspond to the chiral vector along which the graphene sheet has
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Figure 19: (a) A strip of a graphite sheet is depicted. Here, the basis {a,b} is given
and an example of a roll-up vector with (n,m) = (1, 2) is shown. The chiral angle
θ is the angle between the vector (1, 2) and the direction a. (b) A (10, 10) carbon
nanotube with 960 atoms is depicted.

been rolled up. Here, the integer values (n,m) are given corresponding to the basis
vectors (a,b). This way, their form depends on the so-called chiral angle θ be-
tween the roll-up vector (n,m) and the basis direction a; see Figure 19. The tubule
diameter δ and the chiral angle θ are uniquely determined by the defining roll-up vec-
tor (n,m). Here, we have δ = 0.78

√
n2 + nm+m2 angstrom for the diameter and

θ = arctan
(√

3m/(m+ 2n)
)
for the chiral angle [7]. This way, we generated the co-

ordinates of two (10, 10) nanotubes, one with a length about 57 Å and another which
is about 101 Å long; see Figure 19(b) and Figure 21(a). To obtain a capped nanotube
we follow the approach of Asimov and Buja [182]. Here, six disjoint 60-degree wedges
are removed from a graphene sheet, where each wedge is centered at a point of the
hexagonal carbon lattice. Then, opposite boundary points of the intersections are
defined to be adjacent; compare Figure 20. Finally, we have put two caps and the
shorter (10, 10) nanotube together and thus obtained the coordinates of a capped
single walled nanotube; see Figure 21(b). To equilibrate the capped nanotube, we
fixed the size of the simulation cell. In the case of the uncapped nanotube, we applied
appropriate constraints in the respective Lagrangian to permit the unit cell to alter
in longitudinal direction only. Note that the uncapped nanotube spans the length of
the periodic unit cell in the longitudinal direction. In the following, we will denote
this system as UC.

3.1.2 Polyethylene Matrices

To create the initial coordinates of a periodically replicated polyethylene matrix with
Nchain chains of length Lchain, we randomly distributed Nchain monomeric C̃ = CH2

units in an appropriate simulation domain. Starting from these initial C̃s, we built
up the polyethylene chains by successively adding new C̃ units until the length Lchain

was reached. Here, the coordinates of the newly introduced C̃’s were randomly
generated. To this end, we used the fixed bond distance of a C̃-C̃ bond but a randomly
chosen bond angle between 90% and 110% for the C̃-C̃-C̃ bond angle. Also, we
randomly chose the torsional angle; compare also Table 6. We then performed a
local minimization on the system and finally run an isobaric-isothermal molecular
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(a) (b)

Figure 20: (a) A cap for a (10, 10) carbon nanotube with 188 atoms is depicted. (b)
It is derived from a modified graphite sheet; see also [182].

(a) (b)

Figure 21: (a) A continuous (10, 10) carbon nanotube with 1680 atoms at a tempera-
ture of 300K. (b) A capped (10, 10) carbon nanotube with 1136 atoms and a length
about 67.5 Å at a temperature of 300K.
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Figure 22: Equilibrated periodic unit cell of a polyethylene matrix composed of 10
chains of length 1000 represented with model I (system MIa).

dynamics simulation under normal conditions. Note that with respect to model I,
we used the coordinates of the monomeric units for the carbon atoms and added
the remaining hydrogen atoms before the local minimization process. This way, we
generated the following equilibrated polyethylene matrices:

• A polyethylene matrix, containing 10 chains of 1000 CH2 units; see Figure 22.
Here we used model I. We denote this system as MIa.

• A polyethylene matrix, containing 10 chains of 1000 monomeric C̃ units. Here
we used model II. We denote this system as MIIa.

• A polyethylene matrix, containing 20 chains of 1000 monomeric C̃ units. Here
we used model II. We denote this system as MIIb.

• A polyethylene matrix, containing 30 chains of 1000 monomeric C̃ units. Here
we used model II. We denote this system as MIIc.

All equilibrated matrices exhibit a density of about 1 g/cm3.

3.1.3 Composites

To model a polyethylene-carbon nanotube composite, we embedded a previously
relaxed carbon nanotube into a previously equilibrated polyethylene matrix. Here,
we followed Brown’s approach [183] to create a cylindric cavity in the polyethylene
matrix by using an artificial soft repulsive potential [184] within a local minimization
process. We then placed the carbon nanotube in the cylindric cavity and performed
a local minimization process again. Finally, we run an isothermal-isobaric molecular
dynamics simulation to obtain an equilibrated system. This way, we equilibrated the
following systems:
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(a) (b)

Figure 23: Equilibrated periodic unit cell of the capped nanotube in a polyethylene
matrix represented with model II (system CIIb). (a) Front view of unit cell. (b) Side
view of the unit cell.

Table 8: The diagonal components of the cell matrix of the equilibrated composite
systems.

CIa CIIa CIIb CIIc UCIIa

h11[Å] 49.2 53.4 58.7 63.6 49.7
h22[Å] 49.3 55.4 58.5 63.2 57.5
h33[Å] 91.0 96.7 121.7 139.0 102.5

• The capped carbon nanotube embedded in matrix MIa. Here we used model I.
We denote this system as CIa. The volume fraction of the nanotube is about
4.57%.

• The capped carbon nanotube embedded in matrix MIIa; see Figure 23. Here
we used model II. We denote this system as CIIa. The volume fraction of the
nanotube is about 3.52%.

• The capped carbon nanotube embedded in matrix MIIb. Here we used model
II. We denote this system as CIIb. The volume fraction of the nanotube is
about 2.41%.

• The capped carbon nanotube embedded in matrix MIIc. Here we used model
II. We denote this system as CIIc. The volume fraction of the nanotube is
about 1.80%.

• The periodically replicated uncapped carbon nanotube which spans the length
of the unit cell and that is embedded in matrix MIIa; see Figure 24. Here we
used model II. We denote this system as UCIIa. The volume fraction of the
nanotube is about 5.22%.

The diagonal components of the cell matrix of the equilibrated composite systems
are given in Table 8.
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(a) (b)

Figure 24: Equilibrated periodic unit cell of the periodically replicated uncapped
nanotube in polyethylene represented with model II (system UCIIa). (a) Front view
of unit cell. (b) Side view of the unit cell.

Figure 25: View of a functionalized carbon nanotube. Here, 1% of the carbon atoms
have been randomly linked to a CH2 unit.

3.1.4 Functionalized Nanotube Composites

The systems CIa, CIIa, CIIb, CIIc, and UCIIa are composites with weak nonbonded
matrix nanotube interactions. One way to strengthen the interaction is with chem-
ical cross-links. This is also known as functionalization [37, 38, 185]. To this end,
we randomly placed CH2 units between the matrix and the nanotube of the equili-
brated system CIa. Then, we used the harmonic bond stretching potential ubond of
model II within a local minimization process to obtain cross-links between the matrix
and the nanotube. Finally, we performed an isothermal-isobaric molecular dynamics
simulation with the help of model I to obtain an equilibrated system. This way, we
equilibrated the following three systems with different amounts of cross-links:

• A carbon nanotube embedded in the polyethylene matrix MIa, where 1% of the
carbon atoms of the nanotube have been cross-linked; see Figure 25 and Figure
26. Here we used model I. We denote this system as F1Ia.

• A carbon nanotube embedded in matrix MIa, where 5% of the carbon atoms
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Figure 26: Equilibrated periodic unit cell of a nanotube in a polyethylene matrix
represented with model II, where 1% of the carbon atoms of the nanotube have been
cross-linked to the matrix. Note that we cut off the front part of the simulation
domain and depict no hydrogen for better visualization.

of the nanotube have been cross-linked. Here we used model I. We denote this
system as F5Ia.

• A carbon nanotube embedded in matrix MIa, where 10% of the carbon atoms
of the nanotube are cross-linked. Here we used model I. We denote this system
as F10Ia.

3.2 Simulation of Tensile Load Tests

All our tensile load test simulations were carried out under normal conditions. Here,
the same time steps and fictitious masses as in the molecular dynamics part of the
equilibration process were used. To apply a tensile load to one of the six independent
stress components, we used a stress rate of 0.01GPa/ps. A molecular dynamics
tensile simulation was stopped when a strain of 10% was reached.

Let us first consider the periodically replicated uncapped carbon nanotube (sys-
tem UC). Here, we applied uniaxial external stress in the direction of the axis of the
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nanotube to determine its Young’s modulus and its Poisson ratio. For the modulus,
we obtained a value of EUC = 398.77GPa and for the associated Poisson ratio we
obtained a value of νUC = 0.23. Here, we assumed the carbon nanotube as a hollow
cylinder with thickness 3.4 Å to calculate the volume [27]. This way, we obtained
an equilibrated volume of 15.655 nm3. We also applied the Langrange strain tensor
[179, 180] instead of the linear strain tensor and then obtained a Young’s modulus of
395.83GPa and a Poisson ratio of 0.22. If we applied the logarithmic strain tensor
[179, 180] instead, we measured a Young’s modulus of 401.72GPa and a Poisson ratio
of 0.24. Note that there is a lot of variance among the elastic moduli reported by
several groups [186]. For example, about 300GPa [187], 600GPa [26, 28] and about
1TPa [27] are given for the uniaxial Young’s modulus of a (10, 10) carbon nanotube
in the literature. Also for the (10, 10) nanotube, the Poisson ratio is noted as 0.25
[24], 0.278 [27], and 0.287 [187], respectively. The different approaches, models, and
parameters used from the different groups are likely to be responsible for this variety
of results.

We also simulated uniaxial tensile load tests for the matrices MIIa and MIIb.
Here, we obtained a Young’s modulus of about 2.1GPa and a Poisson ratio of about
0.4. Note that the nanotubes are aligned to the third coordinate axis of the equi-
librated composite systems. Thus, these systems are unidirectional composites and
we therefore can assume that they are orthotropic. Then, the compliance matrix has
only nine independent constants











S1111 S1122 S1133 0.0 0.0 0.0
S2222 S2233 0.0 0.0 0.0

S3333 0.0 0.0 0.0
S1212 0.0 0.0

sym S1313 0.0
S2323











,

because the basis vectors lie in the symmetry planes. To compute the compliance
matrix and the elastic constant matrix for system UCIIa, we applied external stress
to each of the six independent stress components. Then, the derived compliance
matrix reads as

SUCIIa =











0.4990 −0.1870 −0.0109 0.0 0.0 0.0
0.4904 −0.0115 0.0 0.0 0.0

0.0428 0.0 0.0 0.0
1.0440 0.0 0.0

sym 1.1135 0.0
1.4728











. (86)

Now, by inverting the compliance matrix SUCIIa, we obtained the elastic constant
matrix in the form

CUCIIa =











2.3684 0.9232 0.8511 0.0 0.0 0.0
2.4118 0.8852 0.0 0.0 0.0

23.7746 0.0 0.0 0.0
0.9578 0.0 0.0

sym 0.8980 0.0
0.67897











. (87)
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Table 9: Elastic moduli and Poisson ratios of the composite systems that have been
simulated using model II. The longitudinal moduli are increasing and the Poisson
ratios are decreasing to the Poisson ratio of the (10, 10) carbon nanotube νUC = 0.23.

System E33[GPa] ν11,33 ν22,33 E11[GPa]

UCIIa 23.3 0.25 0.26 2.00
CIIa 5.4 0.35 0.36 2.2
CIIb 3.8 0.38 0.37
CIIc 3.0 0.39 0.39

Table 10: Elastic moduli of the composite systems that have been simulated using
model I. The longitudinal moduli are increasing with the amount of cross-links.

MIa CIa F1Ia F5Ia F10Ia

E33[GPa] 2.88 5.97 6.21 6.78 7.01

Here, we see a difference between the modulus EUCIIa
33 = 1

S33
= 23.36GPa and the

moduli EUCIIa
11 = 1

S11
= 2.00GPa and EUCIIa

22 = 1
S22

= 2.03GPa due to the unidirec-
tional reinforcement. We furthermore applied uniaxial stress to system CIIa in the
direction of the first and third coordinate axis. Here, we obtained for the Young’s
modulus in longitudinal direction a value of ECIIa

33 = 5.4GPa and in transversal di-
rection a value of ECIIa

11 = 2.2GPa. In particular, the Young’s moduli subjected to
transversal loading conditions are in the same range as that of the matrix alone.
Thus, we concentrate in the following on longitudinal loading conditions. For the
other composite systems that are associated with model II, namely CIIb and CIIc,
we applied uniaxial external stress to determine the Young’s moduli and the Poisson
ratios for the longitudinal direction. The results are summarized in Table 9.

In order to study the effect on the Young’s modulus of cross-links between the
nanotube and the matrix, we run simulations with uniaxial loads for the composite
systems MIa, CIa, F1Ia, F5Ia, and F10Ia. Note that we used here model I to accu-
rately describe the covalent bonds of the cross-links. The resulting Young’s moduli
for the longitudinal direction are given in Table 10; see also Figure 27.

4 Discussion

From the results of Table 9 we see the following: Subjected to transversal loading
conditions, the Young’s modulus of the composite is in the range of the modulus of
the matrix. Thus, there is no reinforcement of the matrix. Subjected to longitudinal
loading conditions, we see a Young’s modulus that is 11.6 times higher for system
UCIIa, 2.7 times higher for system CIIa, 1.9 times higher for system CIIb, and 1.5
times higher for system CIIc.

For a nanocomposite under uniaxial loading, the dependence of the elastic mod-
ulus on the nanotube volume fraction can be estimated by a macroscopic rule-of-
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Figure 27: Stress-strain curves for systems MIa, F5Ia, and F10Ia.

mixtures. This rule reads in its simplest form as

Ec = VfEf + (1− Vf )Em , (88)

where Ec denotes the predicted Young’s modulus of the composite, Ef denotes the
Young’s modulus of the tube, Em denotes the Young’s modulus of the matrix and
Vf denotes the volume fraction of the tube.

Let us consider system UCIIa first. The modulus we obtained for a (10, 10) carbon
nanotube is Ef = 398.77GPa and its volume fraction is 5.22%; see section 3. If we
now use Em = 2.1GPa for the modulus of the matrix, the rule-of-mixtures gives a
prediction of Ec ≈ 22.8GPa for the modulus of the composite. This value is in the
range of our measured modulus EUCIIa

33 = 23.3GPa; compare Table 9.
Now we consider the system CIIa. With a volume fraction of 3.5%, the rule-

of-mixtures predicts a modulus of Ec ≈ 16GPa, which is substantially larger than
the results of our measurements; see Table 9. But we can expect this discrepancy,
because the carbon nanotube is with a length of about 7 nm too short in comparison
to the size of the unit cell of the composite. In particular, a typical single-walled
carbon nanotube is approximately 250 times longer. To overcome this finite size
effect, we follow Liu and Chen [35, 36] and employ an extended rule-of-mixtures

Eex
c =

(
1

Em

(L− Lc)

L
+

1

Ec

Lc

L

A

Ac

)−1

, (89)

which also takes the distribution of the fiber into account; see Figure 28. This ex-
tended rule-of-mixtures gives substantially better predictions for the modulus of the
composite systems CIa, CIIa, CIIb, and CIIc as can been seen in Table 11. The re-
maining values that we used to employ equation (89) are also given in Table 11. Note
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L = h33

Lc

EcEm

h22

Em

h22
Rin

h11

Figure 28: Schematic diagram of a unit cell. Here, we define the areas A = h11h22
and Ac = A− πR2

in. Furthermore, we assume Rin = 5 Å.

Table 11: The predicted moduli for the rule-of-mixtures given in equation (88) and
for the extended rule-of-mixtures given in equation (89). For the modulus of the
nanofiber Ef we used a value of 398.77GPa, for the length of the nanofiber Lc a
value of 67.5 Å, for the modulus of the matrix Em we used a value of 2.1GPa in the
case of model I and a value of 2.9GPa in the case of model II.

System Ec[GPa] Ωf Eex
c [GPa] L[Å] A[Å2] Ac[Å

2]

CIIa 16.06 0.0352 5.70 96.7 2960.9 2944.3
CIIb 11.66 0.0241 4.21 121.7 2427.2 3421.6
CIIc 9.24 0.0180 3.74 139.0 4027.0 4010.4
MIa 20.97 0.0457 8.23 91.0 2427.2 2410.5
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that there is a difference between the Young’s modulus of the polyethylene matrix in
the case of model I (EMIa

33 ≈ 2.1GPa), and the Young’s modulus of the polyethylene
matrix in the case of model II (EMIIa

33 ≈ 2.9GPa). Also the Young’s modulus of
system CIa and of system CIIa show a difference of about one-half gigapascal; see
Table 9 and Table 10.

Finally, we consider the systems CIa, F1Ia, F5Ia, and F10Ia with respect to the
effect of the cross-links on the Young’s modulus for the longitudinal load. Here, our
results gave a reinforcement in comparison to system CIa. We obtained a modulus
that was 1.04 times higher for system F1Ia, a modulus that was 1.14 times higher for
system F5Ia, and a modulus that was 1.17 times higher for system F10Ia than the
modulus of system CIa; see Table 10. Note that we used here model I, which allows
us to accurately describe the covalent bonds between the matrix and the nanotube.
Altogether, we anticipate that a longer and properly functionalized nanotube would
lead to improved reinforcement. Note also that especially in the case of functionalized
carbon nanotubes, the second-generation REBO potential [188] can be used to model
the hydrocarbon system with enhanced accuracy.

Further results from molecular dynamics simulations of the influence of chemical
cross-links on the elastic moduli of polymer-carbon nanotube composites are given in
[189]. Finally in [190], we studied a composite consisting of boron-nitride nanotubes
and silicon-boron-nitride ceramics. There, the dependency of the Young’s modulus
on the BN-nanotube/Si3B3N7-matrix ratio is investigated.

5 Concluding Remarks

The numerical ingredients and the achieved results of a molecular dynamics simula-
tion study for the analysis of elastic properties of a carbon nanotube/polyethylene
composite was presented. Here, we used the Parrinello-Rahman technique to apply
external stress to generate stress-strain curves. Due to the large amount of particles
in the composite, an efficient implementation using a modified linked cell approach
is necessary. Furthermore, a parallelization of the code is needed that is based on
domain decomposition to exploit parallel computing systems with distributed mem-
ory. As model problems, we considered a periodically replicated carbon nanotube
that was embedded into a polyethylene matrix and a short-capped nanotube that
was embedded in polyethylene matrices of different sizes. To study the reinforcement
of the matrix, load was applied and the resulting Young’s modulus was calculated.
These Young’s moduli were compared to two different rules-of-mixtures. The sim-
ple rule, which only takes the volume fraction of the fiber into account, holds for
the periodically replicated uncapped nanotube but fails for the composites with the
short capped nanotube. The extended rule, which also takes the orientation of the
tube into account, substantially improves the predictions for the case of the fully
embedded short nanotube. Here, we used Brenner’s potential for the nanotube and
an united-atom potential for the polyethylene matrix. To study the effect of cross-
links between the polyethylene matrix and the nanotube, we employed Brenner’s
reactive bond-order potential for both the matrix and the nanotube. We found that
the reinforcement of the matrix increases with the amount of cross-links.

The simulation results suggest the possibility to use nanotubes to reinforce appro-
priate matrix material. They furthermore indicate that long functionalized nanotubes
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should be used. For a fixed tensile loading direction, the nanotubes should be aligned
parallel to the loading direction. For general kinds of loading directions, very long
nanotubes in random orientation will most likely produce the best results. This,
however, is the subject of future studies.
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for constant temperature molecular dynamics. J. Comp. Phys., 115:114–134,
1999.

[73] C. L. Cleveland. New equations of motion for molecular dynamics systems that
change shape. J. Chem. Phys., 89(8):4987–4993, 1988.

60



[74] R. M. Wentzcovitch. Invariant molecular-dynamics approach to structural
phase transitions. Phys. Rev. B, 44(5):2358–2361, 1991.

[75] M. Ferrario and J. P. Ryckaert. Constant pressure-constant temperature molec-
ular dynamics for rigid and partially rigid molecular systems. Mol. Phys.,
54(3):587–603, 1985.

[76] J. V. Lill and J. Q. Broughton. Nonlinear molecular dynamics and Monte Carlo
algorithms. Phys. Rev. B, 46:12068–12071, 1992.

[77] G. J. Martyna, D. J. Tobias, and M. L. Klein. Constant pressure molecular
dynamics algorithms. J. Chem. Phys., 101(5):4177–4189, 1994.

[78] I. Souza and J. L. Martins. Metric tensor as the dynamical variable for variable-
cell-shape molecular dynamics. Phys. Rev. B, 55(14):8733–8742, 1997.

[79] M. E. Tuckerman and G. J. Martyna. Understanding modern molecular dy-
namics: Techniques and applications. J. Phys. Chem. B, 104:159–178, 2000.

[80] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and
M. Karplus. CHARMM: A program for macromolecular energy minimization,
and dynamics calculations. J. Comput. Chem., 4:187–217, 1983.

[81] D. Pearlman, D. Case, J. Caldwell, W. Ross, T. Cheatham, S.Debolt, D. Fer-
guson, S. Seibel, and P. Kollman. AMBER, a computer program fr applying
molecular mechanics, normal mode analysis, molecular dynamics and free en-
ergy calculations to elucidate the structures and energies of molecules. Comp.
Phys. Comm., 1995.

[82] W. Smith. Calculating the pressure. CCP5 Info. Quart., 39:14–21, 1993.

[83] J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chapman
& Hall, London, 1994.

[84] W. Swope, H. Andersen, P. Berens, and K. Wilson. A computer simulation
method for calculation of equilibrium constants for the formation of physical
clusters of molecules: Application to small water clusters. J. Chem. Phys.,
76:637–649, 1982.

[85] C. Störmer. Sur les trajectoires des corpuscles életrisés dans l’espace sous
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