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Abstract. We present a direct discretization of the electronic Schrödinger equation. It
is based on one-dimensional Meyer wavelets from which we build an anisotropic multire-
solution analysis for general particle spaces by a tensor product construction. We restrict
these spaces to the case of antisymmetric functions. To obtain finite-dimensional sub-
spaces we first discuss semi-discretization with respect to the scale parameter by means
of sparse grids which relies on mixed regularity and decay properties of the electronic
wave functions. We then propose different techniques for a discretization with respect to
the position parameter. Furthermore we present the results of our numerical experiments
using this new generalized sparse grid methods for Schrödinger’s equation.
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1. Introduction

In this article we consider the electronic Schrödinger equation (first without spin
for reasons of simplicity)

HΨ(x1, . . . ,xN ) = EΨ(x1, . . . ,xN ) (1)

with the Hamilton operator

H = T + V where T = −1

2

N
∑

p=1

∆p
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forschungsbereich 611 Singuläre Phänomene und Skalierung in Mathematischen Modellen of the
Deutsche Forschungsgemeinschaft.

†Note that this is an updated version of M. Griebel and J. Hamaekers, A wavelet based sparse

grid method for the electronic Schrdinger equation. In M. Sanz-Sol, J. Soria, J. Varona, and J.
Verdera, editors, Proceedings of the International Congress of Mathematicians, volume III, pages
1473-1506, Madrid, Spain, August 22-30 2006. European Mathematical Society.



2 Michael Griebel, Jan Hamaekers

and

V = −
N
∑

p=1

Nnuc
∑

q=1

Zq

|xp − Rq|2
+

N
∑

p=1

N
∑

q>p

1

|xp − xq|2
. (2)

Here, with d = 3, xp := (x1,p, . . . , xd,p) ∈ R
d denotes the position of the p-th

electron, p = 1 . . . , N , and Rq ∈ R
d denotes the fixed position of the q-th nucleus,

q = 1, . . . , Nnuc. The operator ∆p is the Laplacian acting on the xp-component of

Ψ, i.e. ∆p =
∑d

i=1 ∂
2/∂(xi,p)

2, Zq is the charge of the q-th nucleus and the norm
|.|2 denotes the usual Euclidean distance in R

d. The solution Ψ describes the wave
function associated to the eigenvalue E.

This eigenvalue problem results from the Born-Oppenheimer approximation
[51] to the general Schrödinger equation for a system of electrons and nuclei which
takes the different masses of electrons and nuclei into account. It is one of the
core problems of computational chemistry. Its successful treatment would allow to
predict the properties of arbitrary atomic systems and molecules [22]. However,
except for very simple cases, there is no analytical solution for (1) available. Also a
direct numerical approach is impossible since Ψ is a d·N -dimensional function. Any
discretization on e.g. uniform grids with O(K) points in each direction would in-
volve O(Kd·N ) degrees of freedoms which are impossible to store for d = 3, N > 1.
Here, we encounter the curse of dimensionality [8]. Therefore, most approaches
resort to an approximation of (1) only. Examples are the classical Hartree-Fock
method and its successive refinements like configuration interaction and coupled
clusters. Alternative methods are based on density functional theory which result
in the Kohn-Sham equations or the reduced density matrix (RDM) [50] and the
r12 approach [23] which lead to improved accuracy and open the way to new appli-
cations. A survey of these methods can be found in [3, 10, 46]. A major problem
with these techniques is that, albeit quite successful in practice, they nevertheless
only provide approximations. A systematical improvement is usually not available
such that convergence of the model to Schrödinger’s equation is achieved.

Instead, we intend to directly discretize the Schrödinger equation without re-
sorting to any model approximation. To this end, we propose a new variant of the
so-called sparse grid approach. The sparse grid method is a discretization tech-
nique for higher-dimensional problems which promises to circumvent the above-
mentioned curse of dimensionality provided that certain smoothness prerequisites
are fulfilled. Various sparse grid discretization methods have already been devel-
oped in the context of integration problems [27, 28], integral equations [24, 32]
and elliptic partial differential equations, see [12] and the references cited therein
for an overview. In Fourier space, such methods are also known under the name
hyperbolic cross approximation [5, 21, 61]. A first heuristic approach to apply this
methodology to the electronic Schrödinger equation was presented in [26]. The
sparse grid idea was also used in the fast evaluation of Slater determinants in [33].
Recently Yserentant showed in [67] that the smoothness prerequisite necessary for
sparse grids is indeed valid for the solution of the electronic Schrödinger equation.
To be more precise, he showed that an antisymmetric solution of the electronic

Schrödinger equation with d = 3 possesses H1,1
mix- or H1/2,1

mix -regularity for the fully
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antisymmetric and the partially symmetric case, respectively. This motivated the
application of a generalized sparse grid approach in Fourier space to the electronic
Schrödinger equation as presented in [30]. There, sparse grids for general parti-
cle problems as well as antisymmetric sparse grids have been developed and were
applied to (1) in the periodic setting. Basically, estimates of the type

‖Ψ − ΨM‖H1 ≤ C(N, d) ·M−1/d · ‖Ψ‖H1,1
mix

could be achieved where M denotes the number of Fourier modes used in the
discretization. Here, the norm ‖.‖H1,1

mix
involves bounded mixed first derivatives.

Thus the order of the method with respect to M is asymptotically independent
of the dimension of the problem, i.e. the number N of electrons. But, the con-
stants and the H1,1

mix-norm of the solution nevertheless depend on the number of
electrons. While the dependency of the order constant might be analysed along
the lines of [29], the problem remains that the smoothness term ‖Ψ‖H1,1

mix
grows

exponentially with the number of electrons. This could be seen from the results of
the numerical experiments in [30] and was one reason why in the periodic Fourier
setting problems with higher numbers of electrons could not be treated. It was
also observed in [69] where a certain scaling was introduced into the definitions of
the norms which compensates for this growth factor. In [68, 70] it was suggested
to scale the decomposition of the hyperbolic cross into subspaces accordingly and
to further approximate each of the subspace contributions by some individually
properly truncated Fourier series to cope with this problem.

In this article, we present a modified sparse grid/hyperbolic cross discretization
for the electronic Schrödinger equation which implements this approach. It uses
one-dimensional Meyer wavelets as basic building blocks in a tensor product con-
struction to obtain a L2-orthogonal multiscale basis for the many-electron space.
Then a truncation of the associated series expansion results in sparse grids. Here,
for the level index we truncate according to the idea of hyperbolic crosses whereas
we truncate for the position index according to various patterns which take to some
extent the decay of the scaling function coefficients for x→ ∞ into account. Note
that since we work in an infinite domain this resembles a truncation to a compact
domain in which we then consider a local wavelet basis. Here, domain truncation
error and scale resolution error should be balanced. Antisymmetry of the resulting
discrete wavelet basis is achieved by a restriction of the active indices.

The remainder of this article is organized as follows: In section 2 we present the
Meyer wavelet family on R and discuss its properties. In section 3 we introduce
a multiresolution analysis for many particle spaces build by a tensor product con-
struction from the one-dimensional Meyer wavelets and introduce various Sobolev
norms. Then we discuss semi-discretization with respect to the scale parameter by
means of generalized sparse grids and present a resulting error estimate in section
4. Section 5 deals with antisymmetric generalized sparse grids. In section 6 we
invoke results on the mixed regularity of electronic wave functions and we discuss
rescaling of norms and sparse grid spaces to obtain error bounds which involve the
L2-norm of the solution instead of the mixed Sobolev norm. Then, in section 7
we comment on the setup of the system matrix and on the solution procedure for
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the discrete eigenvalue problem on general sparse grids and we propose different
techniques for the discretization with respect to the position parameter. Further-
more we present the results of our numerical experiments. Finally we give some
concluding remarks in section 8.

2. Orthogonal multilevel bases and the Meyer wavelet

family on R

We intend to use for the discretization of (1) a L2-orthogonal basis system.1 This
is an important prerequisite from the practical point of view, since it allows to
apply the well-known Slater-Condon rules. They reduce the R

d·N - and R
2·d·N -

dimensional integrals necessary in the Galerkin discretization of the one- and two
electron part of the potential function of (1) to short sums of d-dimensional and
2d-dimensional integrals, respectively. Otherwise, due to the structure of the Slater
determinants necessary to obtain antisymmetry, these sums would contain expo-
nentially many terms with respect to the number N of electrons present in the
system.

Let us recall the definition of a multiresolution analysis on R, see also [52]. We
consider an infinite sequence

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

of nested spaces Vl with
⋂

l∈Z
Vl = 0 and

⋃

l∈Z
Vl = L2(R). It holds f(x) ∈ Vl ⇔

f(2x) ∈ Vl+1 and f(x) ∈ V0 ⇔ f(x− j) ∈ V0, where j ∈ Z. Furthermore, there is a
so-called scaling function (or father wavelet) φ ∈ V0, such that {φ(x− j) : j ∈ Z}
forms an orthonormal basis for V0. Then

{φl,j(x) = 2
l
2φ(2lx− j) : j ∈ Z}

forms an orthonormal basis of Vl and we can represent any u(x) ∈ Vl as u(x) =
∑∞

j=−∞ vl,jφl,j(x) with coefficients vl,j :=
∫

R
φ∗l,j(x)u(x)dx. With the definition

Wl ⊥ Vl, Vl ⊕Wl = Vl+1 (3)

we obtain an associated sequence of detail spaces Wl with associated mother
wavelet ϕ ∈ W0, such that {ϕ(x − j) : j ∈ Z} forms an orthonormal basis
for W0. Thus

{ϕl,j(x) = 2
l
2ϕ(2lx− j) : j ∈ Z}

gives an orthonormal basis for Wl and {ϕl,j : l, j ∈ Z} is an orthonormal basis of
L2(R). Then, we can represent any u(x) in L2(R) as

u(x) =
∞
∑

l=−∞

∞
∑

j=−∞
ul,jϕl,j(x) (4)

1Note that a bi-orthogonal system would also work here.
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with the coefficients ul,j :=
∫

R
ϕ∗

l,j(x)u(x)dx.
In the following we focus on the Meyer wavelet family for the choice of φ

and ϕ. There, with the definition of the Fourier transform F [f ](ω) = f̂(ω) =
1√
2π

∫∞
−∞ f(x)e−iωx dx we set as father and mother wavelet in Fourier space

φ̂(ω) =
1√
2π











1, |ω| ≤ 2
3π

cos(π
2 ν(

3
2π |ω| − 1)), 2π

3 < |ω| ≤ 4π
3

0 otherwise

(5)

ϕ̂(ω) =
1√
2π
e−i ω

2











sin(π
2 ν(

3
2π |ω| − 1)), 2

3π ≤ |ω| ≤ 4
3π

cos(π
2 ν(

3
4π |ω| − 1)), 4π

3 < |ω| ≤ 8π
3

0 otherwise

(6)

where ν : R → R ∈ Cr is a parameter function still do be fixed, which has the
properties ν(x) = 0 for x ≤ 0, ν(x) = 1 for x > 1 and ν(x) + ν(1 − x) = 1. By
dilation and translation we obtain

F [φl,j ](ω) = φ̂l,j(ω) = 2−
l
2 e−i2−ljωφ̂(2−lω)

F [ϕl,j ](ω) = ϕ̂l,j(ω) = 2−
l
2 e−i2−ljωϕ̂(2−lω)

where the φ̂l,j and ϕ̂l,j denote the dilates and translates of (5) and (6), respectively.
This wavelet family can be derived from a partition of unity

∑

l χ̂l(ω) = 1, ∀ω ∈
R in Fourier space, where

χ̂l(ω) =

{

2πφ̂∗0,0(ω)φ̂0,0(ω), for l = 0

2lπϕ̂∗
l−1,0(ω)ϕ̂l−1,0(ω), for l > 0

(7)

see [4] for details. The function ν basically describes the decay from one to zero of
one partition function χ̂l in the overlap with its neighbor. The smoothness of the
χ̂l is thus directly determined by the smoothness of ν. The mother wavelets ϕ̂l,j

and the father wavelets φ̂l,j in Fourier space inherit the smoothness of the χ̂l’s via
the relation (7).

There are various choices for ν with different smoothness properties in the
literature, see [4, 45, 53, 54]. Examples are the Shannon wavelet and the raised
cosine wavelet [63], i.e. (6) with

ν(x) = ν0(x) :=

{

0, x ≤ 1
2

1, otherwise
and ν(x) = ν1(x)











0, x ≤ 0

x, 0 ≤ x ≤ 1

1, otherwise

(8)

or, on the other hand,

ν(x) = ν∞(x) :=











0, x ≤ 0
ν̃(x)

ν̃(1−x)+ν̃(x) , 0 < x ≤ 1

1, otherwise

where ν̃(x) =

{

0, x ≤ 0

e−
1

xα , otherwise

(9)
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with α = 1, 2 [62], respectively. Other types of Meyer wavelets with different
smoothness properties can be found in [19, 34, 40, 65]. The resulting mother
wavelet functions in real space and Fourier space are given in Figure 1. Note
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Figure 1. Top: (6) with ν0 from (8) in Fourier space (left) and real space (right). Middle:
(6) with ν1 from (8) in Fourier space (left) and real space (right). Bottom: (6) with ν∞

from (9) in Fourier space (left) and real space (right).

the two symmetric areas of support and the associated two bands with non-zero
values of the wavelets in Fourier space which resemble the line of construction
due to Wilson, Malvar, Coifman and Meyer [17, 20, 39, 49, 64] to circumvent the
Balian-Low theorem2 [7, 48]. In real space, these wavelets are C∞-functions with

2The Balian-Low theorem basically states that the family of functions gm,n(x) = e2πimxg(x−
n), m, n ∈ Z, which are related to the windowed Fourier transform, cannot be an orthonormal
basis of L2(R), if the two integrals

R

R
x2|g(x)|2dx and

R

R
k2|ĝ(k)|2dk are both finite. Thus there

exists no orthonormal family for a Gaussian window function g(x) = π−1/4e−x2/2 which is both
sufficiently regular and well localized.
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global support, in Fourier space, they are piecewise continuous, piecewise continu-
ous differentiable and C∞, respectively, and have compact support. Furthermore
they possess infinitely many vanishing moments. Finally their envelope in real
space decays with |x| → ∞ as |x|−1 for ν0, as |x|−2 for ν1 and faster than any
polynomial (subexponentially) for ν∞, respectively. To our knowledge, only for
the Meyer wavelets with (8) there are analytical formulae in both real and Fourier
space available. Certain integrals in a Galerkin discretization of (1) can then be
given analytically. For the other types of Meyer wavelets analytical formulae only
exist in Fourier space and thus numerical integration is necessary in a Galerkin
discretization of (1).

For a discretization of (4) with respect to the level-scale l we can restrict the
doubly infinite sum to an interval l ∈ [L1, L2]. However to obtain the space VL2

we have to complement the sum of detail spaces Wl, l ∈ [L1, L2] by the space VL1 ,
i.e. we have

VL2 = VL1 ⊕
L2
⊕

l=L1

Wl.

with the associated representation

u(x) =

∞
∑

j=−∞
vL1,jφL1,j(x) +

L2
∑

L1

∞
∑

j=−∞
ul,jϕl,j(x).

Note that for the case of R, beside the choice of a finest scale L2, we here also
have a choice of the coarsest scale L1. This is in contrast to the case of a finite
domain where the coarsest scale is usually determined by the size of the domain
and is denoted as level zero.

Additionally we can scale our spaces and decompositions by a parameter c >
0, c ∈ R. For example, we can set

V c
l = span{φc,l,j(x) = c

1
2 2

l
2φ(c2lx− j) : j ∈ Z}.

For c = 2k, k ∈ Z, the obvious identity V c
l = V 1

l+k holds. Then we obtain the
scaled decomposition

V c
L2

= V c
L1

⊕
L2
⊕

l=L1

W c
l

with the scaled detail spaces W c
l = span{ϕc,l,j(x) = c

1
2 2

l
2ϕ(c2lx − j) : j ∈ Z}.

For c = 2k, k ∈ Z, the identity W c
l = W 1

l+k holds.

With the choice c = 2−L1 we can get rid of the parameter L1 and may write
our wavelet decomposition as

V c
L = V c

0 ⊕
L
⊕

l=0

W c
l , (10)

i.e. we can denote the associated coarsest space with level zero and the finest detail
space with level L (which now expresses the rescaled parameter L2). To simplify
notation we will skip the scaling index .c in the following.
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We also introduce with

ψl,j :=

{

φc
l,j , l = 0

ϕc
l−1,j l ≥ 1

(11)

for c = 2−L1 a unique notation for both the father wavelets on the coarsest scale
and the mother wavelets of the detail spaces. Bear however in mind that in the
following the function ψl,j with l = 0 denotes a father wavelet, i.e. a scaling
function only, whereas it denotes for l ≥ 1 a true wavelet on scale l − 1.

Let us finally consider the wavelet representation of the function e−σ|x−x0|

which is the one-dimensional analogon of the ground state wavefunction of hydro-
gen centered in x0 = 0. For two types of Meyer wavelets, i.e. with ν0 from (8)
and ν∞ from (9) with α = 2, Figure 2 gives the isolines to the values 10−3 and
10−4 for both the absolute value of the coefficients vl,j of the representation with
respect to the scaling functions and the absolute value of the coefficients ul,j of
the representation with respect to the wavelet functions.
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Figure 2. Isolines to the values 10−3 and 10−4 of the absolute value of the coefficients
vl,j and ul,j for the Meyer wavelets with ν0 from (8) (left) and ν∞ from (9) with α = 2
(right), no scaling (top) and scaling with 2l (bottom).

Here we see the following: For the Meyer wavelet with ν∞ from (9) where
α = 2, the isolines to different values (only 10−3 and 10−4 are shown) are nearly
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parallel for both the wavelet coefficients ul,j and the scaling coefficients vl,j . For
levels larger than −2 the isolines of the wavelet coefficients are even straight lines.
Furthermore, on sufficiently coarse levels, the isoline for the wavelet coefficients and
the scaling coefficients practically coincide. This is an effect of the C∞-property
of the underlying mother wavelet. For the Meyer wavelet with ν0 from (8), i.e.
for wavelets which are not C∞ in both real space and Fourier space, these two
observations do not hold.

If we compare the isolines of the wavelet coefficients ul,j for the Meyer wavelet
with ν∞ from (9) where α = 2 and that of the Meyer wavelet with ν0 from (8)
we observe that the level on which the bottom kink occurs is exactly the same.
However the size of the largest diameter (here roughly on level -2) is substantially
bigger for the Shannon wavelet. Note the different scaling of the x-axis of the
diagrams on the left and right side.

We furthermore observe for the isolines of the scaling coefficients an exponential
behavior, i.e. from level l to level l+1 the associated value for j nearly doubles in a
sufficient distance away from point x = 0. With respect to the wavelet coefficients,
however, we see that the support shrinks super-exponentially towards the bottom
kink with raising level.

The relation (3) relates the spaces Vl,Wl and Vl+1 and allows to switch between
the scaling coefficients and the wavelet coefficients on level l to the scaling coeffi-
cients on level l+ 1 and vice versa. This enables us to choose an optimal coarsest
level for a prescribed accuracy and we also can read off the pattern of indices (l, j)
which result in a best M -term approximation with respect to the L2− and H1-
norm for that prescribed accuracy, respectively. For the Meyer wavelet with ν∞

from (9) where α = 2, the optimal choice of the coarsest level L1 on which we use
scaling functions is just the level where, for a prescribed accuracy, the two abso-
lute values of the wavelet coefficients on one level possess their largest distance, i.e.
the associated isoline of the wavelet coefficients shows the largest diameter (here
roughly on level -2). The selection of a crossing isoline then corresponds to the
fixation of a boundary error by truncation of the further decaying scaling function
coefficients on that level which resembles a restriction of R to just a finite domain.
From this base a downward pointing triangle then gives the area of indices to be
taken into account into the finite sum of best approximation with respect to that
error. We observe that the use of the wavelets with ν0 from (8) would result in a
substantially larger area of indices and thus number of coefficients to be taken into
account to obtain the same error level. There, the form of the area is no longer a
simple triangle but shows a ”butterfly”-like shape where the base of the pattern is
substantially larger.

3. MRA and Sobolev spaces for particle spaces

In the following we introduce a multiresolution analysis based on Meyer wavelets
for particle spaces on (Rd)N and discuss various Sobolev spaces on it.

First, let us set up a basis for the one-particle space Hs(Rd) ⊂ L2(Rd). Here, we
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use the d-dimensional product of the one-dimensional system {ψl,j(x), l ∈ N0, j ∈
Z}. We then define the d-dimensional multi-indices l = (l1, l2, . . . , ld) ∈ N

d
0 and

j = (j1, j2, . . . , jd) ∈ Z
d, the coordinate vector x = (x1, . . . , xd) ∈ R

d and the
associated d-dimensional basis functions

ψl,j(x) :=

d
∏

i=1

ψli,ji
(xi). (12)

Note that due to (11) this product may involve both father and mother wavelets
depending on the values of the components of the level index l. We furthermore
denote |l|2 = (

∑d
i=1 l

2
i )

1/2 and |l|∞ = max1≤i≤d |li|. Let us now define isotropic
Sobolev spaces in d dimensions with help of the wavelet series expansion, i.e. we
classify functions via the decay of their wavelet coefficients. To this end, we set

λ(l) := |2l|2 = |(2l1 , . . . , 2ld)|2 (13)

and define

Hs(Rd) =















u(x) =
∑

l∈Nd
0

,

j∈Zd

ul,jψl,i(x) : ‖u‖2
Hs(Rd) =

∑

l∈Nd
0

,

j∈Zd

λ(l)2s · |ul,j|2 ≤ c2 <∞















,

(14)
where ul,j =

∫

Rd ψ
∗
l,j(x)u(x)d~x and c is a constant which depends on d.

Based on the given one-particle basis (12) we now define a basis for many-
particle spaces on R

d·N . We then have the d · N -dimensional coordinates ~x :=
(x1, . . . ,xN ) where xi ∈ R

d. To this end, we first employ a tensor product con-

struction and define the multi-indices ~l = (l1, ..., lN ) ∈ N
d·N
0 and the associated

multivariate wavelets

ψ~l,~j(~x) :=

N
∏

p=1

ψlp,j
p
(xp) =

(

N
⊗

p=1

ψlp,jp

)

(x1, . . . ,xN ). (15)

Note again that this product may involve both father and mother wavelets de-
pending on the values of the components of the level index ~l. The wavelets ψ~l,~j

span the subspaces W~l,~j := span{ψ~l,~j} whose union forms3 the space

V =
⊕

~l∈NdN
0

~j∈ZdN

W~l,~j. (16)

We then can uniquely represent any function u from V as

u(~x) =
∑

~l∈NdN
0

~j∈ZdN

u~l,~j ψ~l,~j(~x) (17)

3Except for the completion with respect to a chosen Sobolev norm, V is just the associated
Sobolev space.
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with coefficients u~l,~j =
∫

RdN ψ
∗
~l,~j

(~x)u(~x)d~x.

Now, starting from the one-particle space Hs(Rd) we build Sobolev spaces for
many particles. Obviously there are many possibilities to generalize the concept
of Sobolev spaces [1] from the one-particle case to higher dimensions. Two simple
possibilities are the additive or multiplicative combination i.e. an arithmetic or
geometric averaging of the scales for the different particles. We use the following
definition that combines both possibilities. We denote

λmix(~l) :=
N
∏

p=1

λ(lp) and λiso(~l) :=
N
∑

p=1

λ(lp). (18)

Now, for −∞ < t, r <∞, set

Ht,r
mix((R

d)N ) =















u(~x) =
∑

~l∈NdN
0

~j∈ZdN

u~l,~jψ~l,~j(~x) : (19)

‖u‖2
Ht,r

mix((R
d)N )

=
∑

~l∈NdN
0

λmix(~l)
2t · λiso(~l)

2r ·
∑

~j∈ZdN

|u~l,~j|
2 ≤ c2 <∞







with a constant c which depends on d and N .
The standard isotropic Sobolev spaces [1] as well as the Sobolev spaces of

dominating mixed smoothness [58], both generalized to the N -particle case, are
included here. They can be written as the special cases

Hs((Rd)N ) = H0,s
mix((R

d)N ) and Ht
mix((R

d)N ) = Ht,0
mix((R

d)N ),

respectively. Hence, the parameter r from (19) governs the isotropic smoothness,
whereas t governs the mixed smoothness. Thus, the spaces Ht,r

mix give us a quite
flexible framework for the study of problems in Sobolev spaces. Note that the

relations Ht
mix ⊂ Ht ⊂ Ht/N

mix for t ≥ 0 and Ht/N
mix ⊂ Ht ⊂ Ht

mix for t ≤ 0 hold. See
[58] and [36] for more information on the spaces Ht

mix.

4. Semidiscrete general sparse grid spaces

We now consider truncation of the series expansion (17) with respect to the level

parameter ~l but keep the part of the full series expansion with respect to the
position parameter ~j. To this end, we introduce, besides the parameter L (after
proper scaling with c) which indicates the truncation of the scale with respect to
the one-particle space, an additional parameter T ∈ (−∞, 1] which regulates the
truncation pattern for the interaction between particles. We define the generalized
sparse grid space

VL,T :=
⊕

~l∈ΩL,T

W~l where W~l = span{ψ~l,~j,
~j ∈ Z

dN} (20)
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with associated generalized hyperbolic cross with respect to the scale-parameter ~l

ΩL,T := {~l ∈ N
d·N
0 : λmix(~l) · λiso(~l)

−T ≤ (2L)1−T }. (21)

The parameter T allows us to switch from the full grid case T = −∞ to the
conventional sparse grid case T = 0, compare [12, 31, 42], and also allows to create
with T ∈ (0, 1] subspaces of the hyperbolic cross/conventional sparse grid space.
Obviously, the inclusions VL,T1 ⊂ VL,T2 for T1 ≥ T2 hold. Figure 3 displays the
index sets for various choices of T for the case d = 1, N = 2 and L = 128.

l1

l 2

0 32 64 96 128
0

32

64

96

128

l1

l 2

0 32 64 96 128
0

32

64

96

128

l1

l 2

0 32 64 96 128
0

32

64

96

128

l1

l 2

0 32 64 96 128
0

32

64

96

128

Figure 3. Ω128,T for T = 0.5, 0,−2,−10 (from left to right), d = 1, N = 2; the con-
ventional sparse grid/hyperbolic cross corresponds to T = 0. For T = −∞ we get a
completely black square.

We then can uniquely represent any function u from VK,T as

u(~x) =
∑

~l∈ΩL,T ,~j∈Zd·N

u~l,~j ψ~l,~j(~x).

Such a projection into VK,T introduces an error. Here we have the following
error estimate:

Lemma 1: Let s < r + t, t ≥ 0, u ∈ Ht,r
mix((R

d)N ). Let ũL,T be the best
approximation in VL,T with respect to the Hs-norm and let uL,T be the interpolant
of u in VL,T , i.e. uL,T =

∑

~l∈ΩL,T

∑

~j∈ZdN u~l,~jψ~l,~j(~x). Then, there holds

inf
VL,T

‖u− v‖Hs = ‖u− ũL,T‖Hs ≤ ‖u− uL,T ‖Hs (22)

≤
{

O((2L)s−r−t+(Tt−s+r) N−1
N−T ) · ‖u‖Ht,r

mix
for T ≥ s−r

t ,

O((2L)s−r−t) · ‖u‖Ht,r
mix

for T ≤ s−r
t .

For a proof, compare the arguments in [31, 42, 43, 30]. This type of estimate
was already given for the case of a dyadically refined wavelet basis with d = 1 for
the periodic case on a finite domain in [31, 42, 43]. It is a generalization of the
energy-norm based sparse grid approach of [11, 12, 29] where the case s = 1, t = 2,
r = 0 was considered using a hierarchical piecewise linear basis.

Let us discuss some cases. For the standard Sobolev space H0,r
mix (i.e. t = 0, r =

2) and the spaces VL,T with T ≥ −∞ the resulting order is dependent of T and
dependent on the number of particles N . In particular the order even deteriorates
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with larger T . For the standard Sobolev spaces of bounded mixed derivatives Ht,0
mix

(i.e. t = 2, r = 0) and the spaces VL,T with T > s
2 the resulting order is dependent

of T and dependent on the number of particles N whereas for T ≤ s
2 the resulting

order is independent of T and N . If we restrict the class of functions for example
to H1,1

mix (i.e. t = 1, r = 1) and measure the error in the H1-norm (i.e. s = 1) the
approximation order is dependent on N for all T > 0 and independent on N and
T for all T ≤ 0. Note that in all cases the constants in the O-notation depend on
N and d.

5. Antisymmetric semidiscrete general sparse grid

spaces

Let us now come back to the Schrödinger equation (1). Note that in general an
electronic wave function depends in addition to the positions xi of the electrons
also on their associated spin coordinates σi ∈ {− 1

2 ,
1
2}. Thus electronic wave func-

tions are defined as Ψ : (Rd)N × {− 1
2 ,

1
2}N → R : (~x, ~σ) → Ψ(~x, ~σ) with spin

coordinates ~σ = (σ1, . . . , σN ). Furthermore, physically relevant eigenfunctions Ψ
obey the following two assumptions: First, elementary particles are indistinguish-
able from each other (fundamental principle of quantum mechanics). Second, no
two electrons may occupy the same quantum state simultaneously (Pauli exclusion
principle). Thus, we consider only wave functions which are antisymmetric with
respect to an arbitrary simultaneous permutation P ∈ SN of the electron positions
and spin variables, i.e. which fulfil

Ψ(P~x, P~σ) = (−1)|P |Ψ(P~x, P~σ) .

Here, SN denotes the symmetric group. The permutation P is a mapping P :
{1, . . . , N} → {1, . . . , N} which translates to a permutation of the correspond-
ing numbering of electrons and thus to a permutation of indices, i.e. we have
P (x1, . . . ,xN )T := (xP (1), . . . ,xP (N))

T and P (σ1, . . . , σN )T := (σP (1), . . . , σP (N))
T .

In particular, the symmetric group is of size |SN | = N ! and the expression (−1)|P |

is equal to the determinant detP of the associated permutation matrix.
Now, to a given spin vector ~σ ∈ {− 1

2 ,
1
2}N we define the associated spatial

component of the full wave function Ψ by Ψ~σ : (Rd)N → R : ~x → Ψ(~x, ~σ) .
Then, since there are 2N possible different spin distributions ~σ, the full Schrödinger
equation, i.e. the eigenvalue problem HΨ = EΨ, decouples into 2N eigenvalue
problems for the 2N associated spatial components Ψ~σ. Here, the spatial part Ψ~σ

to a given ~σ obeys the condition

Ψ~σ(P~x) = (−1)|P |Ψ~σ(P~x) , ∀P ∈ S~σ := {P ∈ SN : P~σ = ~σ} . (23)

In particular, the minimal eigenvalue of all eigenvalue problems for the spatial com-
ponents is equal to the minimal eigenvalue of the full eigenvalue problem. More-
over, the eigenfunctions of the full system can be composed by the eigenfunctions
of the eigenvalue problems for the spatial parts.
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Although there are 2N possible different spin distributions ~σ, the bilinear form
〈Ψ(P ·)|H |Ψ(P ·)〉 is invariant under all permutations P ∈ SN of the position co-
ordinates ~x. Thus it is sufficient to consider the eigenvalue problems which are

associated to the spin vectors ~σ(N,S) = (σ
(N,S)
1 , . . . , σ

(N,S)
N ) where the first S elec-

trons possess spin − 1
2 and the remaining N − S electrons possess spin 1

2 , i.e.

σ
(N,S)
j =

{

− 1
2 for j ≤ S,
1
2 for j > S.

In particular, it is enough to solve only the ⌊N/2⌋ eigenvalue problems which
correspond to the spin vectors ~σ(N,S) with S ≤ N/2. For further details see
[66]. Therefore, we consider in the following without loss of generality only spin

distributions ~σ(N,S) = (σ
(N,S)
1 , . . . , σ

(N,S)
N ). We set S(N,S) := S~σ(N,S) . Note that

there holds |S(N,S)| = S!(N − S)!.
Now we define spaces of antisymmetric functions and their semi-discrete sparse

grid counterparts. The functions of the N -particle space V from (16) which obey

the anti-symmetry condition (23) for a given ~σ(N,S) form a linear subspace V A(N,S)

of V . We define the projection into this subspace, i.e. the antisymmetrization

operator A(N,S) : V → V A(N,S)

by

A(N,S)u(~x) :=
1

S!(N − S)!

∑

P∈SN,S

(−1)|P |u(P~x). (24)

For any basis function ψ~l~,j of our general N -particle space V we then have

A(N,S)ψ ~l,j(~x) = A(N,S)





(

S
⊗

p=1

ψlp,jp

)

(x1, . . . ,xS)





N
⊗

p=S+1

ψlp,jp



 (xS+1, . . .xN )





=

(

A(S,S)
S
⊗

p=1

ψlp,jp(x1, . . . ,xS)

)



A(N−S,N−S)
N
⊗

p=S+1

ψlp,jp(~xS+1, . . . ,xN )





=

(

1

S!

S
∧

p=1

ψlp,jp (x1, . . . ,xS)

)





1

(N − S)!

N
∧

p=S+1

ψlp,jp (xS+1, . . . ,xN )





=
1

S!(N − S)!

∑

P∈SN,S

(−1)|P |ψ~l,~j(P~x) =
1

S!(N − S)!

∑

P∈SN,S

(−1)|P |ψP~l,P~j(~x).

In other words, the classical product

ψ~l,~j(~x) :=

N
∏

p=1

ψlp,jp(xp) =

(

N
⊗

p=1

ψlp,jp

)

(x1, . . . ,xN )

gets replaced by the product of two outer products

1

S!

S
∧

p=1

ψlp,jp (x1, . . . ,xS) and
1

(N − S)!

N
∧

p=S+1

ψlp,jp (xS+1, . . . ,xN )
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that correspond to the two sets of coordinates and one-particle bases which are
associated to the two spin values − 1

2 and 1
2 . The outer product involves just the

so-called slater determinant [55], i.e.

N
∧

p=1

ψlp,jp (x1, . . . ,xN ) =

∣

∣

∣

∣

∣

∣

∣

ψl1,j1(x1) . . . ψl1,j1(xN )
...

. . .
...

ψlN ,jN (x1) . . . ψlN ,jN (xN )

∣

∣

∣

∣

∣

∣

∣

.

Note here again that due to (11) both father wavelet functions and mother wavelet
functions may be involved in the respective products.

The sequence
{

A(N,S)ψ~l,~j

}

~l∈NdN
0 ,~j∈ZdN

only forms a generating system of the

antisymmetric subspace V A(N,S)

and no basis since many functions A(N,S)ψ~l,~j are

identical (up to the sign). But we can gain a basis for the antisymmetric subspace

V A(N,S)

if we restrict the sequence
{

A(N,S)ψ~l,~j

}

~l∈NdN
0 ,~j∈ZdN

properly. This can be

done in many different ways. A possible orthonormal basis B(N,S) for V A(N,S)

is
given with help of

Φ
(N,S)
~l,~j

(~x) :=
1

√

S!(N − S)!
·

S
∧

p=1

ψlp,jp (x1, . . . ,xS) ·
N
∧

p=S+1

ψlp,jp (xS+1, . . . ,xN )

(25)
as follows:

B(N,S) :=
{

Φ
(N,S)
~l,~j

: ~l ∈ N
d·N
0 ,~j ∈ Z

d·N , (26)

(l1, j1) < . . . < (lS , jS) ∧ (lS+1, jS+1) < . . . < (lN , jN )}

where for the index pair

Ip := (lp, jp) = (lp,(1), . . . , lp,(d), jp,(1), . . . , jp,(d))

the relation < is defined as

Ip < Iq :⇔ ∃α ∈ {1, . . . , 2d} : Ip,(α) < Iq,(α) ∧ ∀β ∈ {1, . . . , α−1} : Ip,(β) ≤ Iq,(β).

With

ΩA(N,S)

= { (~l,~j) :~l ∈ N
d·N
0 ,~j ∈ Z

d·N ,

(l1, j1) < . . . < (lS , jS) ∧ (lS+1, jS+1) < . . . < (lN , jN )}

we then can define the antisymmetric subspace V A(N,S)

of V as

V A(N,S)

=
⊕

(~l,~j)∈ΩA(N,S)

W~l,~j (27)
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where we denote from now on W~l,~j = span{Φ(N,S)
~l,~j

(~x)}. Any function u from

V A(N,S)

can then uniquely be represented as

u(~x) =
∑

(~l,~j)∈ΩA(N,S)

u~l,~j Φ
(N,S)
~l,~j

(~x)

with coefficients u~l,~j =
∫

IdN Φ
(N,S)∗
~l~j

(~x)u(~x)d~x.

Now we are in the position to consider semidiscrete subspaces of V A(N,S)

. To
this end, in analogy to (20) we define the the generalized semidiscrete antisym-
metric sparse grid spaces

V A(N,S)

L,T :=
⊕

(~l,~j)∈ΩA(N,S)

K,T

W~l,~j

with associated antisymmetric generalized sets

ΩA(N,S)

L,T := {(~l,~j) :~l ∈ N
d·N
0 ,~j ∈ Z

d·N , λmix(~l) · λiso(~l)
−T ≤ (2L)1−T

(l1, j1) < . . . < (lS , jS) ∧ (lS+1, jS+1) < . . . < (lN , jN )}.

Obviously, the inclusions V A(N,S)

K,T1
⊂ V A(N,S)

K,T2
for T1 ≥ T2 hold. Note that for the

associated error the same type of estimate as in Lemma 1 holds. The number of
~l-subbands however, i.e. the number of subsets of indices from ΩA(N,S)

L,T with the

same ~l, is reduced by the factor S!(N − S)!.

6. Regularity and decay properties of the solution

So far we introduced various semidiscrete sparse grid spaces for particle problems
and carried these techniques over to the case of antisymmetric wave functions.
Here, the order of the error estimate depended on the degree s of the Sobolev-
norm in which we measure the approximation error and the degrees t and r of
anisotropic and isotropic smoothness, respectively, which was assumed to hold for
the continuous wave function.

We now return to the electronic Schrödinger problem (1) and invoke our gen-
eral theory for this special case. To this end, let us recall a major result from
[67]. There, Yserentant showed with the help of Fourier transforms that an an-
tisymmetric solution of the electronic Schrödinger equation with d = 3 possesses

H1,1
mix-regularity in the case S = 0 or S = N and at least H1/2,1

mix -regularity other-
wise. The main argument to derive this fact is a Hardy type inequality, see [67]
for details.

Let us first consider the case of a full antisymmetric solution, i.e. the case S = 0
or S = N , and the resulting approximation rate in more detail. If we measure the
approximation error in the H1-norm, we obtain from Lemma 1 with s = 1 and
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t = r = 1 the approximation order O((2L)−1+T · N−1
N−T ) for T ≥ 0 and O(2−L) for

T ≤ 0. In particular, for the choice T = 0 we have a rate of O(2−L). Also note
that the constant in the estimate still depends on N and d.

In an analog way we can argue for the partial antisymmetric case where we

have for an arbitrary chosen 1 ≤ S ≤ N at least H1/2,1
mix -regularity of the associated

wave function. If we measure the approximation error in the H1-norm, we obtain

from Lemma 1 with s = 1 and t = 1/2, r = 1 (H1/2,1
mix -regularity) the approximation

order O((2L/2)−1+T · N−1
N−T ) for T ≥ 0 and O(2−L/2) for T ≤ 0. In particular, for

the choice T = 0 we have a rate of O(2−L/2).

Note however that the order constant depends on N and d. Moreover, also the

H1,1
mix- and H1/2,1

mix -terms may grow exponentially with the number N of electrons.

This is a serious problem for any further discretization in ~j-space since to com-
pensate for this exponential growth, the parameter L has to be chosen dependent
on N . Such a behavior could be seen in the case of a finite domain with periodic
boundary conditions with Fourier bases from the results of the numerical experi-
ments in [30] and was one reason why problems with higher numbers of electrons
could not be treated.

In [69], a rescaling of the mixed Sobolev norm is suggested. To this end, a
scaled analog of the H1,r

mix-norm, r ∈ {0, 1}, albeit in Fourier space notation (one
~k-scale in Fourier space only instead of the ~l- and ~j-scales in wavelet space) is
introduced, compare also [30], via

‖Ψ‖H1,r
mix

=

∫

RdN





∏

p∈I

(

1 +

∣

∣

∣

∣

kp

R

∣

∣

∣

∣

2
)





(

N
∑

p=1

∣

∣

∣

∣

kp

R

∣

∣

∣

∣

2
)r

|Ψ̂(~k)|2d~k (28)

where I denotes the subset of indices of electrons with the same spin, Ψ̂(~k) is

the Fourier transform of Ψ and ~k ∈ R
dN are the coordinates in Fourier space

with single-particle-components kp ∈ R
d. Here the scaling parameter R relates

to the intrinsic length scale of the atom or molecule under consideration. It must
hold R ≤ C

√
N max(N,Z) with Z =

∑

q Zq the totals charge of the nuclei, see

also [56, 69]. For an electronically neutral system Z = N and thus R ≤ CN3/2.
Compared to our definitions λmix and λiso of (18) we see the following difference:
Besides that (28) involves integration instead of summation, (28) deals with the
non-octavized case whereas we used the octavized version which involves powers
of two. This is one reason why in the product

∏

p∈I(1 + |kp/R|2) the factor one
must be present. Otherwise the case kp = 0 is not dealt properly with. But this
also opens the possibility to treat the coordinates with values zero differently in
the scaling, since the scaling with 1/R in the product acts only on the coordinates
with non-zero values.

Furthermore, with I+ and I− the sets of indices p of electrons for which the spin
attains the values −1/2 and 1/2, respectively, and a parameter K (non-octavized
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case), the subdomain

HY
R,K :=







(k1, . . .kN ) ∈ (R3)N :
∏

p∈I+

(

1 +

∣

∣

∣

∣

kp

R

∣

∣

∣

∣

2

2

)

+
∏

p∈I−

(

1 +

∣

∣

∣

∣

kp

R

∣

∣

∣

∣

2

2

)

≤ K2







(29)
in Fourier space describes a cartesian product of two scaled hyperbolic crosses. In
the extreme cases S = 0 or S = N it degenerates to just one hyperbolic cross.
Then, with the projection

(PR,KΨ)(x) =

(

1√
2π

)3N ∫

χ̂R,K(~k)Ψ̂(~k)ei~k·~xd~k,

where χ̂R,K is the characteristic function of the domain HY
R,K , the following error

estimate is shown in [69]: For all eigenfunctions with negative eigenvalues and
s = 0, 1 there holds

‖Ψ − PR,KΨ‖s ≤ 2
√
e

K
Rs‖Ψ‖0. (30)

The restriction to eigenfunctions of the Schrödinger-Hamiltonian whose associated
eigenvalues are strictly smaller than zero is not a severe issue since such an assump-
tion holds for bounded states, i.e. any system with localized electrons, compare
also [25, 38, 59].

This surprising result shows that, with proper scaling in the norms and the as-
sociated choice of a scaled hyperbolic cross, it is possible to get rid of the ‖Ψ‖H1,r

mix
-

terms on the right hand side of sparse grid estimates of the type (22). Note that
these terms may grow exponentially with N whereas ‖Ψ‖0 = 1. To derive semidis-
crete approximation spaces which, e.g. after scaling, overcome this problem is an
important step towards any efficient discretization for problems with higher num-
bers of electrons N . Note however that e.g. already for the most simple case S = 0
or S = N where in (29) only one cross is involved due to I− = {} or I+ = {},
the subdomain HY

R,K is no longer a conventional hyperbolic cross in Fourier space.
Now, depending of the different dimensions, the ”rays” of the cross are chopped
off due to the rescaling with R. This gets more transparent if we use the relation

N
∏

p=1

(1 + |kp|22) =

N
∑

p=0

∑

a⊂{1,...,N}
|a|=p

∏

j∈α

|kj |22

and rewrite (29) e.g. in the case S = 0 or S = N as

HY
R,K =











~k : K−2







N
∑

p=0

∑

a⊂{1,...,N}
|a|=p

R−2p
∏

j∈α

|kj |22






≤ 1











(31)
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If we now define for K0,K1, . . . ,KN ∈ N

HK0,K1,...,KN
:=











~k :







N
∑

p=0

∑

a⊂{1,...,N}
|a|=p

K−2
p

∏

j∈α

|kj |22






≤ 1











(32)

we have

HR0K,R1K,...,RN K = HY
R,K

and see more clearly how the scaling with R acts individually on the different
dimensional subsets of the Fourier coordinates. In Figure 4 we give in logarith-
mic and absolute representation the boundaries of the domains HY

1,K , HY
R,K and

HY
1,RN K for R = 8, K = 28. Here we can observe how the scaled variant HY

R,K is

just embedded between the two non-scaled domains HY
1,K and HY

1,RN K . While the

boundary of HY
R,K matches in ”diagonal” direction that of the huge regular sparse

grid HY
1,RN K this is no longer the case for the other directions.
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Figure 4. Sets of level indices for HY
1,K , HY

R,K , HY
1,RN K in the case d = 1, R = 8, K = 28

for N = 2 and N = 3.

This dimensional scaling is closely related to well-known decay properties of
the solution of Schrödinger’s equation which we now recall from the literature. In
the seminal work of Agmon [2] the L2-decay of the eigenfunctions of the electronic
Schrödinger-Hamiltonian of an atom with one nucleus fixed in the origin of the
coordinate system is studied in detail and a characterization of the type

∫

RN·d

|Ψ(~x)|2e2(1−ε)ρ(~x)d~x ≤ c <∞

for any ε > 0 is given for eigenfunctions Ψ with associated eigenvalue µ below
the so-called essential spectrum of H . In other words, Ψ decays in the L2-sense
roughly like e−ρ(~x). Here, ρ(~x) is the geodesic distance from ~x to the origin in the
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Riemannian metric

d~s2 = (ΛI(~x) − µ)

N
∑

i=1

2|dxi|22.

To this end, if I denotes any proper subset of {1, . . .N}, let HI denote the re-
striction of the full Hamiltonian H to the subsystem involving only the electrons
associated to I and ΛI = inf σ(HI), ΛI = 0 if I is empty. For any ~x ∈ R

N ·d/{0},
I(~x) denotes the subset of integers i ∈ {1, . . . , N} for which xi = 0. Note that ρ
is not isotropic but takes at each point ~x the amount of electrons with position 0,
i.e. the number of electron-nucleus cusps into account.

The result (30) gives some hope that it might indeed be possible to find after

additional discretization (in~j-space) an overall discretization which is cost effective
and results in an error which does not grow exponentially with the amount of
electrons.

The idea is now to decompose the scaled hyperbolic cross HY
R,K in Fourier

space and to approximate the corresponding parts of the associated projection
PR,KΨ̂(~k) properly. To this end, let us assume that we consider a non-periodic,
isolated system. It then can be shown that any eigenfunction Ψ with negative
eigenvalue below the essential spectrum of the Schrödinger operator H decays
exponentially in the L2-sense with |~x| → ∞. The same holds for its first derivative
[37]. A consequence is that the Fourier transform Ψ̂ is infinitely often differentiable

as a function in ~k. Let us now decompose HY
R,K into finitely many subdomains

HY
R,K,~l

and let us split Ψ̂R,K(~k) := χ̂R,K(~k)Ψ̂(~k) accordingly into Ψ̂R,K,~l(
~k), i.e.

Ψ̂R,K(~k) =
∑

~l

χ̂~lΨ̂R,K(~k) =
∑

~l

Ψ̂R,K,~l(
~k)

by means of a C∞-partition of unity
∑

~l χ̂~l = 1 on HY
R,K , i.e. each χ̂~l(

~k) ∈ C∞ as a

function in ~k. Then the functions Ψ̂R,K,~l(
~k) inherit the C∞-smoothness property

and thus can each be well and efficiently approximated by e.g. a properly truncated
Fourier series expansion. Note that the detailed choice of partition of unity is not
yet specified and there are many possibilities. In the following we will use, e.g.
after proper scaling, c.f. (10) and (11), the partition

χ̂~l(
~k) =

N
∏

p=1

d
∏

i=1

χ̂lp,(i)
(kp,(i))

where

χ̂l(k) :=

{

χ̂(k
c ) for l = 0,

χ̂( k
c2l ) − χ̂( k

c2l−1 ) for l > 0,

with

χ̂(k) =























1 for |k| ≤ 2π
3 ,

cos

(

π
2

e
− 4π2

(3k+2π)2

e
− 4π2

(4π+3k)2 +e
− 4π2

(3x+2π)2

)2

for 2π
3 ≤ |k| ≤ 4π

3 ,

0 for |k| ≥ 4π
3 .
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This choice results in just a representation with respect to the Meyer wavelet series
with ν∞, i.e. (9) with α = 2, compare also (7). The Fourier series expansion of

each Ψ̂R,K,~l(
~k) then introduces just the ~j-scale, while the ~k-scale of the Fourier

space relates to the ~l-scale of the Meyer wavelets. All we now need is a good
decomposition of HY

R,K into subdomains, a choice of smooth χ̂~l’s and a proper

truncation of the Fourier series expansion of each of the Ψ̂R,K,~l’s. This corresponds

to a truncation of the Meyer wavelet expansion of Ψ in R
d·N with respect to both

the~l- and the ~j-scale. Presently, however, it is not completely clear what choice of
decomposition and what kind of truncation of the expansion within each subband
~l is most favourable with respect to both the resulting number M of degrees of
freedom and the corresponding accuracy of approximation for varying number N
of electrons. Anyway, with the choice K = 2L the set of indices in ~l,~j-wavelet
space which is associated to (29) reads

ΩA(N,S)

HY

R,2L
:=







(~l,~j) ∈ ΩA(N,S)

:

S
∏

i=1



1 +

∣

∣

∣

∣

∣

λ̃(li)

R

∣

∣

∣

∣

∣

2

2



+

N
∏

i=S+1



1 +

∣

∣

∣

∣

∣

λ̃(li)

R

∣

∣

∣

∣

∣

2

2



 ≤ 22L







,

where for l ∈ N
d
0 we define

λ̃(l) := min
k∈supp(χ̂l)

{|k|2} .

Note that this involves a kind of octavization due to the size of the support of the
χ̂l. For example, we obtain for the Shannon wavelet λ̃(l) = |(λ̃ν0 (l1), . . . , λ̃ν0(ld))|2
with

λ̃ν0(l) =

{

0, l = 0,

cπ2l−1, otherwise.

7. Numerical experiments

We now consider the assembly of the discrete system matrix which is associated to

a generalized antisymmetric sparse grid space V A(N,S)

Λ with corresponding finite-

dimensional set ΩA(N,S)

Λ ⊂ ΩA(N,S)

and basis functions {Φ(N,S)
~l,~j

: (~l,~j) ∈ ΩA(N,S)

Λ }
with {Φ(N,S)

~l,~j
} from (25) in a Galerkin discretization of (1). To this end, we fix

N > 0 and 0 ≤ S ≤ N and omit for reasons of simplicity the indices S and N in
the following.

To each pair of indices (~l,~j), (~l′,~j′), each from ΩA(N,S)

Λ , and associated functions

Φ
(N,S)
~l,~j

,Φ
(N,S)
~l′,~j′

we obtain one entry in the stiffness matrix, i.e.

A(~l,~j),(~l′,~j′) := 〈Φ(N,S)
~l,~j

|H |Φ(N,S)
~l′,~j′

〉 =

∫

Φ
(N,S)∗
~l,~j

(~x)HΦ
(N,S)
~l′,~j′

(~x) d~x. (33)
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Since we use L2-orthogonal one-dimensional Meyer wavelets as basic building
blocks in our construction, also the one-particle basis functions are L2-orthogonal
and we furthermore have L2-orthogonality of the antisymmetric many-particle ba-

sis functions Φ
(N,S)
~l,~j

(x). We then can take advantage of the well-known Slater-

Condon rules [18, 55, 60]. Consequently, quite a few entries of the system matrix
are zero and the remaining non-zero entries can be put together from the values
of certain d- and 2d-dimensional integrals. These integrals can be written in terms
of the Fourier transformation of the Meyer wavelets. In case of the kinetic energy
operator we obtain for lα, lβ ∈ N

d
0 and jα, jβ ∈ Z

d

〈ψlα,jα | −
1

2
∆|ψlβ ,jβ 〉 =

1

2

∫

Rd

∇ψ∗
lα,jα(x) · ∇ψlβ ,jβ (x)dx

=
1

2

d
∑

µ=1

∫

R

k2
µψ̂

∗
lα,(µ),jα,(µ)

(kµ)ψ̂lβ,(µ),jβ,(µ)
(kµ) dkµ

d
∏

ν 6=µ

δlα,(ν),lβ,(ν)
δjα,(ν),jβ,(ν)

and for the integrals related to the d-dimensional Coulomb operator v(x) = 1/|x|2
we can write

〈ψlα,jα |v|ψlβ ,jβ 〉 =

∫

Rd

ψ∗
lα,jα(x)v(x)ψlβ ,jβ (x)dx =

∫

Rd

v̂∗(k)(ψ̂lα,jα ∗ ψ̂lβ ,jβ )(k) dk .

For lα, lβ , lα′ , lβ′ ∈ N
d
0 and jα, jβ , jα′ , jβ′ ∈ Z

d we obtain the integrals related to
the electron-electron operator v(x − y) = 1/|x− y|2 in the form

∫

Rd

∫

Rd

ψ∗
lα,jα(x)ψ∗

l′α,jα′
(y)v(x − y)ψlβ ,jβ (x)ψlβ′ ,jβ′ (y)dx dy

= (2π)
d
2

∫

Rd

(ψ̂lα,jα ∗ ψ̂lβ ,jβ )∗(k)v̂(k)(ψ̂lα′ ,jα′ ∗ ψ̂lβ′ ,jβ′ )(k) dk .

Here, f ∗ g denotes the Fourier convolution, namely (2π)−
d
2

∫

Rd f(x − y)g(y) dy.
Note that, in the case of the Meyer wavelet tensor-product basis, the d-dimensional
Fourier convolution can be written in terms of the one-dimensional Fourier convo-
lution

(ψ̂lα,jα ∗ ψ̂lβ ,jβ )(k) =

d
∏

µ=1

(ψ̂lα,(µ),jα,(µ)
∗ ψ̂lβ,(µ),jβ,(µ)

)(kµ) .

Thus the d-dimensional and 2d-dimensional integrals in real space which are asso-
ciated to the Coulomb operator and the electron-electron operator can be written
in form of d-dimensional integrals of terms involving one-dimensional convolution
integrals.

For the solution of the resulting discrete eigenvalue problem we invoke a paral-
lelized conventional Lanczos method taken from the software package SLEPc [35]
which is based on the parallel software package PETSc [6]. Note that here also
other solution approaches are possible with improved complexities, like multigrid-
type methods [13, 15, 44, 47] which however still need to be carried over to the
setting of our generalized antisymmetric sparse grids.
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Note that an estimate for the accuracy of an eigenfunction relates to an ana-
logous estimate for the eigenvalue by means of the relation |E − Eapp| ≤ C ·
‖Ψ−Ψapp‖2

H1 where E and Ψ denote the exact minimal eigenvalue and associated
eigenfunction of H , respectively, and Eapp and Ψapp denote finite-dimensional
Galerkin approximations in arbitrary subspaces, see also [66].

Then, with Lemma 1, we would obtain for the case d = 3 with s = 1 and, for
example, r = 1, t = 1, S = 0 and T ≥ 0 the estimate

|E − EA(N,0)

L,0 | ≤ C · ‖Ψ − ΨA(N,0)

L,0 ‖2
H1 ≤ O((2L)−2(1−T N−1

N−T
)) · ‖ΨA(N,0)‖2

H1,1
mix

and we see that the eigenvalues are in general much better approximated than the
eigenfunctions. For example, for T = 0, this would result in a (squared) rate of
the order −2.

Let us now describe our heuristic approach for a finite-dimensional subspace

choice in wavelet space which hopefully gives us efficient a-priori patterns ΩA(N,S)

Λ

and associated subspaces V A(N,S)

Λ . We use a model function of the Hylleraas-type
[16, 41, 57]4

h(~x) =
N
∏

p=1

(

e−αp|xp|2
N
∏

q>p

e−βp,q|xp−xq|2

)

(34)

which reflects the decay properties, the nucleus cusp and the electron-electron cusps
of an atom in real space with nucleus fixed in the origin as guidance to a-priori
derive a pattern of active wavelet indices in space and scale similar to the simple
one-dimensional example of Figure 2. The localization peak of a Meyer wavelet
ψl,j in real space (e.g. after proper scaling with some c analogously to (10)) is
given by

θ(l, j) = ι(l, j)2−l where ι(l, j) =

{

j, l = 0,

1 + 2j, otherwise

which leads in the multidimensional case to

θl,j = (θ(l1, j1), . . . , θ(ld, jd)) ∈ R
d

θ~l,~j = (θ(l1, j1), . . . , θ(lN , jN )) ∈ (Rd)N

We now are in the position to describe different discretizations with respect to
both the ~l-scale and the ~j-scale. We focus with respect to the ~j-scale on three
cases: First, we restrict the whole real space to a finite domain and take the
associated wavelets on all incorporated levels into account. Note that in this case
the number of wavelets grows from level to level by a factor of 2. Second, we use
on each level the same prescribed fixed number of wavelets. And third we let the
number of wavelets decay from level to level by a certain factor which results in
a multivariate analog to the triangular subspace of Figure 2 (right). With respect

4Note that we omitted here any prefactors for reasons of simplicity.
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to the ~l-scale we rely in all cases on the regular sparse grid with T = 0. These
three different discretization approaches are illustrated in the Figures 5-8 for d = 1,
N = 1 and d = 1, N = 2, respectively.
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Figure 5. From left to right: Index sets ΩA(N,S)

Λfull(L,J,R), ΩA(N,S)

ΛΘrec (L,J,R) and ΩA(N,S)

ΛΘtri (L,J,R)
with

d = 1, N = 1, L = 8, J = 4, R = 1 and α1 = 1.
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Figure 6. From left to right: Localization peaks of basis functions in real space corre-

sponding to index sets ΩA(N,S)

Λfull(L,J,R), ΩA(N,S)

ΛΘrec (L,J,R) and ΩA(N,S)

ΛΘtri (L,J,R)
with d = 1, N = 1,

L = 8, J = 4, R = 1 and α1 = 1.

To this end, we define with the parameter J ∈ N+ the pattern for the finite

domain with full wavelet resolution, i.e. the full space (with respect to~j-scale after
a finite domain is fixed), as

ΩA(N,S)

Λfull(L,J,R) :=

{

(~l,~j) ∈ ΩA(N,S)

HY

R,2L
: h(θ(~l,~j)) > e−J

}

=

{

(~l,~j) ∈ ΩA(N,S)

HY

R,2L
:

N
∑

p=1

(

αp|θ(lp, jp)|2 +

N
∑

q>p

βp,q|θ(lp, jp) − θ(lq, jq)|2
)

< J

}

with prescribed αp, βp,q. Note here the equivalence of the sum to ln(h(θ(~l,~j))).
To describe the other two cases we set with a general function Θ which still

has to be fixed

ΩA(N,S)

ΛΘ(L,J,R) :=
{

(~l,~j) ∈ ΩA(N,S)

Λfull(L,J,R) :

N
∑

p=1

(

αp |Θ (lp, jp)|2 +

N
∑

q>p

βp,q

∣

∣Θ
(

θ−1 (θ (lp, jp) − θ (lq, jq))
)∣

∣

2

)

< J

}

.
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Figure 7. From left to right: Localization peaks of basis functions in real space cor-

responding to the index sets ΩA(N,S)

Λfull(L,J,R), ΩA(N,S)

ΛΘrec (L,J,R) and ΩA(N,S)

ΛΘtri (L,J,R)
with d = 2,

N = 1, L = 8, J = 4, R = 1 and α1 = 1.
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Figure 8. From left to right: Localization peaks of basis functions in real space cor-

responding to the index sets ΩA(N,S)

Λfull(L,J,R), ΩA(N,S)

ΛΘrec (L,J,R) and ΩA(N,S)

ΛΘtri (L,J,R)
with d = 1,

N = 2, L = 8, J = 4, R = 1, S = 1 and α1 = α2 = β1,2 = 1
2
.

Note that θ−1 denotes the inverse mapping to θ. It holds

θ−1 (θ (l, j) − θ (l′, j′)) =

{

ι̃−1(l, ι(l, j) − ι(l′, j′)2l−l′), l ≥ l′,

ι̃−1(l′, ι(l, j)2l′−l − ι(l′, j′)), l′ ≥ l,

where ι̃(l, j) = (l, ι(l, j)). We now define the rectangular index set ΩA(N,S)

Λrec(L,J,R) via

the following choice of Θ: For l ∈ N
d
0 and j ∈ Z

d we set

Θrec(l, j) := (Θrec(l1, j1), . . . ,Θrec(ld, jd))

and for l ∈ N0 and j ∈ Z we set

Θrec(l, j) :=

{

|j|, l = 0,

|12 + j|, otherwise

Finally we define the triangle space ΩA(N,S)

Λtri(L,J,R) with help of

Θtri(l, j) := (Θtri(l1, j1), . . . ,Θtri(ld, jd))
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where for l ∈ N0 and j ∈ Z we set

Θtri(l, j) :=















|j|
1− l

Lmax+1

, l = 0,

| 12+j|
1− l

Lmax+1

, 0 < l ≤ Lmax,

∞, otherwise

with Lmax as the maximum level for the respective triangle.
Let us now discuss the results of our first, very preliminary numerical experi-

ments with these new sparse grid methods for Schrödinger’s equation. To this end,
we restrict ourselves for complexity reasons to the case of one-dimensional parti-
cles only. The general three-dimensional case will be the subject of a forthcoming
paper. We use in the following in (1) the potential

V = −
N
∑

p=1

Nnuc
∑

q=1

Zqv(xp − Rq) +

N
∑

p=1

N
∑

q>p

v(xp − xq). (35)

with

v(r) =

{

D − |r|2, |r|2 ≤ D

0, otherwise.

which is truncated at radius D and shifted by D. Note that lim|r|2→∞ v(r) = 0.
Up to truncation and the shift with D, |r|2 is just the one-dimensional analogue
to the Coulomb potential. The Fourier transform reads

v̂(k) =

{
√

2√
π

1
|k|22

(1 − cos(D|k|2)), |k|2 6= 0,
D2
√

2π
, otherwise.

Note that v̂ is continuous.
We study for varying numbers N of particles the behavior of the discrete energy

E, i.e. the smallest eigenvalue of the associated system matrix A, as L and J

increase. Here, we use the generalized antisymmetric sparse grids ΩA(N,S)

Λfull(L,J,R),

ΩA(N,S)

ΛΘrec (L,J,R) and ΩA(N,S)

ΛΘtri (L,J,R)
and focus on the two cases S = 0 or S = ⌊N/2⌋.

We employ the Meyer wavelets with (9) where ν∞, α = 2, and the Shannon wavelet
with ν0 from (8). Tables 1 and 2 give the obtained results. Here, M denotes the
number of degrees of freedom and #A denotes the number of the non-zero matrix
entries. Furthermore, ∆E denotes the difference of the obtained values of E and
ε denotes the quotient of the values of ∆E for two successive rows in the table.
Thus, ε indicates the convergence rate of the discretization error.

In Table 1, with just one particle, i.e. N = 1, we see that the minimal eigen-
values for the Shannon wavelet are slightly, i.e. by 10−3 − 10−2, worse than the
minimal eigenvalues for the Meyer wavelet with ν∞. Furthermore, from the first
part of the table where we fix L = 1 and vary J and alternatively fix J = 16 and
vary L it gets clear that it necessary to increase both J and L to obtain conver-
gence. While just an increase of J with fixed L = 1 does not improve the result at
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Table 1. d = 1, N = 1, c = 1, R = 1, α1 = 1, Lmax = L, D = 8

ΩA(N,S)

Λfull(L,J,R)
ν∞ ν0

J L M #A E ∆E ǫ E ∆E ǫ
2 1 5 25 -7.187310 -7.186261
4 1 9 81 -7.189322 2.01e-03 -7.188615 2.35e-03
8 1 17 289 -7.189334 1.14e-05 175.1 -7.188674 5.92e-05 39.7

16 1 33 1089 -7.189335 1.08e-06 10.6 -7.188683 9.25e-06 6.4
32 1 65 4225 -7.189335 4.60e-07 2.3 -7.188684 1.29e-06 7.1
64 1 129 16641 -7.189335 1.36e-09 336.4 -7.188685 1.73e-07 7.4
16 1 33 1089 -7.189335 -7.188683
16 2 65 4225 -7.191345 2.00e-03 -7.190920 2.23e-03
16 3 129 16641 -7.191376 3.19e-05 62.9 -7.190958 3.80e-05 58.7
16 4 257 66049 -7.191377 8.38e-07 38.1 -7.190959 1.00e-06 37.6
16 5 513 263169 -7.191377 2.52e-08 33.3 -7.190959 3.04e-08 33.1

ΩA(N,S)

ΛΘrec (L,J,R)
ν∞ ν0

J L M #A E ∆E ǫ E ∆E ǫ
16 1 33 1089 -7.189335 -7.188683
16 2 65 4225 -7.191345 2.00e-03 -7.190920 2.23e-03
16 3 97 9409 -7.191376 3.19e-05 62.9 -7.190956 3.61e-05 61.8
16 4 129 16641 -7.191377 8.37e-07 38.0 -7.190957 9.52e-07 37.9
16 5 161 25921 -7.191377 2.51e-08 33.3 -7.190957 2.85e-08 33.3
16 6 193 37249 -7.191377 7.53e-10 33.4 -7.190957 8.84e-10 32.2

ΩA(N,S)

ΛΘtri (L,J,R)
ν∞ ν0

J L M #A E ∆E ǫ E ∆E ǫ
16 1 33 1089 -7.189335 -7.189335
16 2 55 3025 -7.191314 1.97e-03 -7.190747 1.41e-03
16 3 73 5329 -7.191357 4.25e-05 46.5 -7.190825 7.80e-05 18.0
16 4 91 8281 -7.191366 9.28e-06 4.5 -7.190865 4.04e-05 1.9
16 5 107 11449 -7.191366 2.13e-07 43.4 -7.190866 5.42e-07 74.5
16 6 125 15625 -7.191371 5.07e-06 0.042 -7.190900 3.39e-05 0.016

all (with D fixed), the increase of L for a fixed J at least gives a convergence to the
solution on a bounded domain whose size is associated to the respective value of D

and J . In the second part of the table we compare the behavior for ΩA(N,S)

Λrec(L,J,R) and

ΩA(N,S)

ΛΘtri (L,J,R)
for the wavelets with ν∞ and ν0. In the case of ΩA(N,S)

Λrec(L,J,R), we see

similar to the case ΩA(N,S)

Λfull(L,J,R), relatively stable monotone rates of around 33 and

better. The convergence behavior for ΩA(N,S)

ΛΘtri (L,J,R)
is more erratic. Nevertheless,

when we compare the achieved results for the same amount of matrix entries #A we
see not much difference. For example, with ν∞, we get for J = 16, L = 6 with 125

degrees of freedom and 15625 matrix entries a value of −7.191371 for ΩA(N,S)

ΛΘtri (L,J,R)
.

For ΩA(N,S)

Λfull(L,J,R) with J = 16, L = 3 and for ΩA(N,S)

Λrec(L,J,R) with J = 16, L = 4 we

obtain with about the same degrees of freedom and matrix entries nearly the same
values of −7.191376 and −7.191377, respectively.

Let us now consider the results for N > 1 given in Table 2 and Table 3.

Here we restricted ourselves to the sparse grid ΩA(N,S)

ΛΘtri (L,J,R)
and to the sparse

grid ΩA(N,S)

ΛΘrec (L,J,R) due to complexity reasons. We see that the computed minimal

eigenvalues in the case S = N
2 are higher than that in the case S = 0, as to be

expected. Furthermore, our results suggest convergence for rising L. If we compare
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Table 2. d = 1, c = 1, D = 8, ΩA(N,S)

ΛΘtri (L,J,R)
, ν0

Z = 2, N = 2, S = 1, R = 1, α1 = α2 = β1,2 = 1
2

J L M #A E ∆E ǫ
8 1 217 47089 -22.119305
8 2 441 182933 -22.130370 1.11e-02
8 3 771 570953 -22.131040 6.70e-04 16.50
8 4 1037 992613 -22.131340 3.00e-04 2.24
8 5 1401 1729821 -22.131546 2.06e-04 1.46
8 6 1623 2254357 -22.131554 8.11e-06 25.38

Z = 2, N = 2, S = 1, R = 2
3
2 , α1 = α2 = β1,2 = 1

2
J L M #A E ∆E ǫ
8 1 441 182933 -22.130370
8 2 823 653841 -22.131046 6.76e-04
8 3 1067 1055733 -22.131341 2.94e-04 2.30
8 4 1425 1797645 -22.131546 2.06e-04 1.43
8 5 1637 2299981 -22.131554 8.10e-06 25.37
8 6 1957 3206741 -22.131560 6.10e-06 1.33

Z = 2, N = 2, S = 0, R = 1, α1 = α2 = β1,2 = 1
2

J L M #A E ∆E ǫ
8 1 100 10000 -21.226241
8 2 212 44944 -21.236969 1.07e-02
8 3 278 77284 -21.237110 1.41e-04 76.13
8 4 383 138625 -21.237307 1.98e-04 0.713
8 5 501 235013 -21.237324 1.70e-05 11.60
8 6 614 341856 -21.237325 1.10e-06 15.51

Z = 2, N = 2, S = 0, R =
3
2 , α1 = α2 = β1,2 = 1

2
J L M #A E ∆E ǫ
8 1 212 44944 -21.236969
8 2 371 137641 -21.237142 1.73e-04
8 3 475 215161 -21.237308 1.66e-04 1.03
8 4 622 354080 -21.237325 1.64e-05 10.13
8 5 714 455912 -21.237325 7.36e-07 22.32
8 6 852 625284 -21.237330 4.47e-06 0.16

Z = 4, N = 4, S = 2, R = 1, αp = βp,q = 1
4

J L M #A E ∆E ǫ
8 1 2014 562744 -72.491854
8 2 6070 3032280 -72.584498 9.26e-02
8 3 13622 10619282 -72.590219 5.72e-03 16.19
8 4 24516 25947802 -72.591109 8.89e-04 6.43
8 5 39118 52857888 -72.591992 8.83e-04 1.01
8 6 55149 86635047 -72.593540 1.55e-03 0.57

Z = 4, N = 4, S = 2, R = 23, αp = βp,q = 1
4

J L M #A E ∆E ǫ
8 1 31594 38099452 -72.591105
8 2 50178 72135854 -72.591993 8.87e-04
8 3 66859 107179241 -72.593540 1.55e-03 0.57
8 4 84220 146075110 -72.593577 3.68e-05 42.00
8 5 100935 185731655 -72.593616 3.91e-05 0.94
8 6 120605 235422575 -72.594022 4.06e-04 0.10

Z = 4, N = 4, S = 0, R = 1, αp = βp,q = 1
4

J L M #A E ∆E ǫ
8 1 187 16233 -68.673763
8 2 681 135687 -68.857479 1.84e-01
8 3 869 213015 -68.863399 5.92e-03 31.03
8 4 1903 705201 -68.866665 3.27e-03 1.81
8 5 2843 1368711 -68.866842 1.77e-04 18.50
8 6 4039 2329887 -68.866996 1.54e-04 1.15

Z = 4, N = 4, S = 0, R = 23, αp = βp,q = 1
4

J L M #A E ∆E ǫ
8 1 3527 1907673 -68.866677
8 2 6030 4128342 -68.866843 1.65e-04
8 3 8098 6318816 -68.866996 1.53e-04 1.08
8 4 10316 8846338 -68.867534 5.38e-04 0.28
8 5 12333 11371967 -68.867610 7.61e-05 7.07
8 6 14757 14611153 -68.869363 1.75e-03 0.04
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Table 3. d = 1, c = 1, D = 8, ΩA(N,S)

ΛΘrec (L,J,R), ν0

Z = 2, N = 2, S = 1, R = 1, α1 = α2 = β1,2 = 1
2

J L M #A E ∆E ǫ
8 1 217 47089 -22.119305
8 2 617 343137 -22.131499 1.22e-02
8 3 1389 1805933 -22.131950 4.51e-04 27.06
8 4 2241 4468393 -22.131963 1.36e-05 33.21
8 5 3101 8082989 -22.131964 4.36e-07 31.10
8 6 3961 12540793 -22.131964 1.17e-08 37.30

Z = 2, N = 2, S = 1, R = 2
3
2 , α1 = α2 = β1,2 = 1

2
J L M #A E ∆E ǫ
8 1 617 343137 -22.131499
8 2 1589 2401533 -22.131956 4.57e-04
8 3 2441 5404793 -22.131964 7.72e-06 59.19
8 4 3301 9363357 -22.131964 2.22e-07 34.81
8 5 4161 14164873 -22.131964 4.38e-09 50.61
8 6 5021 19774973 -22.131964 1.30e-10 33.68

Z = 2, N = 2, S = 0, R = 1, α1 = α2 = β1,2 = 1
2

J L M #A E ∆E ǫ
8 1 100 10000 -21.226241
8 2 300 90000 -21.237278 1.10e-02
8 3 452 204304 -21.237428 1.49e-04 73.98
8 4 648 363472 -21.237464 3.64e-05 4.10
8 5 830 571860 -21.237465 7.97e-07 45.60
8 6 1026 889300 -21.237465 3.95e-07 2.02

Z = 2, N = 2, S = 0, R = 2
3
2 , α1 = α2 = β1,2 = 1

2
J L M #A E ∆E ǫ
8 1 300 90000 -21.237278
8 2 678 459684 -21.237461 1.83e-04
8 3 962 851412 -21.237465 3.70e-06 49.51
8 4 1204 1239024 -21.237465 7.50e-08 49.30
8 5 1432 1671816 -21.237465 3.55e-09 21.14
8 6 1642 2145772 -21.237465 3.81e-12 931.03

Z = 4, N = 4, S = 2, R = 1, αp = βp,q = 1
4

J L M #A E ∆E ǫ
8 1 2014 562744 -72.491854
8 2 10658 6902468 -72.594615 1.03e-01
8 3 35048 45293412 -72.597181 2.57e-03 40.04
8 4 68367 122513665 -72.597270 8.93e-05 28.73
8 5 114827 266522139 -72.597275 4.88e-06 18.29
8 6 167684 464471430 -72.597276 1.23e-06 3.98

Z = 4, N = 4, S = 2, R = 23, αp = βp,q = 1
4

J L M #A E ∆E ǫ
8 1 100083 219921873 -72.597239
8 2 222760 690780216 -72.597276 3.73e-05
8 3 317467 1113318933 -72.597276 9.31e-10 40051.062

Z = 4, N = 4, S = 0, R = 1, αp = βp,q = 1
4

J L M #A E ∆E ǫ
8 1 187 16233 -68.673763
8 2 1275 364739 -68.870548 1.97e-01
8 3 1807 726809 -68.871961 1.41e-03 139.24
8 4 3802 2092748 -68.872775 8.14e-04 1.74
8 5 5988 4393476 -68.872796 2.06e-05 39.45
8 6 8704 7677436 -68.872798 2.50e-06 8.26

Z = 4, N = 4, S = 0, R = 23, αp = βp,q = 1
4

J L M #A E ∆E ǫ
8 1 10694 10726598 -68.872792
8 2 25483 38888887 -68.872799 6.56e-06
8 3 34370 59029382 -68.872799 1.30e-12 5016094.24
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the cases R = 1 and R = 2
3
2 for N = 2 and S = 1, we see that both the number of

degrees of freedom and the minimal eigenvalues are for R = 1 approximately the
same as for R = 2

3
2 on the next coarser level. If we compare the cases R = 1 and

R = 2
3
2 for N = 2 and S = 0, we see that for about the same number of degrees

of freedom the minimal eigenvalue in the case R = 1 is approximately equal to
the minimal eigenvalue in the case R = 2

3
2 . However, if we compare the cases

R = 1 and R = 23 for N = 4, we see that we need a less number of degrees of
freedom in the case R = 1 than in the case R = 23 to obtain an equal or even

lower minimal eigenvalue than in the case R = 23. For example, for ΩA(4,2)

ΛΘrec (1,8,23)

with 100083 degrees of freedom wet get a minimal eigenvalue of −72.597239 and

for ΩA(4,2)

ΛΘrec (4,8,1) with 68367 degrees of freedom we get a lower minimal eigenvalue

of −72.597270. We observe additionally that, we obtaine lower eigenvalues in the

case ΩA(N,S)

ΛΘrec (L,J,R) with less a number of degrees of freedom involved than in the

case ΩA(N,S)

ΛΘtri (L,J,R)
. This is probably due to the low value of the parameter J .

Note furthermore that the sparse grid effect acts only on the fully antisymmetric
subspaces of the total space. This is the reason for the quite large number of degrees
of freedom for the case N = 4 and S = 2.

Note finally that our present simple numerical quadrature procedure is rela-
tively expensive. To achive results for higher numbers of particles with sufficiently
large L and J , the numerical integration scheme has to be improved. Moreover, to
deal in the future with the case of three-dimensional particles using the classical
potential (2) and the Meyer wavelets with ν∞, an efficient and accurate numerical
quadrature still has to be derived.5

8. Concluding remarks

In this article we proposed to use Meyer’s wavelets in a sparse grid approach for
a direct discretization of the electronic Schrödinger equation. The sparse grid
constructions promises to break the curse of dimensionality to some extent and
may allow a numerical treatment of the Schrödinger equation without resorting
to any model approximation. We discussed the Meyer wavelet family and their
properties and built on them an anisotropic multiresolution analysis for general
particle spaces. Furthermore we studied a semidiscretization with respect to the
level and introduced generalized semidiscrete sparse grid spaces. We then restricted
these spaces to the case of antisymmetric functions with additional spin. Using
regularity and decay properties of the eigenfunctions of the Schrödinger operator
we discussed rescaled semidiscrete sparse grid spaces due to Yserentant. They allow

to get rid of the terms that involve the H1,1
mix- and H1/2,1

mix -norm of the eigenfunction
which may grow exponentially with the number of electrons present in the system.
Thus a direct estimation of the approximation error can be achieved that only
involves the L2-norm of the eigenfunction. We also showed that a Fourier series

5Such a numerical quadrature scheme must be able to cope with oscillatory functions and also
must resolve the singularity in the Coulomb operator.
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approximation of a splitting of the eigenfunctions living on a scaled hyperbolic cross
in Fourier space essentially just results in Meyer wavelets. Therefore, we directly
tried to discretize Schrödinger’s equation in properly chosen wavelet subspaces.

We only presented preliminary numerical results with one-dimensional particles
and a shifted and truncated potential. For the Meyer wavelets with ν∞ and for
the classical, not truncated Coulomb potential, substantially improved quadrature
routines have to be developed in the future to achieved reasonable run times for the
set up of the stiffness matrix. Furthermore, the interplay and the optimal choice
of the coarsest scale, i.e. of c, the scaling parameter R, the domain truncation
parameter J , the scale truncation parameter L and the parameters Lmax, αp, βp,q

is not clear at all and needs further investigation. Finally more experiments are
necessary with other types of sparse grid subspaces beyond the ones derived from
the Hylleraas-type function (34) to complete our search for an accurate and cost
effective approximation scheme for higher numbers N of electrons. Probably not
the best strategy for subspace selection was yet used and substantially improved
schemes can be found in the future. This may be done along the lines of best
M -term approximation which, from a theoretical point of view, would however
involve a new, not yet existing Besov regularity theory for high-dimensional spaces
in an anisotropic setting. Or, from a practical point of view, this would involve
new adaptive sparse grid schemes using tensor product Meyer wavelets which need
proper error estimators and refinement strategies for both the boundary truncation
error and, balanced with it, the scale truncation error.

The sparse grid approach is based on a tensor product construction which allows
to treat the nucleus–electron cusps properly which are aligned to the particle-
coordinate axes of the system but which does not fit to the ”diagonal” directions of
the electron–electron cusps. Here, proper a-priori refinement or general adaptivity
must be used which however involves for d = 3 at least the quite costly resolution
of three-dimensional manifolds in six-dimensional space which limits the approach.
To this end, new features have to brought into the approximation like for example
wavelets which allow additionally for multivariate rotations in the spirit of curvelets
[14]. Also an approach in the spirit of wave-ray multigrid methods [9] may be
envisioned. Alternatively an embedding in still higher-dimensional formulations
which allows to express the electron-electron pairs as new coordinate directions
might be explored. This, however, is future work.
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exponential decay, SIAM J. Math. Anal. 24 (1990), 520–527.

[21] R. DeVore, S. Konyagin, and V. Temlyakov, Hyperbolic wavelet approximation, Con-
structive Approximation 14 (1998), 1–26.

[22] R. Feynman, There’s plenty of room at the bottom: An invitation to enter
a new world of physics, Engineering and Science XXIII, Feb. issue (1960),
http://www.zyvex.com/nanotech/feynman.html.

[23] H. Fliegl, W. Klopper, and C. Hättig, Coupled-cluster theory with simplified linear-
r12 corrections: The CCSD(R12) model, J. Chem. Phys. 122 (2005), no. 8, 084107.

[24] K. Frank, S. Heinrich, and S. Pereverzev, Information complexity of multivariate
Fredholm equations in Sobolev classes, J. Complexity 12 (1996), 17–34.



A Wavelet Based Sparse Grid Method for the Electronic Schrödinger Equation 33

[25] R. Froese and I. Herbst, Exponential bounds and absence of positive eigenvalues for
N-body Schrödinger-operators, Commun. Math. Phys. 87 (1982), no. 3, 429–447.

[26] J. Garcke and M. Griebel, On the computation of the eigenproblems of hydrogen
and helium in strong magnetic and electric fields with the sparse grid combination
technique, Journal of Computational Physics 165 (2000), no. 2, 694–716.

[27] T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numerical
Algorithms 18 (1998), 209–232.

[28] T. Gerstner and M. Griebel, Dimension–adaptive tensor–product quadrature, Com-
puting 71 (2003), no. 1, 65–87.

[29] M. Griebel, Sparse grids and related approximation schemes for higher dimensional
problems, Proceedings of the conference on Foundations of Computational Mathemat-
ics (FoCM05), Santander, Spain, 2005.

[30] M. Griebel and J. Hamaekers, Sparse grids for the Schrödinger equation, Math.
Model. Numer. Anal. (2006), submitted.

[31] M. Griebel and S. Knapek, Optimized tensor-product approximation spaces, Con-
structive Approximation 16 (2000), no. 4, 525–540.

[32] M. Griebel, P. Oswald, and T. Schiekofer, Sparse grids for boundary integral equa-
tions, Numer. Mathematik 83 (1999), no. 2, 279–312.

[33] W. Hackbusch, The efficient computation of certain determinants arising in the treat-
ment of Schrödinger’s equation., Computing 67 (2000), 35-56.

[34] E. Hernández and G. Weiss, A first course on wavelets, CRC Press, 1996.

[35] V. Hernandez, J. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems, ACM Transactions on Mathematical Software 31
(2005), no. 3, 351–362.

[36] R. Hochmuth, Wavelet bases in numerical analysis and restricted nonlinear approx-
imation, Habilitationsschrift, Freie Universität Berlin, 1999.

[37] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Sørensen, Electron wavefunc-
tion and densities for atoms, Ann. Henri Poincaré 2 (2001), 77–100.
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