
Wegelerstraße  •  Bonn • Germany
phone +  - • fax +  -

www.ins.uni-bonn.de

M. Griebel, J. Hamaekers

Tensor Product Multiscale Many-Particle Spaces
with Finite-Order Weights for the Electronic

Schrödinger Equation

INS Preprint No. 0911

July 2009





Abstract

In this article we combine the favorable properties of efficient Gaussian type orbitals basis sets, which are
applied with good success in conventional electronic structure methods, and tensor product multiscale
bases, which provide guaranteed convergence rates and allow for adaptive resolution. To this end, we
develop and study a new approach for the treatment of the electronic Schrödinger equation based on a
modified adaptive sparse grid technique and a certain particle-wise decomposition with respect to one-
particle functions obtained by a nonlinear rank-1 approximation. Here, we employ a multiscale Gaussian
frame for the sparse grid spaces and we use Gaussian type orbitals to represent the rank-1 approximation.
With this approach we are able to treat small atoms and molecules with up to six electrons.
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1 Introduction

For many problems in quantum chemistry it is sufficient to consider nu-
clei as classical point-like particles and to only treat the electrons as
quantum-mechanical particles. Then, the Born-Oppenheimer approxi-
mation of the time-dependent Schrödinger equation leads to a stationary
electronic Schrödinger equation

HΨ = EΨ

with the spin independent molecular Hamiltonian

H = −1

2

N
∑

i=1

∆i −
Nnuc
∑

k=1

N
∑

i=1

Zk
|xi − Rk|

+
N

∑

i<j

1

|xi − xj |
+

Nnuc
∑

k<l

ZkZl
|Rk − Rl|

written in atomic units. Here, Nnuc denotes the number of clamped nuclei
(Rk, Zk) and N is the number of electrons with coordinates (xi). The
solution of this N -electron problem lives in a 3N -dimensional space and
respects the antisymmetry condition imposed by Pauli’s principle.

The high dimensionality of this eigenvalue problem turns out to be the
main bottleneck for a direct numerical treatment, since any discretization
on e.g. uniform grids with O(m) points in each direction would involve
M = O(m3N ) degrees of freedoms. Furthermore, only a convergence
estimate of type

‖Ψ − ΨM‖Hs ≤ c(N)M−r/(3N)‖Ψ‖Hr+s

can be achieved, where ‖ · ‖Hs is the usual Sobolev norm in Hs, r+ s de-
notes the isotropic smoothness of Ψ and c is a constant which may depend
on N but not on M . Here, we encounter the curse of dimensionality, i.e.
the rate of convergence deteriorates exponentially with the number N of
electrons. Therefore, further model approximations were developed and
implemented in quantum chemistry which lead to reduced complexity.
Examples are Hartree-Fock or multi-configuration methods (HF/MCHF)
and a variety of additive methods (configuration interaction), exponential
methods (coupled cluster), perturbative methods (Möller-Plesset theory),
quantum Monte Carlo methods (VMC/DMC) and density functional the-
ory methods (DFT). These first principles electronic structure methods
are used with great success in practice. However, it is not yet completely
clear how to systematically improve their approximation error in a math-
ematically rigorous way.

On the other hand, sparse grid techniques are frequently used to treat
high dimensional problems. Sparse grids spaces are multiscale approxi-
mation spaces based on tensor products which promise to circumvent the
above-mentioned curse of dimensionality of a conventional discretization
using full grids, at least to some extent. We envision, up to logarithmic
terms, a convergence estimate of the type

‖Ψ − ΨM‖Hs ≤ c(N)M−r/3‖Ψ‖Hr,s
mix
, (1)
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where the rate of convergence does no longer exponentially deteriorate
with the number N of particles. Note however, that a more restrictive
smoothness requirement, namely the boundedness of a certain (r, s)-th
mixed derivative is involved. In [1], Yserentant showed that the solution
of the Schrödinger equation lies in certain spaces of mixed dominating

smoothness, i.e. Ψ ∈ H1/2,1
mix , when the physically relevant antisymmetry

of the wave function is taken into account. These spaces are closely related
to the smoothness assumption of the conventional sparse grid method.

A first application of the sparse grid combination technique to the
Schrödinger equation was studied in [2]. Furthermore, sparse grid ap-
proaches using Fourier basis functions and Meyer basis functions were
implemented and studied in [3] and [4], respectively. Here, it turned out
that, in principle, the sparse grid approach indeed possesses favourable ap-
proximation rates and cost complexities for the solution of Schrödinger’s
equation. However, the computations are limited due to large constants
involved in the approximation rates and cost complexities. Actually, these
constants can be exponentially dependent on the number of particles. Also
in the framework of the variational Monte Carlo (VMC) approach wavelets
and sparse grids have been successfully applied for the representation of
Jastrow factors [5, 6].

In this article we propose a new approach for the electronic Schrödinger
equation based on the combination of a nonlinear low-rank approximation
method and sparse grid bases which provide guaranteed approximation
rates. This combination is realized with help of a general particle-wise
subspace splitting of the many-particle space which builds on so-called
weighted spaces of finite order q ≪ N . Then it is only the lower di-
mensionality of the q-th order terms, which exponentially enters the work
count complexity for multilinear approximation problems [7–9]. In this
way, we implement tensor product multiscale many-particle spaces with
finite-order weights which are built from non-orthogonal Hartree-Fock or-
bitals and a variant of sparse grid spaces for many-particle functions.
Here, to obtain favorably small constants, we present a multiscale frame
of Gaussians and develop a heuristic h-adaptive refinement scheme for the
resolution of cusps.

The remainder of this article is organized as follows: In Section 2 we
recall the Pauli principle and many-particle Sobolev spaces of dominat-
ing mixed smoothness. Furthermore, we discuss the discretization with
general sparse grid spaces and give estimates for approximation rates for
electronic wave functions. In Section 3 we introduce weighted many-
particle spaces based on a particle-wise subspace splitting and discuss our
numerical approach for the solution of the electronic Schrödinger equa-
tion. Here, we introduce a multiscale Gaussian frame and describe our
adaptive scheme. In Section 4 we present the results of our numerical
experiments. Finally, some concluding remarks are given in Section 5.
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2 Pauli principle, regularity of the wave func-

tion and general sparse grid spaces

In general, an electronic wave function depends on the positions xi of
the electrons and on their associated spin coordinates si ∈ {+ 1

2 ,− 1
2}. It

furthermore has to obey the antisymmetry conditions

Ψ(P~x, P~s) = (−1)|P |Ψ(~x, ~s), ∀P ∈ SN ,

which reflect the Pauli principle. Here, SN denotes the symmetric group.
Note that for a given spin distribution ~s the spatial part Ψ~s(~x) := Ψ(~x, ~s)
obeys the partial antisymmetry condition

Ψ~s(P~x) = (−1)|P |Ψ~s(P~x), ∀P ∈ S~s := {P ∈ SN : P~s = ~s} .

In particular, the minimal eigenvalue of all eigenvalue problems for the
spatial components is equal to the minimal eigenvalue of the full eigenvalue
problem [10, 11].

Although there are 2N possible different spin distributions ~s, the bi-
linear form 〈Ψ(P ·)|H|Ψ(P ·)〉 is invariant under all permutations P ∈ SN
of the position coordinates ~x. Thus, it is sufficient to consider N + 1
eigenvalue problems which are associated with N + 1 different class rep-
resentative spin vectors with a total spin projection of values MS =
−N

2 , . . . ,−1, 0, 1, . . . , N2 for even N and a total spin projection of val-

ues MS = −N
2 , . . . ,− 1

2 ,
1
2 , . . . ,

N
2 for odd N . Here, we choose the N + 1

different class representative spin vectors ~s(MS) ∈ {+ 1
2 ,− 1

2}N , where

s
(MS)
j :=

{

+ 1
2 for j ≤ N

2 +MS ,

− 1
2 for j > N

2 +MS .

In the following we denote the number of spin-up particles by N↑ and
the number of spin-down particles by N↓. Then MS = 1

2 (N↑ −N↓). The
functions of the N -particle space L2((R3)N ) which obey the partial anti-
symmetry condition for a given ~s(MS) form a linear subspace L2

(MS) ⊂ L2.
We define the projection into this subspace, i.e. the antisymmetrization
operator A(MS) : L2((R3)N ) → L2

(MS)((R
3)N ) by

A
(MS)Ψ(~x) :=

1

N↑!N↓!

∑

P∈S
~s(MS)

(−1)|P |Ψ(P~x).

The spatial part with respect to MS of an electronic wave function
is at least in H1 ∩ L2

(MS). Let us assume that the smallest energy with
respect to MS , i.e.

E
(MS)
min = min

Ψ∈H1∩L2
(MS)

,‖Ψ‖L2=1
〈Ψ , HΨ〉L2 ,
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exhibits multiplicity one. Furthermore, let {Vκ}κ∈N be an arbitrary dense
family of finite-dimensional subspaces in H1 ∩ L2

(MS). Let finally Eκ and
Ψκ denote Galerkin approximations associated with the lowest state in
the subspace Vκ, i.e.

Eκ = min
Ψ∈Vκ,‖Ψ‖L2=1

〈Ψ , HΨ〉L2 , Ψκ = argminΨ∈Vκ,‖Ψ‖L2=1〈Ψ , HΨ〉L2 .

Then, E
(MS)
min ≤ Eκ for all κ ∈ N and thereby a relation between an

estimate for the accuracy of an eigenfunction and an estimate for the
approximation error of the lowest eigenvalue can be deduced: There exist
C1, C2 > 0 and κ̃ ∈ N such that the relation

E
(MS)
min − Eκ ≤ C1〈Ψ(MS)

min − Ψκ,H(Ψ
(MS)
min − Ψκ)〉L2

≤ C2‖Ψ(MS)
min − Ψκ‖2

H1

(2)

holds for all κ ≥ κ̃; see [10–12]. An upper bound for the approximation
error in the H1-norm, i.e. for the right hand side of (2), can then be
estimated with the help of the regularity results of [1, 11, 13] similar
to (1). This works since the spatial part Ψ(MS) := Ψ~s(MS) of a weak

solution of the electronic Schrödinger equation is the Sobolev space H1/2,1
mix

of dominating mixed smoothness and it is even in H1,1
mix for an electronic

wave function of totally parallel spin; see [1] for details.
Such types of spaces are defined for −∞ < t, r <∞, N ∈ N by1

Ht,r
mix((R

3)N ) :=

{

f ∈ S ′((R3)N ) :

‖f‖Ht,r
mix

:=

∫

(R3)N

|ωtmix(
~k)ωriso(

~k)f̂(~k)|2 d~k <∞
}

with ωiso(~k) :=
√

1 +
∑N
p=1 |kp|2∞ and ωmix(~k) :=

√

∏N
p=1 (1 + |kp|2∞).

Here, S ′ denotes the space of all tempered distributions and f̂ denotes the
Fourier transform of f . Note that the regularity of a function is directly
related to the decay properties of its Fourier transform. In particular, the
standard isotropic Sobolev spaces as well as the standard Sobolev spaces
of dominating mixed smoothness [14], both generalized to the N -particle
case [3, 4], are included in the definition of Ht,r

mix. They can be written as

Hr((R3)N ) = H0,r
mix((R

3)N ) and Ht
mix((R

3)N ) = Ht,0
mix((R

3)N ),

respectively.
In the following, we consider f ∈ Ht,r

mix with certain decay properties
for |~x| → ∞. Note that the decay of a function f for |~x|2 → ∞ in the

1In particular, the Sobolev space Ht,r
mix((R3)N ) is a Hilbert space together with the

Hermitian inner product 〈f , g〉
H

t,r
mix

:= 〈ωt
mixωr

isof̂ , ωt
mixωr

isoĝ〉L2 .
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spatial space is directly related to the regularity of the Fourier transform
f̂ in Fourier space. In this way, for t + r ≥ 0, t ≥ 0, t̂ + r̂ ≥ 0, t̂ ≥ 0, we
define

Ht,r;t̂,r̂
mix :=

{

f ∈ L2((R3)N ) : ‖f‖
Ht,r;t̂,r̂

mix

:= ‖f‖Ht,r
mix

+ ‖f̂‖
Ht̂,r̂

mix

<∞
}

.

In [15] we study its discretization by general sparse grid spaces and the
resulting linear approximation properties. To this end, let {φl,j}(l,j)∈N×Z3

be a set of multiscale basis functions which span the one-particle space
L2(R3), where the indices l and j are associated with the scale and the
location, respectively. Then, the set of multiscale tensor product basis
functions

B :=

{

φ~l,~j :=

N
⊗

p=1

φlp,jp

}

(~l,~j)∈NN×(Z3)N

spans theN -particle space L2((R3)N ). A general finite-dimensional sparse
grid space is given by

V SGΛ := span
(

BΛ :=
{

φ~l,~j ∈ B : (~l,~j) ∈ Λ
})

(3)

for a finite subset of indices Λ ⊂ N
N × (Z3)N . The specific choice of

the basis functions {φl,j} and of the set Λ leads to different variants of
sparse grids, e.g. regular sparse grids, energy-norm based sparse grids and
dimension adaptive sparse grids [16].

For example, in [15] we construct sparse grid basis sets by a Littlewood-
Paley like multiscale decomposition of general hyperbolic cross spaces. In
certain cases this leads to Meyer wavelets [17]. For the details of this
construction of general sparse grid basis functions we refer to [15, 18].

Now let us go back to the Schrödinger equation (H1/2,1
mix -regularity) and

let us additionally assume that the Fourier transform Ψ̂(MS) is in Ht̂,0
mix,

t̂ > 0. Let further V SGΛ be an appropriate general sparse grid space with
M = |Λ| degrees of freedom.2 Then, the estimate

inf
Ψ̃∈V SG

Λ

‖Ψ(MS) − Ψ̃‖H1 .

(

M

log2(M)2(N−1)

)− 1
6(1+τ)

‖Ψ(MS)‖
H

1
2

,1;t̂,0

mix

(4)

holds, where τ = 3/(2t̂). For a proof see [15]. We have τ → 0 if the
Fourier transform Ψ̂(MS) is smooth, i.e. if Ψ(MS) decays sufficiently fast.3

2Here, V SG
Λ corresponds to the space V

0;0
L;τL

, τ = 3
2t̂

, introduced in [15]. There V
0;0
L;J

is spanned by {φ~l,~j
: ~l ∈ IL,~j ∈ JJ (~l)}, where IL :=

n

~l ∈ N
N : |~l|1 ≤ L + N − 1

o

,

JJ (~l) :=
S

~ι∈IJ
Q

~ι+~l+~1
, Q~α := Qα1 × · · · × QαN

and Qα := {k ∈ Z
3 : |k|∞ ≤ 2α}.

In particular with respect to the level parameter L it holds for the number of degrees
of freedom M = |V 0;0

L;τL
| = O(23L(1+τ)(τL2)N−1).

3It can be shown that eigenfunctions associated with eigenvalues in the discrete
spectrum (bound-states) decay exponentially; compare [11, 19].
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Moreover, up to logarithmic terms, the convergence rate is independent of
the number of electrons N and is almost the same as in the two-electron
case. Thus, we obtain a rate of order − 1

6(1+τ) and hence, due to (2), a

rate of order − 2
6(1+τ) for the minimal eigenvalue. Note however that the

term ‖Ψ(MS)‖
H

1
2

,1;t̂,0

mix

and the constants involved in the approximation and

complexity order estimates usually depend on the number of particles.
Due to Pauli’s principle it is sufficient to consider the partially anti-

symmetric subspace A(MS)(V SGΛ ) ⊂ V SGΛ . This subspace can be spanned
by basis functions in the form of the product of two Slater determinants,
i.e.

A
(MS)

N
⊗

p=1

φlp,jp =
1

N↑!

N↑
∧

p↑=1

φlp↑
,jp↑

⊗ 1

N↓!

N
∧

p↓=N↑+1

φlp↓
,jp↓

.

In particular, the order for the number of degrees of freedom related to
A(MS)(V SGΛ ) stays the same as in the case of V SGΛ . However, the involved
constant is now reduced by the factor 1/(N↑!N↓!), i.e. |A(MS)(V SGΛ )| ≤

1
N↑!N↓! |V SGΛ |. Furthermore, the order of the achieved accuracy does not

change when we switch to the partially antisymmetric case. For details
see [3, 4, 15].

3 Adaptive approximation spaces of finite

order

General sparse grid spaces can also be employed for many-particle spaces
with so-called finite-order weights [7, 9]. The resulting dimension-wise
decompositions and discretization schemes then allow to get rid of the
remaining exponential dependence on the number of particles with respect
to the logarithmic terms in (4), since for finite-order weights of order q
the problem of the approximation of an N -particle function reduces to
the problem of the approximation of q-particle functions. Note that our
construction scheme includes the common CI spaces as a special case,
but allows for a more flexible choice of finite-dimensional approximation
spaces.

3.1 Particle-wise decomposition

In the following we focus on a particle-wise decomposition of the partially
antisymmetric many-particle space L2

(MS). Here, for a shorter notation

we set N := {1, . . . , N}, N↑ := {0, . . . , N↑} and N↓ := {N↑ + 1, . . . , N}.
Let {gp}p∈N be L2-normalized one-particle functions, where {gp}p∈N↑

as
well as {gp}p∈N↓

are linear independent. Then we have the direct sum
decompositions

L2(R3) = U↑ ⊕W↑ and L2(R3) = U↓ ⊕W↓, (5)
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where U↑ := span({gp}p∈N↑
) and U↓ := span({gp}p∈N↓

). With this split-
ting of the one-particle space, the subspace splitting

L2
(MS) = A

(MS)





⊗

p∈N↑

(U↑ ⊕W↑) ⊗
⊗

p∈N↓

(U↓ ⊕W↓)



 =
⊕

u⊂N

W(MS)
u (6)

follows for the N -particle space, where we set

W(MS)
u := A

(MS)
N

⊗

p=1

W(MS)
u,(p) , W(MS)

u,(p) :=











span{gp} for p ∈ N \ u,
W↑ for p ∈ u ∩N↑,

W↓ for p ∈ u ∩N↓.

Correspondingly, any function f ∈ L2
(MS) can be decomposed as

f =
N

∑

u⊂N

A
(MS) (Fu) =

N
∑

u⊂N

A
(MS)



~y 7→ fu(~yu)
∏

p∈N\u

gp(yp)



 (7)

with the help of appropriate linear projections such that A(MS)Fu ∈
W(MS)
u and fu ∈ ⊗

p∈uW
(MS)
u,(p) . Moreover, in the case of orthogonal direct

sums V↑⊕W↑, V↓⊕W↓ and orthonormal {gp}p∈N↑
, {gp}p∈N↓

, the orthogo-
nality relation 〈Fu , Fu′〉 = 0 holds for all u 6= u′. Note that a similar type
of a particle-wise decomposition was introduced by Sinanoğlu in quantum
chemistry for the analysis of many-electron wave functions [20]. There,
orthogonal Hartree-Fock orbitals were suggested as one-particle functions
{gp}p∈N . Note furthermore the close relation of this particle-wise decom-
position to the classical ANOVA decomposition [8].

Now, we consider decompositions

L2(R3) = U↑ +W and L2(R3) = U↓ +W, (8)

which involve non-direct sums instead of the direct sums in (5). Then,
similar to (6) we obtain

L2
(MS) = A

(MS)





⊗

p∈N↑

(U↑ +W ) ⊗
⊗

p∈N↓

(U↓ +W )



 =
∑

u⊂N

W(MS)
u (9)

for the N -particle space.4 Here, in contrast to (6) and (7), a correspond-
ing decomposition of a function in L2

(MS) is no longer unique. However,
appropriate weighted norms can still be introduced with the help of the
infimum over all decompositions of a function; see also [21]. This is dis-
cussed in the following.

4Note that we have W
(MS)
u,(p)

=

(

span{gp} for p ∈ N \ u,

W for p ∈ u.
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3.2 Weighted many-particle approximation spaces

In the setting of (8) and (9) for t+r ≥ 0, t ≥ 0, {gp}p∈N and non-negative
{γu}u⊂N , weighted partially antisymmetric many-particle spaces can be
introduced by

Ht,r;t̂,r̂;(MS)
mix,{gp},{γu}

((R3)N ) :=

{

f ∈ L2
(MS) : ‖f‖

Ht,r;t̂,r̂

mix,{gp},{γu}

<∞
}

with the norm

‖f‖2

H
t,r;t̂,r̂;(MS)

mix,{gp},{γu}

:= inf

{

∑

u⊂N

γ−1
u ‖f̃u‖2

Ht,r;t̂,r̂
mix

:

{f̃u ∈W |u|}u⊂N , f =
∑

u⊂N

A
(MS)

(

~y 7→ f̃u(~yu)
∏

p∈N\u

gp(yp)
)

}

.

Note that {γu}u⊂N is called a set of weights of finite order q if γu = 0
for all γu with |u| > q. In that case, the problem of the approximation
of an N -particle function reduces to the problem of the approximation of
(

N
q

)

q-particle functions. In the framework of the decomposition (9) we

use finite-order weights {γu}u⊂N to switch certain subspaces W(MS)
u on

or off, i.e. we set

V(MS)
{γu}u

:=
∑

u⊂N ,γu>0

W(MS)
u . (10)

Clearly, V(MS)
{γu}u

⊂ L2
(MS) since {u ⊂ N : γu > 0} is a subset of {u ⊂

N}. The restriction of the decomposition (9) via the finite-order weights
{γu}u⊂N resembles a first step towards approximation, but the involved

subspaces W(MS)
u are still infinite-dimensional and need further discretiza-

tion. Thus, the idea is to construct a finite-dimensional subspace of V(MS)
{γu}u

by choosing a specific finite-dimensional subspace of W(MS)
u for each u

with γu > 0 separately. Altogether, this induces a discretization of V(MS)
{γu}u

.

To this end, let {φν}ν∈N be an appropriate frame of W = L2(R3).
Note that for reasons of simplicity we switch here from the notation with
two indices (l, j) associated to level and location as in Section 3 to a
notation with just one unspecified index ν. Then, for each u = {p1 <
· · · < p|u|} ⊂ N with γu > 0 we introduce a finite-dimensional subspace

W(MS)
u,Bu

of W(MS)
u by the span of the finite set Bu of partially antisymmetric

N -particle functions. Here, Bu is chosen as appropriate finite subset of

B(MS)
u :=

{

A
(MS)

(

~y 7→
|u|
∏

q=1

φνq
(ypq

)
∏

p∈N\u

gp(yp)
)

}

(ν1,...,ν|u|)∈N
(MS)
u

,

(11)
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where

N
(MS)
u :=

{

(ν1, . . . , ν|u|) ∈ N
|u| : ν1 < . . . < νn↑

, νn↑+1 < · · · < ν|u|

}

with n↑ := |u∩N↑|. Note that for a shorter notation we indicate subspaces
directly by their spanning system instead of a set of indices as in (3). In

this way, a finite-dimensional subspace of V(MS)
{γu}u

can be defined by

V SG{γu}u,{Bu}u
:=

∑

u⊂N ,γu>0

W(MS)
u,Bu

. (12)

Note that the specific choice of the one-particle functions {gp}p∈N , the
multiscale frame {φν}ν∈N, the weights {γu}u⊂N and the family of finite
systems {Bu}u⊂N ,γu>0 is still open.

For the {gp}p∈N we employ a set of non-orthogonal Hartree-Fock or-
bitals, which are given in terms of atomic orbitals. In particular, these
orbitals are written in the form of a finite expansion of isotropic and mod-
ulated Gaussians; see [15, 22]. The specific choices of {φν}ν∈N, {γu}u⊂N

and {Bu}u⊂N ,γu>0 are discussed in the following.

3.3 Multiscale Gaussian frame

For the one-particle frame {φν}ν∈N we employ a wavelet-like frame based
on Gaussians, which exhibits exponential decay in real space as well as
in Fourier space and in particular allows for local adaptivity and the
computation of all inner products by analytic formulae.5 We introduce
this wavelet-like frame in the following.

By dilation and translation, we define the functions

ϕσ,c,l,j(x) :=
(

c2l
)

3
2 ϕσ(c2

lx − j)

for c > 0, l ∈ N0 and j ∈ Z
3, where we employ for the generating function

ϕσ(x) := (σ
√
π)−

3
2 e−

1
2σ2 |x|22 a normalized isotropic Gaussian. Moreover,

we introduce a wavelet-like function in terms of generating functions of
two scales by

ψσ(x) := Cψσ

(

ϕσ
2
(x) − 2−

3
2ϕσ(x)

)

,

with the normalization constant Cψσ
= (1− 16

25γ
√

5+γ2)−
1
2 . In particular,

we define the functions

ψ
[z]
σ,c,l,j(x) :=

(

c2l
)

3
2 ψσ(c2

lx − j − 1
2z)

by dilation and translation for c > 0, l ∈ N0, j ∈ Z
3 and z ∈ Z :=

{0, 1}3\0. Note that ψ
[z]
σ,c,l,j is normalized and its zeroth and first moments

5Note that from the Balian-Low theorem there follows that no orthonormal frame
with exponential decay in both real space and in Fourier space exists.
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vanish. Finally, we introduce a wavelet-like frame by

bσ,c :=
{

ϕσ,c,0,j : j ∈ Z
3
}

∪
⋃

z∈Z

{

ψ
[z]
σ,c,l,j : l ∈ N0, j ∈ Z

3
}

. (13)

Here, the scaling-like functions ϕσ,c,0,j are enumerated by j where the

wavelet-like functions ψ
[z]
σ,c,l,j are enumerated by (l, j, z) due to its con-

struction. Now, to invoke (11) we need an enumeration of the overall set
bσ,c. We assume ν to be the enumeration index, i.e. {φν}ν∈N = bσ,c.

Note further that a frame like bσ,c can particularly be seen as an
approximation to a Meyer wavelet basis [23]. In [4] we studied the appli-
cation of an orthonormal tensor product basis built from Meyer wavelets
and Meyer scaling functions in practice. It turned out that, although the
wavelet system allows us to resolve the cusps locally, the sub-exponential
decay of the basis functions in real space and the expensive numerical
integration of the one-particle operator integrals and in particular of the
two-particle operator integrals leads to impractically huge constants. Now
with the frame bσ,c we are able to substantially reduce the involved con-
stants as we will see later.

3.4 Adaptive scheme

We choose the weights {γu}u⊂N in an a priori way based on quantum
chemistry knowledge. To be precise, we employ a specific set of finite-
order weights of order three so that we obtain a sum of subspaces in the
form

V(MS)
three := Vzero+Vone+Vtwo↑↓+Vtwo↑↑+Vthree ⊂

∑

u⊂N ,|u|≤3

W(MS)
u , (14)

where

Vzero := W(MS)
∅ , Vone :=

∑

p1∈N

W(MS)
{p1}

, Vtwo↑↓ :=
∑

p1∈N↑

∑

p2∈N↓

W(MS)
{p1,p2}

,

Vtwo↑↑ :=
∑

p1,p2∈N↑

W(MS)
{p1,p2}

+
∑

p1,p2∈N↓

W(MS)
{p1,p2}

,

Vthree :=
∑

p1,p2∈N↑

∑

p3∈N↓

W(MS)
{p1,p2,p3}

+
∑

p1∈N↑

∑

p2,p3∈N↓

W(MS)
{p1,p2,p3}

,

compare (10).
The sets {Bu}u⊂N ,γu>0 are then constructed by an heuristic h-adaptive

scheme in an a posteriori fashion. We denote the resulting sequence of
finite-dimensional spaces by

{

V SGκ := V SG
{γu}u,{B

[κ]
u }u

⊂ V(MS)
{γu}u

}

κ∈N0

.

To this end, we first choose the initial spanning system {B[0]
u }u,γu>0. The

12
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Figure 1: Localization peaks of basis functions in b
(5)
1,1/2. On the right

hand side we depict a slice plane, i.e. the (x1, x2)-plane, of the view on
the left hand side.

initial approximation space V SG0 is built with the help of one-particle
subspaces (with just a few degrees of freedom) which provide an accurate
representation of atomic orbitals. We define those one-particle subspaces
by the span of the initial system

b
(L)
σ,c := {ϕσ,c,0,j : |j|∞ ≤ 1} ∪

⋃

z∈Z

{

ψ
[z]
σ,c,l,j : l ≤ L− 2, j = −z

}

⊂ bσ,c,

(15)
see Figure 1. Now, let us consider an atomic system with N electrons and
a nucleus of atomic charge Z1 centered at R1, where we assume R1 = 0

for reasons of simplicity. Let the parameters σ, c and L be fixed. Then, in
the case of spanning systems associated with finite-order weights γu > 0
with |u| = 1 (i.e. related to Vone), we set

B[0]
{p1}

= B(MS)
{p1}

∩
{

A
(N,MS)

(

~y 7→ w(yp1)
∏

q∈N\{p1}

vq(yq)
)

: φ ∈ b
(L)
σ,c

}

for p1 ∈ N . For spanning systems according to finite-order weights γu > 0,
|u| ≥ 2 the idea is to employ certain tensor product functions with local-
ization peaks at or close to the electronic cups. In this way, for example
for the case of Vtwo↑↓, we set

B[0]
{p1,p2}

= B(MS)
{p1,p2}

∩
{

A
(N,MS)

(

~y 7→ φ(yp1)φ(yp2)
∏

q∈N\{p1,p2}

φq(yq)
)

: φ ∈ b
(L)
σ,c

}

,

13



for p1 ∈ N↑, p2 ∈ N↓; see also Figure 2 (left). The sets B{p1,p2} and

B{p1,p2,p3} related to Vtwo↑↑ and Vthree, as well as the initial sets in the
case of two atoms, are constructed in a similar way. Next, we invoke

a coarsening step on the a priori chosen set {B[0]
u }u,γu>0. Finally, the

sequence of spanning systems {B[κ]
u ⊂ B(MS)

u }κ∈N is build by a simple h-
adaptive refinement scheme in an a posteriori fashion. To this end, the
solution of the general linear eigenvalue problem and a refinement and
expansion of the spanning system is performed iteratively; for details see
[15]. The resulting sequence of approximation spaces

{

V SGκ = V SG
{γ

[κ]
u }u,{B

[κ]
u }u

}

κ>0

hopefully gives an efficient representation of the involved cusps. Figure 2

(right) shows the localization peaks of the basis set B[9]
{1,2} constructed by

our algorithm in the case of the He atom. Note that the span of B[9]
{1,2} is

a subspace of Vtwo↑↓.
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Figure 2: Localization peaks of frame functions in the case of He, where

we depict the (x1,(1), x2,(1))-plane. Left: Initial set B[0]
{1,2} for L = 7 and

c = 1
2 . Right: Basis set B[9]

{1,2} constructed by our adaptive algorithm.

For technical details of our adaptive scheme to build the sequence of
approximation spaces {V SGκ } see [15]. For a further reading on adaptive
wavelet techniques see [24].

4 Numerical methods and experiments

For each finite-dimensional subspace V SGκ the Galerkin discretization re-
sults in a generalized linear eigenvalue problem, i.e. Av = EBv. We com-
pute the entries of the corresponding stiffness A and the mass matrices

14



B with the help of the so-called Löwdin rules [25] for Slater determi-
nants. Here, an N -particle integral over a product of Slater determinants
is reduced to the computation of determinants of matrices with entries
put together from values of certain one- and two-particle integrals. Fur-
thermore, we perform the assembly of the system matrices A and B in
parallel in a straightforward way. For the parallel solution of the eigen-
value problem Av = EBv we invoke the scalable library for eigenvalue

problem computations (SLEPc) [26]. This software package provides a
wrapper to the software library BLOPEX, which is an implementation
of the parallelized locally optimal block preconditioned conjugate gradient

method (LOBPCG) [27]. For the molecules considered in this article,
we have to treat full matrices. Thus, we invoke a Cholesky decomposi-
tion as implemented in the software package PLAPACK [28] to perform
preconditioning in an efficient way.

4.1 Applications

In the following we apply our novel method to several atomic and diatomic
systems with up to six electrons. Here, we aim at the determination of
the total energies of the considered molecular systems up to the so-called
chemical accuracy, i.e. 1 kcal/mol ≈ 1.595−3 hartree. Note that the main
task is to efficiently describe electron correlation [29]. We give the results
of our numerical approach in Table 1 and Figure 3. They suggest that
our new method is indeed convergent and that the measured rates are in
the expected range. In particular, the results demonstrate that our new
method allows to efficiently describe electron-nuclei and electron-electron
cusps. Nevertheless, we see a dependence of the involved constants on the
molecular system size.

For the two- and three-electron systems chemical accuracy is easily
reached. For four-electron systems we obtain an approximation error of
a size smaller than ten milli-hartree. In particular, we obtain in the case
of two-electron, three-electron and four-electron systems proportions Ec
of the correlation energy larger than 98%, 96% and 88%, respectively.
In the case of the five- and six-electron molecular systems, our results
seem to be still in the pre-asymptotic range. Note here that the involved
number of degrees of freedom is restricted by physical memory limitations.
Nevertheless, for the five- and six-electron systems proportions Ec of the
correlation energies are achieved in the range of 71% to 87%.

Note furthermore that for the studied systems Li, Be, LiH, B, BeH and
BH the size of the approximation error of our new method is less than
the error obtained by VMC methods which employ a single-determinant
Jastrow-Slater trial wave function. The better accuracy could be expected
since the present approach improves the reference single-determinant in an
exact way like CI and CC methods, instead of employing an inexact mul-
tiplicative Jastrow factor ansatz. Moreover, our results are in the range
of those computed by diffusion Monte Carlo (DMC) methods which are

15



Table 1: Numerical results for the total energy Ẽtot and the Hartree-Fock
energy ẼHFtot . With respect to the applied parameters see Table 2. The
exact values for the total energies Etot and the Hartree-Fock limits EHFtot
are taken from literature; see [15] and the references therein. We give the

proportion of correlation energy Ec :=
Ẽtot−E

HF
tot

Etot−EHF
tot

in percentage. EVMC
tot

are the results computed by variational quantum Monte Carlo methods
which are based on a single-determinant Jastrow-Slater trial wave func-
tion. These are taken from [30–32].

Ẽtot Etot ẼHF
tot EHF

tot Ec EV MC
tot

He -2.90330 -2.90372 -2.86166 -2.86168 99.00
H2 -1.17376 -1.17447 -1.12854 -1.13366 98.26

(3S)He -2.17522 -2.17523 -2.17424 -2.17420 99.10

(b3Σ+
u )H2 -0.89704 -0.89708 -0.89057 -0.89288 99.14

He+2 -4.99305 -4.99464 -4.91647 -4.92285 97.78
(4P 0)Li -5.36764 -5.36801 -5.35830 -5.35830 96.18

Li -7.47702 -7.47806 -7.43271 -7.43273 97.58 -7.47683
Be -14.65978 -14.66736 -14.57296 -14.57302 90.94 -14.63110
LiH -8.06084 -8.07055 -7.97054 -7.98735 88.05 -8.04593
B -24.63768 -24.65391 -24.52921 -24.52906 87.00 -24.60562

BeH -15.22016 -15.24680 -15.04328 -15.15318 71.55 -15.21210
C -37.80020 -37.84500 -37.65886 -37.68862 71.35 -37.81471

BH -25.26089 -25.28790 -25.08382 -25.13195 82.68 -25.21220
Li2 -14.96810 -14.99540 -14.86166 -14.87152 77.97 -14.98255

Table 2: Parameters for the frame bσ,c and its subset b
(L)
σ,c ; compare (13)

and (15). For all systems we set σ = 1. For all diatomic systems we set
c = 2

R . The respective bond distances R are given in bohr.

He (3S)He (4P 0)Li Li Be B C

c 1
2

1
4

1
4

1 1
4

1 1
L 7 7 7 6 8 7 7

H2 (b3Σ+
u )H2 He+2 LiH BeH BH Li2

R 1.4 2.0 2.042 3.015 2.537 2.329 5.051
L 5 5 6 6 7 7 7

based on a single-determinant Jastrow-Slater trial wave function; compare
[30–32].

5 Concluding remarks

In this article we introduced and studied new tensor product multiscale
many-particle spaces with finite-order weights and applied them in the
numerical treatment of the electronic Schrödinger equation. These spaces
are constructed from a particle-wise subspace splitting of the N -particle
space. In particular, this construction provides a systematic improve-
ment of a nonlinear rank-1 approximation by its combination with a ten-
sor product multiscale approximation scheme and allows for convergence
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Figure 3: Error of the approximately computed energy of the ground-state
of several atomic and diatomic systems with up to six electrons.

with guaranteed approximation rates. We demonstrated these rates nu-
merically for atoms and diatomic molecules with up to six electrons. Note
that to our knowledge this is the first time that systems with more than
two electrons were successfully treated by direct numerical approxima-
tion by means of an application of tensor product multiscale bases in the
framework of ab initio methods (except for HF and DFT methods).

Both the multiscale frame and the adaptive scheme can probably
still be improved. Multi-wavelet like frames based on Hermite-Gaussian
functions together with an h- and p-adaptive refinement strategy may
lead to improved approximation properties. Furthermore, from a theo-
retical point of view, such an adaptive best M -term approximation re-
quires a new, not yet existing mixed Besov regularity theory for the elec-
tronic Schrödinger equation. Here, exponential Jastrow factors in the
two-electron case have been studied in [33] to deduce some preliminary
assertions on possible convergence rates. Their results yield a conver-
gence rate of order −1/2 for the related two-particle correlation functions,
compared to a rate of order −1/4 when applying a linear approximation
scheme. Moreover, our scheme might be extended to varying weights and
thereby subspaces in an adaptive way (particle-wise adaptivity) similar
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to dimension-wise adaptive approaches for high-dimensional quadrature
[34, 35]. Also, an adaptive scheme which applies multiscale frames includ-
ing ridgelet-like two-particle functions [36], the application of two-particle
functions for the electron-electron cusps similar to the R12/F12 meth-
ods [37] and the extended geminal model [38] could be promising for the
future.
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