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On a Multilevel Preconditioner and its Condition
Numbers for the Discretized Laplacian on Full
and Sparse Grids in Higher Dimensions

M. Griebel and A. Hullmann

Abstract We first discretize the d-dimensional Laplacian in (0,1)d for varying d
on a full uniform grid and build a new preconditioner that is based on a multilevel
generating system. We show that the resulting condition number is bounded by a
constant that is independent of both, the level of discretization J and the dimen-
sion d. Then, we consider so-called sparse grid spaces, which offer nearly the same
accuracy with far less degrees of freedom for function classes that involve bounded
mixed derivatives. We introduce an analogous multilevel preconditioner and show
that it possesses condition numbers which are at least as good as these of the full
grid case. In fact, for sparse grids we even observe falling condition numbers with
rising dimension in our numerical experiments. Furthermore, we discuss the cost
of the algorithmic implementations. It is linear in the degrees of freedom of the re-
spective multilevel generating system. For completeness, we also consider the case
of a sparse grid discretization using prewavelets and compare its properties to those
obtained with the generating system approach.

1 Introduction

In this paper, we deal with the preconditioning of finite element system matrices
that stem from elliptic partial differential equations (PDEs) of second order. Here,
we are especially interested in the higher-dimensional case. For example, high-
dimensional Poisson problems and high-dimensional convection diffusion equations
result from diffusion approximation techniques or the Fokker–Planck approach. Ex-
amples are the description of queueing networks [Mit97, SCDD02], reaction mech-
anisms in molecular biology [Sjö07, SLE09], or various models for the pricing of
financial derivatives [Kwo08, Rei04]. Furthermore, homogenization with multiple
scales [All92, CDG02, Mat02, HS05] as well as stochastic uncertainty quantifica-
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tion [HSS08, BNT10, JR08, NTW08b, NTW08a, BNTT11, MK10, CDS11] result
in high-dimensional PDEs. Next, we find quite high-dimensional problems in quan-
tum mechanics and particle physics. There, the dimensionality of the Schrödinger
equation [Mes65] grows with the number of considered electrons and nuclei. Then,
problems in statistical mechanics lead to the Liouville equation or the Langevin
equation and related phase space models where the dimension depends on the num-
ber of particles [Bal97]. Furthermore, reinforcement learning and stochastic optimal
control in continuous time give rise to the Hamilton–Jacobi–Bellman equation in
high dimensions [SB98, Mun00, BGGK12]. Finally data mining problems involve
differential operators as smoothing or regularization terms (priors) whose dimen-
sion grows with the number of features of the data [GJP95, GGT01, SS01, Heg03,
Gar04].

We want to derive multilevel preconditioners with condition numbers that are
bounded independently of both, the discretization level J and the dimension d. Fur-
thermore, they should possess linear cost complexity with respect to the degrees of
freedom.

We will focus on the model problem of the d-dimensional Laplacian, which has
been intensively analyzed in numerical analysis, albeit mostly for fixed dimension d.
To this end, we first consider the simple case of a discretization based on a uniform
grid using, e.g., piecewise d-linear finite elements. The solution of the resulting sys-
tem of linear equations is computed iteratively. This involves the cost of a matrix-
vector multiplication times the number of iterations needed to achieve a given accu-
racy. Here, a sparse system matrix can usually be applied with a number of floating
point operations that is linear in the number of degrees of freedom. An optimal iter-
ation count which is independent of the number of degrees of freedom is typically
achieved by multiplicative multigrid methods [Yse93, BL11, Hac85, Gri94b], the
additive BPX preconditioner [BPX90, Osw92, Osw94] or wavelet-based methods.
But even if the overall additive or multiplicative preconditioned matrix-vector prod-
uct is linear in the number of degrees of freedom and the number of iterations is
independent of the mesh width, the involved order constants are in general still de-
pendent on the dimension d, which can be an issue in the higher-dimensional case.

Furthermore, the number of degrees of freedom itself is subject to the curse of
dimension [Bel61]. One remedy is the use of so called sparse-grid discretizations.
To this end, regular sparse grids, energy sparse grids [Bun92a, BG99] and general
sparse grids [GK00, Kna00, GK09, Ham09] have been employed with good suc-
cess. Furthermore, space- and dimension-adaptive extensions exist [GG03, Feu10].
However, the condition number of the resulting system and the cost of a matrix-
vector multiplication are now more difficult to reduce than in the regular full-grid
case. For example, already for a straightforward regular sparse grid discretization,
cf. [GO94], a simple diagonal scaling similar to the case of the BPX-preconditioner
does not result in asymptotically bounded condition numbers in dimensions d ≥ 3.
Here, more complicated basis functions like prewavelets offer a solution [GO95].
Furthermore, the system matrix is not inherently sparse, and a dimension-recursive
algorithm based on the so-called unidirectional principle [BZ96, Bun92b] is needed
to perform the matrix-vector-multiplication in linear time.
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In this paper, we present a new additive preconditioner that is based on the mul-
tilevel idea and relies on isotropic and anisotropic subspaces. We show for the full
grid case that the resulting condition number is bounded independently of the level J
of the discretization and that it is also independent of the dimension d. The cost
complexity is linear in the number of degrees of freedom of the enlarged generating
system with a constant that grows at most polynomially in the dimension. However,
it needs to be mentioned that the enlarged generating system has a factor of about 2d

more degrees of freedom than there are on the finest mesh. Our preconditioner is ap-
plicable to sparse grid discretizations as well, and the resulting condition number is
now also bounded independently of J for d ≥ 3. Furthermore, it is bounded indepen-
dently of d and we even observe a falling condition number with rising dimension d.
The new preconditioner can also be applied to prewavelet discretizations and then
produces exactly the same condition numbers.

In Sect. 2, we introduce a multilevel discretization, and we present a norm equiv-
alence with dimension-independent constants. Then, in Sect. 3, we introduce the
full grid preconditioner with dimension-independent condition numbers for our en-
larged generating system and discuss its costs. The new approach is extended to
sparse grids in Sect. 4. In Sect. 5 we show that the same results can be obtained for
prewavelet discretizations as well. In Sect. 6 we give numerical results that support
our theory. In fact, for sparse grids, we even observe falling condition numbers with
rising dimension d. Final remarks in Sect. 7 conclude the paper.

2 Discretization

We denote the unit interval by Ω = (0,1) and its d-fold tensor product by Ω d . The
Poisson problem on Ω d for a given right-hand side f : Ω d → R with Γ = ∂Ω d and
homogeneous boundary conditions reads as

−∆u = f on Ω
d , (1)

u = 0 on Γ .

2.1 Discretization by an Isotropic Full-Grid

Our aim is to discretize problem (1) by piecewise polynomials on a uniform grid and
to precondition the resulting system of linear equations optimally not only with re-
spect to the number of degrees of freedom, but also with respect to the dimension d.
As usual, we define the bilinear form a : H1(Ω d)×H1(Ω d)→ R as

a(u,v) =
∫

Ω d
∇u ·∇v dx
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and the right-hand side b ∈ H1(Ω d)∗ as

b(v) =
∫

Ω d
f v dx .

The weak formulation then reads: Find a solution u ∈ H1
0 (Ω

d) that satisfies

a(u,v) = b(v) for all v ∈ H1
0 (Ω

d) . (2)

We discretize H1
0 (Ω

d) by the d-fold tensor product of one-dimensional function
spaces. To this end, we first consider a one-dimensional multiresolution scale of
subspaces, i.e

V1 ⊂V2 ⊂V3 ⊂ . . . , (3)

for which V ‖·‖1 = H1
0 ([0,1]) holds with V = ∪∞

l=1Vl . Here, we assume

Vl = span{φl,i : 1≤ i≤ nl} (4)

with nl = O(2l) locally supported basis functions φl,i,1 ≤ i ≤ nl , on level l. We
define the d-dimensional tensor product space

V d =V ⊗·· ·⊗V

and the spaces
V d

l =Vl⊗·· ·⊗Vl , (5)

which are spanned by the functions

φl,i = φl,i1 · · ·φl,id (6)

for i = (i1, . . . , id) ∈ Nd with 1≤ ip ≤ nl , p = 1, . . . ,d.
On level J, the weak problem (2) for V d

J then leads to the system

Ad,Jxd,J = bd,J (7)

of Nd,J := (nJ)
d linear equations with

Ad,J ∈ RNd,J×Nd,J ,(Ad,J)i,j = a(φJ,i,φJ,j)

and
xd,J ,bd,J ∈ RNd,J ,(bd,J)i = ( f ,φJ,i)L2(Ω d)

again for i, j ∈ Nd with 1≤ ip, jp ≤ nJ , p = 1, . . . ,d. Note that, with a lexicographic
ordering of the degrees of freedom, the system matrix can be expressed as a sum of
Kronecker product matrices, i.e.

Ad,J = A1,J⊗Md−1,J +
d−1

∑
p=2

Mp−1,J⊗A1,J⊗Md−p,J +Md−1,J⊗A1,J , (8)
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where A1,J ∈ RnJ×nJ is the stiffness matrix of the one-dimensional problem

(A1,J)i j =
(

∂φJ,i

∂x
,

∂φJ, j

∂x

)
L2(Ω)

for 1≤ i, j ≤ nJ ,

and Mp,J ∈ R(nJ)
p×(nJ)

p
also has Kronecker product structure

Mp,J =
p⊗

q=1

M1,J

with M1,J ∈ RnJ×nJ and

(M1,J)i j = (φJ,i,φJ, j)L2(Ω) for 1≤ i, j ≤ nJ . (9)

2.2 The Multilevel Approach

The system matrix Ad,J in (7) for, e.g., linear splines, possesses a condition number
that is of the order O(22J). Thus, classical iterative solution methods for (7) like the
Jacobi method, the steepest descent approach or the conjugate gradient technique
converge successively slower for rising values of J. The same is true for the Gauss-
Seidel and the SOR methods. This problem is remedied by a multigrid method or a
multilevel preconditioner. Then, the number of iterations necessary to obtain a pre-
scribed accuracy is bounded independently of J, cf. [Hac85, Xu92, BL11, Bra07].
To this end, besides the grid and the basis functions on the finest scale J, also the
grids and basis functions on all coarser isotropic scales are included in the iterative
process, i.e. the multiscale generating system

J⋃
l=1

{ φl,i : 1≤ ip ≤ nl , p = 1, . . . ,d }

is employed. Note that there is work that relates classical multigrid theory to
multiplicative iterative algorithms operating on such a generating system [Gri94b,
Gri94a]. Furthermore, the BPX-preconditioner [BPX90] can be identified with one
step of the additive Jacobi iteration. Both methods guarantee asymptotically optimal
convergence rates that are independent of J. However, the corresponding rates still
depend on the dimension d.

To overcome this issue, we follow a different approach which relies on all coarser
isotropic and anisotropic scales. To this end, we define the spaces

Vl =Vl1 ⊗·· ·⊗Vld (10)

for the multiindices l = (l1, . . . , ld) ∈ Nd . Next, we define the index sets
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χl = {1, . . . ,nl1}× ·· ·×{1, . . . ,nld}

and the associated basis functions

φl,i = φl1,i1 · · · · ·φld ,id for i = (i1, . . . , id) ∈ χl . (11)

Obviously, it holds Vl = span{φl,i : i ∈ χl}. From now on, nl := |χl| denotes the
number of degrees of freedom of the subspace Vl. The isotropic spaces (5) can be
expressed in this setting by V d

l = Vl, where l = (l, . . . , l), and the isotropic func-
tions (6) are given as φl,i = φl,i for i ∈ χl.

Our enlarged generating system includes all basis functions⋃
l∈F d

J

{φl,i : i ∈ χl} , (12)

where the index set
F d

J = {l ∈ Nd : |l|∞ ≤ J} (13)

contains the multiindices l of all coarser scales, i.e. Vl ⊂ V d
J for l ∈F d

J . Next, the
weak problem (2) for V d

J leads with (12) to the enlarged system

Âd,J x̂d,J = b̂d,J (14)

of linear equations, with Âd,J ∈ RN̂d,J×N̂d,J and x̂d,J , b̂d,J ∈ RN̂d,J , where N̂d,J :=(
∑

J
l=1 nl

)d . The matrix Âd,J is block-structured with blocks (Âd,J)l,k ∈ Rnl×nk for
l,k ∈F d

J , where

((Âd,J)l,k)i,j = a(φl,i,φk,j) for i ∈ χl, j ∈ χk

and the right-hand side vector b̂d,J consists of blocks (b̂d,J)l ∈ Rnl , l ∈F d
J , with

((b̂d,J)l)i = (φl,i, f )L2(Ω d) for i ∈ χl .

Note that the non-unique representation of functions in the enlarged generating sys-
tem (12) results in a non-trivial kernel of Âd,J . Thus Âd,J is not invertible. But the
system (14) is nevertheless solvable since the right-hand side b̂d,J lies in the range
of the system matrix. A solution can be generated by any semi-convergent iterative
method [BP94]. Many convergence results, e.g., for the steepest descent or con-
jugate gradient method, also apply to the semi-definite case, cf. [Gri94b]. There,
the usual condition number κ is no longer defined, but the generalized condition
number κ̃ , i.e. the ratio of the largest and the smallest non-zero eigenvalue, is now
decisive for the speed of convergence.

Just like in (8), we can express our enlarged system matrix as the sum of Kro-
necker product matrices, i.e.
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Âd,J = Â1,J⊗M̂d−1,J +
d−1

∑
p=2

M̂p−1,J⊗ Â1,J⊗M̂d−p,J +M̂d−1,J⊗ Â1,J ,

where Â1,J ∈ R(∑J
l=1 nl)×(∑J

l=1 nl) is the multilevel stiffness matrix of the one-dimen-
sional bilinear form and reads

(Â1,J)(l,i),(k, j) =
(

∂φl,i

∂x
,

∂φk, j

∂x

)
L2(Ω)

for 1≤ i≤ nl ,1≤ j ≤ nk,1≤ l,k ≤ J .

Furthermore, M̂p,J ∈ R(∑J
l=1 nl)

p×(∑J
l=1 nl)

p
also has Kronecker product structure

M̂p,J =
p⊗

q=1

M̂1,J

with M̂1,J ∈ R(∑J
l=1 nl)×(∑J

l=1 nl) and

(M̂1,J)(l,i),(k, j) = (φl,i,φk, j)L2(Ω) for 1≤ i≤ nl ,1≤ j ≤ nk,1≤ l,k ≤ J .

Of course, at some point, we need to be able to transform the non-unique solution
x̂d,J of (14) to the unique solution xd,J of (7). To this end, we assume to have matrices
Ik

l ∈ Rnk×nl , which are one-dimensional restrictions from level l to level k for l > k,
prolongations from level l to level k for l < k and the identity matrix for l = k. Note
here that the Ik

l ,k 6= l± 1 can be expressed as just a product of successive 2-level
restrictions and prolongations, respectively, i.e. we have

Ik
l = Ik

k+1 · · ·Il−1
l for l > k and Ik

l = Ik
k−1 · · ·Il+1

l for l < k . (15)

Naturally, the multi-dimensional case is obtained by the product construction

Ik
l =

d⊗
p=1

Ikp
lp
. (16)

Then, for l,k∈F d
J , we can express any block (Âd,J)l,k ∈Rnl×nk and any part (b̂d,J)l

as
(Âd,J)l,k = Il

JAd,JIJ
k and (b̂d,J)l = Il

Jbd,J , (17)

respectively, where J = (J, . . . ,J) is the multiindex that describes the finest level on
the isotropic scale. In the special case of identity matrices, we sometimes abbreviate
Il

l by Il and Il
l by Il, i.e. we drop the superscript if it is equal to the subscript.

Furthermore, let us define the rectangular block-structured matrix Ŝ1,J ∈RnJ×(∑J
l=1 nl)

by
Ŝ1,J = ( IJ

1 | . . . | IJ
J ) .

Then, we can express the block-structured matrix Ŝd,J as
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Ŝd,J =
d⊗

p=1

Ŝ1,J ,

and with (17) we obtain

Âd,J = ŜT
d,JAd,J Ŝd,J and b̂d,J = ŜT

d,Jbd,J .

As a result, we see that xd,J = Ŝd,J x̂d,J solves (7), if x̂d,J is any solution to (14).
Note that we will never set up the matrices Ŝd,J and ŜT

d,J in our implementation, but
compute their application to vectors by a straightforward algorithm in O(d · N̂d,J)
floating point operations using (15) and (16).

In Sect. 3, we will propose a matrix Ĉd,J that can be applied cheaply to a vector
and acts as a preconditioner on the enlarged system (14) with

κ̃(Ĉd,JÂd,J) = O(1) (18)

independently of the level J and the dimension d. Since

κ̃(Ĉd,JÂd,J) = κ̃(Ĉd,J ŜT
d,JAd,J Ŝd,J) = κ(Ŝd,JĈd,J ŜT

d,JAd,J) ,

we can deduce that Cd,J := Ŝd,JĈd,J ŜT
d,J is thus a preconditioner for Ad,J with a

resulting condition number that is bounded independently of J and d. Before we can
present this preconditioner in Sect. 3, we need to discuss a specific norm equivalence
in the next subsection.

2.3 A Norm Equivalence Based on Orthogonal Subspaces

The multiresolution scale of subspaces (3) induces a sequence of L2-orthogonal
complement spaces (Wl)

∞
l=1 with

Vl =Vl−1⊕L2 Wl for l ≥ 1, and V0 := {0} . (19)

A recursive application of (19) then yields Vl = ⊕l
k=1Wk. Analogously to the

anisotropic full-grid subspaces Vl in (10), we can now define anisotropic orthogonal
complement spaces by the d-fold tensor products

Wl =Wl1 ⊗·· ·⊗Wld , (20)

which satisfy Wl ⊂Vl and Wl ⊥L2 Wk for l 6= k.
Now, we assume that, due to Jackson- and Bernstein-inequalities [Dah96, Osw94]

for the spaces (Vl)
∞
l=1, we have a one-dimensional equivalence

λmin ∑
l∈N

22l‖wl‖2
L2(Ω) ≤

∥∥∥∂u
∂x

∥∥∥2

L2(Ω)
≤ λmax ∑

l∈N
22l‖wl‖2

L2(Ω) (21)
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for u ∈ H1
0 (Ω) with u = ∑l∈N wl , where wl ∈Wl , l ∈ N, and 0 < λmin ≤ λmax < ∞.

In the following, we will use the symbol ' to indicate such an equivalence and call
λmin and λmax norm equivalence constants. The next theorem shows that a similar
equivalence exists in higher dimensions with dimension-independent constants.

Theorem 1. For u ∈ H1
0 (Ω

d), it holds that

a(u,u)' ∑
l∈Nd

( d

∑
p=1

22lp
)
‖wl‖2

L2(Ω d)
for u = ∑

l∈Nd

wl with wl ∈Wl, l ∈ Nd ,

(22)
where the constants λ

(d)
min and λ

(d)
max associated with (22) are the same as in (21), i.e.

λ
(d)
min = λmin and λ

(d)
max = λmax.

Proof. In (4), we have introduced (φJ,i)
nJ
i=1 as a basis for the space VJ . Of course,

there also exists a L2-orthonormal basis (ψJ,i)
nJ
i=1 of VJ . Furthermore, we need the or-

thogonal decomposition (ωl,i)
J
l=1 of ψJ,i ∈VJ for all i = 1, . . . ,nJ with ωl,i ∈Wl , l =

1, . . . ,J and

ψJ,i =
J

∑
l=1

ωl,i .

Next, analogously to (11), we define

ψJ,i(x) = ψJ,i1(x1) . . .ψJ,id (xd) and ωl,i(x) = ωl1,i1(x1) · · ·ωld ,id (xd)

for all i∈ χJ and l∈F d
J . This opens a direct way to find orthogonal decompositions

of functions u = ∑i∈χJ αiψJ,i ∈V d
J by

u = ∑
i∈χJ

αi ∑
l∈F d

J

ωl,i = ∑
l∈F d

J

∑
i∈χJ

αiωl,i = ∑
l∈F d

J

wl

with
wl = ∑

i∈χJ

αiωl,i ∈Wl (23)

for all l ∈F d
J .

Now, we show that the norm equivalence (22) holds for any u ∈ V d
J with the

constants λmax and λmin from (21). We have

a(u,u) =
d

∑
p=1

(
∂

∂xp
∑

i∈χJ

αiψJ,i,
∂

∂xp
∑

j∈χJ

αjψJ,j

)
L2(Ω d)

(24)

=
d

∑
p=1

∑
i∈χJ

∑
j∈χJ

(
∂

∂xp
αiψJ,ip ,

∂

∂xp
αjψJ, jp

)
L2(Ω)

d

∏
q=1
q6=p

(ψJ,iq ,ψJ, jq)L2(Ω) (25)

=
d

∑
p=1

∑
i′=i	{ip}

i∈χJ

(
∂

∂xp

nJ

∑
ip=1

αi′⊕{ip}ψJ,ip ,
∂

∂xp

nJ

∑
jp=1

αi′⊕{ jp}ψJ, jp

)
L2(Ω)

. (26)
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We obtain (25) by repeated application of the distributive law and by using the
product structure of the L2-scalar product. Then, the orthonormal basis property of
the (ψJ,i)

nJ
i=1 cancels all terms for iq 6= jq,q 6= p, and we get (26). Note that

i′ := i 	 {ip}= (i1, . . . , ip−1, ip+1, . . . , id) and
i′ ⊕ {ip}= (i1, . . . , ip−1, ipip+1, . . . , id) .

We can apply the one-dimensional norm equivalence (21) to (26) and get the upper
bound

· · · ≤
d

∑
p=1

λmax ∑
i′=i	{ip}

i∈χJ

J

∑
lp=1

22lp
( nJ

∑
ip=1

αi′⊕{ip}ωlp,ip ,
nJ

∑
jp=1

αi′⊕{ jp}ωlp, jp

)
L2(Ω)

(27)

=λmax

d

∑
p=1

∑
i∈χJ

∑
j∈χJ

J

∑
lp=1

22lp(αiωlp,ip ,αjωlp, jp)L2(Ω) ·
d

∏
q=1
q6=p

(ψJ,iq ,ψJ, jq)L2(Ω) (28)

=λmax

d

∑
p=1

∑
i∈χJ

∑
j∈χJ

∑
l∈F d

J

22lp(αiωlp,ip ,αjωlp, jp)L2(Ω) ·
d

∏
q=1
q6=p

(ωlq,iq ,ωlq, jq)L2(Ω)

(29)

=λmax ∑
l∈F d

J

( d

∑
p=1

22lp
)(

∑
i∈χJ

αiωl,i, ∑
j∈χJ

αjωl,j

)
L2(Ω d)

. (30)

In (27) and (28), we used the distributive law again and reintroduced the terms
we dropped previously. In (29), we replaced the ψJ,iq and ψJ, jq by the decompo-
sitions ∑

J
lq=1 ωlq,iq and ∑

J
lq=1 ωlq, jq , respectively. Then, in (30), we recombined the

product of d one-dimensional L2-scalar products to one d-dimensional L2-scalar
product. Note that the lower bound with λmin can be proven in the same way.
Now, in combination with (23), we know that (22) is a norm equivalence with con-
stants λ

(d)
max ≤ λmax and λ

(d)
min ≥ λmin.

Next, our goal is to prove the sharpness of the estimates, i.e. we will show that
indeed λ

(d)
max = λmax and λ

(d)
min = λmin. Since (21) holds for λmax and λmin on V d , it

also holds on V d
J ⊂ V d with optimal constants λmax(J) ≤ λmax and λmin(J) ≥ λmin.

We now choose umax,J ∈ VJ associated with the constant λmax(J) of (21), and plug
the multivariate function

u(x) = umax,J(x1) · · ·umax,J(xd)

into (24). This results in an equality instead of an upper bound in (27) with the
constant λmax(J) instead of λmax. Because of

λ
(d)
max ≥ λmax(J)↗ λmax for J→ ∞ ,
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we can conclude that λ
(d)
max = λmax. The λ

(d)
min-case can be shown analogously. ut

The norm equivalence (22) can be found in, e.g., [GK09] or in [GO95] for the 2d-
case, but so far no special attention was paid to the dimension-independence of the
equivalence constants. A remark in that direction can also be found in [CS12].

3 A Dimension-Independent Full Grid Preconditioner

The norm equivalence (22) holds for orthogonal subspaces (Wl)l∈F d
J

. In order to
make this result available to our discretization, which is based on the subspaces
(Vl)l∈F d

J
, see Sect. 2, we need an orthogonalization operator, which will be defined

in the next subsection. Then, in Subsect. 3.2, we can finally present our new precon-
ditioner.

So far, we have used d and J as subscripts to indicate the dependence on the
dimension and the discretization level. For the following operators and matrices this
dependence is still present, but we will omit these subscripts for better readability.

3.1 Orthogonalization Operator

We now consider the whole multivariate sequence of subspaces Vl, l ∈F d
J , which

we denote as
V̂ d

J = (Vl)l∈F d
J
.

For û, v̂ ∈ (Vl)l∈F d
J

, we define the scalar product

(û, v̂)V̂ d
J
= ∑

l∈F d
J

(ul,vl)L2(Ω d) for û = (ul)l∈F d
J

and v̂ = (vl)l∈F d
J
.

Then, we define the operator P̂ : V̂ d
J → V̂ d

J by

P̂û = (QWlul)l∈F d
J
,

where QWl : V d →Wl is the standard L2-projection into Wl, i.e. it holds

(QWlu,wl)L2(Ω d) = (u,wl)L2(Ω d) for all wl ∈Wl (31)

for u ∈V d . The following well-known Lemma 1 is the basis for an efficient compu-
tation of QWlu, l ∈F d

J without an explicit discretization of the spaces Wl.

Lemma 1. There holds the identity

QWl = (QVl1
−QVl1−1)⊗·· ·⊗ (QVld

−QVld−1) ,
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where QVl : V → Vl denotes the one-dimensional standard L2-projection into the
space Vl .

Proof. We abbreviate zl = (QVl1
−QVl1−1)⊗ ·· ·⊗ (QVld

−QVld−1)u. First, we have
to show that zl ∈Wl. It is obvious that zl ∈ Vl, but we also have to establish the
orthogonality to all vk ∈ Vk for k ≤ l,k 6= l. To this end, let us pick an index i ∈
{1, . . . ,d} with ki < li. Then, we have

(zl,vk)L2(Ω d) = (· · ·⊗ (QVli
−QVli−1)⊗ . . .u,vk)L2(Ω d)

= (· · ·⊗ (QVli
−QVli

)⊗ . . .u,vk)L2(Ω d) = 0 . (32)

In (32), we used the d-dimensional generalization of the equality

(QVl−1u,vk)L2(Ω) = (u,vk)L2(Ω) = (QVl u,vk)L2(Ω) for all vk ∈Vk with l−1≥ k ,

which holds since Vk ⊂ Vl−1 ⊂ V . Now, we know that zl ∈Wl, but we still need
to show (31). Due to the L2-orthogonality of wl ∈Wl to all functions in Vk with
k≤ l,k 6= l, it holds that

(zl,wl)L2(Ω d) = ((QVl1
−QVl1−1)⊗·· ·⊗ (QVld

−QVld−1)u,wl)L2(Ω d)

= ((QVl1
⊗·· ·⊗QVld

)u,wl)L2(Ω d)

= (u,wl)L2(Ω d) ,

and thus we have proven that zl = QWlu. ut

The operator P̂ can be given in block-diagonal matrix form as P̂ : RN̂d,J×N̂d,J with
blocks (P̂)l,k ∈ Rnl×nk and

(P̂)l,k =

{
QWl for l = k ,

0 else
(33)

for all l,k ∈F d
J , where QWl ∈ Rnl×nl is the matrix representation of the operator

QWl restricted to the subspace Vl. According to Lemma 1, the matrices QWl can be
expressed by

QWl =(Il1−Il1
l1−1(M1,l1−1)

−1Il1−1
l1

M1,l1)⊗·· ·⊗(Ild−Ild
ld−1(M1,ld−1)

−1Ild−1
ld

M1,ld ) ,
(34)

where M1,l are the non-hierarchical isotropic mass matrices from (9) with J = l.
Note that, besides the simple 2-level restrictions and prolongations, d applications of
one-dimensional mass matrices and d applications of the inverse of one-dimensional
mass matrices are employed. Both operations can be cheaply executed since only
band matrices are involved here, e.g., tridiagonal matrices for linear splines.

Note furthermore that P̂ possesses the overall Kronecker product structure
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P̂ =
d⊗

p=1

P̂1

with a block-diagonal P̂1 ∈ RN1,J×N1,J , where

P̂1 = diag(I1
1,I

2
2− I2

1(M1,1)
−1I1

2M1,2, . . . ,IJ
J− IJ

J−1(M1,J−1)
−1IJ−1

J M1,J) .

The block-diagonal structure of P̂ in combination with the Kronecker product struc-
ture (34) allows for an efficient application of P̂ in our generating system, which
involves O(d · N̂d,J) floating point operations. A more detailed cost discussion will
be given in Subsect. 3.3.

Note that even though the matrix P̂ is block-diagonal, it is not symmetric since
its blocks on the diagonal are not symmetric. This is even more remarkable as the
corresponding operator P̂ : V̂ d

J → V̂ d
J is self-adjoint. In fact, the non-symmetry is a

property only of the matrix representation.
For our preconditioner, we also need to apply P̂T efficiently. To obtain a favorable

representation of P̂T , we first consider the mapping

Ẑ : RN̂d,J → V̂ d
J

that maps a block-structured vector x̂d,J = (xl,i)i∈χl,l∈F d
J

of the enlarged generating
system to a collection of subspaces by

Ẑ : x̂d,J 7→ (∑
i∈χl

xl,iφl,i)l∈F d
J
. (35)

Note that P̂ and P̂ are linked by P̂ = Ẑ−1P̂Ẑ.

Lemma 2. The adjoint Ẑ∗ : V̂ d
J → RN̂d,J of (35) is given by

Ẑ∗ : û 7→ x̂d,J with x̂d,J = ((ul,φl,i)L2(Ω d))i∈χl,l∈F d
J

for û = (ul)l∈F d
J
.

Proof. For any v̂ = (vl)l∈F d
J
∈ V̂ d

J and x̂d,J ∈ RN̂d,J , we have

(Ẑx̂d,J , v̂)V̂ d
J
= ∑

l∈F d
J

(∑
i∈χl

xl,iφl,i,vl)L2(Ω d) = ∑
l∈F d

J

∑
i∈χl

xl,i(vl,φl,i)L2(Ω d)

= (x̂d,J , Ẑ∗v̂)`2 . ut

Now, having Ẑ and Ẑ∗, we are able to give a computationally efficient representation
of P̂T .

Lemma 3. It holds that
P̂T = ĜP̂Ĝ−1 ,

where Ĝ : RN̂d,J×N̂d,J is a block-diagonal matrix with blocks (Ĝ)l,k ∈ Rnl×nk and
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(Ĝ)l,k =

{
Ml for l = k ,

0 else

for all l,k ∈F d
J with the mass matrices Ml =

⊗d
p=1 M1,lp .

Proof. It holds that

(Ẑ∗Ẑx̂d,J , ŷd,J)`2 = (Ẑx̂d,J , Ẑŷd,J)V̂ d
J
= ∑

l∈F d
J

∑
i,j∈χl

xl,i(φl,i,φl,j)L2(Ω d)yl,j = x̂T
d,JĜŷd,J ,

and thus Ẑ∗Ẑ = Ĝ. Then, we can infer

(P̂)T = (Ẑ−1P̂Ẑ)∗ = Ẑ∗P̂(Ẑ−1)∗ = ĜẐ−1P̂ẐĜ−1 = ĜP̂Ĝ−1 . ut

Note furthermore that the operator P̂ is a projection, i.e. P̂P̂ = P̂. The same is true
for P̂ since

P̂P̂ = Ẑ−1P̂ẐẐ−1P̂Ẑ = Ẑ−1P̂P̂Ẑ = Ẑ−1P̂Ẑ = P̂ .

Finally, we need the following Lemma.

Lemma 4. For a block-diagonal scaling matrix D̂ ∈ RN̂d,J×N̂d,J with blocks (D̂)l,k ∈
Rnl×nk for l,k ∈F d

J and

(D̂)l,k =

{
clIl for l = k ,

0 else ,

the matrix D̂ commutes with any other block-diagonal matrix B̂ ∈ RN̂d,J×N̂d,J , i.e. a
block-structured matrix with blocks (B̂)l,k ∈ Rnl×nk for l,k ∈F d

J , where

(B̂)l,k =

{
Bk for l = k ,

0 else ,

and Bk ∈ Rnk×nk are general matrices.

Proof. For ease of notation, we use Kronecker’s δ in this short proof. It holds that

(D̂B̂)l,k = ∑
m∈F d

J

(D̂)l,m(B̂)m,k = ∑
m∈F d

J

δl,mclδm,kBk = δl,kclBk

= δl,kBlck = ∑
m∈F d

J

δl,mBmδm,kcm = ∑
m∈F d

J

(B̂)l,m(D̂)m,k = (B̂D̂)l,k ,

and thus D̂B̂ = B̂D̂ . ut

Obviously, Lemma 4 can be applied to, e.g., B̂ = P̂ or B̂ = Ĝ.
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3.2 Preconditioner

Now we will present our new preconditioner for the operator matrix Âd,J . To this
end, the most important ingredient is the norm equivalence (22). From Theorem 1
we already know that its constants are independent of the dimension d and bounded
independently of J.

Theorem 2. Let D̂ ∈ RN̂d,J×N̂d,J be a diagonal block-structured scaling matrix with
blocks (D̂)l,k ∈ Rnl×nk and

(D̂)l,k =

(
d

∑
p=1

22lp)Il for l = k ,

0 else

for all l,k ∈F d
J . Then, the generalized condition number of the symmetric matrix

L̂−1P̂T D̂−1/2Âd,JD̂−1/2P̂L̂−T (36)

is bounded asymptotically with respect to J and is completely independent of the
dimension d. Here, L̂ is the Cholesky-factor of Ĝ, i.e. Ĝ = L̂L̂T .

Proof. For any block-structured vector x̂d,J ∈ im P̂, we have

x̂T
d,JP̂T Âd,JP̂x̂d,J = x̂T

d,JÂd,J x̂d,J (37)

= a( ∑
l∈F d

J

∑
i∈χl

xl,iφl,i, ∑
l∈F d

J

∑
i∈χl

xl,iφl,i)

' ∑
l∈F d

J

( d

∑
p=1

22lp
)∥∥∥∑

i∈χl

xl,iφl,i

∥∥∥2

L2(Ω d)
(38)

= ∑
l∈F d

J

( d

∑
p=1

22lp
)

xT
l Mlxl

= x̂T
d,JD̂Ĝx̂d,J . (39)

In (37), we have used P̂x̂d,J = x̂d,J and in (38), we have applied the norm equiv-
alence (22). The levelwise summation of the mass matrix products was then ex-
pressed using the matrix Ĝ in (39). In the following, we need the block-diagonal
factor L̂ of the Cholesky-decomposition

Ĝ = L̂L̂T .

We set ŷd,J = L̂T D̂1/2x̂d,J and obtain with D̂Ĝ = D̂1/2ĜD̂1/2, see Lemma 4, the
equation

x̂T
d,JD̂Ĝx̂d,J = x̂T

d,JD̂1/2L̂L̂T D1/2x̂d,J = ŷT
d,J ŷd,J .
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Then, using the equivalence of (37) and (39), and x̂d,J = D̂−1/2L̂−T ŷd,J , we obtain
the relation

ŷT
d,JL̂−1D̂−1/2P̂T Âd,JP̂D̂−1/2L̂−T ŷd,J ' ŷT

d,J ŷd,J (40)

for all ŷd,J ∈ im L̂T D̂1/2P̂ with the same favorable constants as in (22). With the
commuting of the matrices P̂ and D̂−1/2, see Lemma 4, the left-hand side of (40)
leads to (36).

Finally, we have to show that no v̂d,J ∈ RN̂d,J with v̂d,J ⊥ ŷd,J affects the spec-
trum. From the Fundamental Theorem of Linear Algebra, from P̂T = ĜP̂Ĝ−1, see
Lemma 3, and from P̂T D̂1/2 = D̂1/2P̂T we know that

v̂d,J ∈ ker P̂T D̂1/2L̂ = ker D̂1/2ĜP̂Ĝ−1L̂ = ker D̂1/2ĜP̂L̂−T L̂−1L̂

= ker P̂L̂−T . (41)

We dropped the matrix D̂1/2Ĝ from the kernel in the last equality (41), as it is a
full-rank matrix and thus has no effect on the kernel. Obviously, if v̂d,J ∈ ker P̂L̂−T ,
then v̂d,J belongs to the kernel of the preconditioned system (36). This finally proves
the theorem. ut

As a result of Theorem 2, we can express our preconditioner for Âd,J as

Ĉd,J := P̂D̂−1Ĝ−1P̂T .

Moreover, this approach also gives us with Âd,J = ŜT
d,JAd,J Ŝd,J the preconditioner

Cd,J := Ŝd,JP̂D̂−1Ĝ−1P̂T ŜT
d,J (42)

for the fine grid system matrix Ad,J . The preconditioned system possesses the same
condition number, i.e. it is also independent of d and bounded independently of J.

3.3 Cost Discussion for the New Preconditioner

So far, we obtained a preconditioner with condition numbers independent of d and
bounded independently of J. Of course, the question is now how high its compu-
tational costs are. Remember that a perfect preconditioner would be A−1

d,J anyway,
but it involves way too many computations. With (42) we now have a preconditioner
Cd,J which comes, up to a d- and J-independent constant, close to A−1

d,J , but involves
only a number of floating point operations that is linear in the number of degrees of
freedom N̂d,J of the enlarged system.

We will now give a short discussion of the required matrix-vector multiplications
and their costs, also with respect to the dimension d. As stated earlier, the appli-
cation of the matrices Ŝd,J and ŜT

d,J onto a vector can be implemented by a simple
algorithm that exploits (15) in O(d · N̂d,J) floating point operations. The application
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of D̂−1 is obviously possible with the same cost complexity. The matrix Ĝ−1 needs
however a more elaborate discussion. As it is block-diagonal, its action can be im-
plemented with an algorithm that works subspace by subspace. On every Vl, l∈F d

J ,
the mass matrix Ml =

⊗d
p=1 M1,lp must be inverted. As these matrices have Kro-

necker product structure, the inversion can be realized by the application of M−1
1,lp

to
the dimension p for p = 1, . . . ,d. We assume the functions {φl,i}i∈χl to be of finite
element type (h-version with fixed polynomial degree) having local support. Conse-
quently, the associated one-dimensional matrices M1,lp have band matrix structure
with constant band size and are thus invertible with linear costs1. As a result, we
have a cost of O(d ·nl) on each subspace and obtain a cost complexity of O(d · N̂d,J)

in total. The same argumentation holds for P̂, which has a somewhat more compli-
cated form, see (33) and (34), but also works subspace by subspace, where we can
again exploit a Kronecker product structure. In total, we arrive at costs of O(d · N̂d,J)
for our preconditioner. The application of Ad,J is directly possible2 in O(d2 ·Nd,J)
due to the representation of the system matrix as a sum of Kronecker product ma-
trices (8). In comparison, our preconditioner (42) is slightly more expensive since
its costs depend on the enlarged system with N̂d,J degrees of freedom. However, a
geometric series argument shows that

N̂d,J = O(2dNd,J) = O(2d2Jd) = O(2(J+1)d) = O(Nd,J+1) ,

and thus the costs for our preconditioner on level J compare simply to the costs for
a regular fine grid system on level J+1.

4 Sparse Grids

So far, we have dealt with the preconditioning of an isotropic full grid with O(Nd,J)
degrees of freedom. They scale exponentially with the dimension d and are thus
impossible to deal with for d > 4 anyway. Under some additional smoothness re-
quirements, sparse grids [BG04] remove this curse of dimension to some extent.
Then, the multivariate multilevel structure is a fundamental necessity for both, a
good preconditioner and the discretization itself. The implementation of a sparse
grid multilevel discretization was already dealt with in [BG04, Feu10]. In the fol-
lowing, we discuss our new preconditioner for the sparse grid case in detail.

1 Non-local basis functions (p-version) are likely to result in a Toeplitz-type matrix, which can be
inverted in log-linear time.
2 Note that it is even possible to execute this matrix-vector product in O(d ·Nd,J) operations by the
successive multiplications of Md,J and of Ad,JM−1

d,J = ∑
d
p=1(

⊗p−1
q=1 IJ)⊗A1,JM−1

1,J ⊗ (
⊗d

q=p+1 IJ).
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4.1 Definition

We can use an index set I ⊂Nd , |I |< ∞, which defines the subspaces included in
some discretization by

VI = ∑
l∈I

Vl .

A proper choice of I now depends – besides the error we want to achieve – on the
smoothness of the function class3 for which we want to approximate.

For example, the full grid space V d
J from (5) can be described by the index set

F d
J from (13), i.e. V d

J =VF d
J

, and has the approximation property4

inf
v∈V

Fd
J

‖u− v‖2
Hs(Ω d) ≤ c(d)2−2(t−s)J‖u‖2

Ht (Ω d)

with rate t − s and u ∈ Ht
0(Ω

d). Its number of degrees of freedom is of the order
O(2Jd). Thus, the accuracy as function of the degrees of freedom deteriorates expo-
nentially with rising d, which resembles the well-known ‘curse of dimensionality’,
cf. [Bel61, BG04].

The sparse grid index set

S d
J = {l ∈ Nd : |l|1 ≤ J+d−1} (43)

circumvents this problem to some extent provided that additional mixed smoothness
u ∈ Ht

0,mix(Ω
d) is present. For details, see [BG04]. An example for the function

system associated to S d
J is given in Fig. 1 (right) for the two-dimensional case. The

associated rate of best approximation

inf
v∈V

S d
J

‖u− v‖2
Hs(Ω d) ≤ c(d)2−2(t−s)J‖u‖2

Ht
mix(Ω

d)

is the same5 as for the full grid space, i.e. t − s, but the number of degrees of
freedom now is only of the order O(2JJd−1) in J. This is a substantial improvement
of the asymptotics in J in comparison to the full grid case. A-priori Hs-optimized
sparse grids need, depending on the available smoothness class, even less degrees
of freedom. For further details, cf. [BG04, GK09].

It is furthermore possible to adapt the index set I a-posteriori to a given function
by means of a proper error estimation and a successive refinement procedure. This
approach results in adaptively refined sparse grids, see e.g. [Feu10, GG03]. Note
that for both, practical and theoretical reasons, our index set I needs to satisfy the

3 In this paper, we restrict ourselves to homogeneous boundary conditions and do not introduce
functions at the boundary. However, by u = u

Ω d +uΓ with u
Ω d |Γ = 0 and −∆u

Ω d = f +∆uΓ , we
cover any case with Dirichlet boundary functions uΓ = g on Γ .
4 This holds for a range of parameters 0≤ s < t ≤ r with r being the order of the spline of the space
construction. In our case of linear splines r = 2 holds.
5 Note that an additional logarithmic term appears in the error estimate for s = 0, cf. [BG04].
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L
e
v
e
l

Fig. 1 The first four levels of a one-dimensional multilevel generating system based on linear
splines (left). Two-dimensional tensorization and the sparse subspace (right)

admissibility condition

l ∈I ,k ∈ Nd ,k≤ l⇒ k ∈I . (44)

The number of degrees of freedom in the enlarged system for the regular sparse
grid space VS d

J
is N̂SG

d,J = ∑l∈S d
J

nl. Note that here again some redundancy is in-
volved, but the asymptotics in J of the number of degrees of freedom remains the
same as for the sparse grid approach based on, e.g., the hierarchical basis [BG04],
that is N̂SG

d,J = O(2JJd−1) in J.
The weak problem (2) on VS d

J
with the generating system

⋃
l∈S d

J

{φl,i : i ∈ χl} (45)

now leads to the equation
ÂSG

d,J x̂SG
d,J = b̂SG

d,J . (46)

Here, the matrix ÂSG
d,J is block-structured with blocks (ÂSG

d,J)l,k ∈ Rnl×nk for l,k ∈
S d

J , where
((ÂSG

d,J)l,k)i,j = a(φl,i,φk,j) for i ∈ χl, j ∈ χk

and the right-hand side vector b̂SG
d,J consists of blocks (b̂SG

d,J)l ∈ Rnl , l ∈S d
J , with

((b̂SG
d,J)l)i = (φl,i, f )L2(Ω d) for i ∈ χl .
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Similar to the full grid case (14), the non-unique representation in an enlarged sparse
grid generating system (45) results in a non-trivial kernel of ÂSG

d,J . Thus, ÂSG
d,J is not

invertible. But, again, the system (46) is solvable since the right-hand side b̂SG
d,J lies

in the range of the system matrix and a solution can be generated by any semi-
convergent iterative method.

We will now describe the enlarged sparse grid system (46) as a submatrix and a
subvector of the enlarged full grid system (14). Note that this is done here for theo-
retical purposes only. In our implementation we of course avoid the full grid system
with N̂d,J degrees of freedom. In fact, our computational costs stay proportional to
N̂SG

d,J , which is substantially smaller, cf. Subsect. 4.3.

Like in (17), we can express the blocks of ÂSG
d,J and b̂SG

d,J with respect to (7) by

(ÂSG
d,J)l,k = Il

JAd,JIJ
k and (b̂SG

d,J)l = Il
Jbd,J

for l,k ∈S d
J . Now, we can express our sparse grid operator matrix by

ÂSG
d,J = R̂d,JÂd,JR̂T

d,J , (47)

and our right-hand side by
b̂SG

d,J = R̂d,J b̂d,J ,

where R̂d,J ∈ RN̂SG
d,J×N̂d,J is a rectangular block-structured matrix with

(R̂d,J)l,k =

{
Il for k = l ,
0 else ,

for l ∈ S d
J ,k ∈ F d

J . Note that R̂T
d,JR̂d,J ∈ RN̂d,J×N̂d,J is a block-diagonal scaling

matrix in the enlarged full grid system which simply sets all vector blocks to zero

that belong to l ∈F d
J \S d

J , and R̂d,JR̂T
d,J ∈ RN̂SG

d,J×N̂SG
d,J is simply the identity matrix

on RN̂SG
d,J .

4.2 Sparse Grid Submatrix and Preconditioner

The proof of Theorem 2 showed that the condition number of Cd,JAd,J is indepen-
dent of the dimension d and bounded independently of J. We will now extend this
result to the sparse grid case by a submatrix argument. For reasons of simplicity, we
stick here to the case of the regular sparse grid space VS d

J
and the associated matrix

ÂSG
d,J , i.e. to the index set S d

J of (43). But note that the following proof works with
any index set I ⊂ Nd with I ⊂Fd,J for which condition (44) is fulfilled.

Theorem 3. The generalized condition number of the symmetric matrix
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R̂d,JL̂−1P̂T D̂−1/2R̂T
d,JÂSG

d,JR̂d,JD̂−1/2P̂L̂−T R̂T
d,J ∈ RN̂SG

d,J×N̂SG
d,J (48)

is less than or equal to the condition number of the preconditioned system Cd,JAd,J
of the full grid with same dimension d and level J. Thus, the generalized condition
number of ĈSG

d,JÂSG
d,J with

ĈSG
d,J := R̂d,JP̂D̂−1Ĝ−1P̂T R̂T

d,J (49)

is bounded asymptotically with respect to J and d.

Proof. We recall (40) from the proof of Theorem 2, i.e.

ŷT
d,JL̂−1D̂−1/2P̂T Âd,JP̂D̂−1/2L̂−T ŷd,J ' ŷT

d,J ŷd,J (50)

for ŷd,J ∈ im L̂T D̂1/2P̂. We obtain equivalence constants, which are at least as good
as those in (40), by the stronger condition

ŷd,J ∈ im R̂T
d,JR̂d,JL̂T D̂1/2P̂⊂ im L̂T D̂1/2P̂⊂ RN̂d,J .

The image of R̂T
d,J is not enlarged by block-diagonal matrices, and we can safely

replace Âd,J by R̂T
d,JÂSG

d,JR̂d,J on im R̂T
d,J . This gives us

ŷT
d,JL̂−1D̂−1/2P̂T R̂T

d,JÂSG
d,JR̂d,JP̂D̂−1/2L̂−T ŷd,J ' ŷT

d,J ŷd,J

with the same constants as in (50). Setting ẑSG
d,J = R̂d,J ŷd,J results in

ŷd,J = R̂T
d,JR̂d,J ŷd,J = R̂T

d,J ẑSG
d,J ,

and we obtain

(ẑSG
d,J)

T R̂d,JL̂−1D̂−1/2P̂T R̂T
d,JÂSG

d,JR̂d,JP̂D̂−1/2L̂−T R̂T
d,J ẑSG

d,J ' (ẑSG
d,J)

T ẑSG
d,J

on
ẑSG

d,J ∈ im R̂d,JR̂T
d,JR̂d,JL̂T D̂1/2P̂ = im R̂d,JL̂T D̂1/2P̂⊂ RN̂SG

d,J .

It is left to show that vectors v̂SG
d,J with v̂SG

d,J ⊥ ẑSG
d,J are indeed in the kernel of (48).

We obtain this by

v̂SG
d,J ∈ ker(R̂d,JL̂T D̂1/2P̂)T = ker P̂T D̂1/2L̂R̂T

d,J = ker D̂1/2ĜP̂Ĝ−1L̂R̂T
d,J

= ker D̂1/2ĜP̂L̂−T R̂T
d,J = ker P̂L̂−T R̂T

d,J ,

where we have used similar arguments as in the proof of Theorem 2. Altogether,
this proves that the matrix (48) has a generalized condition number that is at least as
good as that for the full grid case, i.e. that of Cd,JAd,J . Finally, we can rewrite the
preconditioner in the form (49) since
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κ̃(R̂d,JL̂−1P̂T D̂−1/2R̂T
d,JÂSG

d,JR̂d,JD̂−1/2P̂L̂−T R̂T
d,J)

= κ̃(R̂d,JD̂−1/2P̂L̂−T R̂T
d,JR̂d,JL̂−1P̂T D̂−1/2R̂T

d,JÂSG
d,J) (51)

= κ̃(R̂d,JP̂D̂−1Ĝ−1P̂T R̂T
d,JÂSG

d,J) = κ̃(ĈSG
d,JÂSG

d,J) . (52)

In (51), we used that κ̃(EF) = κ̃(FE) for arbitrary square matrices E and F, and
in (52) we used that R̂T

d,JR̂d,J is the identity on im R̂T
d,J , that L̂−T L̂−1 = Ĝ−1 and,

finally, that block-diagonal scaling matrices commute with block-diagonal matrices,
see Lemma 4. This proves the theorem. ut

4.3 Cost Discussion

It is of course important not to implement the matrix ÂSG
d,J nor the preconditioner

ĈSG
d,J from (49) naively, if we want to keep their computational costs proportional

to the number of degrees of freedom N̂SG
d,J of the sparse grid. First, let us consider

ĈSG
d,J in more detail. In fact, all the matrices P̂, D̂−1, Ĝ−1 and P̂T are block-diagonal,

which means that they can be implemented as subspace-wise operations. As for
x̂d,J ∈ im R̂T

d,J all vector blocks (x̂d,J)l with l ∈F d
J \S d

J are zero and get removed

by the final application of R̂d,J anyway, they do not need to be considered in the
implementation. By the same arguments as in Subsect. 3.3, we obtain that our pre-
conditioner can indeed be applied in O(d · N̂SG

d,J ).

An efficient matrix-vector multiplication with the operator matrix ÂSG
d,J is how-

ever far more complicated than in the full grid case. One reason is that the index
S d

J has, unlike F d
J , no representation as a Cartesian product, which means that

ÂSG
d,J has no Kronecker product structure like Âd,J does. Of course, we must not

use (47), which was given only for theoretical reasons to allow for the submatrix ar-
gument of the last subsection. Instead, we resort to a quite sophisticated dimension-
recursive algorithm based on the so-called unidirectional principle [BZ96, Bun92b]
to perform the matrix-vector-multiplication linearly in the number of degrees of
freedom N̂SG

d,J . Typically the associated dimension-dependent constant in the costs
is proportional to 2d . This factor can however be reduced to d2 in the case of the
Laplacian by exploiting the L2-orthogonality between subspaces, see [Feu05]. Then,
the total algorithmic cost of one application of ĈSG

d,JÂSG
d,J is of the order O(d2 · N̂SG

d,J ).
So far, we have expressed the computational effort with respect to the enlarged

sparse grid system with N̂SG
d,J degrees of freedom, which has by a factor of about

2d more degrees of freedom than the hierarchical basis [BG04]. We consider this
acceptable, because the number of degrees of freedom of regular sparse grids is of
the order O(2JJd−1), which is exponential in d anyway. Moreover, the number of
degrees of freedom of energy sparse grids is of the order O(2J) in J, but which
involves a constant that is also exponential in d, cf. [Gri06].
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Note that it is possible to remove the redundancy of our multilevel discretization
via the generating system (45) by using a prewavelet discretization. This seems to
eliminate the 2d-factor by construction. It however still appears hidden in the setup
of the discrete right-hand side for general functions f . The prewavelet approach and
a new improved preconditioner will be discussed in the next section.

5 Prewavelets

The enlarged generating system introduced some additional difficulties like a non-
trivial kernel of the operator matrix and the need for an orthogonalization operator P̂.
This can be avoided in the first place if a direct discretization of the orthogonal
subspaces Wl is available, which is just the case for so-called prewavelets and for
wavelets.

Let us first consider the full grid case. To this end, let us assume that we have
basis functions (ψl,i)i∈ξl,l∈F d

J
with

Wl = span{ψl,i : i ∈ ξl} for l ∈F d
J , (53)

and set n̄l := |ξl|. Note here that we have L2-orthogonality between different levels
by definition, but we have not necessarily L2-orthogonality within one level. The
multilevel matrix Ād,J ∈ RNd,J×Nd,J with

(Ād,J)(l,i),(k,j) = a(ψl,i,ψk,j) for i ∈ ξl, j ∈ ξk, l,k ∈F d
J (54)

results just from the system matrix Ad,J of (7) by a change of the basis, since⊕
l∈F d

J

Wl =V d
J .

Thus,
Ād,J = TT Ad,JT ,

where T maps from {ψl,i}i∈ξl,l∈F d
J

to {φJ,i}i∈χJ . The analogue holds for the right-

hand side b̄d,J ∈ RNd,J with

(b̄d,J)l,i = ( f ,ψl,i)L2(Ω d), i ∈ ξl, l ∈F d
J , i.e. b̄d,J = TT bd,J .

Note here that, in contrast to Âd,J , the system matrix Ād,J is now invertible, since
the functions in (53) form a basis of VF d

J
.



24 M. Griebel and A. Hullmann

5.1 Preconditioner

Now, we will present our preconditioner for prewavelets and discuss its resulting
condition number. To this end, we need a diagonal scaling matrix D̄ ∈ RNd,J×Nd,J

with blocks (D̄)l,k ∈ Rn̄l×n̄k and

(D̄)l,k =

(
d

∑
p=1

22lp)Īl for l = k ,

0 else ,

(55)

where the Īl ∈ Rn̄l×n̄l denote identity matrices on the subspaces. Furthermore, we
need the subspace-wise mass matrix Ḡ ∈ RNd,J×Nd,J with blocks (Ḡ)l,k ∈ Rn̄l×n̄k ,
where

(Ḡ)l,k =

{
M̄l for l = k ,

0 else .

Here, M̄l ∈ Rn̄l×n̄l denotes the mass matrix

(M̄l)i,j = (ψl,i,ψl,j) for i, j ∈ ξl .

Then, we have the following theorem:

Theorem 4. The condition number of

D̄−1Ḡ−1Ād,J (56)

is bounded asymptotically with respect to J and is completely independent of the
dimension d.

Proof. We translate the norm equivalence (22) into the matrix-vector setting for
x̄d,J ∈ RNd,J×Nd,J and obtain

x̄T
d,JĀd,J x̄d,J = a( ∑

l∈F d
J

∑
i∈ξl

x̄l,iψl,i, ∑
l∈F d

J

∑
i∈ξl

x̄l,iψl,i)

' ∑
l∈F d

J

( d

∑
p=1

22lp
)∥∥∥∑

i∈ξl

x̄l,iψl,i

∥∥∥2

L2(Ω d)
(57)

= ∑
l∈F d

J

( d

∑
p=1

22lp
)

x̄T
l M̄lx̄l

= x̄T
d,JD̄Ḡx̄d,J .

From Theorem 1 we know that the constants in (57) are independent of the dimen-
sion d and bounded independently of J. This concludes the proof. ut

In the case of a regular sparse grid with I = S d
J , the equality
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l∈S d

J

Wl = ∑
l∈S d

J

Vl (58)

holds. The analogue is valid for a general sparse grid with any arbitrary index set I
for which the condition (44) is satisfied. Thus, the regular sparse grid space ∑l∈S d

J
Vl

or the general sparse grid space ∑l∈I Vl can both be expressed by the left-hand side
of (58), i.e. with the help of Wl-subspaces. The resulting linear system matrix ĀSG

d,J is
just a submatrix of the full matrix6 Ād,J . Consequently, the condition number for the
sparse grid system is at least as good as the one of (56). Analogously the resulting
right-hand side b̄SG

d,J is just a subvector of b̄d,J .
Note here that prewavelets have been frequently used in the past as the ba-

sis functions of sparse grid discretizations [GO95, Feu10] but mostly no spe-
cial attention was paid to the dependence of the condition number on the di-
mension. A simple Jacobi-diagonal scaling of Ād,J is equivalent to replacing the
subspace-wise inversion of the mass matrices Ḡ−1 in (56) by the identity and the D̄
from (55) by diag(Ād,J). This does not affect the asymptotics in J for L2-stable
basis functions, but the condition number of the operator matrix grows now expo-
nentially with the dimension [Feu05]. Sometimes (D̄)l,l = 22|l|∞ diag(M̄l) is chosen,
see [GO94, GK09], which also results in condition numbers that grow with the di-
mension d.

5.2 Cost Discussion

We now have the preconditioner C̄d,J := D̄−1Ḡ−1 for Ād,J in prewavelet discretiza-
tion. At first sight, this approach looks simpler and more efficient than the more
complicated discretizations Âd,J and ÂSG

d,J using the enlarged generating system and

the associated preconditioners Ĉd,J and ĈSG
d,J , respectively. This is due to the fact

that the prewavelet system {ψl,i : i ∈ ξl}l∈I forms a basis and therefore exhibits no
redundancies. Thus, by a factor of about 2d less degrees of freedom are involved
than for the corresponding generating system.

However, there are additional difficulties to be faced in the prewavelet approach,
which should not be underestimated and may give the generating system method
a practical advantage. First, prewavelets are less local than, e.g. the corresponding
multilevel spline basis. Thus, the mass matrix inversions in Ḡ−1 become more in-
volved. From a programming perspective, the more complicated basis functions and
different types of prewavelet functions near the boundary make the application of
the matrix Ād,J to a vector more difficult. The efficient application of the action
of the sparse grid system matrix ĀSG

d,J onto a vector is even more involved, since
the unidirectional principle strongly relies on the nestedness of the subspaces. If
this is no longer the case, the one-dimensional operators have to be tailored to the

6 Here, the level J of the full grid is to be equal to the level J of the regular sparse grid or equal to
the finest level involved in I for the general sparse grid.
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specific discretization [Feu10] or the algorithm must switch to a generating system
anyway [Zei11].

Finally, as already mentioned at the end of Subsect. 4.3, the cost complexity of
the setup of the right-hand side b̄SG

d,J also has at least a 2d-factor if the correspond-
ing integrations are realized by the interpolation of the function f from (1) in our
prewavelet sparse grid space and a subsequent multiplication by the mass matrix
to account for the necessary numerical quadrature. As stated in [Feu05], for gen-
eral functions f , this approach requires the inclusion of boundary functions in the
interpolation step (even if the solution u of our Poisson problem has homogeneous
boundary conditions). Since the d-dimensional hypercube Ω d has 2d faces, an addi-
tional factor of the order 2d enters the cost complexity for the setup of the right-hand
side. The dependence of the cost complexity on the dimension d of other techniques
for the assembly of the right-hand side for wavelets and prewavelets with sufficient
accuracy, e.g. by the solution of an eigenvector-moment problem associated with
the coefficients of the refinement equation [DM93], is unknown to us. We however
believe that also these methods involve a factor of at least 2d in the d-dimensional
case due to the tensor product construction.

Altogether, the generating system approach from (36) and (48) can be seen as a
simple form of implementation of the prewavelet approach and, indeed, both meth-
ods give exactly the same condition numbers for the piecewise linear case.

6 Numerical Experiments

Now, we give the results of numerical experiments for our new full and sparse grid
preconditioners (42) and (49), respectively. We consider the d-dimensional Laplace
operator on the domain Ω d = (0,1)d with vanishing Dirichlet boundary conditions.
As locally supported basis functions in (4), we choose on level l the nl = 2l−1 hat
functions

φl,i(x) = max(1−2l ∣∣x− xl,i
∣∣ ,0) ,

which are centered at the points of an equidistant mesh

xl,i = 2−l i

for i = 1, . . . ,nl . The resulting space ∪∞
l=1Vl is indeed equal to the underlying

Sobolev space H1
0 (Ω) up to completion with the H1-norm, see [BG04].

Table 1 shows the generalized condition numbers of the preconditioned matri-
ces (36) and (48) of the enlarged generating systems in the full and sparse grid case
for different dimensions d and levels J. We clearly observe that the full grid condi-
tion numbers are bounded from above by a constant independently of the level J.
Moreover, they are perfectly independent of the dimension as our theory suggests.
The sparse grid condition numbers are even smaller than the corresponding full grid
ones for d > 1, which is in accordance with our submatrix argument from Theo-
rem 3. In Table 2 (top) we give the number of degrees of freedom N̂SG

d,J for various
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values of J and d. Finally, Table 2 (bottom) reveals that the condition numbers of the
sparse grid even decrease with rising dimension d for a fixed level J. For a sparse
grid discretization of the Poisson problem, these numbers clearly show that we are
altogether able to efficiently solve the associated linear systems of equations for
both, quite large values of J and larger dimensions d.

Table 1 Degrees of freedom N̂d,J and N̂SG
d,J and condition numbers κ̃ of the preconditioned matri-

ces (36) and (48) for the Laplacian on the unit hypercube with a full- and sparse-grid discretization
for the generating system approach based on linear splines

DOFs N̂d,J and N̂SG
d,J condition number κ̃

level J full grid sparse grid full grid sparse grid
dim = 1 2 4 4 3.40 3.40

3 11 11 4.67 4.67
4 26 26 5.17 5.17
5 57 57 5.84 5.84
6 120 120 6.37 6.37
7 247 247 6.80 6.80
8 502 502 7.16 7.16
9 1013 1013 7.47 7.47

10 2036 2036 7.74 7.74
11 4083 4083 7.96 7.96
12 8178 8178 8.16 8.16
13 16369 16369 8.33 8.33

dim = 2 2 16 7 3.40 2.99
3 121 30 4.67 4.46
4 676 102 5.17 5.06
5 3249 303 5.84 5.65
6 14400 825 6.37 6.20

dim = 3 2 64 10 3.40 2.71
3 1331 58 4.67 4.28
4 17576 256 5.17 5.00

dim = 4 2 256 13 3.40 2.51
3 14641 95 4.67 4.12

dim = 5 2 1024 16 3.40 2.36

Finally note that the prewavelet approach from Sect. 5 results in exactly the same
condition numbers.

7 Concluding Remarks

We presented preconditioners Cd,J (42) and ĈSG
d,J (49) for an isotropic full grid and

an enlarged sparse grid system, respectively. Both result in condition numbers that
are bounded independently of the level J and are constant or, in the sparse grid case,
even decreasing for rising dimension d.

The computational costs of the preconditioner remained linear in the number of
degrees of freedom. The size of the enlarged systems grows by a factor of about 2d
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Table 2 Degrees of freedom and generalized condition numbers of the preconditioned sparse grid
system (48) for different dimensions d and levels J

degrees of freedom with respect to the level J
dim 2 3 4 5 6 7 8 9 10 11 12 13

1 4 11 26 57 120 247 502 1013 2036 4083 8178 16369
2 7 30 102 303 825 2116 5200 12381
3 10 58 256 955 3178 9740
4 13 95 515 2310 9078
5 16 141 906 4746
6 19 196 1456 8722
7 22 260 2192 14778
8 25 333 3141
9 28 415 4330

10 31 506 5786

condition number with respect to the level J
dim 2 3 4 5 6 7 8 9 10 11 12 13

1 3.40 4.67 5.17 5.84 6.37 6.80 7.16 7.47 7.74 7.96 8.16 8.33
2 2.99 4.46 5.06 5.65 6.20 6.65 7.04 7.36
3 2.71 4.28 5.00 5.49 6.06 6.53
4 2.51 4.12 4.94 5.35 5.95
5 2.36 3.97 4.88 5.23
6 2.24 3.83 4.82 5.17
7 2.15 3.71 4.77 5.15
8 2.07 3.60 4.71
9 2.00 3.50 4.66
10 1.94 3.41 4.61

compared to the corresponding basis. This seems a fair price to pay. Better constants
in the respective norm equivalence and associated condition numbers reduce the
number of iterations of Krylov methods and also make corresponding residual-based
error estimates more reliable.

Our new preconditioners can be applied to differential operators other than the
Laplacian. The approach works straightforwardly for constant coefficients or vari-
able coefficients which are separable, i.e. can be written as a product of one-
dimensional diffusion functions, or can be well approximated by a low-rank rep-
resentation. But then the equivalence constants of

a(u,u)' ‖u‖2
H1(Ω d)

,

i.e. the ellipticity constants, cf. [CS12], at least partly enter the condition estimate
of the resulting system. If they grow exponentially with the dimension d we may
run into problems, though.

In a similar way, equivalences to Hs-norms can be dealt with by using diagonal
scaling matrices
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(D̂)l,k =

(
d

∑
p=1

22slp)Il for l = k ,

0 else ,

and the associated Ĝ−1 if the regularity of the employed basis functions is sufficient.
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[Sjö07] P. Sjöberg. Partial approximation of the master equation by the Fokker–Planck equa-
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