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Abstract Most high-dimensional data exhibit some correlation such that data points
are not distributed uniformly in the data space but lie approximately on a lower-
dimensional manifold. A major problem in many data-mining applications is the
detection of such a manifold from given data, if present at all. The generative to-
pographic mapping (GTM) finds a lower-dimensional parameterization for the data
and thus allows for nonlinear dimensionality reduction. We will show how a dis-
cretization based on sparse grids can be employed for the mapping between latent
space and data space. This leads to efficient computations and avoids the ‘curse of
dimensionality’ of the embedding dimension. We will use our modified, sparse grid
based GTM for problems from dimensionality reduction and data classification.

1 Introduction

High-dimensional data often exhibit a correlation structure between the variables,
which means that there are areas in the data space with little or no data points. A
suitable low-dimensional projection of the data then allows a more compact descrip-
tion, a better visualization and a more efficient processing.

One approach to dimensionality reduction is to express the high-dimensional
data in terms of latent variables. A well-known method is the Principal Component
Analysis (PCA), which is based on the diagonalization of the data covariance ma-
trix. However, the PCA 1is by construction a linear method. As such, it is not capable
of modeling nonlinear lower-dimensional dependencies and sometimes may fail.
A simple three-dimensional example, the so called ‘Swiss roll’, is given in Fig. 1.
Here, the topological structure of the data is not preserved under the mapping into
two dimensions and points originally far apart on the manifold are close-by in the
two-dimensional projection.
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This is why nonlinear methods are necessary. Some common approaches are
multidimensional scaling (MDS), curvilinear component analysis (CCA), curvilin-
ear distance analysis (CDA), Laplacian eigenmaps (LE), locally linear embedding
(LLE), Kohonen’s self-organizing map (SOM), generative topographic mapping
(GTM) and kernel PCA (KPCA), cf. [17]. Unfortunately, capturing nonlinearities
comes at the price of a significant increase in computational complexity and with
the problem of possibly finding only a locally optimal solution.

In this article we will focus on the generative topographic mapping (GTM) [4].
Usually, the latent space of the generative model is limited to two or three dimen-
sions due to the ‘curse of dimensionality’. It means that the cost complexity for the
approximation to the solution of a problem grows exponentially with the dimen-
sion d, i.e. it is of the order ¢(h~?) with h being the one-dimensional mesh-width.
Instead, we use sparse grids [6] for the discretization of the mapping between la-
tent space and data space. Then, the number of degrees of freedom grows only by
O(h~' (logh=1)?=1), which is a substantial improvement. This approach has also
been followed for principal curves and manifolds in [10]. Of course, this saving in
computational complexity comes at a cost, namely an additional logarithmic error
term and a stronger smoothness assumption on the mapping. As a result, we get a
sparse GTM (SGTM), which basically achieves the same level of accuracy with less
degrees of freedom. In contrast to the conventional GTM, it can cope with higher-
dimensional latent spaces.
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Fig. 1 The projection of the ‘Swiss roll’ data (left) onto the first two principal components results
in a two-dimensional representation (right)

This paper is organized as follows: In Sect. 2, we describe our generative model,
which is based on a mapping between the lower-dimensional latent space and the
data space. In Sect. 3, we present a method to find the mapping by minimizing a
certain target functional, i.e. the regularized cross-entropy between the model and
the given data. Then, in Sect. 4, we show how we can obtain the original GTM as
well as the sparse GTM by special discretization choices. In Sect. 5, we apply the
sparse GTM to a benchmark dataset from literature and a real-world classification
problem. Some final remarks conclude this paper.
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2 The generative model
In the following, we will describe a generative model, which is based on a low-
dimensional parameterization.

We want to represent a d-dimensional density p(t) > 0,t € R¢, by a density that
is intrinsically low-dimensional. To this end, we introduce a mapping

y:[0,1]F - R?

with L < d that connects the L-dimensional latent space [0,1]" and the data
space R?. The generated density is then

0= (E)" [ (B —p)ax 0

It can be interpreted as the image of an L-dimensional uniform distribution under the
mapping y with additional Gaussian noise, which is controlled by the parameter f3,
see Fig. 2 for an illustration. It is easy to see that [pagy g(t)dt =1, ie. gyp is a
density in the d-dimensional data space.

latent space mapping data space

o O O O

y(x)

Fig. 2 The L-dimensional data space is mapped by y into the d-dimensional data space. There, the
model assumes multivariate Gaussian noise with variance !

The aim is now to choose a mapping y and an inverse variance f € R, such
that the dissimilarity between gy g and p is minimized. To be precise, for a given
regularization term AS(y) and density p(t), we want to minimize the regularized
cross-entropy [16]

9(y,B) := H(p,qyp) +AS(y) 2)

= - _E 2 o d E
— /de(t)log/[oJ]Lexp( 5 [y (x) = t|* | dxdt — Zlog — +A5(y)

in'y and f. For the remainder of this paper, we assume S(y) = Y'¢_, ||y, where

y(x) = 01(x),...,yq4(x)) and || - ||z = (-, )}L,/z denotes a given norm or seminorm in
a prescribed Hilbert space H. This naturally requires the components of the vector-
valued function y to be an element of H. For an in-depth discussion of the relation
between regularization terms and associated function spaces, see [20]. A weak reg-
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ularization with a too small A or even A = 0 leads to overfitting, i.e., the method
models random noise instead of a meaningful underlying relationship between la-
tent variables and the data set. A regularization that is too strong might prevent
the method from discovering relevant features of the data. We recommend choos-
ing the parameter A for reconstruction and classification tasks by cross-validation
techniques [7, 15].

3 Functional minimization

Let us now show how the GTM functional ¢ can be efficiently minimized even
though it is nonlinear and nonconvex in y and f. It is important to note that the
functional equals the logarithm of the partition function, and we can rearrange it
to its free energy form for easier numerical treatment. First we define the posterior
probabilities Ry g : RY x [0,1]* — R by

o Byt

R, 5(t,x) := .
w6 f[OI]Le_gHY(X’)—tHZdX/

Next, we introduce the functional

K (y,y,B) = /Rd p(t) /[0 " y(t,x)log w(t,x)dxdt 3)
B Y
5 [0 [ el - tPaxde S log 5+ AS(y).

Here, for all t € R? it must hold that w(x,t) is a density in x. Then, a lengthy, but
otherwise simple calculation reveals that

H (Ryp,y,B)=%(y,B) forall y,pB. @

We now minimize % by successively minimizing with respect to its single param-
eters W, y and . This is advantageous, because these subproblems are convex even
though ¥ is not.

The following three minimization steps have to be carried out in an outer iteration
until we converge to a local minimum. Minimizing with respect to f yields

. 1 -
agming # (v 8) = (5 [ 00 [ vty —efasat)
R 0,11
The posterior probabilities Ry g minimize £ w.r.t. Y, i.e.

arg min,, 2 (y,y, B) = Ry , (©)
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which is analogous to statistical physics, where the Boltzmann-distribution mini-
mizes the free energy [18]. In combination with (4), this step can be understood as
a projection back into the permissible search space since

%(argminw’%/(W7Y7B)7y7B) :%(Ry,ﬁaYal}) :g(Yaﬁ) :

To minimize . in y-direction, we need to solve the quadratic regression type prob-
lem

21
aigmin, [ p(t | PRIy P axat s(y). ™)

4 Discretization of the model

We now discretize the mapping y by M basis functions ¢; : [0, 1)l > R, j=1,....M
and obtain yy(x) = W¢(x) with the coefficient matrix W € R¥*M and ¢(x) =
(¢1(x), ..., (x))T. The minimization of the # -functional in y-direction (7) then

amounts to solving d decoupled systems of linear equations forr =1,...,d
Aw, =z, ®)
with w, = (W),1,...,(W))T, A € RMM and z, € RM. The entries of the ma-
trix A and the vectors z, can be computed for i, j =1,...,M by
A= t t j i(x)dxdt 22 00,0 d 9
(Wi = [, ] vEX0 (M0 Mt (00 0)n and ©)
(2,)i = / p®) [ wtx)(O,0(x)dxdt,  r=1,...d. (10)
Re [0,1]%

Note here that the derivation of our model in Sect. 2 started with the explicit
knowledge of the continuous density p(t). This is however in general not the case
in most practical settings. There, rather an empirical density py'"(t) based on N
data points (tn)fqul is given instead. Therefore, for the remainder of this paper, we
furthermore replace the continuous density p(t) by a sum of Dirac-delta-functions
Py (t) =% XN | &, (t). Then, the dt-integrals in (9) and (10) get replaced by sums,
which corresponds to discretization by sampling.

4.1 Original GTM

Now, two further discretization steps can be taken. First, we choose L-variate Gauss-
ians as the specific functions in the basis function vector ¢ : [0, 1]X — RY. Their
centers lie on a uniform mesh in the L-dimensional latent space with mesh width 4.

Then M = ﬁ(hl_L) and h) = ﬁ(M’%), respectively. Secondly, we choose a ten-
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sorized rectangle rule on a uniform mesh with width %, for the numerical quadrature
of the dx-integrals in (9) and (10), which results in K = & (hg L ) quadrature points
(x;)X_,. This is equivalent to assuming a grid-based latent space distribution, as it
is done in [4].

We obtain the resulting systems of linear equations (8), where now

(A = 1 T 8 Wity i) + 2 (66 and (D)
ij NKn:lm:lW nyAdm )Y j\Am ) Vi\Am B i»Vj)H
1 N K
r)i = 3o ty, X ) (80)r 0i(Xim) =1,....d, 12
(2r) NK’;W;‘I/( Xin) (tn) r @i (Xm) r (12)

fori,j=1,....M.

Note that in our successive minimization of .Z, see Sect. 3, the minimization (6)
with respect to ¥ equals the E-Step and the minimization steps (5) and (7) with
respect to B and y equal the M-Step of the well-known Expectation Maximization-
algorithm [8]. In all steps, the discretized versions of y and the dx-integrals now
need to be employed. Altogether, we finally obtain the GTM [4], or, the other way
around, we see that the original GTM is a special discretization of our generative
model (1).

Note furthermore that the M degrees of freedom in the discretization and the K
function evaluations for numerical quadrature have both an exponential dependence
on the embedding dimension L. This severely limits the GTM to the cases L < 3.
To overcome this issue, we will choose some other type of discretization of our
generative model in the following.

4.2 Sparse GTM

We now suggest to use a sparse grid discretization [6] for the components of the
mapping y instead of a uniform, full mesh. We denote the resulting numerical
method as the sparse GTM. To explain our new approach in detail, let us first con-
sider a one-dimensional level-wise sequence of conventional sets of piecewise lin-
ear basis functions on the interval [0, 1]. There, the space V; on level / > 0 contains
n; = 2! + 1 hat functions ¢r;:[0,1] =R

(P]_y,'(X) = max(l —21 ‘x—xl_j ,0) s

which are centered at the points of an equidistant mesh x; ; = 27lii=0,...,m—1.
Next, we consider the hierarchical surplus spaces W;, where V; | =V, & W, |, see
also the left-hand side of Fig. 3. They can be easily constructed by

{0,1} for/=0

W, =span{¢y;:ic &} with él:{{iodd1<i<21_1} else
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Fig. 3 The first four hierarchical surplus spaces of the one-dimensional hierarchical basis (left).
Two-dimensional tensorization and the sparse subspace (right)

With the multi-indices 1 = (ly,...,11) € NE, i = (iy,...,ir) € N, the d-variate
functions @y i(X) = ¢, s, (x1) - ¢y, ;, (x2) and the Cartesian products & := x%_ &,
we obtain L-dimensional spaces W = span{¢y; : i € & }. Then,

L J L
Vit @ w=Q@W, = QW
s=1

e <J s=11=0

resembles just a normal isotropic full grid (FG) space up to level J, while

vi= P w (13)

Ny <J+d—1

denotes the sparse grid (SG) space! on level J. The former has MFS = ¢(2L)
degrees of freedom, while the latter has only M5G = &(JE~127) degrees of free-
dom. However, under the assumption of bounded mixed derivatives, both discretiza-
tions have essentially the same Lj-error convergence rate, see [6, 9] for further
analysis and implementational issues. The use of this kind of discretization for
every component of the vector-valued mapping y, i.e. y5¢ = (4¢,...,y59) with

ny € VJ<1>,r =1,...,d, then yields a sparse GTM.

! We can replace [1]; by |1|; + |{s : [y = 0} in (13), which leads to a slightly different treatment of
boundary functions, but has otherwise the same asymptotic properties, see [9].
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The corresponding L-dimensional integration problems (9) and (10) for setting
up the associated systems of linear equations (8) are approximated by evaluation
points x,, with fixed weights y;, form = 1, ..., K. Here, methods like Quasi Monte-
Carlo or sparse grid quadrature [11] can be used. Then, K does not exhibit the ‘curse
of dimensionality’ with respect to L.

We obtain the resulting systems of linear equations (8), where now

1
( llk_]—

2;(‘15“, ¢xj)r and (14)

K
Z tnaxm tn)rq)lj(xm) 3 r= 17"'7da (15)

\Mz

K
Z Y tnaxm (Xm)q)j,k (Xm) +
=1m=1

(Zrll—

i Mz

N

with |1, |Kk|; <J+d—1,i€ & je &.

When we minimize the functional J# in y-direction the systems (8) have to be
solved. As recommended in [4], we use a direct method. An LU factorization of
the matrix A costs & ((M59)*). Then, the forward and backward substitution steps
for d different right-hand sides of (8) cost & (d : (MSG)Z). For high-dimensional
data sets with d > M5C, these steps can be more relevant cost-wise than the initial
factorization of A.

It is also possible to solve the system (8) for each right-hand side by an iterative
method. Then the costs are &'(d - #it - X ), where #it denotes the number of necessary
iteration steps and X is the cost of one matrix-vector multiplication. Typically, the
unidirectional principle [2, 5] is used for the fast multiplication with sparse grid op-
erator matrices, but this algorithm is not applicable here since the function y in (14)
does not allow a product representation in x. However, in contrast to the Original
GTM from Subsect. 4.1, our sparse GTM results in a somewhat sparse matrix A.
This can be exploited in the matrix vector multiplication of A. Note that the regu-
larization term % (+,-)m prevents the matrix A from being severely ill-conditioned.
Here, however, keeping #ir low and bounded independently of the discretization
level J is a matter of preconditioning the matrix (14), which is nontrivial and future
work. Since we presently cannot guarantee that the costs &'(d - #it - X) are lower
than &(d - (M59)?) for the direct method in high-dimensions, we decided to stick
with the LU factorization for now.

Fig. 4 The three-dimensional ‘open box’ (left), a sparse GTM fitted to this dataset (middle) and
the two-dimensional projection of the data points (right)
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To demonstrate the nonlinear quality of the method, we apply the sparse GTM to
the ‘open box’ benchmark dataset [17] in Fig. 4. We see a reasonable unfolding of
the box in the two-dimensional embedding, which would not be possible with linear
methods, like e.g. a conventional PCA.

5 Numerical experiments

In this section, we will now present the results for the sparse GTM for some prob-
lems from dimensionality reduction and data classification.

5.1 Dimensionality reduction

On the left-hand side of Fig. 5, we present a toy example with data points stem-
ming from a wave-shaped manifold. Since we here have a sufficiently large amount
of data points, we need no regularization term. We measure the GTM functional
value ¢ (y, ), see (2), after 5 minimization cycles for ¢, see (3). On the right-
hand side, we see that the sparse GTM achieves about the same reduction in the
GTM functional value with substantially less degrees of freedom than the GTM
based on a full grid.

—eo—full grid GTM
—=— sparse GTM

1006

1005 -

GTM functional value

1l L L Lol
10 102
degrees of freedom

Fig. 5 Reduction in the GTM functional value with respect to the degrees of freedom per y-
component for a GTM with a full grid discretization and the sparse GTM

Next, we consider a real-world problem. Fig. 6 shows a three-dimensional pro-
jection of a 12-dimensional data set. It consists of 1000 data points with diagnostic
measurements of oil flows along a multi-phase pipeline. The three different class
types in the plot represent stratified, annular and homogeneous multi-phase config-
urations, compare [3] for further details. In [4], it was shown how a two-dimensional
embedding of the data with the GTM gives an improved separation of the clusters
compared to the embedding with the PCA. We now run this experiment with a sparse
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Fig. 6 Embedding of a 12-dimensional data set with three class labels by the sparse GTM in two
dimensions (left) and three dimensions (right)

GTM with L = 2 and L = 3, discretization level J = 4, HILiX-seminorm regulariza-
tion and A = 4.0 x 1073, We see that the three-dimensional latent space offers an
even more detailed picture of the data than the two-dimensional embedding and a

slightly better separation of the different clusters.

5.2 Classification

We now use the sparse GTM for classification. To this end, we append a class vari-
able ¢, € {—1, 1} to the data points by

t = ((t)1,...,(t)a,ca)’ for n=1,....N. (16)

We first use the sparse GTM to fit the mapping y and the inverse variance f3 to these
points. Then, we can classify new data points with help of the density gy g of (1) by

C(t) - 1 ifqyﬁ(l‘l,...,td,l)quﬁ(l‘l,...,l}h—l)
]l —1 else.

We apply this technique to ‘Connectionist Bench (Sonar, Mines vs. Rocks)’, a
real-world data set from the UCI Machine Learning Repository [1]. It consists of
approximately 200 measurements with 60 dimensions and two class labels.

In [12], this data was randomly split into two parts. One part was used to train
various neuronal networks, the other one was used to measure the quality of the
model. The best neuronal network achieved an average classification rate of 84.7%.

We use our sparse GTM with latent space dimensions L =2 and L = 3 and a
regularization term based on the Hnlﬂix—seminorm. We achieve classification rates
between 72.0% and 84.6% already for L = 2, depending on the regularization pa-
rameter A and the discretization level J. For L=3,J =3 and A = 1.0 x 10~%, we
even reach a classification rate of 85.6%, which clearly shows the potential of our
new approach.
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6 Conclusions

We presented a generative model that can be used for dimensionality reduction and
classification of high-dimensional data. For a certain choice of discretization in-
volving uniform grids, we obtained the original generative topographic mapping
from [4]. Using a sparse grid discretization for the mapping, we obtained our new
sparse GTM. It gives about the same quality with less degrees of freedom. More-
over, it has the perspective to overcome complexity issues of the grid-like struc-
tures, which limit the conventional GTM to a low number of latent space dimen-
sions. For example, in dimension L = 4 and discretization level J = 5 the sparse
grid approach with index set {1: [l|; +|{s: l; =0} <J+d — 1} has 7,681 degrees
of freedom, which is still treatable using a direct solver, whereas the full grid al-
ready has 1,185,921 degrees of freedom. For dimensions like L = 10 the situation
is as follows: Full grids with L = 10 and J = 4 have 2.0 - 10'? degrees of freedom
(5.8-10'"! inner functions and 1.4 - 10'> boundary functions), which is clearly be-
yond the capabilities of current computers. Sparse grids have 1.1-107 degrees of
freedom, of which only 2,001 are inner functions and 10,817,088 are boundary
functions. Of course, this is still too much for a direct solver, but now only the num-
ber of boundary functions poses a bottleneck. Modified boundary functions with
improved properties can be found in [9, 19], so there is some hope to treat higher
dimensional latent spaces. Furthermore, note that the runtime complexity depends
only linearly on the data space dimension d and the number of data points N. This
makes the sparse GTM a suitable tool for high-dimensional data sets. For further
experiments and results, cf. [13, 14].
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