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Abstract—This paper presents a new algorithm based on the
Mumford–Shah model for simultaneously detecting the edge
features of two images and jointly estimating a consistent set of
transformations to match them. Compared the current asymmet-
ric methods in the literature, this fully symmetric method allows
one to determine one-to-one correspondences between the edge
features of two images. The entire variational model is realized
in a multi-scale framework of the Finite Element approximation.
The optimization process is guided by an EM type algorithm
and an adaptive generalized gradient flow to guarantee a fast and
smooth relaxation. The algorithm is tested on T1 and T2 magnetic
resonance image (MRI) data to study the parameter setting. We
also present promising results of four applications of the proposed
algorithm: inter-object mono-modal registration, retinal image
registration, matching digital photographs of neurosurgery with
its volume data and motion estimation for frame interpolation.

Index Terms—Image registration, edge detection, Mumford–
Shah model

I. INTRODUCTION

IN 1989 the general Mumford–Shah model [1] was first
proposed in the literature. In this model, an image is

approximated by a cartoon (u, K): u is a piecewise smooth
image with sharp edges and K is the discontinuity set in
the image domain. This model has been extensively studied
for segmentation, image denoising and shape modelling, see
i.e. [2], [3], [4], [5] and the references therein.

In 2005 Droske et. al [6], [7] expanded the Mumford–
Shah model with the capability of matching the edge features
of two images. The edge features are represented by two
different cartoon approximations of the images. A smooth
dense warping function defines the mapping between the
edge features. The modified Mumford–Shah model seeks to
simultaneously tackle two highly interdependent tasks: edge
segmentation and non-rigid registration. An important benefit
of such a joint model is that the intermediate results of one
task serve as prior knowledge to the solution of the other
task. This advantage has already been pointed out by Yezzi,
Zöllei and Kapur [8], who simultaneously segmented edges in
different images based on affine matching deformations and
an active edge model for the segmentation of implicit curves
and surfaces in images, similar to the one proposed by Vese
and Chan [9].

A major drawback of the above Mumford Shah based
matching is its asymmetry with respect to edge features and
the spatial mapping between them. The scheme of the model
is shown in Fig. 1. The definition of the similarity measure is
not symmetrical: a joint discontinuity set K is used to estimate
the edges of the restored template image T and the deformed

Fig. 1. Non-symmetric Mumford–Shah model for edge matching. R0

and T0 are the given reference and template images. R and T are the
restored, piecewise smooth functions of image R0 and image T0. K is the
combined discontinuity set of both images. Function Φ represents the spatial
transformation from image T to image R.

edges of the restored reference image R. The model of the
spatial mapping between the two images is not symmetrical:
the transformation Φ in Fig. 1 is only defined in one direction,
from the image T0 to the image R0. The asymmetry of the
similarity measure and the single directional transformation, as
pointed out in [10], cannot ensure that the method is consistent,
i.e., if one uses it to compute the transformation Φ from T0

to R0 and then switches the roles of T0 and R0 to compute
the transformation Ψ from R0 to T0, it is uncertain whether
these transformations are inverse to each other.

In this paper we propose a new symmetric model for edge
matching again based on the Mumford–Shah model. Fig. 2
shows the scheme of this symmetric model. We use two
relatively separated discontinuity sets (KR and KT in Fig. 2)
to explicitly represent the edge sets of the associated images.
For the ambiguity problem of the correspondence, we apply
the idea of consistent registration [11], [12] to simultaneously
estimate the forward and reverse transformations and to con-
strain one transformation to be the inverse of the other one.
In this way, the edge sets KR and KT of the images R and
T , respectively, have equal influence on the edge registration.
Thus, the proposed method is one-to-one in the sense, that it
allows to determine one-to-one correspondences between the
edge features of two images.

Symmetric one-to-one edge matching is not only more
sound in the mathematical sense, but also very significant
in a broad range of applications, where one is interested
in determining the correspondence of the same structure in
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Fig. 2. Symmetric Mumford–Shah model for one-to-one edge matching. R0

and T0 are the given images. R and T are the restored, piecewise smooth
functions of image R0 and image T0. KR and KT are the discontinuity sets
of the images R and T , respectively. Function Φ represents the transformation
from image T to image R and function Ψ represents the transformation from
image R to image T .

different images (e.g., non-rigid registration for atlas con-
struction [13], [14], historical biological images [15], [16] or
motion estimation).

The paper is organized as follows: In Section II, we in-
troduce some basic knowledge about the classic Mumford–
Shah model, the approximation proposed by Ambrosio and
Tortorelli and the Finite Element approximation as a prepa-
ration for the discussion of the proposed method. After-
wards, in Section III we present the method of one-to-one
edge matching, including the functional definitions, variational
formulations, numerical implementations and algorithm. In
Section IV, we study the parameter setting of the algorithm
and show experimental results for several applications. Finally,
we draw conclusions in Section V. We note that a preliminary
version of part of the work reported in this article has appeared
in our conference paper [17].

II. BACKGROUND

A. Mumford–Shah Model
For a function u0 : Ω → R on an image domain Ω ⊂ Rd

with d = 2 or 3 and nonnegative constants α, β and ν, the
Mumford–Shah (MS) functional is given by

EMS(u, K) =
α

2

∫
Ω

(u− u0)2

+
β

2

∫
Ω\K

|∇u|2 dx +
ν

2
Hd−1(K).

(1)

The first term measures the degree of fidelity of the approxi-
mation u with respect to the input data u0. The second term
acts as a kind of “edge-preserving smoother”, which penalizes
large gradients of u in the homogeneous regions while not
smoothing the image in the edge set. The last term Hd−1

denotes the d − 1 dimensional Hausdorff measure, which is
used to control the length of the edge set.

B. Ambrosio–Tortorelli Approximation
It is difficult to minimize the original Mumford–Shah func-

tional (1) because of its implicit definition of the discontinuity

set K. Various approximations have been proposed during the
last two decades. In this article we focus on the Ambrosio–
Tortorelli approximation with elliptic functionals [18].

In the Ambrosio–Tortorelli (AT) approximation the discon-
tinuity set K is expressed by a phase-field function v. This
scalar function v approximates the characteristic function of
the complement of K, (1− χK), i.e., v(x) ≈ 0 if x ∈ K and
v(x) ≈ 1 otherwise. The entire approximation functional is
defined as follows:

Eε
AT[u, v] =

α

2

∫
Ω

(u− u0)2 dx +
β

2

∫
Ω

v2‖∇u‖2 dx

+
ν

2

∫
Ω

(ε‖∇v‖2 +
1
4ε

(v − 1)2) dx,

(2)

The second term, still working as an “edge-preserving
smoother”, couples zero-regions of v with regions where the
gradient of u is large. The following “coupling” between u
and v is energetically preferable:

v(x)
{
≈ 0 where ‖∇u‖ � 0,
≈ 1 where ‖∇u‖ ≈ 0.

(3)

The last term approximates the edge length, i. e. the d − 1
dimensional measure Hd−1(K) of the edge set K. The
parameter ε controls the “width” of the diffusive edge set.
Mathematically speaking, the sequence of functionals Eε

AT
Γ−converges to the Mumford–Shah functional, i.e.

Γ− lim
ε→0

Eε
AT = EMS.

For a rigorous proof and further explanation we refer to [19].

C. Finite element method
Finite Element (FE) methods are used in this work to

discretize the equations. The whole image domain Ω is covered
by an uniform rectangular mesh C, on which a standard multi-
linear Lagrange finite element space is defined. We consider
all images as sets of voxels, where each voxel corresponds to
a grid node of C. Let N = {x1, ..., xn} denote the nodes of C.
The FE basis function of node xi is defined as the piecewise
multi-linear function that fulfills:

ϕi(xj) =

{
1 i = j

0 i 6= j.

The FE-space V is the linear hull of the ϕi, i.e.

V := span(ϕ1, ..., ϕn).

The FE-space of vector valued functions is Vd, the canonical
basis of this space, is

ϕ1e1, ..., ϕne1, ..., ϕ1ed, ..., ϕned,

where ei is the i-th canonical basis vector of Rd. In the FE-
space scalar and vector valued functions, e.g. U and Φ, are
approximated as follows:

U ≈ U :=
n∑

i=1

U(xi)ϕi(x) and

Φ =

 Φ1

...
Φd

 ≈ Φ :=


∑n

i=1 Φ1(xi)ϕi(x)
...∑n

i=1 Φd(xi)ϕi(x)

 .
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The FE approximation of a function can also be represented
by the vector of the function values on the nodes, e.g.
U := (U(xi), · · · ,U(xn))T and Φ := (Φ1, · · · ,Φd)T where
Φj = (Φj(x1), · · · ,Φj(xn))T . In this paper we denote
continuous functions by uppercase letters (e.g. U or Φ), their
FE representation by boldface uppercase letters (e.g. U or
Φ) and their vector representation by “over-lined” uppercase
letters (e.g. U or Φ).

III. ONE-TO-ONE EDGE MATCHING

A. Problem Statement

The major task of image registration is stated as follows:
Find an appropriate transformation Φ such that the transformed
template image T0 ◦Φ becomes similar to the reference image
R0 [20]. The degree of similarity (or dissimilarity) is evaluated
using the gray values R0 and T0 or certain features such as
edges. We consider a edge based matching method that seeks
to register two images based on a joint edge extraction and
registration. Thus, the algorithm simultaneously has to fulfill
the two following tasks:
• Detection of the edge features from two noisy images.
• Registration of two images using these detected edge

features.
The first task is more related to image denoising and edge

detection, for which we simply employ the Mumford–Shah
model as the feature representation. In practice, the discon-
tinuity sets are approximated by phase-field functions as in
the Ambrosio–Tortorelli approximation. Thus, four unknowns
{R, T, V, W} are estimated, where (R, V ) and (T,W ) are the
feature representations of R0 and T0, respectively.

The second task is more related to image registration.
The non-rigid transformation from image R0 to image T0 is
frequently different from the inverse function of the trans-
formation from T0 to R0. In order to overcome such cor-
respondence ambiguities, we follow the method of consistent
registration [11] to jointly estimate the transformations in both
forward and reverse directions. We denote the transformation
from T0 to R0 as Φ and the transformation from R0 to T0 as Ψ.
Functions Φ and Ψ are estimated to match the two feature rep-
resentations (R, V ) and (T,W ) to each other. Additionally, Φ
and Ψ are required to be smooth and approximately inverse to
each other. For the desired spatial properties, a regularization
functional and a consistency functional are used to constrain
the transformations to satisfy these requirements.

B. Functional Definitions

The six unknowns - the restored reference image R, the
restored template image T , the edge describing phase-fields V
and W of the reference and the template image, respectively,
and the deformations Φ and Ψ from the template to the
reference domain and vice versa - are estimated by minimizing
a joint functional with the following structure:

ESYM = EAC + µECC + λEREG + κECON, (4)

where µ, λ and κ are nonnegative constants which control
the contributions of the associated functionals. The detailed
definitions of these functionals are as follows:

1) Auto-coupling Functional:

EAC =CAC[R, V ] + CAC[T,W ]
:=Eε

AT[R, V ] + Eε
AT[T,W ].

(5)

Here Eε
AT denotes the functional of the Ambrosio–Tortorelli

approximation whose definition has been given in equation (2),
where u0 is replaced by R0 or T0 respectively. The single
auto-coupling cost function, e.g., CAC[R, V ], essentially makes
use of the mechanisms of the Mumford–Shah model and
its Ambrosio–Tortorelli approximation to estimate the feature
representation (R, V ) of the image R0, such that the piecewise
smooth function R optimally couples with the phase-field
function V in a manner similar to equation (3). Roughly
speaking, this auto-coupling functional is responsible for de-
tecting the edge features of each image and for defining
the internal relation between the phase-field function V (or
W respectively) and the piecewise smooth function R (or T
respectively). In this functional the segmented edge features
of the two images, i.e. (R, V ) and (T,W ), are totally inde-
pendent from each other.

2) Cross-coupling Functional:

ECC =CCC[R,W,Φ] + CCC[T, V,Ψ]

:=
1
2

∫
Ω

(W ◦ Φ)2 ‖∇R‖2 dx

+
1
2

∫
Ω

(V ◦Ψ)2 ‖∇T‖2 dx.

(6)

This functional is responsible for matching the edge features
of the two images. It favors spatial transformations Φ and Ψ
which optimally couple the feature representations (R, V ) and
(T,W ) in the following way:

W ◦ Φ ≈
{

0 where ‖∇R‖ � 0,
1 where ‖∇R‖ ≈ 0.

V ◦Ψ ≈
{

0 where ‖∇T‖ � 0,
1 where ‖∇T‖ ≈ 0.

By definition, this functional jointly treats segmentation and
registration: For the registration, the functional can act as
the similarity measure based on the intermediately segmented
edge features. Instead of directly matching the phase-fields
functions (V ↔ W ) and the smooth functions (R ↔ T ),
the functional seeks to match the gradient field of the smooth
function of one image to the phase-field function of the other
image (V ↔ ∇T,W ↔ ∇R). For the segmentation, this
functional also imposes the influence of the edge features
segmented in the other image. In the following subsection
we will see that both spatial transformations are controlled
by regularization. The regularized spatial transformations lead
to local edge feature correspondence.

3) Regularization Functional:

EREG =CREG[Φ] + CREG[Ψ]

:=
1
2

∫
Ω

‖D(Φ− 11)‖2 dx

+
1
2

∫
Ω

‖D(Ψ− 11)‖2 dx.

(7)

Here 11 : x 7→ x denotes the identity mapping and Φ − 11,
Ψ − 11 the displacement fields corresponding to Φ and Ψ.
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Generally speaking, the regularization functional is used to
rule out singular transformations which may lead to cracks,
foldings, or other undesired properties. In this work the
regularization constraint is the sum of the norm of the Jacobian
of both displacement fields (see [21] for further explanations
of regularization based on the Jacobians of transformations).

Other candidates for regularization constraints are linear
elastic [22], [23] and viscous fluid [24], [23] regularizations.
These two constraints make use of the continous mechanical
model to regularize the transformations [25]. Another alterna-
tive, which already ensures a homeomorphism property, is the
nonlinear elastic regularization which separately cares about
length, area and volume deformation and especially penalizes
volume shrinkage [26].

4) Consistency Functional:

ECON =CCON[Φ,Ψ] + CCON[Ψ,Φ]

:=
1
2

∫
Ω

‖Φ ◦Ψ(x)− x‖2 dx

+
1
2

∫
Ω

‖Ψ ◦ Φ(x)− x‖2 dx.

(8)

The forward and reverse transformations Φ and Ψ are purely
independent of each other in EAC and EREG and are implicitly
correlated in ECC via the matching of the two image / phase-
fields pairs, i.e. (R,W ◦ Φ) ↔ (T, V ◦ Ψ). The consistency
functional ECON in equation (8) explicitly specifies the rela-
tionship between forward and reverse transformations: ECC
is minimal if and only if Φ ◦ Ψ(x) = x = Ψ ◦ Φ(x),
i.e., Φ ≈ Ψ−1 and Ψ ≈ Φ−1. The transformation in one
direction has to be the inverse function of the transformation
in the other direction. For the registration, this consistency
constraint favors an invertible and bijective correspondence of
the segmented edge features.

C. Variational Formulation

We assume that the minimum of the entire energy ESYM
is the zero crossing of its variation with respect to all the
unknowns {R, T, V, W, Φ,Ψ}. The definition of the entire
functional ESYM, as well as each individual functional EAC,
ECC, EREG and ECON, is symmetric with respect to the
two groups of unknowns: {R, V, Φ} and {T,W,Ψ}. Thus,
we restrict ourself to the description of the computation of
variations with respect to {R, V, Φ}. The variational formulas
of the other group can be deduced in a complementary way.

Given an arbitrary scalar test function ϑ ∈ C∞0 (Ω), we
obtain the variations with respect to R and V :

〈∂RESYM, ϑ〉 = 〈∂REAT, ϑ〉+ 〈∂RECC, ϑ〉

=
∫

Ω

α(R−R0)ϑ + βV 2∇R · ∇ϑ dx

+
∫

Ω

µ(W ◦ Φ)2∇R · ∇ϑ dx,

(9)

〈∂V ESYM, ϑ〉 = 〈∂V EAT, ϑ〉+ 〈∂V ECC, ϑ〉

=
∫

Ω

β ‖∇R‖2 V ϑ +
ν

4ε
(V − 1)ϑ dx

+
∫

Ω

νε∇V · ∇ϑ dx

+
∫

Ω

µ‖∇T ◦Ψ−1‖2V ϑ |detDΨ|−1 dx.

(10)

Here we have used the transformation rule∫
Ω

µ

2
‖∇T‖2V 2 ◦Ψdx

=
∫

Ψ(Ω)

µ

2
‖∇T ◦Ψ−1‖2V 2 |detDΨ|−1 dx

and Ψ(Ω) = Ω. Given an arbitrary vector-valued test function
ζ ∈ C∞0 (Ω, Rd), we obtain the variation with respect to Φ:

〈∂ΦESYM, ζ〉 = 〈∂ΦECC, ζ〉+ 〈∂ΦEREG, ζ〉+ 〈∂ΦECON, ζ〉

=
∫

Ω

µ ‖∇R‖2 (W ◦ Φ)∇(W ◦ Φ) · ζ dx

+
∫

Ω

λDΦ : Dζ dx

+
∫

Ω

κ([Φ ◦Ψ](x)− x) · [ζ ◦Ψ](x) dx

+
∫

Ω

κ([Ψ ◦ Φ](x)− x)DΨ(Φ(x)) · ζ(x) dx.

(11)

Due to the high complexity of the minimization prob-
lem (four scalar functions and two vector-valued functions)
the unknowns are estimated in an Estimation-Minimization
like (EM) procedure: Let fi=1,...,m denote the unknown
functions and E := E[f1, ..., fm] denote the functional.

while fi=1,...,m has not yet converged do
for i = 1 to m do

fi = arg minf E[f1, ..., fi−1, f, fi+1, ..., fm].
end for

end while

D. Solution of the linear part

First we introduce generalized mass and stiffness matrices,
which play the key roles in the discretization of equations (9)
and (10) using FE approximation.

Given a function f(x) : Ω 7→ R, the generalized mass M [f ]
and stiffness matrices L[f ] are defined as follows:

M [f ] =
(∫

Ω

f(x)ϕi(x)ϕj(x) dx

)
i,j

(12)

L[f ] =
(∫

Ω

f(x)∇ϕi(x) · ∇ϕj(x) dx

)
i,j

(13)

Both matrices are n× n-dimensional, where n is the number
of nodes in the FE space. Both matrices are sparse, i.e. most
entries are zero. An entry is non-zero, if and only if i = j
or node i and j are adjacent in the mesh. To compute the
integrals in these non-zero entries we use a numerical Gaussian
quadrature scheme of order three (cf. [27]). Obviously, the
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common mass matrix M and stiffness matrix L are just special
cases of the generalized ones, i.e. M := M [1] and L := L[1].

The variations in equation (9) and (10) are linear with re-
spect to the unknowns R and V respectively. In each iteration
of the EM procedure, the zero-crossings are simply calculated
by solving the corresponding linear systems. Replacing the
continuous functions R0 and R with their FE approximations
R0(x) =

∑n
i=1 R̄i

0ϕi(x) and R(x) =
∑n

i=1 R̄iϕi(x) and
considering base functions ϕj of the FE space as test functions,
the equation for zero crossings of (9) is equivalent to:

α
n∑

i=1

n∑
j=1

Ri

∫
Ω

ϕi(x)ϕj(x) dx

+ β
n∑

i=1

n∑
j=1

Ri

∫
Ω

V2(x)∇ϕi(x) · ∇ϕj(x) dx

+ µ
n∑

i=1

n∑
j=1

Ri

∫
Ω

(W ◦Φ)2(x)∇ϕi(x) · ∇ϕj(x) dx

= α
n∑

i=1

n∑
j=1

Ri
0

∫
Ω

ϕi(x)ϕj(x) dx

(14)

Using the notations of generalized mass (12) and stiffness
matrices (13), equation (14) can be rewritten as:(

αM + βL
[
V2

]
+ µL

[
(W ◦Φ)2

])
R = αMR0. (15)

Similarly (10) leads to:(
µM

[
‖∇T ◦Ψ−1‖2 |detDΨ|−1

]
+βM

[
‖∇R‖2

]
+

ν

4ε
M + νεL

)
V =

ν

4ε
M1.

(16)

Here 1 denotes the one-vector, i.e. (1, · · · , 1)T . Analogously,
we get the linear systems for T and W :(

αM + βL
[
W2

]
+ µL

[
(V ◦Φ)2

])
UT = αMT0. (17)

(
µM

[
‖∇R ◦Ψ−1‖2 |detDΨ|−1

]
+βM

[
‖∇T‖2

]
+

ν

4ε
M + νεL

)
VT =

ν

4ε
M1.

(18)

The linear systems (15) - (18) are solved with a preconditioned
Conjugate-Gradient (CG) method.

E. Solution of the nonlinear part

Equation (11) shows that the variation of the energy is
nonlinear with respect to one of the transformations. Thus
the unknown transformation cannot be estimated by solving
a linear system. Instead we employ a regularized gradient
descent method to iteratively find the zero-crossing:

Φk+1 = Φk − τk · gradgσ

Φ E[Φk], (19)

where gradgσ

Φ E[Φk] is the regularized gradient with respect to
the unknown Φ and a metric gσ , and τk is the step size.

1) gradgσ

Φ E[Φk]: This regularized gradient combined with
the time discretization is closely related to iterative Tikhonov
regularization, which leads to smooth paths from the initial
deformations towards the set of minimizers of the matching
energy. As metric we choose:

gσ(Φ1,Φ2) = (Φ1,Φ2)L2 +
σ2

2
(DΦ1, DΦ2)L2 .

For theoretical details, we refer to [28], [29], [30]. In our
implementation, the regularized gradient gradgσ

Φ E[Φk] is com-
puted in two steps:
• Compute the variation

∂ΦE[Φk] =
〈
∂ΦESYM[Φk], ζ

〉
according to equation (11), where the integrals are com-
puted with a Gaussian quadrature scheme of order three
and the test functions are the canonical basis functions
of Vd, see Section II-C.

• The representation of the metric in FE-terms is

gσ(Φ1,Φ2) =
(
Mbl. + σ2

2 Lbl.

)
Φ1 · Φ2

which leads to

gradgσ

Φ E[Φk] =
(
Mbl. + σ2

2 Lbl.

)−1 (
∂Φi

E[Φk]
)
i
.

Here Mbl. and Lbl. denote d× d block matrices with the
standard mass and stiffness matrices respectively on the
diagonal positions, and zero matrices on the off diagonal
positions. We use σ =

√
10h, where h is the mesh

resolution. The solution of the linear system is computed
by a single V -cycle of a multigrid solver.

At this point, we see that the principle difference from
“classical” gradient descent methods is that the regularized
method does not use the primitive variation but a regularized
(smoothed) one as descent direction.

2) τk: The step size of the gradient flow is determined
by the Armijo-rule[31], choosing the largest τk such that
energy is minimized in a successive reduction rule. The
natural way in the EM procedure is to estimate the step size
for each transformation individually, i.e. estimating τΦ for
the transformation Φ then estimating τΨ for Ψ. However,
if τΦ and τΨ are estimated sequentialy in each iteration,
the consistency functional in (6) will prevent τΦ and τΨ
from being large, because large individual step sizes will
increase the consistency functional significantly. Consequently,
the regularized gradient descent requires a large number of
iterations to approach the minimum. In order to solve this
problem, we simultaneously estimate both transformations and
compute one step size for both of them:[

Φk+1

Ψk+1

]
=

[
Φk

Ψk

]
− τk

[
gradgσ

Φ E[Φk,Ψk]
gradgσ

Ψ E[Φk,Ψk]

]
. (20)

Since Φ and Ψ are updated at the same time, the consistency
energy does not penalize a large step size τk any more.

Let Θ := [Φ,Ψ]T , gradE[Θ] := [gradgσ

Φ E, gradgσ

Ψ E]T and
E

′
[Θ] := [E

′
[Φ], E

′
[Ψ]]T . We define the condition for the

Successive Reduction Rule (SRR) as:

EREG[Θk − τk · gradE[Θk]]− EREG[Θk]
〈E′ [Θk], gradE[Θk]〉

>
1
4
.
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Fig. 3. A simple 2-d example of nested mesh hierarchy. The nodes of the
coarse mesh C1 are a subset of the nodes of the fine mesh C2. The prolongation
of a function from the mesh C1 to the mesh C2 only requires the interpolation
of the function values on the new nodes.

The step size τk is estimated as follows:

% Initialize τk from previous iteration.
if k = 0 then τk = 1.0
else τk = τk−1

% Find the largest τk fulfilling SSR.
if SSR succeeds then

do τk = 2τk until SSR fails
else

do τk = 0.5τk until SSR succeeds
end if

The regularization of the gradient and the adaptive estimation
of the step size allow the regularized gradient descent method
to perform more efficiently than the classical ones. In most
cases we use five gradient descent steps to estimate the
transformations in each iteration of the EM procedure.

F. Multi-scale Algorithm

In order to avoid being trapped in local minima, the algo-
rithm employs a spatial multi-scale scheme, in which global
structures are segmented and matched before local ones.

The image domain Ω := [0, 1]d is discretized by a rect-
angular mesh Cm, which has 2m + 1 equidistant nodes in
each axis, thus n := (2m + 1)d nodes total. m is called
the level of the mesh. A discrete function on the mesh Cm

can also be called a function on level m. Fig. 3 shows a 2-d
example of two nested meshes C1 and C2, in which the feature
representations {R, V, T, W} and the transformations {Φ,Ψ}
are first computed on the coarse mesh C1. Then the results are
prolongated to the next higher level on the finer mesh C2.

Although such a nested mesh hierarchy is not natural for
finite difference methods, where commonly discrete images
with 2m voxels in each axis are used, it is common for the
canonical hierarchy in the Finite Element context. This way
the prolongation from one level to the next higher level is
very convenient. Let Nm denote the set of nodes of the m-th
mesh, as shown in Fig. 3. The nested mesh hierarchy ensures
Nm−1 ⊂ Nm. During prolongation from level m−1 to m the
function values stay the same on the nodes in Nm−1 and the
function values on the nodes in Nm\Nm−1 are determined by
multi-linear interpolation from the values on the neighboring
nodes in Nm−1.

The entire multi-scale algorithm is summarized as follows:

given images R0 and T0.
given starting level m0 and ending level m1.
given number of iterations on each level k1.
intialize [Rm0 ,Vm0 ,Tm0 ,Wm0 ] with 0.
intialize [Φm0 ,Ψm0 ] with 11.
for m = m0 to m1 do

for k = 1 to k1 do
update Rm through equation (15)
update Vm through equation (16)
update Tm through equation (17)
update Wm through equation (18)
update [Φm,Ψm] with 5 regularized gradient descent steps
through equation (20)

end for
if m 6= m1 then

intialize [Rm+1,Vm+1,Tm+1,Wm+1,Φm+1,Ψm+1]
through prolongation from [Rm,Vm,Tm,Wm,Φm, Ψm]

end if
end for

IV. RESULTS

Five experiments are performed to demonstrate the one-to-
one edge matching algorithm. The first one is designed to
study the parameter settings of the algorithm. We have chosen
T1- and T2-MRI volumes of the same patient as input data.
The second one is designed to show the effect of the algorithm
in 3-d inter-object monomodal registrations, whose major task
is to build up anatomical correspondence between different
individuals. The third experiment shows the application of the
algorithm in the registration of retinal images. Then we present
results of matching 2-d photographs taken during neurosurgery
to the projections of 3-d MRI volume data. Finally we show
that the method can be used in the application of frame
interpolation. In order to comply with the mesh hierarchy
introduced in section III.F, the data sets in experiments A,
B, C and D are resampled, while the data set in experiment
E is cropped. We have chosen multi-linear interpolation, i.e.
bilinear for 2-d data and trilinear for 3-d data, because it
conveniently fits into our Finite Element framework and gives
acceptable accuracy. But the method does not depend on the
way the data is resampled nor on the concrete construction of
a multi-scale.

A. Parameter study for 3-d data

Two MRI volumes are acquired from the same individual
and with the same machine but with the different scan pa-
rameters (T1/T2). The original T1-MRI (our reference image
R0) and T2-MRI (our template image T0) volumes are already
nearly perfectly matched to each other. In order to demonstrate
the effect of registration, the T2-MRI volume is artificially
deformed by a given elastic transformation. We specified
the displacement vectors on eight points and computed the
displacement vectors in the remaining part of the data using
thin-plate spline interpolation. Both of the given volumes
are of size 512 × 512 × 101 and have been resampled to
129 × 129 × 129 pixels to comply with the mesh hierarchy
presented before. We performed 18 experiments with different
parameter settings. For each experiment 10 EM-iterations were
run on the 129× 129× 129 mesh. It took approximately two
hours for each experiment on a standard PC with Intel Pentium
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T1 T2

V1 V2

A1

β = 7.92

µ = 0.08

λ = 1000

A2

β = 0.08

µ = 7.92

λ = 1000

A3

β = 4

µ = 4

λ = 1000

A4

β = 4

µ = 4

λ = 10

Fig. 4. Experiments A1-A4 show the influence of the parameters β, µ and λ
on the phase-field functions. In experiments A1-A3, the overwhelmingly large
λ disables the edge matching functionality and allows only edge detections.
Furthermore, the ratio between β and µ determines whether the phase-fields
represent edge features of its own image or the features of its counterpart. In
experiment A4 edge matching as well as edge detection are enabled. Note that
edge matching merged the phase-fields of both sides compared to experiment
A3.

4 processor 2.26 GHz and 2.0 GB RAM. It is expected that
the computational time will decrease significantly by further
optimization of the code. Although these parameters are only
tested for T1-/T2-MRI edge matching, they can also be used
to determine the parameters for edge matching of the other
modalities.

Experiments A1-A4 demonstrate how the parameters β, µ
and λ balance the edge detection and the edge matching in
the algorithm. The other parameters are fixed at α = 2550,
ν = 0.1, κ = 100, ε = 0.01. In this example, we denote
the phase field functions of T1- and T2-MRI volumes as V1

and V2 respectively. Fig. 4 shows how the two phase-field
functions varied in a local region with different parameters. In
the experiments A1-A3, the overwhelmingly large regulariza-
tion weighting parameter λ (= 1000) prevents the algorithm
from matching the edge features of the two images. Without
consideration of the edge matching, the detection of edge
features is controlled by the ratio between the auto-coupling
weighting parameter β and the cross-coupling weighting pa-
rameter µ. In experiment A1, since β is much larger than

µ, the auto-coupling functional EAC has more influence than
the cross-coupling functional ECC. The resulting phase-field
functions are more likely to describe its own edge feature.
Experiment A2 is exactly the opposite case of A1. With
small β and large µ the phase-field function is more likely
to represent the edge feature of its counterpart. Namely, V1

shows the edge features of the image T2 and V2 shows the
edge features of the image T1. The parameters β and µ need
to be customized to specific applications. A general principle:
β and µ need to be set in such a way that the resulting phase
field functions W and V clearly describe the edge features
of both images, as shown in experiment A3. For the T1-/T2-
MRI data in this experiment, it is reasonable to set β and
µ equal. However, when the intensity patterns of images are
largely different, like in the neurosurgery photographes and
the brain MR projection in section IV.D, it can be necessary
to choose the parameters β and µ differently. In experiment
A4, we activate the edge matching through a relative small
regularization weighting parameter λ (= 10). Each phase-field
function describes, not only its own edge features but also, the
transformed edge features of the other image. From the figure,
one can observe that the phase-field functions are merged with
respect to experiment A3.

Experiments B1-B7 and C1-C7 were used to study the
setting of the parameters λ and κ. We measured the cross-
coupling cost CCC, regularization cost CREG and consistency
cost CCON for each experiment. The values of these costs
are shown in Table I and II and have been scaled by 10000
for presentation purposes. The minimum and the inverse of
the maximum of the determinant of the Jacobians of the
forward and reverse transformations are computed to measure
the degree of preservation of the topology. If a transformation
is regular, these determinants should be close to 1.

Experiments B1-B7 demonstrate the effect of the regular-
ization functional as the weight parameter λ is varied. In
experiments B1 and B2, there are minor regularization con-
straints. A negative Jacobian of the transformations appeared.
This means that the estimated transformation failed to preserve
the topology of the images. As λ increases, the regularization
constraints improve the transformations because the minimum
Jacobian and the inverse of the maximum Jacobian are far from
being singular. Experiments C1-C7 demonstrate the effect of
the consistency functional as the weight parameter κ varied.
In the experiment C1, the consistency functional ECON has
no influence on the registration. The forward and reverse
transformations are relatively independently estimated. The
inconsistency of the two transformations are confirmed by
the relatively large cost of the consistency functional. As κ
increases, the cost of the consistency functional approaches to
zero. This means that one transformation is more likely to be
the inverse function of the other one. Notice that the cost of
cross-coupling functional increases when the consistency con-
straints and regularization constraints become strong, which
indicates a worse matching of edge features between the two
images. The optimal parameters should be chosen so as to
achieve optimal feature matching, least amount of topological
distortion and acceptable inconsistency of the transformations.
According to our experience, it is safe to roughly fix five
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of the parameters in most 2-d and 3-d applications, i.e.
λ = 10, κ = 100, α = 2550, ν = 0.1 ∼ 1, ε = 0.01 usually
achieves good results.

B. Volumes of different individuals

In the following two experiments we use the one-to-one
edge matching method to solve the inter-object mono-modal
registration problem: registering two MR data sets (MR-to-
MR) and two CT data sets (CT-to-CT). The two MR data show
healthy brains of two individuals. The two CT data show two
other patients, one normal and one abnormal. The data sets
are collected by the same MR and CT scanners with the same
scanning parameters. The MR data sets are preprocessed by
segmenting the brain from the head using MRIcro1.

The original sizes of the two CT data sets were 512×512×
58 and 512 × 512 × 61 while the two MR data sets were
256 × 256 × 160 and 256 × 256 × 170. All of them have
been resampled into a 257× 257× 257 voxel lattice with the
same resolution in all three directions. The experiments were
performed with the previously described multi-scale scheme,
with 10 iterations for each of the levels: 33×33×33, 65×65×
65, 129×129×129 and 257×257×257. It took approximately
1 minute, 10 minutes, 90 minutes and 5 hours respectively
for each level. The parameters of the algorithm were set as
follows: α = 2550, β = 1, ν = 0.1, µ = 1, λ = 10, κ = 100,
ε = 0.01.

The matching results of the data sets are visualized by
a pattern of “interlace-stripe”, showing the two data sets
in turns within a single volume. As shown in Fig. 5 and
Fig. 6, the titles of each sub-figure keep consistent with the
notations in the paper: R and T denote the two original
data sets, while Φ and Ψ denote the forward and reverse
transformations. The sub-figures R0‖T0 and T0‖R0 show
the interlace-stripe volumes of the original data sets R and T ,
while the sub-figures R0‖T0 ◦Φ and T0‖R0 ◦Ψ show the
interlace-stripe volumes of the registered data in forward and
reverse directions.

From visual inspection, the algorithm of one-to-one edge
matching successfully registers MR-to-MR and CT-to-CT vol-
ume data sets of different individuals in both directions. Fig. 5
shows precise alignments of the edges such as the brain’s
volume shape, hemispheric gap and ventricular system for
inter-object MR-to-MR registration. In the inter-object CT-
to-CT registration the main interest is to obtain the fitting
shape of the bone. In Fig. 6 axial cuts of the 3-d CT data set
are shown. Fig. 7 shows that the initial mismatch of the data
sets, visible by the discontinued bone edges in the top row,
is dissolved with the computed transformation, as is evident
from the continuous bone edges in the bottom row.

C. Retinal images

A concurrent representation of the optic nerve header
and the neuroretinal rim in various retina image modalities
is significant for a definite diagnosis of glaucoma. Several
modalities of retinal images have been used in the ophthalmic

1http://www.sph.sc.edu/comd/rorden/mricro.html

R0‖T0 R0‖T0 ◦Φ

T0‖R0 T0‖R0 ◦Ψ

Fig. 5. Inter-object MR-to-MR registration using one-to-one edge matching
method. The sub-figure R0‖T0 and the sub-figure T0‖R0 show the
interlace-stripe volumes of the original data sets R0 and T0, while the sub-
figures R0‖T0 ◦Φ and T0‖R0 ◦Ψ show the interlace-striped volumes of
registered data sets in forward and reverse directions.

R0‖T0 R0‖T0 ◦Φ

T0‖R0 T0‖R0 ◦Ψ

Fig. 6. Inter-object CT-to-CT registration using one-to-one edge matching
method. The sub-figure R0‖T0 and the sub-figure T0‖R0 show the
interlace-stripe volumes of the original data sets R0 and T0, while the sub-
figures R0‖T0 ◦Φ and T0‖R0 ◦Ψ show the interlace-striped volumes of
registered data sets in forward and reverse directions.
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TABLE I
STUDY OF THE WEIGHT OF THE REGULARIZATION FUNCTIONAL EREG

Exp. λ CCC CREG CCON det DΦ det DΨ
For Rev For Rev For Rev 1/ max min 1/ max min

B1 0.01 1982 2939 780.9 128.5 3.700 3.667 0.4736 −0.057 0.6933 0.4197
B2 0.1 2221 2944 517.3 94.27 2.965 2.940 0.5671 0.088 0.7617 0.5195
B3 1 2709 2971 181.2 59.70 2.032 2.029 0.7348 0.4737 0.7358 0.4899
B4 5 3120 3050 44.24 27.27 1.149 1.146 0.8738 0.7296 0.8518 0.7464
B5 10 3328 3165 20.02 11.00 0.9419 0.9415 0.9253 0.8209 0.9070 0.8706
B6 20 3517 3243 6.180 3.031 0.7674 0.7699 0.9403 0.9000 0.9479 0.9301
B7 50 3550 3314 1.053 0.5344 0.1792 0.1833 0.9832 0.9599 0.9802 0.9724

CCC: Cross-coupling functional, CREG: Regularization functional, CCON: Consistency functional. The other
weight parameters were set as follows: α = 2550, β = 1, ν = 0.1, µ = 0.5, κ = 100.

TABLE II
STUDY OF THE WEIGHT OF CONSISTENCY FUNCTIONAL ECON

Exp. κ CCC CREG CCON det DΦ det DΨ
For Rev For Rev For Rev 1/ max min 1/ max min

C1 0 3044 3121 28.85 41.87 3.054 3.047 0.8824 0.7507 0.8475 0.7950
C2 50 3072 3137 27.19 45.13 0.7922 0.7891 0.8782 0.7251 0.8548 0.8136
C3 100 3088 3157 27.24 42.26 0.3255 0.3249 0.8751 0.7495 0.8569 0.8230
C4 200 3236 3115 32.69 25.19 0.1720 0.1720 0.8996 0.8032 0.8624 0.8246
C5 300 3279 3154 27.72 17.06 0.1430 0.1426 0.9061 0.8046 0.8971 0.8824
C6 400 3291 3169 26.82 17.50 0.1118 0.1165 0.9079 0.8086 0.8977 0.8758
C7 500 3334 3182 24.74 32.82 0.0803 0.0803 0.9115 0.8170 0.9917 0.8794

ECC: Cross-coupling functional, EREG: Regularization functional, ECON: Consistency functional. The other
weight parameters were set as follows: α = 2550, β = 1, ν = 0.1, µ = 0.5, λ = 10.

Fig. 7. The matching of skulls in CT-to-CT registration. Above: Interlace-
stripe volumes of skulls of original data sets. Bottom: Interlace-stripe volumes
of matched skulls.

clinic: the reflection-free photographs with an electronic flash
illumination and the depth/reflectance retina images acquired
by scanning-laser-tomograph. By acquisition, the depth and
reflectance images normally have been perfectly matched to
each other. Thus the task of this application is the registration
of multi-modal retina images, i.e. to match the reflectance
and depth images with the photograph. For the registration of

mono-modal retina images we refer to [32], [33]. Fig. 8 shows
an example of multi-modal retina images of a same patient.
In a recent paper [34], an affine transformation model and
an extended mutual information similarity are applied for the
registration of bi-modal retina images. However, as shown in
Fig. 9 (first column), this method (using the software described
in [34]) still cannot recover the minor deviations in the domain
of vessels and neuroretinal rims. In this experiment we employ
our one-to-one edge matching algorithm as a post-registration
to compensate such small deviations of fine vessels.

The images are pre-processed in the following way: ex-
tracting the green channel of the photograph as the input
for the registration, affinely pre-registering the photograph to
reflectance and depth images using the automatic software
described in [34], sampling the pre-registered images in a
mesh of 257 × 257. The algorithm is run for 10 iterations
in three levels, which takes less than three minutes altogether.
The parameters of the algorithm are set as follows: α = 2550,
β = 1, ν = 0.1, µ = 0.5, λ = 10, κ = 100, ε = 0.01. From
Fig. 9, one can observe that most minor deviations in the
domain of vessels are compensated by the computed non-rigid
transformations. Note that in this example with fine elongated
structures, different from more volumetric image structures
in the other applications, an affine pre-registration is used to
compensate the large initial mismatch and to avoid getting
stuck in a local minimum.

D. Photographs of neurosurgery

In neocortical epilepsy surgery, the tumor (lesion) may
be located adjacent to, or partly within, so-called eloquent
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Fig. 8. Multi-modal retina images of a same patient: photograph (left), depth
image (middle) and reflectance image (right).

Fig. 9. The example of post-registration of bi-modal retina images using
one-to-one edge matching. The photograph is registered with the depth
image (top) and the reflectance image (bottom). A published registration
method for bi-modal retina images cannot fully recover the minor deviations
of fine structures (first column). The forward and reverse transformations
estimated by the one-to-one edge matching successfully remove such minor
mismatching.

(functionally very relevant) cortical brain regions. For a safe
neurosurgical planning, the physician needs to map the ap-
pearance of the exposed brain to the underlying functionality.
Usually, an electrode is placed on the surface of the brain in
the first operation for electrophysiological examination of the
underlying brain functionalities, then the photograph within
the tested anatomical boundaries is colored according to the
function of electrode contacts. On the other hand, the pre-
operative 3-d MR data set contains the information of the
underlying tumor and healthy tissue as well. In the second
operation, the registered photograph and MRI volume are
used together to perform the cutting without touching eloquent
areas. At the moment a neocortical expert needs to manually
rotate the 3-d MR to find the best 2-d projection matching
to the photographs. However, due to the different acquisitions
and the brain shift during surgery, the photograph and MR
projection cannot be accurately aligned. In this experiment, we
make use of our one-to-one edge matching algorithm to refine
the matching between a 2-d digital photograph of epilepsy
surgery to the projection of 3-d MR data of the same patient.

The digital photographs of the exposed cortex are taken
with a handheld Agfa e1280 digital camera (Agfa, Cologne,

Germany) from the common perspective of the neurosurgeon’s
view. The high-resolution 3-d data set is acquired according
to the T1-weighted MR imaging protocol (TR 20, TE 3.6,
flip angle 30◦, 150 slices, slice thickness 1mm) using 1.5
Tesla Gyroscan ACS-NT scanner (Philips Medical Systems).
The brain is automatically extracted from the MRI volume
using the SISCOM module of the Analyze software (Mayo
Foundation, Rochester, MN). For both the photograph and the
MR projection, the regions of interest are manually selected
by a physician.

Fig. 10 shows the input images, preprocessed images,
interlace-stripe registered and unregistered images. In sub-
figure R0 the digital photograph shows the exposed left
hemisphere from an intraoperative viewpoint, the frontal lobe
on the upper left, the parietal lobe on the upper right and
parts of the temporal lobe on the bottom. The surface with
the gyri and sulci and the overlying vessels are clearly visible.
Alongside, sub-figure T0 displays the left-sided view of the
rendered MR volume in the corresponding parts. Comparing
sub-figures R0 and T0, one can notice that the undesired
surface vessels and reflectance flash are strongly presented in
the digital photograph, while the MR projection images clearly
display the desired edge features. The photographic image
and the projection image were preprocessed by appropriate
GIMP filter chains for edge enhancement. The preprocessed
images are displayed in sub-figures “R0 preprocessed” and
“T0 preprocessed”, respectively. Both images were resampled
to 2049× 2049 pixels. The algorithm was run from level 3 to
level 11. We note that the values of the parameters β and
µ are quite different from the other examples. The reason
is that the image modalities of the photograph and the MR
projection differ largely from each other. The two parameters
are set as β = 100 and µ = 0.1, so that both phase field
functions W and V clearly represent the edge features on the
brain and have comparable influence on the registration. In
sub-figures T0‖R0 and R0‖T0, the interlace-stripe images
illustrate the mismatch of photograph and MR projection. Sub-
figures T0‖R0 ◦Ψ and R0‖T0 ◦Φ show that the method
greatly refines the matching of the desired edge features.
Especially the brain sulci and gyri, which are significant for
neurosurgery, are nearly perfectly aligned to each other. We
have implemented a mutual information algorithm in the same
Finite Element framework (including the step sized controlled,
regularized, multi-scale descent) for a comparison. Overall,
our method gives comparable results in most cases, especially
when dealing with coarse structures. However, in this example
that contains a large number of fine structures, the edge-based
matching gives better alignment. The zoom views of local
regions in Fig. 11 show that the edge-matching method can
achieve a better alignment of fine structures than the mutual
information based registration.

E. Motion estimation for frame interpolation

Temporal interpolation of video frames in order to increase
the frame rate requires the estimation of a motion field
(transformation). Then pixels in the intermediate frame are
interpolated along the path of the motion vector. In this section,
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R0 T0 R0 prepr. T0 prepr.

R0‖T0 R0‖T0 ◦Φ

T0‖R0 T0‖R0 ◦Ψ

Fig. 10. Experimental results of matching a neurosurgery photograph of a
section of the brain with its MR projection. All the sub-figures only display the
region of interest: the exposed cortex. R0: The photograph of the exposed
left hemisphere from an intraoperative view point. T0: The projection of
the MR volume, whose orientation is specified by physicians. Preprocessed
R0 and Preprocessed T0: The preprocessed photograph and MR projection.
R0‖T0 and T0‖R0: The interlace-strip images of unregistered photograph
and MR projection. R0‖T0 ◦Φ and T0‖R0 ◦Ψ: The interlace-strip images
of registered photograph and MR projection.

we give a proof of concept that the one-to-one edge matching
method can be used for this application. For a review of
techniques of frame interpolation, we refer to [35], [36].

We perform our test on the Susie sequence and interpolate
frame 58 in Fig. 12. We use a 257 × 257 cropped version
for the experiment. Frames 57, 58 and 59 are denoted as
F57, F58 and F59 respectively. The forward transformation
Φ : F57 → F59 and reverse transformation Ψ : F59 → F57 are
estimated by the one-to-one edge matching with the parameter
setting: α = 2550, β = 1, ν = 0.1, µ = 1, λ = 10, κ = 100,
ε = 0.01. Frame 58 is interpolated as: F58 = 0.5 × (F57 ◦
0.5Φ + F59 ◦ 0.5Ψ). It is compared with a standard block
matching algorithm using an adaptive rood pattern search [37],
16 × 16 blocks and a search range of [−16, 16] in the
horizontal and vertical directions. The experimental results
show that the block matching algorithm produces blocky and
noisy motion fields, while the one-to-one edge matching based
motion estimation gives an excellent visual quality of frame
interpolation.

V. CONCLUSION AND SUMMARY

This paper presents a new algorithm for the edge matching
problem. It simultaneously performs the following three tasks:
detecting the edge features from two images, computing
two dense warping functions in both forward and reverse
directions to match the detected features, and constraining
each dense warping function to be the inverse of the other.

edge matching mutual information

Fig. 11. Comparison of one-to-one edge matching (left) and the mutual
information based matching (right). The two algorithms are implemented in a
same Finite Element framework including the step size controlled, regularized
multi-scale descent. The first row shows how the pre-processed images are
registered by the two methods. The last two rows show zoomed views of local
regions in the registered images. The comparison shows that one-to-one edge
matching comes along with a significantly better registration of fine structures.

Fig. 12. Motion estimation for frame interpolation. Top: Original frame 57,
58 and 59 of Susie sequence. Bottom: the interpolated frame 58 using simply
averaging (left), one-to-one edge matching motion estimation (middle) and
standard block matching motion estimation (right).
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An adaptive regularized gradient descent, in the framework
of multi-resolution Finite Element approximation, enables the
algorithm to efficiently find the pair of dense transformations.
The algorithm has been tested on T1-/T2-MR volume data.
It is found that the proposed algorithm successfully preserved
the topology of the images and the bijectivity of the mappings.
The paper also shows that the algorithm has been successfully
used in four applications: registration of inter-object volume
data, registration of retinal images, matching photographs of
neurosurgery with its volume data and motion estimation for
frame interpolation.
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