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Abstract. In this paper we propose a new symmetrical framework that
solves image denoising, edge detection and non–rigid image registration
simultaneously. This framework is based on the Ambrosio–Tortorelli ap-
proximation of the Mumford–Shah model. The optimization of a global
functional leads to decomposing the image into a piecewise–smooth rep-
resentative, which is the denoised intensity function, and a phase field,
which is the approximation of the edge-set. At the same time, the method
seeks to register two images based on the segmentation results. The key
idea is that the edge set of one image should be transformed to match
the edge set of the other. The symmetric non–rigid transformations are
estimated simultaneously in two directions. One consistency functional
is designed to constrain each transformation to be the inverse of the
other. The optimization process is guided by a generalized gradient flow
to guarantee smooth relaxation. A multi–scale implementation scheme
is applied to ensure the efficiency of the algorithm. We have performed
preliminary medical evaluation on T1 and T2 MRI data, where the ex-
periments show encouraging results.

1 Introduction

Image registration, image denoising and edge detection are three important and
still challenging image processing problems in the field of medical image analy-
sis. Traditionally, solutions are developed for each of these three problems mu-
tually independent. However, in the various applications, the solutions of these
problems are depend on each other. Indeed, tackling each task would benefit
significantly from prior knowledge of the solution of the other tasks. Here, we
treat these different image processing problems in an uniform mathematically
sound approach.

There already have been some attempts in the literature to develop meth-
ods aligning the images and detecting the features simultaneously [1,2,3,4]. Due
to our knowledge, most of the existing approaches are restricted to lower di-
mensional parametric transformations for image registration. Recently, in [5,6] a
novel approach for non–rigid registration by edge alignment has been presented.
The key idea of this work is to modify the Ambrosio–Tortorelli approximation of
the Mumford–Shah model, which is traditionally used for image segmentation,



so that the new functional can also estimate the spatial transformation between
images, but in contrast to the method proposed by Droske et al. our method is
fully “symmetric” with respect to the treatment of the edge sets in both images
and the transformations in both directions.

2 Method

Assume two gray images R and T are given, whose intensity values are described
by the function u0

R and u0
T , respectively. The goal of the joint framework is to

find piecewise smooth representatives uR and uT (denoising), phase field edge
functions vR and vT (edge detection) and symmetric non–rigid spatial transfor-
mations φ and ψ such that uR ◦ ψ matches uT and uT ◦ φ matches uR (reg-
istration). For simplification of presentation, we denote all the unknowns with
Φ = [uR, uT , vR, vT , φ, ψ]. The associated functional is defined as

EG[Φ] = E
u0

R
AT [uR, vR] + E

u0
T

AT [uT , vT ] + EREG[Φ] → min, (1)

In what follows, we define and discuss the variational formulation.

2.1 Denoising and Edge Detection

The Eu0

AT[u, v] denotes the Ambrosio–Tortorelli (AT) approximation functional
proposed in [7,8]. This functional is originally designed to approximate the
Mumford–Shah model [9] for image segmentation. The functional is defined as
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with parameters α, β, ν ≥ 0. In the Ambrosio–Tortorelli approximation, the edge
set is depicted by a phase field function v with v(x) ≈ 0 if x is an edge point
and v(x) ≈ 1 otherwise. The term E1 favors u to be as similar to u0 as possible.
The term E2 allows u to be singular (large ‖∇u‖2) where v ≈ 0 and favors u to
be smooth (small ‖∇u‖2) where v ≈ 1. The term E3 constrains v to be smooth.
The last term E4 prevents the degeneration of v, i.e. without E4 the functional
would be minimized by v ≡ 0, u ≡ u0. For the details of the Ambrosio–Tortorelli
approximation, we refer to [7].

2.2 Edge Alignment

The main goal of the registration functional EREG is to find the transformations
that match the edge sets of image R and image T to each other. In order to
explicitly enforce the bijectivity and invertibility of spatial mapping, we estimate
the two transformations in two directions simultaneously: φ : Ω → Ω is the
transformation from image T to image R and ψ : Ω → Ω is the one from R to
T . The functional EREG is a linear combination of an external functional Eext,
an internal functional Eint and a consistent functional Econ:

EREG[Φ] = µEext[Φ] + λEint[φ, ψ] + κEcon[φ, ψ], (2)



where µ, λ and κ are just scaling parameters. The three functionals Eext, Eint, Econ

are defined as follows:

Eext[Φ] =

Z
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1

2
(vR ◦ ψ)2 ‖∇uT ‖2 dx , (3)

Eint[φ, ψ] =
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Econ[φ, ψ] =
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‖φ ◦ ψ(x)− x‖2 +
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2
‖ψ ◦ φ(x)− x‖2dx . (5)

Here, 11 is the identity matrix. The external functional Eext favors transforma-
tions that align zero–regions of the phase field of one image to regions of high
gradient in the other image. The internal functional Eint imposes a common
smoothness prior on the transformations. The consistency functional Econ con-
strains the transformations to be inverse to each other, since it is minimized
when φ = ψ−1 and ψ = φ−1.

2.3 Variational Formulation

The definition of the global functional EG[Φ] is mathematically symmetrical
with respect to the two groups of unknown [uR, vR, φ] and [uT , vT , ψ]. Thus, we
restrict here to variations with respect to [uR, vR, φ]. The other formulas can be
deduced in a complementary way.

For testfunctions ϑ ∈ C∞0 (Ω), ζ ∈ C∞0 (Ω,Rd), we obtain

〈∂uREG, ϑ〉 =
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〈∂φEG, ζ〉 =
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where A : B =
∑

ij AijBij .
At first, a finite element approximation in space is applied [10]. Then, we

minimize the corresponding discrete functional by finding a zero crossing of the
variation. Because of the high dimensionality of the minimization problem (six
unknown functions, two of them vector valued), we employ an EM type algo-
rithm, i.e. we iteratively solve for zero crossings of the variations given before.
Since the variations with respect to the images and the phase fields are linear
in the given variable, we can solve these equations directly with a CG method.
The nonlinear equations for the transformation are solved with a time discrete,
regularized gradient flow, which is closely related to iterative Tikhonov regular-
ization, see [11].



3 Results

The first experiment was performed on a pair of T1/T2 MRI slices (See Fig.1a,1b),
which have the same resolution (257 × 257) and come from the same patient.
The experiment results in Fig.1 show that the proposed method successfully re-
moves the noise (Fig.1c,1d) and detects the edge features (Fig.1e,1f) of T1/T2
slices. Moreover, the method computes the transformations such that the two
transformed slices (Fig.1g,1h) optimally align to the original images according
to the edge features, see (Fig.1i,1j). The second experiment was designed to
demonstrate the effect of the proposed method in 3D. We deformed one MRI
volume (129× 129× 129) with Gaussian radial basis function (GRBF) and seek
to recover the artificially introduced transformation via symmetric registration
method. See the registration results in Fig.2.
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Fig. 1. Results of registration of T1/T2 slices with parameters: α = 2550, β = 1, ν =
1, µ = 0.1, λ = 20, κ = 1, ε = 0.5h. (a, b): The original images u0

T1 and u0
T2. (c, d):

Piecewise smooth functions uT1 and uT2. (e, f): Phase field functions vT1 and uT2. (g,
h): The registered T1 and T2 slices. (i): Blending of transformed T1 slice and phase
field function of T2 slice. (j): Blending of transformed T2 slice and phase field function
of T1 slice.

Acknowledgement. The authors gratefully acknowledge the support of
Deutsche Forschungsgemeinschaft (DFG) under the grant SFB 603, TP C10.
The authors also thank HipGraphic Inc. for providing the software for volume
rendering (InSpace).

References

1. Zöllei, L., Yezzi, A., Kapur, T.: A variational framework for joint segmentation and
registration. In: MMBIA’01: Proceedings of the IEEE Workshop on Mathematical
Methods in Biomedical Image Analysis, Washington, DC, USA, IEEE Computer
Society (2001) 44–51



a b c

Fig. 2. Results of 3D registration. We denote the original MRI volume as R and the
artificially deformed volume as T . After symmetric registration, the resampled volume
are denoted as R

′
and T

′
respectively. (a) The check board volume of R and T . (b)

The check board volume of R and T
′
.(c) The check board volume of T and R

′
. The

parameter setting: α = 2550, β = 1, ν = 1, µ = 0.1, λ = 20, κ = 1, ε = 0.5h.

2. Chen, Y., Thiruvenkadam, S., Huang, F., Gopinath, K.S., Brigg, R.W.: Simultane-
ous segmentation and registration for functional mr images. In: Proceedings. 16th
International Conference on Pattern Recognition. Volume 1. (2002) 747 – 750

3. Young, Y., Levy, D.: Registration-based morphing of active contours for segmen-
tation of ct scans. Mathematical Biosciences and Engineering 2 (2005) 79–96

4. Pohl, K.M., Fisher, J., Levitt, J.J., Shenton, M.E., Kikinis, R., Grimson, W.E.L.,
Wells, W.M.: A unifying approach to registration, segmentation, and intensity
correction. In: MICCAI. (2005) 310–318

5. Droske, M., Ring, W.: A Mumford-Shah level-set approach for geometric image
registration. SIAM Appl. Math. (2005) to appear.

6. Droske, M., Ring, W., Rumpf, M.: Mumford-shah based registration. Computing
and Visualization in Science manuscript (2005) submitted.

7. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity prob-
lems. Boll. Un. Mat. Ital. B 6 (1992) 105–123

8. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps
by elliptic functionals via Γ -convergence. Comm. Pure Appl. Math. 43 (1990)
999–1036

9. Mumford, D., Shah, J.: Boundary detection by minimizing functional. In: Pro-
ceedings. IEEE conference on Computer Vision and Pattern Recognition, San Fran-
cisco, USA (1985)

10. Bourdin, B., Chambolle, A.: Implementation of an adaptive Finite-Element ap-
proximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609–646

11. Clarenz, U., Henn, S., Rumpf, M. Witsch, K.: Relations between optimization
and gradient flow methods with applications to image registration. In: Proceed-
ings of the 18th GAMM Seminar Leipzig on Multigrid and Related Methods for
Optimisation Problems. (2002) 11–30


