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Figure 1: Correspondence between two animal shapes. We compute correspondences between shapes by computing a functional
map using (projected) eigenfunctions of an elastic shell energy’s Hessian as a functional basis. These basis functions are
sensitive to extrinsic features such as extremities and creases (left). Hence, using them in a functional map pipeline enables
us to accurately align crease lines such as mouth, ears, and toes (right). Here, we visualize the resulting correspondence by a
pullback of normals from the ferret (top) to the weasel (bottom). The (transferred) normal directions are mapped to colors as
shown on the little sphere.

ABSTRACT
Finding correspondences between shapes is a central task in geom-

etry processing with applications such as texture or deformation

transfer and shape interpolation. We develop a spectral method for

finding correspondences between non-isometric shapes that aligns

extrinsic features. For this, we propose a novel crease aware spec-
tral basis, that is derived from the Hessian of an elastic thin shell

energy. We incorporate this basis in a functional map framework

and demonstrate the effectiveness of our approach for mapping

non-isometric shapes such that prominent features are put in cor-

respondence. Finally, we describe the necessary adaptations to the

functional map framework for working with non-orthogonal basis
functions, thus considerably widening the scope of future uses of

spectral shape correspondence.
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1 INTRODUCTION
Shape correspondence is an important and challenging task in ge-

ometry processing and shape analysis, with applications to shape

deformation, texture transfer, and shape collection analysis, to name

a few. When formulated directly in terms of the input shapes’ geom-

etry, the resulting optimization problems are often computationally

intractable. Alternatively, Ovsjanikov et al. [2012] proposed to for-

mulate the matching problem in terms of function spaces on the
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shapes, known as the functional map approach. In this setting, find-

ing a correspondence translates to finding a change of basis between
function spaces on the source and target shapes.

Most methods based on functional maps (FM) use the eigen-

functions of the Laplace-Beltrami (LB) operator as the (reduced)

functional basis. While highly successful on many datasets [Ovs-

janikov et al. 2016], this is, however, mostly effective when the

shapes are close to isometric, as the LB operator is invariant under

isometric deformations. If, on the other hand, the mapping requires

a different objective, e.g., matching extrinsic features of the shapes,
then the LB eigenvectors are less appropriate. Furthermore, since

FM methods use almost exclusively the orthogonal LB basis, all the

available mathematical machinery and derived methods are built

on the orthogonality assumption. This is unfortunate, as it limits

the development of alternative basis functions.

To bridge this gap and leverage the functional map approach

for crease-driven matching, we propose a novel functional basis

derived from the elastic eigenmodes, cf. Fig. 1 (left). These are the
eigenvectors of the Hessian of an elastic energy. Since this basis
is not orthonormal, we generalize the functional map approach—

including the extraction of a point-to-point map—to this setting. We

show that computing a correspondence using our elastic basis leads

to a better crease alignment—see Fig. 2 (right)—and a more accurate

correspondence compared to using the LB basis. In addition, our

approach serves as a stepping stone to using a non-orthogonal

basis in the functional maps pipeline, thus enabling the future

development of a wide variety of basis functions.

1.1 Related Work
An extensive literature review on the problem of shape correspon-

dence is beyond our scope, please see the recent review by Sahilli-

oglu [2020]. We focus on methods that use functional maps and

methods that use extrinsic information.

Functional map methods. Following the introduction of func-

tional maps (FM) [Ovsjanikov et al. 2012], a plethora of methods

leveraging this approach have been proposed. These added to the

FM setup various regularizers [Magnet et al. 2022], incorporated

FM in a genetic optimization framework [Edelstein et al. 2020],

computed an adapted basis [Azencot and Lai 2021], and improved

upon the pointwise map extraction [Ezuz and Ben-Chen 2017; Ren

et al. 2021], to mention just a few extensions. Further can be found,

for example, in [Ovsjanikov et al. 2016]. Currently, one of the most

prominent end-to-end approaches is ZoomOut [Melzi et al. 2019b],

that iterates between solving for the functional map, and solving for

the point-to-point map, while increasing the size of the functional

basis. We also leverage this idea, and formulate the approach for

the general case of a non-orthogonal basis.

FM with extrinsic data. The vast majority of FM methods use

the eigenvectors of the LB operator as the functional basis, and are

therefore fully intrinsic. A few methods incorporate extrinsic infor-

mation in addition to the LB basis. For example, SmoothShells [Eisen-

berger et al. 2020] uses the product space of the LB basis and the

Cartesian coordinates (including normals) of the input mesh. The

Functional Remeshing approach [Melzi et al. 2020] adds to the basis

3 functions (denoted Coordinate Manifold Harmonics) which rep-

resent the error of the coordinates in the LB basis. This, however,

limits the correspondence to shapes in very similar poses. Finally,

Panine et al. [2022] introduce extrinsic information by using a

landmark adapted basis, constructed by solving a Dirichlet-Steklov

eigenproblem. We compare with these approaches in the results

section and show better performance.

Spectral methods on extrinsic operators. Some methods use the

extrinsic information encoded in the Steklov operator [Corman et al.

2017; Wang et al. 2018] or the Hessian of the ARAP energy [Huang

et al. 2009]. In these approaches the focus was on shape analysis,

and the basis was not used for shape correspondence.

Elastic eigenmodes. Note, that while we use the eigenfunctions
of an operator related to the elastic energy, our approach does not
aim to minimize the elastic energy of the correspondence. This

approach has been suggested with point-to-point maps [Ezuz et al.

2019a], and, while very effective, is considerably slower than the

FM approach and is sensitive to the quality of the initialization.

Previously, elastic eigenfunctions have been used, for example, by

Hildebrandt et al. [2010, 2012] for shape analysis, i.e. to construct

shape signatures, and in [Hildebrandt et al. 2011] to construct a

reduced basis for deformation-based surface modeling.

1.2 Contributions
Our main contributions are:

• A novel crease-aware functional basis which is highly effec-

tive for non-isometric spectral shape correspondence.

• A generalization of the functional map approach to non-
orthogonal basis functions. This is an important missing

ingredient for the flexible design of basis functions and ob-

jectives.

• Improved correspondence results compared to the state-of-

the-art functional map approaches.

2 THE ELASTIC FUNCTIONAL BASIS
In what follows, we represent a discrete shell as a triangular mesh

S = (V,T) with𝑛 vertices, the vertex setV, and the set of triangles
T. Let us denote by F (S) the space of continuous, piecewise affine

functions on 𝑆 , which is spanned by hat functions and coefficients in

this basis correspond to values at vertices. To simplify notation we

identify throughout this paper a function 𝑓 ∈ F (S) with the vector
𝑓 ∈ R𝑛 of nodal values. The 𝐿2 scalar product of two functions

𝑓 , 𝑔 ∈ F (S) given by ⟨𝑓 , 𝑔⟩𝑀 = 𝑓 T𝑀𝑔 turns F (S) into a Hilbert

space with norm |𝑓 |𝑀 B
√︁
𝑓 𝑇𝑀𝑓 . Here,𝑀 ∈ R𝑛,𝑛 is the diagonal

lumped mass matrix and for the Euclidean norm |𝑓 |2 = |𝑓 |𝐼 .
Our goal is to construct a new reduced basis for the space, that,

unlike the Laplace–Beltrami basis, is not invariant under isometric

deformations of the shape S but instead captures extrinsic geo-

metric features. To this end, we consider the eigenfunctions of the

Hessian of an elastic discrete shell deformation energy. Hildebrandt

et al. [2010] showed that eigenmodes of a similar energy are useful

for shape analysis due to their sensitivity to the extrinsic curvature

of the surface. Here, we take into account sets of elastic eigenmodes

to construct a functional map approach to compute non-isometric

correspondences that align relevant extrinsic shape details.
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Figure 2: Correspondences are computed for two spheres
with small and larger cut out, respectively (top right), based
on normal components of elastic eigenmodes and LB eigen-
modes. The elastic basis nicely respects creases whereas the
LB basis does not due to its invariance to isometric defor-
mations (left). For a qualitative visualization the functions
have been scaled to [−1, 1]. Consequently, the functional map
method using the elastic basis properlymatches these creases
whereas the method using LB eigenmodes falls short in that
respect aiming for an isometric matching (bottom right). Col-
ors are based on direction to visualize (transferred) normals
as in Figure 1.

2.1 Background: elastic energy
The discrete elastic energy underlying our approach is composed

of a membrane contributionWmem measuring the local stretching

of the surface and a bending contributionWbend measuring the

change of (discrete) curvature, i.e.

WS [𝜙] =Wmem [𝜙] +Wbend [𝜙],

for the elastic energy depending on a deformation 𝜙 ∈ (F (S))3.
To compute themembrane contribution, one requires the triangle-

wise constant first fundamental form𝐺 [S] of S. The membrane en-

ergy density depends on the Cauchy–Green strain tensor G[𝜙] B
(𝐺 [S])−1𝐺 [𝜙 (S)], which encodes the change of metric under the

deformation. Then, the membrane energy is defined via integration

Wmem [𝜙] B 𝛿
∑︁
𝑡 ∈T

𝑎𝑡𝑊mem (G[𝜙] |𝑡 ),

where 𝛿 is the thickness of the thin shell, and 𝑎𝑡 is the area of

𝑡 . We use the rigid body motion invariant neo-Hookean energy

density𝑊mem (𝐴) B 𝜇
2

tr(𝐴) + 𝜆
4

det𝐴−
(
𝜇 + 𝜆

2

)
log det𝐴− 𝜇 − 𝜆

4
as

proposed by Wirth et al. [2011]. The logarithmic term guarantees

triangles remain valid for finite-energy deformations. The Hessian

of this energy at the identity deformation is the quadratic form

of the Navier–Lamé model of linearized elasticity for tangential

displacements with corresponding material constants 𝜇 and 𝜆.

To define the discrete bending energy of a deformation𝜙 ofS, we
evaluate the difference of the dihedral angles 𝜃 in the undeformed

and 𝜃𝜙 in the deformed configuration as a discrete measure of

the change of curvature, where the dihedral angle on edges is the

angle between normals of neighboring triangles. Then, the discrete

bending energy [Grinspun et al. 2003] reads as

Wbend [𝜙] = 𝛿3

∑︁
𝑒∈E

𝑎−1

𝑒 𝑙2𝑒 (𝜃𝑒 − 𝜃
𝜙
𝑒 )2 .

Here, 𝑙𝑒 is the length of the an edge 𝑒 , and 𝑎𝑒 B
1

3
(𝑎𝑡 + 𝑎𝑡 ′ ) for the

two triangles 𝑡 and 𝑡 ′ adjacent to 𝑒 ∈ E.

2.2 Elastic eigenmodes
To compute the vibration modes of a shape 𝑆 , we consider the Hes-

sian HessWS [Id] ∈ R3𝑛,3𝑛
of the total elastic energy evaluated at

the identity. This is a linearization operator acting on (infinitesi-

mal) displacements 𝜓 ∈ (F (S))3 of the shape S identified with

vectors in R3𝑛
. The Hessian is symmetric semi positive-definite

with a six-dimensional kernel reflecting the infinitesimal rigid body

motions, cf. [Heeren et al. 2014]. The eigenmodes are solutions of

the generalized eigenfunction problem

HessWS [Id]𝜓𝑖 = 𝜆𝑖�̄�𝜓𝑖

where we denote by �̄� ∈ R3𝑛,3𝑛
a block diagonal matrix with

stacked lumped mass matrices on the diagonal. We only consider

𝜓𝑖 with 𝜆𝑖 ≠ 0.

By construction, the elastic energy of the identityWS [Id] van-
ishes and the identity is a minimizer which implies DWS [Id] = 0.

Hence, the eigenmodes of the Hessian with increasing eigenvalues

represent deformations ordered with respect to their induced elastic

energy. For example, on humanoid shapes, the first eigenmodes

are usually supported on the arms and legs and represent close to

isometric deformations of the limbs as a whole, see Figure 3. More

generally, we observe that the eigenmodes are well suited to detect

extrinsic geometric features such as crease lines, e.g., in Figure 2.

The eigenmodes appear to combine—not necessarily additively—

eigenmodes of the membrane and bending energy. This combina-

tion is controlled by the thickness 𝛿 of the elastic shell. For smaller

𝛿 , the bending energy has an increasing influence on eigenmodes

with small eigenvalue and thus these eigenmodes are more sensi-

tive towards curvature features. In all our applications, 𝛿 = 10
−2

appeared to be a suitable choice with respect to this sensitivity

for shapes of approximately unit area. This leads to spectra of ap-

proximately the same scale for the Hessian of the membrane and

bending energy.

In principal, it is possible to use the vector-valued eigenmodes to

compute a functional map 𝐶12 : (F (𝑆2))3 → (F (𝑆1))3. However,
this increases the degrees of freedom compared to functional maps

for scalar-valued functions and in addition requires handling local

rotations. To circumvent both of these shortcomings, we project

each eigenmode onto the uniform weighted vertex-wise normals

of the surface resulting in 3𝑛 (linear dependent) functions. The

particular choice of normals has no significant impact on our output.

From these projected functions, we practically select the first 𝑘

functions as a basis for the functional map approach. In Section 5.4.1,

we demonstrate that the reduced basis of projected eigenmodes

leads to a more accurate representation of a ground-truth map,

compared to the vector-valued eigenmodes.

It is important to notice that the resulting scalar functions are no

longer orthogonal in F (S). This led us to formulate the functional

map in a generalized way allowing for non-orthogonal functions

with potentially additional applications than those considered here

(cf. Section 6).
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Figure 3: Three elastic eigenmodes for small eigenvalues
(order given in Figure) on two human shapes (pairwise: vi-
bration mode (left) and projection on normals (right)) and
computed correspondence visualized by normal pullback
from bottom to top row. Color visualization as in Figure 2.

3 FUNCTIONAL MAP OPERATORS WITH A
NON-ORTHOGONAL BASIS

In this section, we formulate the main operators used in functional

map approaches for non-orthogonal basis functions. This requires

to carefully incorporate the proper mass-weighted scalar products

and norms, on functions and on operators, as well as the associated

dual calculus for the adjoint operators.

3.1 The classical functional map setup
We arrange a generic—not necessarily orthogonal—basis of a 𝑘-

dimensional subspace of F (S) as columns of a matrix

Φ𝑘 = [𝜙1, . . . , 𝜙𝑘 ] ∈ R𝑛,𝑘

and denote the subspace spanned by the columns of Φ𝑘 as ⟨Φ𝑘 ⟩.
The source and target shape are distinguished by subscripts 𝑆1, 𝑆2

with respective bases Φ
1,𝑘 and Φ

2,𝑘 . A vertex map Π12 : V1 →V2

is represented as a column stochastic binary matrix. Namely, Π12 ∈
Π B {Π ∈ {0, 1}𝑚,𝑛 |ΠT

1𝑚 = 1𝑛}, where 1𝑛 ∈ R𝑛 respectively

1𝑚 ∈ R𝑚 are constant one vectors, and 𝑛 = |V1 |,𝑚 = |V2 |. The
pullback of Π12 to the function spaces is denoted by 𝑃12 : F (𝑆2) →
F (𝑆1) where (𝑃12𝑔)T𝑒𝑖 = 𝑔TΠ12𝑒𝑖 for 𝑔 ∈ F (𝑆2) and 𝑒𝑖 the 𝑖-th

canonical basis vector in R𝑛 , hence 𝑃12 = Π𝑇
12
. A functional map

𝐶12 : R𝑘 → R𝑘 is a rank-𝑘-approximation of 𝑃12.

3.2 Orthogonal subspace projection
Reduced mass matrix. For functions 𝑓 , 𝑔 in ⟨Φ𝑘 ⟩, where 𝑥,𝑦 ∈ R𝑘

are the corresponding basis coefficients, namely 𝑓 = Φ𝑘𝑥 and

𝑔 = Φ𝑘𝑦, we obtain ⟨𝑓 , 𝑔⟩𝑀 = 𝑥T𝑀𝑘𝑦. Here,

𝑀𝑘 = ΦT

𝑘
𝑀Φ𝑘 ∈ R𝑘,𝑘 (1)

is the mass matrix with respect to the reduced basis Φ𝑘 , which is

symmetric but not necessary diagonal.

Orthogonal projector. A fundamental tool that is required when

workingwith a restricted basis, is to compute the best approximation

of a function 𝑓 ∈ F (S) in the space ⟨Φ𝑘 ⟩. For a given function 𝑓 ,

this is given by the orthogonal projection operator Φ†
𝑘
defined by

Φ†
𝑘
𝑓 = argmin𝑥∈R𝑘 |Φ𝑘𝑥 − 𝑓 |2𝑀 ∀𝑓 ∈ F (S).

Using the linearity of Φ†
𝑘
, we can condense this to

Φ†
𝑘
= argmin

𝑋 ∈R𝑘,𝑛
∥Φ𝑘𝑋 − 𝐼 ∥2𝑀 (2)

for the weighted Frobenius norm ∥𝐴∥𝑀 =
√︁

tr(𝐴𝑇𝑀𝐴). Comput-

ing the first variation for ∥Φ𝑘𝑋 − 𝐼 ∥2𝑀 , we obtain the necessary

optimality condition 0

!

= 2ΦT

𝑘
𝑀 (Φ

𝑘
𝑋 − 𝐼 ), leading to

Φ†
𝑘
=

(
ΦT

𝑘
𝑀Φ𝑘

)−1

ΦT

𝑘
𝑀 = 𝑀−1

𝑘
ΦT

𝑘
𝑀 ∈ R𝑘,𝑛 , (3)

which is also known as the Moore-Penrose- or pseudo-inverse.Note
that we have Φ†

𝑘
Φ𝑘 = 𝐼 , and that for an orthonormal basis, this

reduces to Φ†
𝑘
= ΦT

𝑘
𝑀 , as expected.

3.3 Functional maps in a non-orthogonal basis
With the orthogonal projector at hand, we compute the rank-𝑘-

approximation of 𝑃12 and obtain the functional map

𝐶12 = Φ†
1,𝑘

𝑃12Φ2,𝑘 . (4)

Using the defining equations

⟨𝐶12𝑦, 𝑥⟩𝑀1,𝑘
= ⟨𝑦,𝐶∗

12
𝑥⟩𝑀2,𝑘

and ⟨𝑔, 𝑃12 𝑓 ⟩𝑀1
= ⟨𝑃∗

12
𝑔, 𝑓 ⟩𝑀2

(5)

where 𝑓 ∈ F (𝑆1), 𝑔 ∈ F (𝑆2) we obtain the adjoint operators

𝐶∗
12

= 𝑀−1

2,𝑘
𝐶T

12
𝑀

1,𝑘 , 𝑃
∗
12

= 𝑀−1

2
𝑃T

12
𝑀1 . (6)

Note that for an orthonormal basis, the adjoint of the functional

map is simply its transpose.

Together with the definition of Φ†
1,𝑘

and Φ†
2,𝑘

, we arrive at the

following relation of both adjoints

𝐶∗
12

= 𝑀−1

2,𝑘
ΦT

2,𝑘
𝑃T

12
(Φ†

1,𝑘
)T𝑀

1,𝑘 (7)

=

(
𝑀−1

2,𝑘
ΦT

2,𝑘
𝑀2

) (
𝑀−1

2
𝑃T

12
𝑀1

)
Φ

1,𝑘𝑀
−1

1,𝑘
𝑀

1,𝑘 = Φ†
2,𝑘

𝑃∗
12
Φ

1,𝑘 .

For a detailed computation see the supplementary material.

3.4 The Hilbert–Schmidt norm
In the derivation of the algorithm, we will make use of an orthog-

onal splitting which holds true in a proper norm, see Section 4.1.

A natural norm on the space of linear operators between finite-

dimensional Hilbert spaces is given by the Hilbert–Schmidt (HS)

norm which is defined as �𝐹�2 = tr(𝐹 ∗𝐹 ). Hence, in our setting we

obtain for the pullback 𝑃12 : F (𝑆2) → F (𝑆1) of the vertex map

�𝑃12�2 = tr(𝑃∗
12
𝑃12) = tr(𝑀−1

2
𝑃T

12
𝑀1𝑃12)

and for the functional map 𝐶12

�𝐶12�2 = tr(𝑀−1

2,𝑘
𝐶T

12
𝑀

1,𝑘𝐶12
) .

Note that the HS norm is invariant to multiplication by the basis

Φ𝑘 . Specifically, for 𝑄 ∈ R𝑘,𝑘 mapping from ⟨Φ𝑘 ⟩ to ⟨Φ𝑘 ⟩, we have��Φ𝑘𝑄�� = tr((Φ𝑘𝑄)∗Φ𝑘𝑄) = tr(𝑀−1

𝑘
𝑄TΦT

𝑘
𝑀Φ

𝑘
𝑄) =

tr(𝑀−1

𝑘
𝑄T𝑀

𝑘
𝑄) = tr(𝑄∗𝑄) =

��𝑄�� .
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In the functional map context, the weighted Frobenius norm

∥𝐹 ∥𝑀 = tr(𝐹T𝑀𝐹 ) is often used for matrices representing oper-

ators. However, this formulation neglects the scalar product on

the domain of the operator. As a motivational toy example, con-

sider two shapes with the same connectivity but different triangle

areas where the correspondence is given by the identity. Then

�𝑃12�2 = tr(𝑀−1

2
𝑀

1
) provides a useful measure for the change of

geometry, whereas ∥𝑃12∥2𝑀2

= tr(𝑀2) only depends on the target

shape’s geometry.

3.5 Enforcing regularity of the functional map
To define a suitable regularity of a functional map, it is natural to

relate its properties to the properties of the vertex map. Here, we

aim for a regularization that works for a general basis choice. We

will consider ��𝐶
12
𝐶∗

12
− 𝐼

��
(8)

as one component of the objective. Previously, Rustamov et al.

[2013] referred to 𝐶
12
𝐶∗

12
as the shape difference operator and ob-

served that its deviation from the identity captures area distortion

based disparities between the shapes. Indeed, in the full spectral

basis and on continuous surfaces 𝐶
12
𝐶∗

12
= 𝐼 relates to area pre-

serving point maps [Rustamov et al. 2013]. In addition, a functional

penalizing the discrepancy of 𝐶
12
𝐶∗

12
from the identity promotes

the invertibility of the functional map.

For the LB basis this term simplifies to the commonly used

orthonormality promoting term 𝐶
12
𝐶𝑇

12
= 𝐼 . Melzi et al. [2019b]

showed that minimizing this term incrementally in 𝑘 in the LB basis

translates to the computation of isometric point maps. However,

this uses explicit properties of the LB basis and does not hold for a

general basis. In particular, in our approach we are not regularizing
for isometric vertex maps.

4 THE OPTIMIZATION PROBLEM
To compute a correspondence we consider the general procedure

presented in [Melzi et al. 2019b] and follow the pipeline of Ren

et al. [2021]. This means that we decouple the minimization of the

energy by solving separately for the functional map and the vertex

correspondence while spectrally upsampling the basis. However,

we generalize the underlying theoretical framework to develop

this procedure for an arbitrary basis. To this end, we introduce the

generalized objective and show how to compute the functional and

vertex map in an alternating algorithm. We show that this reduces

to the algorithm of Melzi et al. [2019b] in case of orthonormal bases.

Hence, it is consistent with previous work.

4.1 The objective
As one part of the objective we consider (8) due to its regularization

properties described in Section 3.5. i.e. capturing shape differences

and improving invertibility. We replace 𝐶12 = Φ†
1,𝑘

𝑃
12
Φ

2,𝑘
in (8)

and obtain ���Φ†
1,𝑘

𝑃
12
Φ

2,𝑘
𝐶∗

12
− 𝐼

��� . (9)

This term now depends on the functional map and the pullback

of the vertex correspondence. Hence, it can be minimized in an

alternating scheme. It quantifies the lack of commutativity in the

green corner of the diagram in the space R𝑘

F (𝑆2)
𝑃12−−−−−−→ F (𝑆1)

Φ2,𝑘

x Φ†
1,𝑘

yxΦ1,𝑘

⟨Φ
2,𝑘 ⟩ � R𝑘 ←−−−−−−

𝐶∗
12

R𝑘 � ⟨Φ
1,𝑘 ⟩

(10)

Hence, minimizing it with respect to 𝑃12 is not controlling the

image of 𝑃12 lying outside ⟨Φ
1,𝑘 ⟩. Thus, we aim at minimizing the

objective

J (𝐶12, 𝑃12) =
��𝑃12Φ2,𝑘𝐶

∗
12
− Φ

1,𝑘

��2

(11)

which is the commutativity gap measured in the red corner of the

diagram in the larger space F (𝑆1). This splits orthogonally into��𝑃12Φ2,𝑘𝐶
∗
12
− Φ

1,𝑘

��2

=

���Φ
1,𝑘

Φ†
1,𝑘

(
𝑃12Φ2,𝑘𝐶

∗
12
− Φ

1,𝑘

)���2

+
���(

𝐼 − Φ
1,𝑘

Φ†
1,𝑘

) (
𝑃12Φ2,𝑘𝐶

∗
12
− Φ

1,𝑘

)���2

.

The first term coincides with (9), using that the HS norm is invariant

under multiplication by the basis Φ
1,𝑘 and Φ†

1,𝑘
Φ

1,𝑘 = 𝐼 . The second

term is the corresponding norm on the orthogonal complement of

⟨Φ
1,𝑘 ⟩. Hence, it incorporates the desired control of the full image

of 𝑃12. The splitting follows from

Lemma 4.1. Let 𝐹 ∈ R𝑛,𝑙 be a linear operator between two finite
dimensional Hilbert Spaces, then

�𝐹�2 =

���Φ
𝑘
Φ†
𝑘
𝐹
���2

+
���(

𝐼 − Φ
𝑘
Φ†
𝑘

)
𝐹
���2

.

For the proof we refer to Lemma 1 a) in the supplementary

material. A similar splitting idea was originally proposed by Ezuz

and Ben-Chen [2017] and since then used in several methods, e.g.,

[Melzi et al. 2019b; Ren et al. 2021]. In (8) we could alternatively

replace the adjoint 𝐶∗
12

by Φ†
2,𝑘

𝑃∗
12
Φ

1,𝑘 , see Section 4.3.

4.2 Computing the vertex map
The resulting norm (11) is minimized row-wise to optimize for the

vertex map Π12 = 𝑃𝑇
12
, which is enabled by the following

Lemma 4.2. The minimization of (11) in terms of ΠT

12
is row sepa-

rable and its minimizer for all 𝑗 = 1, . . . , 𝑛 is given by Π12 (𝑖, 𝑗) = 1

iff

𝑖 = argmin

𝑟 ∈{1,...,𝑚}

���𝑀−1

1,𝑘

( (
Φ

2,𝑘𝐶
∗
12

)
T

𝑒𝑟 − ΦT

1,𝑘
𝑒 𝑗

)���2
𝑀1,𝑘

. (12)

Similar results concerning the row separability and using weight-

ed Frobenius norms have been proven for example in [Panine et al.

2022]. For the proof we refer to Lemma 2 a) in the supplementary

material. A key point of the argument is that the mass matrices on

F (𝑆𝑖 ) are lumped and thus diagonal, whereas the mass matrices

on ⟨Φ𝑖,𝑘 ⟩ might not be diagonal. Using(
Φ

2,𝑘𝐶
∗
12

)
T

= 𝑀
1,𝑘𝐶12𝑀

−1

2,𝑘
ΦT

2,𝑘
= 𝑀

1,𝑘𝐶12Φ
†
2,𝑘

𝑀−1

2
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and

(
Φ

1,𝑘

)
T

= 𝑀
1,𝑘Φ

†
1,𝑘

𝑀1, the minimization in (12) can be refor-

mulated in the euclidean norm to

𝑖 = argmin

𝑟 ∈{1,...,𝑚}

���√︁𝑀1,𝑘

(
𝐶12Φ

†
2,𝑘

𝑀−1

2
𝑒𝑟 − Φ†

1,𝑘
𝑀−1

1
𝑒 𝑗

)���2
2

(13)

For an orthonormal basis—using Φ†
𝑖,𝑘
𝑀−1

𝑖
= ΦT

𝑖,𝑘
and𝑀

1,𝑘 = 𝐼—the

right-hand side of (13) reduces to

argmin

𝑟 ∈{1,...,𝑚}

���𝐶12Φ
T

2,𝑘
𝑒𝑟 − ΦT

1,𝑘
𝑒 𝑗

���2
2

(14)

which is the same minimization as in [Melzi et al. 2019b].

4.3 Dual perspective
In a dual ansatz, we replace in �𝐶

12
𝐶∗

12
− 𝐼� the adjoint 𝐶∗

12
by

Φ†
2,𝑘

𝑃∗
12
Φ

1,𝑘
. This leads to the same minimization problem demon-

strating the consistency of our framework. Indeed, we now have���𝐶
12
Φ†

2,𝑘
𝑃∗

12
− Φ†

1,𝑘

���2

=

���𝐶
12
Φ†

2,𝑘
𝑃∗

12
Φ

1,𝑘
− 𝐼

���2

+
���𝐶

12
Φ†

2,𝑘
𝑃∗

12

(
𝐼 − Φ

1,𝑘
Φ†

1,𝑘

)���2

analogously to the splitting in (11), see Lemma 1 b) in the supple-

mentary material. Let us emphasize that this splitting holds only for

the Hilbert–Schmidt norm. Finally, for this dual approach, we ob-

tain that the minimization in terms of Π12 is column separable and

leads to the row-wise minimization for the vertex map described in

(13), see Lemma 2 b) in the supplementary material.

4.4 The alternating algorithm
Finally, we have all the ingredients in place to formulate the alter-

nating Algorithm 1 to compute correspondences using our elastic

basis. As mentioned, we follow the idea originally proposed by

Melzi et al. [2019b] to combine this alternating algorithm with a

spectral upsampling, i.e. we increase the number of basis functions

considered in each iteration. See Algorithm 1 for the details. This

approach has been proven to be an efficient method for comput-

ing functional maps and high quality correspondences in recent

publications, e.g. [Ren et al. 2021]. It is also possible to solve for

rectangular functional maps but we did not observe any benefits in

our experiments.

The procedure can be initialized by a small functional map de-

rived, for example, by visual alignment of the first basis functions

or by matching the basis functions based on the values at a few

given landmark points. Alternatively, one can also start with a noisy

vertex map. For more details, see Section 5. We demonstrate an

example result in Figure 4 showing the initial functional map (small

matrices) and the final correspondence visualized using texture

transfer. Note, that for this non-isometric deformation of the mod-

els, ZoomOut creates visible artifacts in the map (see e.g. the wings

and the tail), whereas our map nicely aligns the two shapes.

4.5 Limitations
As our basis is constructed via spectral analysis of the elastic energy,

which is more sensitive to bad meshing, the input meshes should

be relatively regular, which is easily addressed through remesh-

ing if required. In addition, our method assumes similar features

(identifiable by the elastic energy) exist in the source and target

ZoomOut

Ours

target shape source shapes

Figure 4: Comparison of ZoomOut and ourmethod on shapes
from SHREC’07 [Giorgi et al. 2007]. Initialized by 𝐶12,5 ∈
R5,5 created through the visual alignment of basis functions
(small matrices) and upsampled to 𝑘max = 100.

ALGORITHM 1:
Data:𝐶

12,𝑘
min
∈ R𝑘min

,𝑘
min

for 𝑘 = 𝑘min + 1, . . . , 𝑘max do
Compute the vertex map ΠT

12,𝑘
= argmin

𝑃12

J(𝐶, 𝑃12 ) by setting

Π
12,𝑘 (𝑖, 𝑗 ) = 1 if

𝑖 = argmin

𝑟 ∈{1,...,𝑚}

���√︁𝑀1,𝑘

(
𝐶

12,𝑘Φ
†
2,𝑘

𝑀−1

2
𝑒𝑟 − Φ†

1,𝑘
𝑀−1

1
𝑒 𝑗

)���2
2

for all 𝑗 = 1, . . . , 𝑛.

Compute the functional map

𝐶
12,𝑘 = Φ†

1,𝑘
𝑃

12,𝑘Φ
2,𝑘

with 𝑃
12,𝑘 = ΠT

12,𝑘

end

shape. Note that this is a weaker requirement than isometry, and

indeed one would expect at least some similar large scale structures

between shapes that are to be put in correspondence.

5 RESULTS
We evaluate our method by comparing it to state-of-the-art ap-

proaches. We compare to ZoomOut [Melzi et al. 2019b], which is

closest to our approach, and to recent methods for non-isometric

correspondence: RHM [Ezuz et al. 2019b], SmoothShells [Eisen-

berger et al. 2020], and Landmark-Adapted Bases (LAB) [Panine

et al. 2022].

If a ground-truth correspondence exists we use the protocol de-

scribed in [Kim et al. 2011] to evaluate the geodesic error of the

correspondence, and the errors are normalized by the square root

of the surface area. For qualitative results, we transfer normals

using the computed map, and visualize them using a colormap

on the unit sphere. Specifically, we show on the source shape the

pullback through the computed map of the surface normals of the

target shape. This visualization has been described, for example, by

Melzi et al. [2019a]. It shows more details of the correspondence

than the commonly used colormaps, which are often based on the

embedding coordinates. In particular, the normal transfer demon-

strates the matching of crease lines. In order to visualize the maps
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we compute a vertex-to-point map using the approach described

in [Ezuz and Ben-Chen 2017] but adapted to our map conversion

(implemented using PyFM [Magnet 2022]). See runtime values in

the supplementary. We use 𝛿 = 10
−2

for all experiments, unless

noted otherwise.

5.1 Aligning extrinsic features
Our method is especially effective for aligning extrinsic features. To

demonstrate this, we use Mesh Caricaturization [Sela et al. 2015] to

deform a source mesh to a non-isometric target mesh with exagger-

ated features. The deformation defines a ground-truth correspon-

dence, which we use to compute geodesic errors. We remesh the

target mesh to avoid any bias from the shared mesh connectivity.

We initialize our method by computing a functional map𝐶12,5 ∈
R5,5

naively aligning our basis functions on five landmarks. This

simple initialization is computed using

𝐶
12,𝑘 = argmin

𝐶∈R𝑘,𝑘

��𝐶Φ
2,𝑘 [𝑙2] − Φ1,𝑘 [𝑙1]

��2

, (15)

where we denote by 𝑙1, 𝑙2 ∈ R𝑑 vectors containing the landmark

indices and by Φ
1,𝑘 [𝑙1],Φ2,𝑘 [𝑙2] ∈ R𝑘,𝑑 the evaluation of the basis

functions at the respective landmarks. We use the same approach

for initializing ZoomOut, using the LB basis functions instead of

ours. For the initialization of RHM and LAB we use the same five

landmarks. For all the methods that use eigenfunctions, we take

𝑘max = 100. Here, we used 𝛿 = 10
−2.5

for the bending weight.

Figure 5 shows the comparisons. As the deformations are small

all the methods achieve relatively low errors. Still, our method

outperforms the others. Note in the qualitative resutls that our

method correctly aligns the features and creases (e.g., the nose and

chin of theMaxPlankmodel, and themouth and hands of the Homer

model), whereas the other methods have a visible “slide” of features.

Unlike LAB, that uses the landmarks during the correspondence,

we only use the landmarks for initialization. Still, our method aligns

the features more accurately.

5.2 Accuracy on thin structures
Thin parts of shapes, such as legs, arms, or tails, can be deformed

with low elastic energy. Hence, they are already well represented

by the first elastic eigenfunctions. This is in stark contrast to the LB

eigenfunctions, where a large number of basis functions is required

to reconstruct thin structures. We demonstrate this in Figure 6.

Here we compute an LB functional map 𝐶12,20 ∈ R20,20
with a

standard approach using WKS descriptors, 5 landmarks, and pro-

moting commutativity with the LB operator. We convert it to a

vertex map and then upsample from 𝑘min = 35 to 𝑘max = 200 with

our method and ZoomOut. We use the same 5 landmarks for all

methods except for SmoothShells which is automatic. Note that our

method is the only one that accurately maps the legs and tail. See

also Figure 8.

5.3 Comparisons
For the following datasets we use 𝑘max = 150 for our approach, for

ZoomOut, for LAB, and for SmoothShells. In addition, for SmoothShells

we use the provided parameter set which yielded the best results.

5.3.1 FAUST Dataset. We use a remeshed version of the FAUST

Dataset [Bogo et al. 2014] (the BCICP dataset [Ren et al. 2018],

created using the method of Yan et al. [2014]). The dataset has ten

human subjects with different body types, each in ten different

poses. We compute new ground-truth correspondences by project-

ing all the inputs to the high resolution template meshes from the

original FAUST dataset. For initializing our method and ZoomOut

we use the provided initial maps computed with WKS descriptors

and an orientation preserving term [Ren et al. 2018], for generating

an initial functional map with 𝑘min = 20. For LAB and RHM we

choose five landmarks. For reference we also include results for

BIM [Kim et al. 2011] given in the dataset. We compute the geodesic

error of all the methods over 300 test pairs (the list is included in

the dataset), including both isometric and non-isometric matchings.

We plot the percentage of vertex-wise correspondences below a

geodesic error threshold in Figure 7 (left). Our method is compara-

ble to SmoothShells and is more accurate than the other methods.

While the commonly used vertex-wise percentage plot gives a good

overview of the general performance over all the test pairs it can-
not directly imply an error measure per test pair. Therefore, we
additionally compute the median error per test pair, and show the

percentage of shape pairs below this error, see Figure 7 (right). In-

terestingly, we observe here a different behavior of the methods.

Our method has a very low median geodesic error in 95% of the

test pairs and a rather high one on the other 5%. SmoothShells

shows similar results. RHM and LAB, on the other hand, have fewer

“failure cases” but only achieve a very high accuracy on a small

number of test pairs.

5.3.2 SHREC’20 Dataset. We additionally evaluate our method on

the test-sets 1-4 of the SHREC’20 lores dataset [Dyke et al. 2020].

This dataset has different four-legged animals and the twenty test

pairs include very challenging shape pairs. We create an initial map

for our method and ZoomOut by converting a LB functional map of

size 𝑘min = 35 (computed using eight landmarks points) to a vertex

map. We use the same eight landmarks for LAB. The qualitative and

quantitative results are shown in Figure 8. For quantitative evalua-

tion we use the sparse ground-truth (50 points) from the dataset.

All the methods lead to comparable accuracy quantitatively. For

shapes which have corresponding features we observe qualitatively

better results for normal transfer with our method. See, for example,

the legs and head of the cow and the giraffe. In the supplementary

we provide an additional colormap visualization of the results and

show the correspondence with median error of our method.

5.4 Ablation study
5.4.1 Vector-valued vs projected eigenmodes. In our approach we

project the vector-valued eigenmodes𝜓𝑖 ∈ (F (S))3 on the normal

components and construct a (possibly non-orthogonal) basis for

F (S). Indeed, using the vector-valued functions leads to problems

with local rotations of the shape as shown in Figure 9. Here, we show

the resulting correspondence after converting a ground-truth map

between two SCAPE shapes [Anguelov et al. 2005] to a functional

map with 𝑘 = 100 basis functions, and reconstructing a vertex

map using our map conversion step. We accurately reconstruct the

ground-truth map using the projected basis functions, whereas the

vector-valued functions lead to large errors on the rotated arms.
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5.4.2 Effectiveness of the regularization for vertex map conversion.
To validate the efficiency of the regularizer 𝐶

12
𝐶∗

12
≈ 𝐼 we replace

our vertex map conversion with one that does not promote this

regularity term. For this, we consider

𝑖 = argmin

𝑟 ∈{1,...,𝑚}

���√︁𝑀2,𝑘

(
𝐶∗

12,𝑘
Φ†

1,𝑘
𝑀−1

1
𝑒 𝑗 − Φ†

2,𝑘
𝑀−1

2
𝑒𝑟

)���2
2

(16)

instead of (13). This objective has a similar structure as the map

conversion that we use (Eq. (13)) but is formulated using the adjoint
functional map. As described, e.g., in the work of Pai et al. [2021],

this map conversion leverages the fact that the adjoint maps Dirac

distributions on the source to Dirac distributions on the target.

We compare the vertex map conversion in two settings: (1) We

project a ground-truth vertex map to the reduced basis, and then

reconstruct it with and without regularization (Eq. (13) and Eq. (16),

respectively), for varying basis size𝑘 (Figure 10 (left)). (2)We project

a ground-truth vertex map to a reduced basis 𝑘min = 10, and then

iteratively upsample it to 𝑘max (Figure 10 (right)).

Similarly to the observations of Pai et al. [2021], we notice that

while the unregularized reconstruction is well suited to transform a

high dimensional functional map into a vertex map (Figure 10 (left)),

it is not effective in an upsampling procedure (Figure 10 (right)).

With the regularization, reconstruction in an upsampling frame-

work works well, and the elastic basis outperforms the LB basis

in reconstruction error. Explicitly, note that using our approach to

upsample a ground-truth representation with 10 elastic basis func-

tions to 𝑘max = 150 is nearly as accurate as directly representing the

ground-truth with 150 elastic basis functions and reconstructing.

As this is the highest accuracy that can be achieved with 150 elastic

eigenfunctions this validates the efficiency of our regularization.

6 CONCLUSIONS AND FUTUREWORK
We proposed a crease-aware spectral basis, that is derived from the

eigenmodes of the elastic energy. We additionally showed how to

incorporate it in the functional map framework, by generalizing it

to handle non-orthogonal basis functions. We have used this basis

within the iterative upscaling (i.e., ZoomOut) framework, and it

would be interesting to combine our approach with other spectral

matching techniques that have been proposed in recent years. Ad-

ditionally, as we have shown how to handle non-orthogonal basis

functions, it is interesting to explore other operators, as well as

combining different types of basis functions e.g. resulting from

machine learning methods as for example in [Marin et al. 2020].
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Figure 5: Quantitative and qualitative evaluation of correspondences between two shape pairs created by the caricaturization
tool of Sela et al. [2015]. As before, the (transferred) normal direction are visualized by mapping them to colors. Our method
accurately aligns extrinsic features preserved by the caricaturization, whereas Laplace–Beltrami-basedmethods prefer isometric
mappings which leads, for example, to wrongly mapped facial features. For qualitative results of the remaining methods see
the supplementary material.
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Figure 6: Computed correspondence between a cat and lion mesh visualized via normal transfer. Our method is able to generate
accurate mappings on thin structures of the shapes—such as the tail—because the elastic basis accentuates them (cf. Figure 1).
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Figure 7: Quantitative evaluation on the FAUST dataset. All refinement methods were run with 𝑘min = 20, 𝑘max = 150. See
Section 5.3.1 for details on the initialization and parameters. Percentage plots showing vertex-wise error (left) and shape
pair-wise median error (right).
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Figure 8: Quantitative and qualitative results for the SHREC’20 low-resolution dataset [Dyke et al. 2020] on 20 correspondences
(testsets 1–4). See Section 5.3.2 for more details on the initialization and parameters.
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Figure 9: Results for ground-truth reconstruction after converting to a functional map 𝐶12,100 ∈ R100,100 computed with the
vector-valued eigenmodes and our used projected basis functions. See Section 5.4.1 for details.
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Figure 10: Ablation study on FAUST data set (300 correspondences). Left: mean geodesic error of groundtruth representationwith
a functional map in the respective basis for 𝑘 = 10, . . . , 150 after map conversion with the regularized and unregularized approach.
Right: Iterative process initialized by groundtruth correspondence and upsampled with the regularized resp. unregularized
approach. See Section 5.4.2 for details. We show qualitative results for different values of 𝑘 in the supplementary material.
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