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Abstract

A significant reinforcement effect has always been expected from the
use of carbon nanotubes (CNT). Well-known experimental results, how-
ever, reveal that the theoretical reinforcement rules for straight nanotubes
are not always achieved in practice. This paper reports that not only
should the percentage quantity of nanotubes in the matrix be taken into
account, but also their curvatures. A finite element method (FEM) based
computational analysis on the mechanical reinforcement of composite ma-
terials by nanotubes is presented. In this article we focus on randomly
distributed and curved nanotubes as fillers. In particular, we study the
influence of the curvature of the nanotubes on the overall elastic mod-
uli. To this end, we apply a statistical analysis of the elastic moduli of
nanocomposites when a certain number of nanotubes are incorporated
into a matrix. Here, we restrict ourselves to use just a simple as possible
linear elasticity model. Nevertheless, it turns out that the average over-
all reinforcement ratio is significantly lower than in the case of aligned
straight nanotubes. In particular, our numerical experiments show that
the resulting reinforcement ratios exhibit a linear dependency on the av-
erage ratio of the end-to-end distance and the length of the nanotube.
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1 Introduction

Nanotechnology is a very important field which has emerged in recent decades
and has very rapidly evolved in several different directions simultaneously. Nan-
otechnology has important applications in many fields such as aviation, automo-
biles, electronics and medical engineering. In particular, nanocomposite materi-
als have various important properties, e.g. electronic, thermal and mechanical,
which can be exploited in many areas of application [1–3]. In this work, we
are interested in the mechanical reinforcement of nanomaterials based on nan-
otubes. Here, many theoretical studies predict that the use of nanotubes as
fillers will result in a substantial reinforcement of the matrix [4–10]. Experi-
mental data in the literature indicate that in certain material systems a signif-
icant reinforcement may be possible with the use of only a small percentage of
nanotubes [1, 11, 12]. However, experimental results on several thermoplastic
and thermoset matrices show that the reinforcement ratios actually achieved
are generally substantially less. To our knowledge, this behavior has so far not
been described by theoretical models, e.g. by conventional rules of mixtures.
For example, let us consider a material consisting of two components (fiber and
matrix), assuming Ef and Em as the respective Young’s moduli. In that case,
the simplest rules of mixture for the Youngs modulus of the composite material
are the well-known rules of Voigt and Reuss, which are also called the direct
and inverse rules of mixture [13]. The direct rule of mixture reads

E1 = EfVf + EmVm (1)

and among other things gives an upper boundary for the total modulus, while
the inverse rule reads

E2 = EfEm/(EmVf + EfVm) (2)

and gives a lower boundary [13]. Here, Vf and Vm are the volume fractions
of the fiber and the matrix with respect to the total volume of the composite
material. However, in many cases these simple rules fail and hence several much
more sophisticated rules of mixtures have been proposed. Hu et al. give a good
survey [13] of the most frequently applied rules of mixtures. In particular, stiff-
ness and strength enhancements achieved by the use of fillers of different shapes
such as cylinders and disk-like platelets are examined. It should be noted that
in case of general composite materials, rules of mixtures are usually not suffi-
cient to predict the reinforcement. In those cases, finite element method (FEM)
based computations provide a theoretical prediction method. A comparison
of the FEM solution with experimental results is given by Lee et al. in [14],
which is interested primarily in metal matrix composites. In addition, they
compare their results with the Halpin-Tsai rule of mixtures [15]. A statistical
study is conducted by Hbaieb et al. in [16]. They also perform a comparison of
aligned tubes with randomly positioned, unorganized straight tubes. In their
analytical investigation they compare their results with the Mori-Tanaka rule of
mixture [17]. Curved nanotubes have also been considered by some authors. In
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this regard, Shi et al. [18] used a helical spring shape and Brinson et al. [19,20]
a sinusoidal shape in the framework of the Mori-Tanaka model. Furthermore, a
mixed numerical-analytical model for nanotube-reinforced nanocomposites also
using sinusoidal shaped nanotubes was presented by Pantano in [21]. Here, the
correlation matrix needed for the Mori-Tanaka model is determined by finite
element analysis computations. Recently, Han et al. [22, 23] introduced a ge-
ometric model which includes interphase regions and also agglomeration and
clusterization of carbon nanotubes (CNT). Moreover, a methodology for the
reconstruction of carbon nanotube composite microstructure using correlation
cunctions was presented in [24].

Expectations for the reinforcing effect of CNT were tremendous. These
ultra-high-modulus tubes with a length of up to several micrometers and a di-
ameter of only several nanometers should, due to the good load transfer action
of these large surface area fillers, have a tremendous reinforcing effect, as calcu-
lated by means of the well-known reinforcement rules. Traditionally, short-fiber
reinforcement always meant reinforcement by means of straight fibers because
glass, Kevlar, carbon and even whiskers are always straight. For most com-
mercial polymers, the experimentally identified reinforcing effect of CNTs in
polymers is much less than calculated from composite theory, i.e. either the
modulus of these fibers is much lower than expected or the stress transfer (ad-
hesion) is inhibited or we are using the wrong theory. This paper elucidates the
influence of the curvature of the fibers on the reinforcing effect. Some examples
of large reinforcing effects are reported in the literature, but these results can
be explained by other than fiber reinforcement [4, 25].

Note that up to our knowledge the specific effect of curvature on the rein-
forcement ratio has not been specifically studied in the case of more arbitrarily
and randomly curved nanotubes so far. Therefore, in this work, we study the
mechanical properties of matrices with randomly distributed and curved nan-
otubes by means of a finite element analysis to obtain more detailed insight on
the impact of curvature from a theoretical point of view. Here, we focus on the
case of the reinforcement of high-modulus matrices. To this end, we restrict
ourselves to a simple as possible linear elasticity model, where we in particular
neglect interphase regions. This way a perfect load transfer and no reinforce-
ment effect of the filler on the mechanical properties of its local neighboring
matrix is assumed. In addition, we compare analytic rules of mixtures and our
results of FEM simulations. It turns out that the reinforcement ratio achieved
using curved nanotubes as fillers is significant lower than in the case of straight
nanotubes. Furthermore, our results show a linear dependency of the reinforce-
ment ratio on the average ratio of the end-to-end distance and the length of the
nanotube.

The body of this paper is organized as follows: In Section 2, we briefly
review the experimental study performed for reinforced epoxy resin which moti-
vated this work. In Section 3 we briefly summarize the finite element approach
to compute elastic moduli based on linear elasticity. In Section 4 we present
various numerical experiments and discuss their results. Finally, we offer some
concluding remarks in Section 5.
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2 Experiment

As mentioned above, the computational study presented in this article was pri-
marily motivated by the results of experimental investigations on CNT modified
epoxy resins. Experimental results on typical epoxy resins reinforced with multi-
walled carbon nanotubes (MWCNT) show that the reinforcement ratio is much
less than predicted from the rule of mixtures. This brief experimental section
summarizes the experimental setup and some of the typical results.

Table 1: Results of experimental study on epoxy CNT composites with increas-
ing weight-% of CNTs.

weight-% E/Em Std. dev.

0.0 1.000 0.039
0.5 1.049 0.029
1.0 0.990 0.029
1.5 1.020 0.029
2.0 1.029 0.029
2.3 1.000 0.020

25.9 1.147 0.069

To illustrate a typical experimental setup, we included data for a typical
epoxy matrix reinforced by MWCNT. The C150P Baytubes used were chemi-
cally surface-modified to facilitate the chemical bonding of the CNT to the epoxy
resin. The resulting CNT were dispersed into RIM135 epoxy resin from Momen-
tive using a three-roll-mill. The resulting master batch contained 3 weight-%
modified CNT. Using this master batch, several mixtures of different CNT con-
tent with RIM135 resins were produced . These samples were cured using the
hardener RIM H137 in a ratio of 100 : 30 and at temperature of 50◦ C for 5
h followed by a post-curing cycle at 75◦ C for 6h. The modulus of elasticity
of the epoxy matrix is 2.9 ± 0.2 GPa. The sample containing approximately
26 wt-% CNT had been produced using a different experimental method. The
CNT in agglomerated form was filled into a mold and the resin-hardener mix-
ture was infused into the agglomerates using a modified VA-RTM process. The
cured composites were cut and tested in a 3-point bending set-up according to
ISO 178. The results are presented in Table 1 and show a substantially lower
reinforcement ratio than expected from the rule-of-mixtures or as found in the
literature for certain low-modulus matrices where, for example, an increase in
the elastic modulus of up to 40% is reported for 1% MWNT in polyester resin,
and an increase of up to 400% of is reported for 20% single-wall carbon nan-
otubes (SWNT) in polyethylene (E ≈ 0.1− 1.2 GPa) [1, 11,12].
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3 Numerical methods

For the computation of the Youngs modulus of the composite material by means
of a finite element analysis, we use the FEM code OOF2 [26–28], where we
assume that the matrix and the fiber materials are linearly and isotropically
elastic. Hence, the Young’s modulus and the Poisson ratio are sufficient to fully
specify the material properties. As discussed in the introduction, we do not in-
clude interphase regions and assume that the fibers are perfectly bonded to the
matrix. For reasons of simplicity we further restricted ourselves to a 2D finite el-
ement model which is subjected to plane stress. Note that of course a 3D model
allows to compute quantitative better results compared to the 2D model. How-
ever, a 2D model is usually sufficient to give qualitative statements [16], which
is the main purpose of our work. Now, to perform a uniaxial tensile load test
we use symmetrical boundary conditions as described in [16]. Here, a uniform
strain is applied in x direction of the composite material by specific Dirichlet
boundary conditions. This is done by applying a constant displacement δ to the
x-component of the right boundary, while the x-component of the left side and
the y-component of the bottom boundary is kept fixed to zero. Note that the y-
components of the left and right boundary and the x-component of the bottom
boundary are not fixed and hence are still allowed to vary. Compare also the
illustration in Figure 1(a). The elastic moduli are then calculated according to
a generalized Hookes law [29], i.e. by dividing the respective computed averaged
stress components by the respective strain components [8, 9]. For example, the
Young’s modulus Exx resulting from a longitudinal tensile load test is given by

Exx =
σxx
εxx

,

where σxx and εxx denote the average stress and strain component, respectively.
In our case, the applied strain is εxx = 0.1, where the average stress component
is given by the integral of the respective FEM based computed local stress
component over the computational domain divided by the area value of the
computational domain. Let us note that we can use here quite a large strain
value, like e.g. εxx = 0.1, since we use a linear elasticity model and hence the
resulting elastic constant is independent of the value of the applied strain except
up to numerical artifacts. In Figure 1(b) we give an example for an instance of
a finite element mesh for a nanocomposite including several curved nanotubes
with an aspect ratio of 1 : 50. A snapshot of a uniaxial tensile load test for a
single curved tube embedded in a matrix is presented in Figure 1(c). Here, the
computed local value of the stress component σxx is represented by the color
scale displayed.

For validation, we applied our FEM approach to several test cases, where
the exact solution is given by a certain rule of mixtures. For example, we
considered simple composite material where the well-known direct and inverse
rules of mixture, c.f. equations (1) and (2), give the exact Young’s modulus of
the composite material [13].1 In addition, we considered oriented unidirectional

1Here, in particular, we investigated also the effect of the application different strain values,
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(a) (b) (c)

Figure 1: (a) Schematic view of an uniaxial tensile load case. (b) FEM mesh
for nanotubes embedded in a matrix. (c) Numerical FEM results of an uniaxial
tensile load test of a single curved tube.

(a) (b) (c) (d)

Figure 2: Single curved tubes, where the volume fractions are kept constant and
only the curvatures of the internal models change.

fibers, in cases of the special rules given in [30], such as the shear lag rule of
mixture E = ηLVfEf + (1 − Vf )Em, where the parameter ηL depends on the
specific arrangements. Here, and also in the case of the Halpin-Tsai rule, our
results agree well with the known theoretical results. But however, for reasons
of simplicity, we will not give further details here.

4 Numerical simulations and results

4.1 Single curved fiber

This article is primarily concerned with the numerical simulation of curved
nanotubes. Therefore, to get a first insight on the effect of curvature on rein-
forcement in general, below we discuss the simplest imaginable curved models
embedded in a matrix. Here, the principal objective is to investigate the influ-

i.e. we compared several values in the range of 1% to 10%. As expected it turned out that
the resulting Young’s moduli are independent of the used strain value except up to numerical
noise.
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Figure 3: Reinforcement ratios for samples according to Figure 2 for horizontal
uniaxial load test cases. The length is kept constant L = 133.52. The moduli
are set to Em = 1 and Ef = 100. The Poisson ratios are νm = νf = 0.33.

ence of the geometric properties including curvature. In other words, we keep
the volume fraction constant throughout the following computations. The only
parameters that vary are the shape of the fiber as well as its rotation with
respect to the uniaxial load direction. It should be noted that in the case of
fixed moduli Ef and Em and a fixed volume fraction Vf , the simple direct and
inverse rule of mixtures fail since they remain constant. The primary models
to be considered are straight segments and circular arcs, assuming three con-
trolling parameters α, β, R as in Figure 2(a). The parameter α controls the
spanning angle of the circular arc which is traced on a circle of radius R while
the parameter β expresses the rotational angle with respect to the horizontal
axis.

First, we consider circular arcs which are oriented horizontally, i.e. the angle
β is constantly zero as illustrated in Figure 2. The spanning angles α are
allowed to vary and the end-to-end distances are chosen such that the arc lengths
L = αR are constant. The effect of the reinforcement is depicted in terms of the
factors of variation in Figure 3. It can be observed that the reinforcement ratio
is inversely proportional to the spanning angle α. In particular, the obtained
ratio reaches its maximal value of about 1.53 and its minimal value of about
1.12 at α = 0 and α = π, respectively. Note that the resulting ratios are
substantially lower than the value computed by the direct rules of mixtures, i.e.
E1 ≈ 8.1. Let us further remark that the lower bound is given by the inverse
rules of mixtures, i.e. E2 ≈ 1.08.2

2Note that there are small deviations E1 and E2 with respect to the different samples
caused by minor inaccuracies of the pixel in the FEM images which are unavoidable for
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Figure 4: Circular arc by varying β ∈ [0, 90] degree using fixed Em = 1.0,
Ef = 100.0 and νm = νf = 0.3333. The volume and the shape are kept
constant, i.e. end-to-end distance of a value of 79.6.

Let us now consider the influence of the rotation angle β on the reinforcement
ratio. More precisely, a fixed curved tube in the form of a circular arc of fixed
radius and fixed spanning angle α is allowed to rotate inside a matrix. The
behavior of the dependence of the reinforcement in term of the rotational angle
β is plotted in Figure 4.

Altogether, the investigation proposes that the results from straight tubes
cannot be directly applied to curved and rotated tubes. While the direct and
inverse rules of mixture are very efficient in the case of vertical and horizontal
straight tubes [30], they are altogether incapable of providing a reliable predic-
tion for curved and rotated nanotubes.

4.2 Multiple nanotubes

In this section we consider the case of multiple randomly distributed and curved
nanotubes embedded in a matrix. To generate such nanocomposites we apply an
approach based on particle dynamics. In detail, we model a nanotube as a linear
chain of pseudo-particles which interact by static harmonic bond potentials i.e.

U(r) = kB(r − r0)2,

and static harmonic angle potentials, i.e.

U(θ) =
k

2
· (cos(θ)− cos(θ0))

2
.

curved fibers.
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(a) (b) (c) (d) (e)

Figure 5: Samples of nanocomposites: (a), (b), (c) curved nanotubes, (d) verti-
cal straight nanotubes, (e) horizontal straight nanotubes. The aspect ratio of a
nanotube is 1 : 50.

We use the following fictitious values for the static bond kB = 191.637, r0 =
1.54, k = 1000 and for the angle potentials we choose cos(θ0) = −1 and
k = 1000.3 Additionally, in order to avoid crossings between different nan-
otubes, we apply a standard Lennard-Jones potential between pseudo-particles
of different nanotubes. The corresponding numerical simulations are performed
by the molecular dynamics software package Tremolo-X [31]. Here, we applied
an NVT ensemble using a Verlet time integrator with a time step of 0.1 for the
Verlet time integrator and a Berendsen thermostat with a fictitious target tem-
perature 0.1. Note that since we are considering only pseudo-particles, all the
indicated values have no physical meaning and are dimensionless, but we can
control the average curvature (or how straight the nanotubes are) by the choice
of the bond angle parameter k. To generate a series of samples to a specific
set of model parameters, we take snapshots every 10000 time steps during a
simulation run.

Now, in a first step, we analyze the reinforcement factor as a function of
the number of curved nanotubes. Note that we restrict ourselves to the case
of model materials with fictitious materials parameters. However, we consider
typical fiber/matrix moduli ratios in nanotube composites. Note further that we
investigated also the effect of different Poisson ratios by numerical simulation.
But since our results showed only a very small influence, we restrict ourselves
to the case of equal Poisson ratios for fibers and matrix in this work. In our
computations, we use an aspect ratio of 1 : 50 for the curved as well as the
vertical/horizontal arrangements.

Before considering a large number of samples of nanocomposites, we consider
first the individual samples illustrated in Figure 5. In fact, we consider three
simulations using respectively one, two and four nanotubes.

Here, we first fix Em and let Ef vary. Afterward, the converse is executed by
fixing Ef and varying Em. The corresponding results of the tests are displayed
in Figure 6(a), Figure 6(b) and Figure 6(c). It can be seen that for each test,
the two curves align well. In other words, the reinforcement ratios E/Em of
the considered sample systems depend only on the ratio Ef/Em. In the follow-

3Note that since we are considering only pseudo particles, all the indicated values have no
physical meaning and are dimensionless
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Figure 6: Computed reinforcement ratios: (a) one nanotube, (b) two nanotubes,
(c) four nanotubes. The aspect ratio of a nanotube is 1 : 50.

ing we always use elastic moduli Em = 1.0 and Ef = 100.0, and the Poisson
ratio νm = νf = 0.3333. By observing these three plots more closely, we see
that the reinforcement increases proportionally with the number of nanotubes,
but no conclusions can yet be derived because these were only individual tests.
Therefore, for each case, i.e. the cases of 1, 2, 3, 4 nanotubes, we performed sim-
ulations on 90 different samples of nanocomposites. The results are summarized
in Figure 7, where the points in the figure represent the different computed rein-
forcements of the individual tests while the horizontal lines depict their average
values.
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Figure 7: Computed reinforcement ratios of samples of nanocomposites embed-
ding one, two, three and four nanotubes, respectively. The samples are gener-
ated by our particle dynamics approach. We use the elastic moduli Em = 1.0
and Ef = 100.0, and Poisson ratio νm = νf = 0.3333. The aspect ratio of a
nanotube is 1 : 50.

Furthermore, in Figure 8(a) we give the averaged reinforcement ratios in
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Figure 8: (a) Average reinforcement ratios using 1, 2, 3 and 4 curved nanotubes,
(b) Computed reinforcement ratios for horizontal and vertical nanotube samples
according to Figure 5(e) and Figure 5(d).

terms of the volume fraction of the nanotubes and it can be seen that there
is an almost linear dependency. In addition, we compare the case of curved
nanotubes with the two extreme cases which consist of vertical and horizontal
nanotubes as shown in Figure 5(d) and Figure 5(e) respectively. Figure 8(b)
illustrates the average reinforcement ratio of the curved nanotubes together with
the extreme cases. The entire numerical results are organized in Table 2. In

Table 2: Average values of the E/Em according to the samples of Figure 7. In
addition we give the results of the extreme cases 5(d) and 5(e), and the direct
and inverse rule of mixtures.

# NT Vf E/Em Horiz. (E/Em) Vert. (E/Em) E1 E2

1 0.01 1.04 1.30 1.03 2.139 1.012
2 0.02 1.09 1.56 1.06 3.255 1.023
3 0.03 1.14 1.84 1.09 4.409 1.035
4 0.05 1.21 2.15 1.12 5.593 1.048

particular, we see that the reinforcement ratios for these model cases are in the
range the ratios we measured experimentally.

Let us now study the effect of the curvature ratio δ = `/L, where ` is the end-
to-end distance of the nanotubes and L represents the chordal length. A small
curvature ratio corresponds to nanotubes that are very floppy as illustrated in
Figure 9(a), while a high curvature ratio represents a nanotube which is very
elongated as it approaches a straight nanotube as illustrated in Figure 9(b).

To examine the influence of the curvature ratio on the reinforcement ratio of
the nanocomposite, we first generate different sets of samples of nanocomposites
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Figure 9: Curved nanotubes and the parameters for the curvature computation:
(a) floppy tube, (b) elongated tube.
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Figure 10: Dependence of the reinforcement factors on the curvature ratios: (a)
two long tubes, (b) four short tubes.

which exhibit different average curvature parameters δ. To this end, we apply
our particle dynamics approach with different values k for the bond angle po-
tential, i.e. k = 103, k = 104, k = 105 and k = 106, where we restrict ourselves
to samples with just two nanotubes of the same chordal length. We identify the
resulting four sets of samples as sets A, B, C and D, respectively. We present
the resulting average curvature ratios in Figure 11, where the average curvature
ratios increase from datasets A to D. In Figure 12, we present all the individual
measurements of the reinforcement ratio as well as the average values for the
datasets A, B, C and D.

The simulation results reveal that the average curvature ratio really does
have an influence on the elastic modulus of the nanocomposite. Although the
reinforcement values are scattered, it can be observed that their average values
increase proportional to the values of the curvature parameters. A more accurate
description of that dependence is displayed in Figure 10(a). In Table 3 we collect
the statistical data corresponding to the former measurements. In particular,
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we use the standard deviation
[∑n

i=1(xi−x̄)2/n
]1/2

and its squared value which
is the variance. We also show the average absolute deviations

∑n
i=1 |xi − x̄|/n.

Here we use the absolute evaluation of the deviations from the average values x̄.
It can be noticed that as the number of inserted nanotubes increases, the value
of the deviations increases as well. Moreover, we observe that a data set with an
average low curvature ratio has small standard deviations in the reinforcement
factors. Similar deviation statistics for the other measurements are presented
in Table 4 and Table 5. In particular, it can be observed that smaller values
of the curvature parameter δ correspond to larger standard deviations. That is
because they are more susceptible to distortion by straight segments.

Table 3: Statistical values of the measurements for Figure 7, that is the mean
value, the standard deviation, the variance and the average absolute deviation.

DATA Mean val. Std. dev. Variance Avr. abs. dev.

One nanotube 1.042 0.017 0.0003 0.012
Two nanotubes 1.094 0.047 0.0022 0.031

Three nanotubes 1.138 0.038 0.0015 0.030
Four nanotubes 1.212 0.055 0.0030 0.041

In a next step, we consider additional sets of samples, namely a, b and c,
which are similar to the first sets, i.e. A, B, C and D, with two exceptions. First,
there are now twice as many (i.e. now four internal curved tubes). Second, the
length of the tubes is now half as long as the previous ones, i.e. with the same
volume content. In Figure 10(b), we omit the intermediate results and show
only the average dependence of the material reinforcements on the values of the
curvature parameter δ. The three datasets (a, b, c) correspond to the three dots
of the plot in Figure 10(b). Once again, we can observe the linear behavior of
the reinforcement as a function of the curvature ratio. That suggests that not
only the aspect ratio but also the curvature values are on average significant in
the estimation of the reinforcement ratio.

Table 4: Statistical values according to the computed average reinforcement
ratios E/Em presented in Figure 12, that is the mean value, the standard devi-
ation, the variance an the average absolute deviation.

DATA Mean val. Std. dev. Variance Avr. abs. dev.

A 1.096 0.034 0.0012 0.028
B 1.112 0.053 0.0028 0.043
C 1.131 0.066 0.0044 0.051
D 1.164 0.125 0.0157 0.096
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Figure 11: Average curvature ratios for sample sets A, B, C and D.
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admitting increasing curvature ratios.

14



Table 5: Statistical values according to the computed average curvature param-
eters δ presented in Figure 11, that is the mean value, the standard deviation,
the variance and the average absolute deviation.

DATA Mean val. Std. dev. Variance Avr. abs. dev.

A 0.587 0.139 0.0192 0.118
B 0.671 0.153 0.0234 0.130
C 0.797 0.130 0.0168 0.098
D 0.956 0.039 0.0015 0.031
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Figure 13: (a) Computed reinforcement ratios with increasing aspect ratios. (b)
Mori-Tanaka prediction for data sets A, B, C and D.

We have also performed computations pertaining to the influence of the
thickness in the case of curved tubes. Let us now focus on the case in which
the curvature parameter δ is fixed. To do that, we considered two composite
materials that consist of two internal curved nanotubes. The results of the
computation are depicted in Figure 13(a), where the thickness can be deter-
mined from the volume fraction in the horizontal axis. In all our simulations,
the postures and positions of the internal nanotubes are kept invariant. The
only variations we allowed were the aspect ratios as the quotient between the
thickness and the chordal length of the embedded nanotubes. As the aspect
ratio increases, the volume fractions of the fiber with regard to the matrix in-
crease as well. In both cases, we observed the linear dependence of the average
reinforcement ratio on the nanotube volume fractions.

Finally, we perform numerical simulations with regard to the Mori-Tanaka
rule of mixtures [17, 32, 33]. We consider randomly placed curved nanotubes
inside a matrix [14] and we examine the average behavior with respect to the
Mori-Tanaka estimation. The results presented are not based on analytical
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methods but rather on numerical simulation, where the samples are generated by
our particle dynamics approach. Briefly, the Mori-Tanaka prediction as surveyed
in [13] expresses the estimation in term of the overall bulk and share moduli
K and µ. The estimation is produced in function of the properties Kf and µf

of the fibers and those of the matrix Km and µm. More specifically, the bulk
estimate is

K = Km +KmVfϕ/(1− Vf (1− α)),

where parameters ϕ and α depend on the specific structure of the nanocompos-
ite. The shear modulus is estimated in a similar manner. The exact dependence
of the parameters, which is not repeated here, is found in [32]. The principal
expression in that dependence is a certain parameter χ = c/a (see expression
(12) in [32]) which is usually proportional to the quotient between the average
width of the fibers c and the average length a. We have applied the former sam-
ple sets A, B, C and D to the Mori-Tanaka prediction. Our simulation reveals
that using χ without taking the curvature parameter δ into account provides
a value of approximately 1.30 for all four datasets A, B, C and D. In other
words, for curved nanotubes, using only the aspect ratio between the width and
the chord length of the curved nanotubes does not provide a reliable estimate
of the material properties, because it cannot detect the increase of the aver-
age reinforcement as the value of the curvature parameter increases such that
δA < δB < δC < δD. On the other hand, we have observed that replacing χ by
an order O(χ/δ) yields a reasonable estimate in the Mori-Tanaka prediction. In
fact, we performed additional investigations by including the value of δ inside
the value of χ such as χ = λc(δα) where λ is a factor and c/α is as before the
aspect ratio. As a result, we obtain much better estimates where the increase of
the reinforcement in the datasets can be detected. We have not yet been able to
determine the optimal value for the factor λ but the dependence on the inverse
of δ is captured. In Figure 13(b), we consider two cases where λ1 = 0.5 and
λ2 = 0.25 in which the Mori-Tanaka estimates for these values increase with
respect to the sets A, B, C and D. In the same figure, we have re-plotted the
average reinforcement ratio which we took from Figure 10(a) for the sake of
comparison. For both values of the factor λ, the results exhibit increasing plots
as the average reinforcement increases.

5 Conclusions

The results of the numerical simulations show that the curvature of the nan-
otubes has an impact on the ratio of reinforcement of the matrix. Indeed,
our numerical results exhibit a linear dependency of the reinforcement ratio on
the curvature parameter introduced. Furthermore, our results suggest that the
Young’s modulus of CNT reinforced high-modulus matrices can be predicted
by linear elasticity based FEM, while the experimentally observed relative high
reinforcement ratios in the case of low-modulus epoxy matrices cannot be re-
produced by a standard linear elasticity based FEM model. This may further
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suggest that in the case of low-modulus epoxy matrices the structural morphol-
ogy of the matrix is modified by the inclusion of nanotubes.
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