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Figure 1: A (periodic) spline in shell space (orange) allows for a temporally smooth interpolation of a given set of shell keyframe poses
(gray, left). Compared to a piecewise geodesic interpolation (green), our spline interpolation yields a more natural motion and a balanced
distribution of acceleration along the curve. We only display a few shells on the spline path around one of the keyframe poses as indicated
on the left.

Abstract
Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data
points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both
bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity.
We introduce an effective time-discretization for this novel paradigm for navigating shell space. Further transferring this con-
cept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified
interpolation method with high computational efficiency.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

We introduce the concept of navigating in the space of shell sur-
faces, briefly denoted as shell space, via interpolating splines. Us-
ing splines for smoothly interpolating keyframe poses of animated
characters in Euclidean space goes back at least to the pioneering
works of Kochanek and Bartels [KB84] and Lasseter [Las87] in the
1980s. Realizing shape interpolation through curves in the space of
shells is relatively recent. Our point of departure is a combination of

two observations: (i) the classical concept of splines can be readily
extended from flat Euclidean domains to curved Riemannian man-
ifolds (see Section 2 and the sketch in Fig. 2) and (ii) shell space
can be regarded as a Riemannian manifold as first suggested by
Kilian et al. [KMP07]. Specifically, we work with the Riemannian
metric introduced in [HRWW12, HRS∗14] that minimizes viscous
dissipation when moving from one shape to another (Section 3).

Our model is based on a variational perspective. In Euclidean
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Figure 2: Piecewise geodesic (left) vs. spline (right) interpola-
tion on Riemannian manifolds (sphere for illustration). Notice C1-
discontinuities for geodesic interpolation. Since shell space is a
Riemannian manifold, splines offer smooth keyframe interpolation.

space, natural cubic splines minimize the total squared second
derivative

∫ 1
0 ‖s̈‖

2 dt among all curves (s(t))t∈[0,1] that pass through
a given set of interpolation points. This property is related to the
minimization of bending energy. We build on this observation and
establish how splines can be variationally defined on shell space
where keyframe poses act as interpolation points (see Section 4).
We assume a fixed correspondence between consecutive keyframe
shapes, given by fixed connectivity in the discrete case. This as-
sumption is natural for the interpolation problem between differ-
ent poses of the same model. Our main contribution is the transla-
tion of the time-continuous variational perspective of splines to a
variational formulation of computationally tractable time-discrete
splines (Section 5).

Using splines in shell space comes at a price, though. The Rie-
mannian metric on shell space is closely related to elastically de-
forming shells and encapsulates both bending and stretching contri-
butions. For triangle meshes the bending contributions depend on
dihedral angles, which are nonlinear functions of vertex positions.
Consequently splines in shell space lead to highly nonlinear op-
timization problems (Section 6), whose computational complexity
must be reduced to yield practical algorithms.

To address this challenge we switch from vertex positions
as primary variables to the LΘA-representation in the spirit
of [WDAH10] and [FB11] (Section 7). In this formulation, the pri-
mary variables are the edge lengths of triangles (L), dihedral angles
between adjacent triangles (Θ), and triangle areas (A). Splines in
LΘA-space can be evaluated through solving a simple linear sys-
tem. However, the resulting curve in LΘA-space will in general
not be realizable as a sequence of triangle meshes in 3D Euclidean
space. Instead we project to the closest curve of realizable triangle
meshes in a least squares sense. Overall, this formulation greatly
outperforms nonlinear optimization for computing splines based on
vertex positions. We support these observations by various numer-
ical experiments (see Section 8).

2. Related work

The idea of using curves for navigating shell space (e.g., for shape
interpolation) is recent. Kilian et al. [KMP07] introduced geodesics
in shell space for interpolating between two given poses using a
metric that is derived from in-plane membrane deformations of
surfaces. This approach was extended in [HRWW12, HRS∗14] to
a metric that incorporates full elastic responses including bending
contributions and was used for geodesic interpolation and extrapo-

lation as well as for parallel transport. We build on their Rieman-
nian metric. Using this metric, Brandt et al. [BvTH16] suggested a
scheme that largely accelerates geodesic computation in shell space
by resorting to dimensionality reduction in the spatial domain. In
a different development, Winkler et al. [WDAH10] and Fröhlich
and Botsch [FB11] used edge length and dihedral angle coordi-
nates to represent meshes for efficiently computing interpolation
paths between two given poses. We build on these ideas for our
LΘA-approximation.

In a different development, spacetime constraints were intro-
duced early on in graphics by asking for a trajectory that minimizes
the work required to satisfy user specified keyframes [WK88].
When restricted to linearized equations of motion, spacetrime con-
straints, were later found to be generalizations of traditional cu-
bic B-splines and were coined wiggly splines due to their “pen-
chant for oscillation” [KA08]. Using explicit representations of
wiggly splines computational cost can be reduced and stability
be increased [SvTSH15]. Different from these works we consider
splines that arise from a Riemannian metric on shell space.

For the remainder of this section we focus on methods that deal
with data interpolation (and approximation) on Riemannian mani-
folds, as this is central to our construction.

Cubic splines minimize the total squared second derivative in
Euclidean domains. Analogously, Riemannian cubic polynomials
were introduced by Noakes et al. [NHP89] in a variational set-
ting on Riemannian manifolds. This is the intrinsic perspective we
adopt. In this approach, splines are stationary paths of the elas-
tic functional s 7→

∫ 1
0 ‖∇ṡṡ‖2 dt, where ‖∇ṡṡ‖ denotes the length

of the covariant derivative of a curve’s tangent vector along it-
self. Using this approach, Trouvé and Vialard [TV12] presented a
spline interpolation method on Riemannian manifolds and Hinkle
et al. [HMFJ12] introduced a family of higher order Riemannian
polynomials to perform polynomial regression.

Alternatively, one may work with an extrinsic variational formu-
lation, i.e., the minimization of s 7→

∫ 1
0 ‖s̈‖

2 dt in ambient space.
The restriction of the curve to the manifold is then realized as a
constraint. Wallner [Wal04] showed existence of minimizers in this
setup for finite dimensional manifolds, and Pottmann and Hofer
[PH05] proved that these minimizers are C2. We do not use an ex-
trinsic formulation since our metric on shell space does not arise
from an ambient Euclidean metric.

In addition to variational formulations there are numerous sub-
division schemes to produce smooth interpolating curves on man-
ifolds. Exploiting the fact that subdivision schemes for curves in
linear spaces are mostly based on repeated local averages (see,
e.g., [Dyn92, Dyn02]), one obtains a Riemannian extension either
by geodesic averaging or by projecting the affine averages onto the
manifold. Wallner and Dyn [WD05] showed that the Riemannian
extension of cubic subdivision yields C2 curves, and the authors
of [RDS∗05] proposed a Deslauriers-Dubuc interpolation scheme.

Some applications call for approximating rather than for inter-
polating curves with respect to a given set of data points. This can
be achieved by replacing hard interpolation by soft penalty con-
straints [Rei67]. An instance of approximating schemes are Beziér
curves. Having the notion of geodesics at hand one can easily trans-



Behrend Heeren & Martin Rumpf & Peter Schröder & Max Wardetzky & Benedikt Wirth / Splines in the Space of Shells 3

fer this concept to Riemannian manifolds—Beziér curves are sim-
ply generated by applying the de Casteljau algorithm with linear
interpolation replaced by geodesic interpolation [PN07]. This was
done in [ERS∗14] for the shape space of images and in [BvTH16]
for the space of shells.

3. Review: Shortest paths in shell space

Let (S,g) be a (complete) Riemannian manifold. The path energy
of a curve s : [0,1]→S is defined as

E [s] =
∫ 1

0
gs(t) (ṡ(t), ṡ(t)) dt . (1)

A minimizer of E among all curves s with s(0) = sA and s(1) = sB
is known as a geodesic. For sA and sB close enough to each other
the connecting geodesic is unique and can thus serve as a well-
defined interpolating path. The Euler–Lagrange equation to (1) is
the geodesic equation∇ṡṡ = 0.

Rather than discretizing the Euler–Lagrange equation it is nu-
merically more robust to discretize E and then minimize the result-
ing discrete energy. To this end, let (s0, . . . ,sK) for K ∈ N be an
ordered set of points in S, which is referred to as a discrete path.
If s : [0,1]→S is a smooth curve passing through (s0, . . . ,sK) with
s0 = s(0) and sK = s(1), then one has the estimate

dist2g(s0,sK)≤ K
K

∑
k=1

dist2g(sk−1,sk)≤ E [s] ,

where distg denotes the Riemannian distance and equality holds on
both sides if and only if s is a geodesic and sk = s( k

K ) for all k.
Replacing the (squared) Riemannian distance in the sum by a local
approximationW : S ×S →R that satisfies

W[s, s̃] = dist2g(s, s̃)+O(dist3g(s, s̃)) , (2)

we arrive at the time-discrete path energy

EK [s0, . . . ,sK ] = K
K

∑
k=1
W[sk−1,sk] . (3)

In analogy to the continuous case a discrete geodesic is defined
as a minimizer of (3) for fixed end points s0 = sA and sK = sB
and can be viewed as a discrete interpolating path between sA and
sB. Under suitable assumptions on S, g, andW , discrete geodesics
converge to continuous geodesics for K →∞, see [RW15]. E.g.,
for an embedded manifold S ⊂ Rd , one may simply choose the
squared extrinsic distanceW[s, s̃] = ‖s− s̃‖2 as an approximation
of the intrinsic one.

Alternatively, instead of first equipping S with a metric g,
one can directly pick an application-motivated function W pro-
vided that W induces a Riemannian metric via its Hessian. For
physics-based shell spaces, W[s, s̃] can for instance be thought of
as an elastic deformation energy that reflects the amount of en-
ergy needed to deform s into s̃. We adopt this perspective from
[TPBF87,GHDS03,HRWW12] in whichW is composed of a mem-
brane contribution due to tangential stretching and a bending con-
tribution due to changing shell curvature,

W[s, s̃] =Wmem[s, s̃]+ηWbend[s, s̃] ,

where δ=
√

η describes the physical thickness of the material layer

represented by the shell. As shown in [HRS∗14], W induces a
proper Riemannian metric in the space of shells modulo rigid body
motions.

Using the above concepts, one may interpolate a sequence of
given shells by computing (discrete) geodesics between any two
subsequent shells. Examples of such piecewise geodesic interpo-
lating paths are the green shape sequences in Figures 1 to 4. How-
ever, those paths exhibit rather abrupt changes in the velocity at
keyframe poses. Therefore, in the following we present an interpo-
lation method that leads to smoothly interpolating paths.

4. Splines on Riemannian manifolds

Given a sequence of J ≥ 2 different time points t j ∈ [0,1] and asso-
ciated data points as keyframe poses s j ∈ S, j = 1, . . . ,J, we seek
a smooth curve s : [0,1]→ S that satisfies the interpolation con-
straints

s(t j) = s j , j = 1, . . . ,J . (4)

Unfortunately, the piecewise geodesic interpolation paths from the
previous section are not smooth at the times t j , and for J > 2 there
is in general no interpolating geodesic, i.e., a curve s satisfying (4)
as well as∇ṡṡ(t) = 0 for all t ∈ [0,1]. However, instead of requiring
the interpolating curve to satisfy ∇ṡṡ = 0 exactly, we can penalize
a deviation from this constraint via the so-called elastic energy

F [s] =
∫ 1

0
gs(t) (∇ṡṡ(t),∇ṡṡ(t)) dt . (5)

Accordingly, we define a Riemannian spline through the points
(t j,s j) as a minimizer s of F [s] under the interpolation con-
straint (4). In addition we may optionally impose one of the two
boundary conditions

ṡ(0) = v0, ṡ(1) = v1 for given v0,v1 ∈ TS , (Hermite b. c.)

s(0) = s(1), ṡ(0) = ṡ(1) , (periodic b. c.)

where TS denotes the tangent bundle on S. The case without addi-
tional conditions is referred to as natural boundary condition.

For a better intuition and to motivate our terminology it is helpful
to consider the Euclidean setting S = Rd , in which ∇ṡṡ(t) = s̈(t)
and F [s] =

∫ 1
0 ‖s̈(t)‖

2 dt. In that setting a result by de Boor [dB63]
states that there is a unique minimizer s of F [s] with (4) and nat-
ural, Hermite, or periodic boundary conditions. Furthermore, s is
given by the unique cubic spline satisfying (4) and the boundary
conditions. Hence, we here essentially generalize cubic spline in-
terpolation to Riemannian manifolds. The orange shape sequences
in Figures 1, 4, and 7 show computed (time-discrete) Riemannian
splines with periodic, natural, and Hermite boundary conditions,
respectively.

Remark: On general manifolds there may be situations where
global minimizers of (5) do not exist. To ensure well-posedness one
can regularize the problem and consider minimizers of the func-
tional s 7→ F [s] +σE [s] with σ > 0. Under certain additional as-
sumptions on S and g one can then show existence of minimizers
of F +σE (see Section 9).
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5. Variational time-discretization of spline curves

In this section we introduce a consistent time-discretization of the
elastic energy F introduced in Section 4 mimicking the variational
time-discretization for the path energy introduced in [HRWW12]
and revisited in Section 3. As a motivation, first consider discrete
splines in Euclidean space, where the covariant derivative of the
velocity field of a curve s : [0,1] → Rd coincides with s̈. For a
uniform sampling sk = s(tk) for tk = kτ, k = 0, . . . ,K, and time step
τ = 1/K one obtains the standard second order difference quotient
approximation

‖s̈(tk)‖2 ≈
∥∥∥∥2s(tk)− s(tk−1)− s(tk+1)

τ2

∥∥∥∥2

= 4K4
∥∥∥∥sk−

sk−1 + sk+1
2

∥∥∥∥2

. (6)

Taking into accountW[s, s̃] = ‖s− s̃‖2, the term on the right hand
side simplifies to 4K4W[sk,

1
2 (sk+1 + sk−1)]. Using the simple nu-

merical quadrature
∫ 1

0 f (t)dt ≈ τ ∑
K−1
k=1 f (tk) yields∫ 1

0
‖s̈(t)‖2 dt ≈ 4K3

K−1

∑
k=1
W[sk,

1
2 (sk+1 + sk−1)] .

Notice that this formulation implicitly incorporates (time-discrete)
natural boundary conditions.

The local average 1
2 (sk−1 + sk+1) can be considered as the mid-

point of a straight line, i.e., a geodesic, connecting sk−1 and sk+1.
This observation leads to a translation of the above formulation to
Riemannian manifolds. Indeed, given a discrete path (s0, . . . ,sK) in
a general Riemannian manifold S withW as in (2), we may replace
the local average in (6) by the midpoint of a (shortest) geodesic.
Accordingly, we define the time-discrete elastic energy by

FK [s0, . . . ,sK ] = 4K3
K−1

∑
k=1
W[sk, s̃k] , (7)

for a discrete path (s0, . . . ,sK). Here, s̃k is defined by requiring that
(sk−1, s̃k,sk+1) be a time-discrete geodesic connecting sk−1 and
sk+1 for k = 1, . . . ,K−1, i.e.,

s̃k = argmin
s

(
W[sk−1,s]+W[s,sk+1]

)
. (8)

Observe that for embedded manifolds S ⊂Rd the choiceW[s, s̃] =
‖s− s̃‖2 leads to a consistent notion of discrete spline curves on S.
Under suitable assumptions on the manifold S and onW it can be
shown that in general FK is a consistent first order approximation
of F .

In order to compute a spline curve in shell space, one has to min-
imize the energy FK among all discrete curves (s0, . . . ,sK) subject
to the interpolation conditions sk j = s j for t j = k jτ and j = 1, . . . ,J
and the additional built-in constraints (8). Notice that we have im-
plicitly assumed that the interpolation times are multiples of the
time step τ=K−1. This restriction, however, can easily be removed
using varying time step sizes and suitable adaptations of FK .

Remark: Bounded time-discrete elastic energy does not neces-
sarily imply bounded time-discrete path energy in general. Indeed,
a discrete geodesic has zero elastic energy but positive path energy.

As a consequence, minimizing time-discrete elastic energy might
not be a well-posed problem. However, one can consider the func-
tional FK +σEK instead (see Section 4). Again one can show exis-
tence of discrete minimizers for every σ > 0 subject to the interpo-
lation conditions as well as the convergence of the discrete energy
against its original continuous version (see Section 9). In our appli-
cations we stick to the elastic energy only, i.e., we set σ = 0, since
we never observed instabilities or blow-ups.

6. Splines on shell space

The above approach can be applied to arbitrary (complete) Rie-
mannian manifolds, and we now restrict it to discrete shell space.
We assume a given correspondence between discrete shells through
fixed connectivity. In this case we obtain S=̂R3N , where N is the
number of vertices of one triangle mesh, and we identify a dis-
crete shell with its vector of nodal positions s ∈R3N . To compute
distances on shell space, we useW given by the Discrete Shells en-
ergy [GHDS03], which induces a Riemannian metric on the space
of triangle meshes modulo rigid motions [HRS∗14].

For a discrete shell s ∈R3N let V , E and T denote the set of ver-
tices, edges and triangles, respectively. Let L[s] = (le[s])e ∈ R|E|

and A[s] = (at [s])t ∈R|T | be the vector of edge lengths and trian-
gle areas, respectively. If e= t1∩t2 is the common edge of triangles
t1 and t2 we associate to e the area measure de =

1
3 (at1 +at2). The

dihedral angle θe of e is defined as the angle between the face nor-
mals of t1 and t2. Finally, let Θ[s] = (θe[s])e ∈R|E| denote the vec-
tor of dihedral angles. Having these definitions in hand, the discrete
shell energy for deforming s into s̃ is

W[s, s̃] = µWL[s, s̃]+λWA[s, s̃]+ηWΘ[s, s̃] (9)

with physical parameters µ,λ,η≥ 0 and

WL[s, s̃] = ∑
e∈E

de[s]
( le[s]− le[s̃]

le[s]

)2
,

WA[s, s̃] = ∑
t∈T

at [s]
(at [s]−at [s̃]

at [s]

)2
,

WΘ[s, s̃] = ∑
e∈E

le[s]2
(θe[s]−θe[s̃])2

de[s]
.

In all numerical experiments we used µ = λ = 1, since local change
of length (controlled by µ) and local change of area (controlled by
λ), respectively, should be penalized equally. However, the opti-
mal bending parameter η = δ

2 depends on the application since δ

represents the physical thickness of the shell (see Figure 10). The
colored font is for later reference when we introduce our LΘA ap-
proximation for efficiently computing splines.

In Figure 3 we show a discrete spline curve for W defined as
in (9) and for three different ellipsoids with varying half axes as
keyframe poses to be interpolated. In particular in the halfaxis plot
the smoothness of the spline curve at the intermediate keyframe
pose becomes visible. Figure 4 depicts a discrete spline curve for
three different keyframe poses of a cactus-type discrete shell and
compares it to the piecewise geodesic interpolation. The boundary
keyframe poses s0 and s20 are given as deformations of the cactus
rest pose s10 in two orthogonal directions, which leads to a sharp
corner at s10 when performing piecewise geodesic interpolation.
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Figure 3: Top row: Spline curve interpolation between J = 3 fixed
ellipsoids (K = 12, η = 10−1). Bottom, left: Representation of
ellipsoids in R2 by their half axes in x- and y-directions. Plot-
ting the evolution of eccentricity along the deformation one can
see the difference between the piecewise geodesic (green), the
nonlinear spline (orange circles), and the LΘA-space approxima-
tion (orange diamonds). Bottom, right: Comparison of piecewise
geodesic (green) vs. nonlinear spline (orange, top) and comparison
of the nonlinear spline and the LΘA-space curve (bottom, ordinate
rescaled by 10).

Figure 4: Left: J = 3 fixed keyframe poses (gray). Right: Different
views of piecewise geodesic (green) and spline interpolation (or-
ange), respectively, using K = 10, η = 10−3.

Limitations. As in the Euclidean case, a particular feature of
spline interpolation is the so-called overshooting—a consequence
of the smoothness requirement. Figure 5 shows an example of this
effect for the case of (discrete) Riemannian splines in shell space.
For certain applications this feature might be undesired, though.

The biggest limitation, however, is computational time. In-
deed, since the mappings s 7→ {le[s], de[s], θe[s], at [s]} are nonlin-
ear functions, the minimization of (7) is a nonlinear problem in
R3N(K+1−J) with K− 1 nonlinear constraints given by (8). In our
numerical experiments this leads to slow convergence even for rela-
tively small N and K. For example, the computation of the ellipsoid
sequence (N = 500, K = 12) shown in Figore 3 or the short cactus
sequence (N = 5261, K = 20) shown in Figure 4 can take several
minutes or even hours, respectively. In order to overcome this lim-
itation we introduce an effective change of variables in the next
section.

Figure 5: Overshooting of the left front leg in spline interpolation
(orange) compared to the piecewise geodesic interpolation (green)
between 4th and 5th keyframe pose of the horse sequence, see video
in supplementary material.

7. A simplified spline model

In order to remedy the problem of high computational cost, we in-
troduce a change of variables in order to turn the nonlinear opti-
mization problem for computing splines in shell space into a lin-
ear one. We heavily build on the two-step approximation scheme
proposed in [FB11] for this change of coordinates. Indeed, for a
discrete shell s ∈ R3N we consider the vectors of edge lengths
L = L[s], dihedral angles Θ = Θ[s], and triangle areas A = A[s] as
primary degrees of freedom. The key observation is that with these
degrees of freedom, the energy in (9) become quadratic provided
that the purple colored terms in (9) are not part of the optimiza-
tion. To achieve this, we work with what we call reference meshes,
i.e., we replace the purple colored terms in (9) by a priori given
meshes (ŝ0, . . . , ŝK). In the simplest case, this a priori information
is given by using a constant reference mesh ŝk = s, k = 0, . . . ,K,
for one particular keyframe pose s ∈ R3N . Alternatively, one may
use a piecewise time-discrete geodesic between the given keyframe
poses to obtain (ŝ0, . . . , ŝK). Physically, the latter choice is more ap-
propiate since the reference mesh is supposed to approximate the
(undeformed) argument s in (9). We discuss the physical meaning
and the impact of the choice of reference meshes in Section 9 (see
also Figure 9).

Collecting all new primary variables in one variable z= (L,Θ,A)
living in the LΘA configuration space R|E|×R|E|×R|T |, we get
an approximation of (9) via

ŴLΘA[z, z̃] = µŴL[z, z̃]+λŴA[z, z̃]+ηŴΘ[z, z̃] (10)

where the .̂ indicates that the functional is now quadratic but depen-
dent on the reference meshes. We refer to this as the LΘA-energy.
Note that the parameters µ,λ,η ≥ 0 have the same physical inter-
pretation as in (9). As in the nonlinear setup we set µ = λ = 1 and
chose η = δ

2 depending on the application (see Figure 10). We dis-
cuss in particular the impact of λ in the last paragraph of this sec-
tion.

The discrete interpolation problem can now be re-formulated as
follows. We construct a spline curve in the LΘA-space defined as a
minimizer of

F̂LΘA[z0, . . . ,zK ] = 4K3
K

∑
k=1
ŴLΘA(zk, z̃k) , (11)
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where (zk−1, z̃k,zk+1) is a geodesic in the LΘA-space, i.e.,

z̃k = argmin
z

(
ŴLΘA[zk−1,z]+ŴLΘA[z,zk+1]

)
.

Since ŴLΘA is quadratic, one obtains the explicit solution z̃k as a
linear combination of zk−1 and zk+1 with coefficients depending
on ŝk−1 and ŝk only. In particular, if we make use of a constant
reference mesh then z̃k =

1
2 (zk−1+zk+1). This can be inserted into

(11) so that we end up with an unconstrained optimization problem.
Hence a minimizer of F̂LΘA is a (weighted) cubic spline in the linear
spaceR|E|×R|E|×R|T |.

Notice that there is no spatial coupling between any two differ-
ent edge lengths in a minimizer (z0, . . . ,zK) of (11), i.e., an edge
length lk

e of the kth pose interacts only with lengths l j
e of the same

edge e and poses j 6= k. The same applies for dihedral angles and
triangle areas. As a consequence, the Euler-Lagrange equation for
F̂LΘA splits into numerous independent (K +1)-dimensional linear
systems, i.e., one for each edge length, dihedral angle, and triangle
area, which can be solved efficiently and in parallel. Moreover, if
one chooses a constant reference mesh, then the matrices represent-
ing these linear systems are all given by

1 −2 1
−2 3 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . .

 ∈RK+1,K+1,

which coincides (for interior quantities) to the 2nd order finite dif-
ference approximation of 4th derivatives.

Mesh reconstruction. Intermediate values for edge lengths, dihe-
dral angles, and triangle areas are generally not realizable as a tri-
angle mesh. Hence we consider a reconstruction in a least squares
sense, similar to [FB11]. For given optimal values zk = (Lk,Θk,Ak)
we define sk as the minimizer of the nonlinear mapping

s 7→ ŴLΘA(z[s],zk) , (12)

where ŴLΘA is defined as in (10). We find the minimizer via
the Gauss–Newton method (see Section 6 in [FB11] for details,
the "target" values are given by zk). Furthermore we use exactly
the same physical parameters µ,λ,η ≥ 0 as in the optimization of
(11). The reconstruction can be seen as a projection of the point
z ∈R|E|×R|E|×R|T | onto the submanifold which is given by all
sets of edge lengths, dihedral angles and triangle areas that are actu-
ally realizable as an embedded triangle mesh. Necessary conditions
for points to lie in this submanifold are given by the Gauss-Codazzi
equations, see, e.g., [WLT12] for a discrete version. Computation-
ally, the reconstruction is the hardest part in the LΘA-space approx-
imation method. Fortunately it can be parallelized.

Negative descriptors. Optimal z-variables obtained as solutions
of linear systems may have negative lengths or areas. This hap-
pens rarely in practice and is most easily addressed by setting cor-
responding edge or area weights to zero.

Figure 6: Piecewise geodesic (green) and spline curve interpola-
tion (orange) between Armadillo keyframe poses (gray) induce sim-
ilar trajectories but differences in speed, see video in supplemen-
tary material.

Role of area term. Different from [FB11] we use an additional
area term, i.e., λ > 0 in (9) and (10). While we empirically found
that this term is not required for meshes with a reasonable aspect
ratio, there are examples (e.g., the running horse application) where
we observe artifacts in the reconstruction if λ = 0. Moreover, when
optimizing (7) using (9), the stability of the optimization is in-
creased and the convergence time is decreased if λ > 0.

8. Implementation

Constrained optimization. The nonlinear minimization of (7) un-
der constraint (8) is solved via gradient descent with stepsize con-
trol in all primal variables sk. In the appendix we provide the requi-
site partial derivatives FK

,k ∈R
3N of the constrained energy (7) with

respect to the primal variables sk ∈R3N for 0 < k < K.

Multiresolution optimization. The efficiency of the nonlinear op-
timization can be increased by a multiresolution scheme [FB11,
BSPG06], which is based on a separation of low frequency shape
information from high frequency detail. As in [KMP07] we deci-
mate all input meshes simultaneously to a complexity of at most
1000 vertices, where we use the sum of per-mesh quadric error
metrics [GH97] to prioritize halfedge collapses. In particular, the
coarse meshes still have the same connectivity since each halfedge
collapse is performed on all meshes simultaneously. The nonlinear
optimization is then performed on the reduced meshes. Afterwards,
the solution of the coarse level is prolongated to the original reso-
lution (for details, we refer to [FB11, Fig. 11]). The multiresolution
scheme is used for the optimization of (7) as well as for minimizing
(12).

LΘA-space approximation. Our LΘA-space approximation con-
sists of three steps:
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#nodes G.-N. decim. reconstr.
cactus 5.2k 500 140 80
horse 8.5k 700 190 130
armadillo 166k / 7800 3800

Table 1: Performance statistics for mesh reconstruction (times in
ms) measured on Dell Intel(R) Core(TM) i7-2600 3.40GHz. From
left to right: number of vertices of high resolution mesh, time
for one Gauss–Newton iteration on the original resolution, for
the multiresolution preprocessing, i.e., the generation of coarse
meshes from fine meshes (decimation), and for the reconstruction
(see [FB11, Tab. 1]). On the coarse mesh, one Gauss–Newton step
takes about 50ms. On the original Armadillo model, the Gauss–
Newton step failed due to memory restrictions.

1. Simultaneous mesh decimation for all keyframe poses,
2. LΘA-space optimization based on solution of multiple but small

linear systems and shell reconstruction on coarse level by means
of Gauss–Newton,

3. prolongation to fine level.

For the reconstruction—the computationally dominant part—we
reproduce the computation times stated in [FB11], as listed in Ta-
ble 1. To enable real-time computations we take the prolongation
of the coarse solution as the final solution, which is visually suffi-
cient. In some examples, after reconstruction and prolongation we
observe local mesh degenerations in single shapes, e.g., at the fin-
gers in Figure 1 and the tail in Figure 5, which are removed in a
post-processing step. One may also perform the LΘA-optimization
directly for the high resolution keyframe poses. In this case it pays
off computationally if the reconstruction step is initialized with the
meshes from the multiresolution approach. In our experiments, the
resulting shells may differ quantitatively but not qualitatively from
the computationally more efficient prolongation of coarse grid dis-
crete spline curves.

Total runtimes (without parallelization) of the LΘA-space ap-
proximation are shown in Table 2. In addition, the reconstruction
(which amounts to more than 90% of the cost) as well as the pro-
longation can easily be parallelized, thereby reducing runtime pro-
portionally to the number of available threads.

model (K, γ) decim. coarse prol. fine
opt./recon. opt./recon.

cactus (20, .05) 0.1 1.7 1.7 83
cactus (170, .05) 0.3 22 14 762
horse (40, .10) 0.2 22 5 238

armad. (50, .006) 5.2 80 200 /

Table 2: Total runtime (in s) of LΘA-space scheme for computing
spline curves of length K + 1: mesh decimation with γ indicating
the fraction of remaining nodes, optimization and reconstruction
on coarse level, prolongation using detail transfer, and optimiza-
tion and reconstruction on fine level using the previous result as
initialization for the reconstruction step. Measured without paral-
lelization on Dell Intel(R) Core(TM) i7-2600 3.40GHz.

Rigid body motions. Shell deformation energies typically do not
penalize rigid body motions (translations or rotations inR3) so that

Figure 7: Interpolation of two keyframe poses (gray) via a spline
curve with natural boundary conditions (green; equivalent to a
geodesic curve) and with Hermite boundary conditions (orange)
for K = 10, η = 10−3. The Hermite boundary conditions are em-
ulated by fixing two additional keyframe poses s1 and s9 (light
gray, to emphasize the difference they are taken from the piecewise
geodesic curve in Figure 4).

the kernel of W as defined in (9) has dimension 6. For computa-
tional stability, the arbitrary rigid body motion can be fixed by pre-
scribing zeroth and first momentum for each shape. Alternatively,
one may restrict to a subspace of shell space in which a certain
subset of vertices is fixed for physical or modelling reasons (such
as the base of the cactus in Figure 4 or the outer boundary of the
faces in Figure 11).

Boundary conditions. Our exposition has so far focussed on nat-
ural boundary conditions. Periodic boundary conditions are incor-
porated by identifying sk = s(k+K) mod K for k = 0, . . . ,K. Hermite
boundary conditions, which prescribe endpoint velocities and are
useful for blending purposes, are incorporated in the time-discrete
setup by fixing s0 and s1 as well as sK−1 and sK , respectively. A
comparison of Hermite and natural boundary conditions is shown
in Figure 7.

9. Discussion

In this article we introduce the notion of Riemannian splines in
the space of shells for computing globally smooth interpolation
paths between multiple prescribed keyframe poses. The interpola-
tion paths are obtained either by solving a nonlinear constrained
optimization problem or by resorting to a simplified model, the
LΘA-approximation. Compared to piecewise geodesic interpola-
tion there are two striking differences: (i) The trajectory of the
spline curve exhibits a time continuous acceleration (∇ṡṡ) and thus
is visually smooth, whereas a piecewise geodesic curve suffers
from corners at the keyframe poses (see Figure 1, 4, 8). (ii) The
spline curve balances acceleration along the path leading to a vari-
ation in speed (see Figure 6), whereas the piecewise geodesic ap-
proximately has constant speed. Furthermore, Riemannian splines
can incorporate different kinds of boundary conditions, which leads
to flexibility in animation, compare, e.g., Figures 4 and 7.

Comparison of approaches. The nonlinear model is consistent
with the notion of Riemanian splines and follows rigorously
from the underlying physical model. The simplified LΘA-model
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Figure 8: Zoomed contours of the mouth in keyframe pose s10, s20,
and s30 in Figure 11 with trajectories of the corners of the mouth
plotted for the spline curve (orange) and the piecewise geodesic
curve (green).

shows the same qualitative behavior as the nonlinear model and
is significantly more efficient. Indeed, the simplified energy is
quadratic, and geometric compatibility conditions between the tri-
angle lengths, angles, and areas are ignored during the energy min-
imization, resulting in many but small easily solvable decoupled
problems. Yet, using reference meshes in order to obtain a quadratic
energy might seem unsatisfactory from a physical point of view
since strains are measured with respect to these (artificial) refer-
ence meshes. A more physical approach could be recovered by a
fixpoint iteration that alternates between computing an interpola-
tion path via minimizing (11) and updating the reference meshes.
As exemplified in Figure 9 such a fixpoint iteration is expected to
converge but typically only leads to very minor interpolation cor-
rections so that we do not advocate it. The decoupling between edge

2 4 6 810−12

10−6

100

maxk ‖s
j−1
k − s j

k‖l2

maxk ‖L
j−1
k −L j

k‖l2

maxk ‖Θ
j−1
k −Θ

j
k‖l2

maxk ‖A
j−1
k −A j

k‖l2

Figure 9: Maximum difference in cactus sequence from Figure 4
for j = 1, . . . ,8 fixpoint iterations, measured in different norms.

lengths, dihedral angles, and triangle areas represents a more severe
deviation from the original model. Perhaps the simplest intuitive
example for this fact is an interpolation between a triangulated half
sphere and its inverted version (i.e., the interpolation pushes the
half sphere inside out)—while the nonlinear model (7) takes the
changing triangle edge lengths into account to achieve an optimal
interpolation, the LΘA-approximation does not alter edge length
during interpolation since the two end shells have identical corre-
sponding edge lengths. This may result in different interpolation
paths already for simple cases (cf. Figure 3).

Dependence on physical parameters. Given a set of input shells
the resulting spline depends on the physical parameters λ, µ, and
η of the model (see [HRWW12, Figure 11] for the dependence of
discrete geodesics on λ and µ). Let us focus here on the dependence
of splines on the thickness parameter η. In the limit η → 0 the

energyW measures the deviation from isometric deformations so
that a spline stays near the submanifold of isometrically deformed
shells. For larger values of η splines may leave this submanifold
as shown in Figure 10 for input shells which are all isometric to a
planar sheet.

Robustness. While the LΘA-model enables fast computations and
works for large K and N, the Gauss–Newton iteration inside the
LΘA-scheme is quite sensitive to mesh quality and physical param-
eters. For example, it sometimes requires a fine parameter tuning
in order to enforce convergence to non-degenerate meshes in all re-
constructions. In contrast, the constrained optimization of the non-
linear model is very robust and prevents any mesh degenerations.

D E F D

δ = 10

δ = 10−4

Figure 10: Periodic spline D→E→F→D with K = 12 and dif-
ferent bending weights η = δ

2, where δ represents the thickness of
the thin sheet (see also Fig. 10 in [HRS∗14]). The discrete segments
E→F and F→D are not shown due to the symmetry of the prob-
lem. Note that all input shells D,E,F are isometric deformations
of a regular and flat hexagon H. For δ = 10−4 the spline (almost)
stays in the subspace of isometric deformations of H, whereas this
is no longer the case for δ = 10, as can be seen by the bending of
the middle shape in the bottom row.

Mathematical well-posedness. Since the LΘA-model mainly acts
in the Euclidean LΘA-configuration space, it enjoys all nice math-
ematical properties of standard Euclidean spline interpolation. In
contrast, the existence and convergence analysis for the nonlinear
model (i.e., the minimization of (5) in the continuous and (7) in the
discrete case) is considerably more involved. Nevertheless it can
be performed exploiting similar variational tools as have been used
in [RW15]. Concerning the existence of continuous Riemannian
splines the major problem is that paths with bounded elastic energy
F may exhibit arbitrarily large path energy E . To see this, con-
sider a geodesic curve that is traversed with constant speed; such a
curve has zero elastic energy but arbitrarily high path energy. For
instance, consider a cylinder of radius 1 and three input points s0,
s1 = s0, and s2 being opposite of s0 with t0 = 0, t1 = 1

n , and t2 = 1.
Then, there is a curve fulfilling the interpolation constraints (4),
which winds around the cylinder one time during the time interval
[0, t1] and n−1 times during the time interval [t1,1]. This curve has
constant speed 2πn along the cylinder and thus zero spline energy
F but a path energy E of 4π

2n2. This problem is circumvented by
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the energy F + σE , and the existence of minimizers of the time
continuous and the time-discrete model can be proved via the gen-
eral procedure of the direct method in the calculus of variations.
Finally, the convergence of discrete splines to a continuous spline
path follows from the Γ-convergence of the discrete elastic energy
to the continuous elastic energy. The analytical details of a proof of
this convergence are beyond the scope of this paper and will appear
in a separate publication.
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Appendix

Here we derive the partial derivatives FK
,k of (7) with respect to the

primal variables sk for 0 < k < K. In the sequel, comma subscripts
denote differentiation with respect to the coordinate following the
comma. Notice that we set FK

,k = 0 if the kth variable corresponds
to a fixed keyframe pose. In particular, in all our examples we have
FK
,0 = 0 and FK

,K = 0.

FK depends on sk and on the constraint variables s̃k, where s̃k
depends on sk−1 and sk+1 via (8). Hence a straightforward differ-
entiation of FK yields

FK
,k [s0, . . . ,sK ] =W,1[sk, s̃k]+W,2[sk−1, s̃k−1]∂sk s̃k−1

+W,2[sk+1, s̃k+1]∂sk s̃k+1 (13)

where ∂x f denotes the partial derivative of f with respect to vari-
able x, e.g., ∂sk FK = FK

,k . Furthermore we assume thatW, j is a row
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Figure 11: Extract from a spline curve through five fixed keyframe poses (at k = 0,10,20,30,40, three of which are shown in gray) computed
via the LΘA-scheme for η = 1, K = 40, and periodic boundary conditions. The energy plots show the LΘA-space energy k 7→ ŴLΘA[zk, z̃k]
(top row) and the nonlinear energy k 7→W[sk, s̃k] (second row) for the piecewise geodesic (green) and the spline (orange) interpolation. The
piecewise geodesic has pronounced energy concentrations at the keyframe poses.
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Figure 12: Energy plot of the LΘA-space energy k 7→ ŴLΘA[zk, z̃k] for a spline (orange) and piecewise geodesic (green) interpolation
between 17 fixed keyframe poses (gray), computed by LΘA-space approximation with η = 10−3, K = 170, and natural boundary conditions.

vector, i.e.,W, j ∈R1,3N for j = 1,2. In (13) we encounter matrix-
valued inner derivatives ∂sk s̃ j ∈R3N,3N , which are hard to evaluate.
In the following we make use of a standard trick to get rid of these
inner derivatives.

Differentiating the Euler–Lagrange equation to (8),

0 =W,2[s j−1, s̃ j]+W,1[s̃ j,s j+1] ,

wrt. si, i ∈ { j−1, j+1}, yields the matrix-valued equations

0 =W,21[s j−1, s̃ j]+A j∂s j−1 s̃ j ,

0 =W,12[s̃ j,s j+1]+A j∂s j+1 s̃ j ,

where the symmetric matrix A j ∈R3N,3N is given by

A j =W,22[s j−1, s̃ j]+W,11[s̃ j,s j+1] .

Rearranging and multiplying by some column vector q ∈ R3N,1

gives

(∂s j−1 s̃ j)
T A jq =−W,21[s j−1, s̃ j]

T q , (14)

(∂s j+1 s̃ j)
T A jq =−W,12[s̃ j,s j+1]

T q . (15)

If we now define p j ∈R3N,1 as the solution of the linear system

A jp j =−W,2[s j, s̃ j]
T , (16)

we can plug this into (14) and (15), respectively, and get

(∂s j−1 s̃ j)
TW,2[s j, s̃ j]

T =W,21[s j−1, s̃ j]
T p j ,

(∂s j+1 s̃ j)
TW,2[s j, s̃ j]

T =W,12[s̃ j,s j+1]
T p j .

Applying transposition and an index shift j 7→ k+1 and j 7→ k−1,
respectively, we get

W,2[sk+1, s̃k+1]∂sk s̃k+1 = pT
k+1W,21[sk, s̃k+1] ,

W,2[sk−1, s̃k−1]∂sk s̃k−1 = pT
k−1W,12[s̃k−1,sk] ,

which can finally be inserted in (13) to obtain

FK
,k [s0, . . . ,sK ] =W,1[sk, s̃k]+pT

k−1W,12[s̃k−1,sk]

+pT
k+1W,21[sk, s̃k+1] . (17)

Hence for every evaluation of the gradient DFK = (FK
,1 , . . . ,F

K
,K−1)

one has to solve the K−1 nonlinear constraint equations (8) to get
s̃1, . . . ,sK−1 as well as K− 1 linear equations (16) to get the dual
variables p1, . . . ,pK−1 (p0 = pK = 0 in (17)).


