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A FINITE ELEMENT BASED LEVEL SET METHOD FOR

TWO-PHASE INCOMPRESSIBLE FLOWS

SVEN GROß, VOLKER REICHELT, ARNOLD REUSKEN

Abstract. We present a method that has been developed for the efficient numerical simulation of
two-phase incompressible flows. For capturing the interface between the flows the level set technique
is applied. The continuous model consists of the incompressible Navier-Stokes equations coupled with
an advection equation for the level set function. The effect of surface tension is modeled by a localized
force term at the interface (so-called continuum surface force approach). For spatial discretization
of velocity, pressure and the level set function conforming finite elements on a hierarchy of nested
tetrahedral grids are used. In the finite element setting we can apply a special technique to the
localized force term, which is based on a partial integration rule for the Laplace-Beltrami operator.
Due to this approach the second order derivatives coming from the curvature can be eliminated.
For the time discretization we apply a variant of the fractional step θ-scheme. The discrete saddle
point problems that occur in each time step are solved using an inexact Uzawa method combined
with multigrid techniques. For reparametrization of the level set function a new variant of the Fast
Marching method is introduced. A special feature of the solver is that it combines the level set method
with finite element discretization, Laplace-Beltrami partial integration, multilevel local refinement
and multigrid solution techniques. All these components of the solver are described. Results of
numerical experiments are presented.
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1. Introduction. In this paper we present an overview of a method that has
been developed for the efficient simulation of two-phase incompressible flows. The
main characteristics of the method are the following:

• For capturing the interface between the two phases the level set method is
applied [16, 28, 27].

• The spatial discretization is based on a hierarchy of tetrahedral grids. These
grids are constructed in such a way that they are consistent (no hanging
nodes) and that the hierarchy of triangulations is stable. The main ideas are
taken from [11, 12, 6, 7, 23]. An important property is that local refinement
and coarsening are easy to realize.

• For discretization of velocity, pressure and the level set function we use con-
forming finite elements. An example (used in the numerical experiments) is
the Hood-Taylor P2 − P1 finite element pair for velocity and pressure and
piecewise quadratic P2 finite elements for the level set function.

• For the time discretization we apply a variant of the fractional step θ-scheme,
due to [15].

• In each time step discrete Stokes problems and a discrete nonlinear elliptic
system for the velocity unknowns must be solved. For the former we use an
inexact Uzawa method with a suitable multigrid preconditioner. The latter
problems are solved by a Picard iteration combined with a Krylov subspace
method.

• For numerical and algorithmic purposes it is advantageous to keep the level
set function close to a signed distance function during the time evolution. To
realize this a reparametrization technique is needed. We apply a variant of
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the Fast Marching method [21, 34].
The above list can be extended by two model-specific points:

• The effect of surface tension is modeled by using a special localized force
term at the interface. This is known as the continuum surface force (CSF)
technique [13, 16].

• For the treatment of the localized force term we apply a technique based on a
partial integration rule for the Laplace-Beltrami operator, cf. [2, 3, 18]. Due
to this approach the second order derivatives coming from the curvature can
be eliminated.

The level set technique has been successfully used in many two-phase incompressible
flow simulations. By far most of these simulations use finite difference or finite volume
discretization methods (cf. [28, 36] and the references therein). There are only few
papers in which the level set method is combined with finite element discretization
techniques. Such a combination for a 2D simulation is presented in [41, 42]. An-
other reference is [30]. In [2, 3] the Laplace-Beltrami partial integration technique in
combination with finite elements for the treatment of curvature terms is applied to a
one-phase flow problem with a free capillary surface.

We do not know of any paper in which the level set method, finite element
discretization, Laplace-Beltrami partial integration, multilevel local refinement and
multigrid solution techniques are all combined.

A solver based on such a combination is implemented in the DROPS package,
which is under development in an interdisciplinary project (SFB 540 “Model-based
Experimental Analysis of Kinetic Phenomena in Fluid Multi-phase Reactive Systems”,
cf. [37]) where the modeling of certain flow phenomena (e. g., mass transfer between
liquid drops and a surrounding fluid or the fluid dynamics and heat transport in
a laminar falling film) is a central issue. The numerical simulation of such models
requires a flexible efficient and robust CFD package. Our aim is to provide such a
tool.

Before going into detail we discuss some important properties of the components listed
above.

Important reasons why we use the level set technique are the following. Firstly, the
coupling of the Navier-Stokes equations (for the flow variables) with a scalar advection
equation for the level set function allows a modular structure in which discretization
and solution routines that are implemented for a one-phase flow problem can be
reused both for the Navier-Stokes part and for the advection equation. Secondly, no
reconstruction of the interface as with a VOF method or explicit representation of
the whole interface as with front-tracking methods is needed.

Due to the nested multilevel hierarchy of tetrahedral meshes which allows simple
refinement and coarsening routines we can realize high resolution close to the interface.
For the local refinement in that area we need a marking strategy. For this the level
set function is very well suited, because it yields a good approximation of the distance
to the interface.

The finite element method is a flexible discretization method, which can deal with
complex geometries. Due to the use of finite element discretizations on a nested mul-
tilevel grid hierarchy it is relatively easy to implement multigrid solution techniques.
Hence, we use multigrid preconditioners in the inexact Uzawa method, which results
in efficient solvers for discretized Stokes equations.

A further nice property of the finite element approach is that we can apply partial
integration to the Laplace-Beltrami operator and thus eliminate the second order
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derivatives that occur in the curvature. A disadvantage of this approach is that we
have to compute the (implicitly given) interface because the partial integration has
to be done on the interface. The computations, however, can be done element wise
and differ from the reconstructions needed in a VOF setting.

The main reason for the choice of the time integration method for the Navier-
Stokes equations is a pragmatic one. The variant of the fractional step θ-scheme
that we use for the time integration is based on an operator splitting technique that
decouples the incompressibility and nonlinearity in the Navier-Stokes equations and
yields two Stokes type of problems and a nonlinear elliptic system for the velocity
unknowns. For the Stokes subproblems we have efficient solvers available, cf. [29]. The
problem for the velocity unknowns can be solved using a standard Krylov subspace
method. The fractional step θ-scheme makes it possible to reuse this already existing
software. In the near future the Stokes solver will be replaced by a Navier-Stokes
solver. Then other variants of the fractional step θ-scheme can be used in which the
decoupling of incompressibility and nonlinearity is avoided. This modification, which
does not change the structure of the outer solver, will probably improve efficiency.

Related to the reparametrization method we note that we investigated techniques
that are based on an evolution equation, whose limit solution fulfills the Eikonal
equation ‖∇ψ‖ = 1. However, the Fast Marching approach that aims at solving the
Eikonal equation directly turned out to better conserve the location of the interface.

The paper is organized as follows. In Section 2 we formulate the continuous
two-phase problem. The CSF technique and the coupling with the level set function
are described. In Section 3 we discuss the discretization methods that are used. A
brief description of the tetrahedral refinement method is given. The finite element
discretization of the Navier-Stokes equation is presented. The treatment of the curva-
ture localized force term, which is based on partial integration of the Laplace-Beltrami
operator, is explained. We also discuss how we deal with the discontinuities in the vis-
cosity and density coefficients. In Section 4 we describe the time integration method.
In Section 5 we explain the solvers that are used for the systems that occur in the
time integration method. In Section 6 the reparametrization method for the level
set function and other algorithms to preserve the quality of the level set function are
discussed. Finally, in Section 7 we present results of numerical experiments.

2. A continuous model for two-phase flows. We consider a domain Ω ⊂ R
3

which contains two different immiscible incompressible newtonian phases (fluid-fluid
or fluid-gas). The model problem is a liquid drop contained in a surrounding fluid.
The time-dependent domains which contain the phases are denoted by Ω1 = Ω1(t) and
Ω2 = Ω2(t) with Ω1 ∪ Ω2 = Ω. We assume ∂Ω1 ∩ ∂Ω = ∅. The interface between the
two phases (∂Ω1 ∩ ∂Ω2) is denoted by Γ = Γ(t). To model the forces at the interface
we make the standard assumption that the surface tension balances the jump of the
normal stress on the interface, i. e., we have a free boundary condition

[σn]Γ = τκn ,

with n = nΓ the unit normal at the interface (pointing from Ω1 in Ω2), τ the surface
tension coefficient (material parameter), κ the curvature of Γ and σ the stress tensor,
i. e.,

σ = −pI + µD(u), D(u) = ∇u + (∇u)T ,
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with p = p(x, t) the pressure, u = u(x, t) the velocity vector and µ the viscosity.
We assume continuity of the velocity across the interface. In combination with the
conservation laws of mass and momentum this yields the following standard model:







ρi

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρig + div(µiD(u)) in Ωi

div u = 0 in Ωi

for i = 1, 2 (2.1)

[σn]Γ = τκn, [u · n]Γ = 0 . (2.2)

The vector g is a known external force (gravity). In addition we need initial conditions
for u(x, 0) and boundary conditions at ∂Ω. For simplicity we assume homogeneous
Dirichlet boundary conditions. In our experiments we considered other (more realis-
tic) boundary conditions.

This model for a two-phase incompressible flow problem is often used in the
literature. The effect of the surface tension can be expressed in terms of a localized
force at the interface, cf. the so-called continuum surface force (CSF) model [13, 16].
This localized force is given by

fΓ = τκδΓnΓ .

Here δΓ is a Dirac δ-function with support on Γ. Its action on a smooth test function
ψ is given by

∫

Ω

δΓ(x)ψ(x) dx =

∫

Γ

ψ(s) ds .

This localization approach can be combined with the level set method for capturing
the unknown interface. We outline the main idea, for a detailed treatment we refer to
the literature [16]. The level set function, denoted by φ = φ(x, t) is a scalar function.
At the initial time t = 0 we assume a function φ0(x) such that φ0(x) < 0 for x ∈ Ω1(0),
φ0(x) > 0 for x ∈ Ω2(0), φ0(x) = 0 for x ∈ Γ(0). It is desirable to have the level set
function as an approximate signed distance function.

For the evolution of the interface we consider the trace x(t) of a single particle
x(0) ∈ Ω over time. A particle on the interface remains on the interface for all
time, i. e., for all x(0) ∈ Γ(0) and all t ≥ 0 we have x(t) ∈ Γ(t). This is equivalent
to the condition φ(x(t), t) = 0 (t ≥ 0) which we extend to the whole domain as
φ(x(t), t) = φ(x(0), 0) for all x(0) ∈ Ω and all t ≥ 0. By differentiating this condition
with respect to t we obtain φt + ∇φ(x, t) · xt = 0. The displacement of a particle
coincides with the velocity field, i. e., xt = u holds. Hence one obtains the first order
differential equation φt + u · ∇φ = 0 for t ≥ 0 and x ∈ Ω.

The jumps in the coefficients ρ and µ can be described using the level set function
(which has its zero level set precisely at the interface Γ) in combination with the
Heaviside function H : R → R:

H(ζ) = 0 for ζ < 0 , H(ζ) = 1 for ζ > 0 .

For ease one can take H(0) = 1
2 . We define

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ)

µ(φ) := µ1 + (µ2 − µ1)H(φ)
(2.3)

4



Combination of the CSF approach with the level set method leads to the following
model for the two-phase problem in Ω × [0, T ]

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρ(φ)g + div(µ(φ)D(u)) + τκδΓnΓ (2.4)

div u = 0 (2.5)

φt + u · ∇φ = 0 (2.6)

together with suitable initial and boundary conditions for u and φ. This is the con-
tinuous problem that we use to model our two-phase problem. It is also used in, for
example, [16, 28, 30, 39, 40, 41, 42].

3. Discretization methods. In this section we discuss techniques that are used
for the discretization of the continuous model (2.4)-(2.6).

3.1. Multilevel tetrahedral grid hierarchy. We outline the basic ideas of the
multilevel grid hierarchy on which our finite element discretization method is based.
We only consider multilevel tetrahedral meshes based on red/green refinement strate-
gies (cf. [4, 6, 10]). The idea of a multilevel refinement (and coarsening) strategy was
introduced in [6] and further developed in [8, 10, 12, 23, 24, 45]. This grid refinement
technique is used in UG [44]; for an overview we refer to [7, 9]. Similar techniques are
used in several other packages, for example, in KASKADE [20], PML/MG [38].

We first introduce a few basic notions. We assume that Ω is a polyhedral domain.
Definition 1 (Triangulation). A finite collection T of tetrahedra T ⊂ Ω is called

a triangulation of Ω (or Ω) if the following holds:
1. vol(T ) > 0 for all T ∈ T ,
2.

⋃

T∈T T = Ω,
3. int(S) ∩ int(T ) = ∅ for all S, T ∈ T with S 6= T .

Definition 2 (Consistency). A triangulation T is called consistent if the inter-
section of any two tetrahedra in T is either empty, a common face, a common edge
or a common vertex.

Definition 3 (Stability). A sequence of triangulations T0, T1, T2, . . . is called
stable if all angles of all tetrahedra in this sequence are uniformly bounded away from
zero.

Definition 4 (Refinement). For a given tetrahedron T a triangulation K(T )
of T is called a refinement of T if |K(T )| ≥ 2 and any vertex of any tetrahedron
T ′ ∈ K(T ) is either a vertex or an edge midpoint of T . In this case T ′ is called a child
of T and T is called the parent of T ′. A triangulation Tk+1 is called refinement of a
triangulation Tk 6= Tk+1 if for every T ∈ Tk either T ∈ Tk+1 or K(T ) ⊂ Tk+1 for some
refinement K(T ) of T .

Definition 5 (Multilevel triangulation). A sequence of consistent triangulations
M = (T0, . . . , TJ ) is called a multilevel triangulation of Ω if the following holds:

1. For 0 ≤ k < J : Tk+1 is a refinement of Tk.
2. For 0 ≤ k < J : T ∈ Tk ∩ Tk+1 ⇒ T ∈ TJ .

Definition 6 (Hierarchical decomposition). Let M = (T0, . . . , TJ ) be a multi-
level triangulation of Ω. For every tetrahedron T ∈ M a unique level number ℓ(T ) is
defined by ℓ(T ) := min{ k | T ∈ Tk }. The set Gk ⊂ Tk

Gk := {T ∈ Tk | ℓ(T ) = k }
is called the hierarchical surplus on level k (k = 0, . . . , J). Note that G0 = T0, Gk =
Tk \ Tk−1 for k = 1, . . . , J . The sequence H = (G0, . . . ,GJ ) is called the hierarchical
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decomposition of M. Note that the multilevel triangulation M can be reconstructed
from its hierarchical decomposition.

Remark 1. Let M be a multilevel triangulation and Vk (0 ≤ k ≤ J) be the
corresponding finite element spaces of continuous functions p ∈ C(Ω) such that p|T ∈
Pq for all T ∈ Tk (q ≥ 1). The refinement property 1 in definition 5 implies nestedness
of these finite element spaces: Vk ⊂ Vk+1.

Now assume that based on some error indicator certain tetrahedra in the finest
triangulation TJ are marked for refinement. In many refinement algorithms one then
modifies the finest triangulation TJ resulting in a new one, TJ+1. Using such a strat-
egy (which we call a one-level method) the new sequence (T0, . . . , TJ+1) is in general
not a multilevel triangulation because the nestedness property 1 in definition 5 does
not hold. We also note that when using such a method it is difficult to implement
a reasonable coarsening strategy. In multilevel refinement algorithms the whole se-
quence M is used and as output one obtains a sequence M′ = (T ′

0 , . . . , T ′
J ′), with

T ′
0 = T0 and J ′ ∈ {J − 1, J, J + 1}. In general one has T ′

k 6= Tk for k > 0. We list a
few important properties of this method:

• Both the input and output are multilevel triangulations.
• The method yields stable and consistent triangulations.
• Local refinement and coarsening are treated in a similar way.
• The implementation uses only the hierarchical decomposition of M.

This allows relatively simple data structures without storage overhead.
• The costs are proportional to the number of tetrahedra in TJ .

For a detailed discussion of these and other properties we refer to the literature ([6, 10,
23, 19]). In our implementation we use the multilevel refinement algorithm described
in [19].

3.2. Finite element discretization. In this section we briefly discuss the dis-
cretization of the equations (2.4)-(2.6) using standard (LBB stable) finite element
spaces. The discretization of the nonstandard localized force term that occurs in
(2.4) will be explained in Section 3.3.

In the standard weak formulation of the Navier-Stokes equations (with homoge-
neous Dirichlet boundary conditions for the velocity) one uses the spaces

V := H1
0 (Ω)3, Q := L2

0(Ω) = { q ∈ L2(Ω) |
∫

Ω

q = 0 }

We will use the notation V := H1(Ω) and introduce the bilinear forms

m : L2(Ω)3 × L2(Ω)3 → R : m(u,v) =

∫

Ω

ρ(φ)u · v dx

a : V × V → R : a(u,v) =
1

2

∫

Ω

µ(φ) tr
(

D(u)D(v)
)

dx

b : V ×Q→ R : b(u, q) =

∫

Ω

q div u dx

and the trilinear form

c : V × V × V → R : c(u;v,w) =

∫

Ω

ρ(φ) (u · ∇v) · w dx

Note, that the bilinear forms a and m as well as the trilinear form c depend on φ. For
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the L2 scalar product we use the notation

(f, g)0 :=

∫

Ω

fg dx for f, g ∈ L2(Ω)

Now testing the equations (2.4)-(2.6) with v ∈ V, q ∈ Q, and v ∈ V we get

m(ut(t),v) + a(u(t),v) + c(u(t);u(t),v) − b(v, p(t)) = m(g,v) + fΓ(v)

b(u(t), q) = 0

(φt(t), v)0 + (u(t) · ∇φ(t), v)0 = 0

with

fΓ(v) = τ

∫

Ω

κδΓnΓ · v dx = τ

∫

Γ

κnΓ · v ds

which is Γ-dependent and therefore also φ-dependent.
Let M = (T0, . . . , TJ ) be a multilevel triangulation of Ω. With each triangulation

Tk (0 ≤ k ≤ J) we associate a mesh size parameter h = hk. Let Vh ⊂ V, Qh ⊂
Q and Vh ⊂ V be standard polynomial finite element spaces corresponding to the
triangulation Tk. We assume the pair (Vh, Qh) to be LBB stable. In our numerical
experiments we use the Hood-Taylor P2 − P1 pair.

The finite element discretization leads to the following variational problem: Find
uh(t) ∈ Vh, ph(t) ∈ Qh and φh(t) ∈ Vh such that for t ∈ [0, T ]:

m((uh)t(t),vh) + a(uh(t),vh) + c(uh(t);uh(t),vh) − b(vh, ph(t))

= m(g,vh)+fΓh
(vh) ∀vh ∈ Vh (3.1)

b(uh(t), qh) = 0 ∀qh ∈ Qh (3.2)

((φh)t(t), vh)0 + (uh(t) · ∇φh(t), vh)0 = 0 ∀vh ∈ Vh (3.3)

with a, m, and c now depending on φh(t). The term fΓh
(vh) is an approximation

of fΓ(vh) (which is discussed in detail in Section 3.3) with Γh being a polyhedral
approximation of Γ. In addition we have initial conditions uh(0) and φh(0).

Since a, m, c, and fΓh
depend on the discrete level set function φh(t) the system

(3.1)-(3.3) forms a strongly coupled system of ordinary differential equations for the
unknowns uh(t), ph(t) and φh(t).

The discretization (3.3) of the hyperbolic level set equation (2.6) is not stable.
It can be stabilized using a streamline diffusion technique. This streamline diffusion
stabilization applied to the level set equation can be seen as a Petrov-Galerkin method,
with trial space Vh and test functions v̂h. For each tetrahedron T ∈ Tk a stabilization
parameter δT is chosen. The test functions are then defined as

v̂h(x) = vh(x) + δT uh(x, t) · ∇vh(x)

for x ∈ T . For an analysis of the streamline diffusion method and reasonable choices
for the stabilization parameter δT we refer to [33]. This leads to the following stabilized
variant of (3.3):

∑

T∈Tk

((φh)t(t) + uh(t) · ∇φh(t), vh + δT uh(t) · ∇vh)0,T = 0 ∀vh ∈ Vh (3.4)

We now derive a representation of (3.1), (3.2), (3.4), using bases of the finite element
spaces Vh, Qh and Vh. Let {ξi}1≤i≤N , {ψi}1≤i≤K and {χi}1≤i≤L be the standard
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nodal bases of the finite element spaces Vh, Qh and Vh, respectively. For φh ∈ Vh

and uh ∈ Vh we introduce the following (mass and stiffness) matrices:

M(φh) ∈ R
N×N , M(φh)ij =

∫

Ω

ρ(φh)ξi · ξj dx

A(φh) ∈ R
N×N , A(φh)ij =

1

2

∫

Ω

µ(φh) tr
(

D(ξi)D(ξj)
)

dx

B ∈ R
K×N , Bij = −

∫

Ω

ψi div ξj dx

C(φh,uh) ∈ R
N×N , C(φh,uh)ij =

∫

Ω

ρ(φh)(uh · ∇ξj) · ξi dx

E(uh) ∈ R
L×L, E(uh)ij =

∑

T∈Tk

∫

T

χj(χi + δT uh · ∇χi) dx

H(uh) ∈ R
L×L, H(uh)ij =

∑

T∈Tk

∫

T

(uh · ∇χj)(χi + δT uh · ∇χi) dx

We also need the following vectors:

~g(φh) ∈ R
N , ~g(φh)i =

∫

Ω

ρ(φh)g · ξi dx

~fΓh
(φh) ∈ R

N , ~fΓh
(φh)i = fΓh

(ξi)

We now represent uh(t) ∈ Vh, ph(t) ∈ Qh and φh(t) ∈ Vh as follows:

uh(t) =

N
∑

j=1

uj(t)ξj , ~u(t) := (u1(t), . . . , uN (t))

ph(t) =

K
∑

j=1

pj(t)ψj , ~p(t) := (p1(t), . . . , pK(t))

φh(t) =

L
∑

j=1

φj(t)χj , ~φ(t) := (φ1(t), . . . , φL(t))

Using this notation we obtain the following equivalent formulation of the coupled
system of ordinary differential equations (3.1), (3.2), (3.4): Find ~u(t) ∈ R

N , ~p(t) ∈
R

K and ~φ(t) ∈ R
L such that for all t ∈ [0, T ]

M(~φ(t))
d~u

dt
(t) + A(~φ(t))~u(t) + C(~φ(t), ~u(t))~u(t) + BT~p(t)

= ~g(~φ(t)) +~fΓh
(~φ(t)) (3.5)

B~u(t) = 0 (3.6)

E(~u(t))
d~φ

dt
(t) + H(~u(t))~φ(t) = 0 (3.7)

3.3. Discretization of the curvature localized force term. In this section
we explain how the approximation of the localized curvature force term, fΓh

(vh) in
(3.1), is constructed. We use the technique presented in [3, 18]. For this we first need
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some notions from differential geometry. We assume that Γ is a closed smooth (C2)
surface in R

3.
Let ω : D → R

3, with D ⊂ R
2, be a local parametrization of Γ. We use the

notation: z = (z1, z2) ∈ D, x = (x1, x2, x3) ∈ R
3. The Jacobi-matrix of ω and the

metric tensor at z ∈ D are denoted by

Jω(z) =

(

∂ωi(z)

∂zj

)

∈ R
3×2, Gω(z) := Jω(z)TJω(z) ∈ R

2×2

Furthermore, we define

Pω(z) := Jω(z)Gω(z)−1Jω(z)T ∈ R
3×3

Note that P 2
ω = Pω = PT

ω and thus Pω(z) is an orthogonal projection on the span of
the columns of Jω(z) which is the tangent space of Γ at x = ω(z).

Suppose f : Γ → R is sufficiently smooth. The tangential derivative of f is defined
by projecting the derivate to the tangent space of Γ, i. e.

∇ f(x) := Pω(z)∇f(x) (3.8)

An alternative form is

∇ f = ∇f −∇f · nΓ nΓ

where nΓ denotes the unit normal of Γ.
If f has second derivatives we define the Laplace-Beltrami operator of f on Γ by

∆ f := ∇ · ∇ f

For vector valued functions f, g : Γ → R
3 we define

∆ f := (∆ f1,∆ f2,∆ f3)
T , ∇ f · ∇ g :=

3
∑

i=1

∇ fi · ∇ gi

The following basic result from differential geometry (cf., for example, Lemma 2.1 in
[17]) shows how curvature can be related to the Laplace-Beltrami operator and how
partial integration can be applied.

Theorem 3.1. Let idΓ : Γ → R
3 be the identity on Γ, κ = κ1 +κ2 the sum of the

principal curvatures, and nΓ the outward unit normal on Γ. Then for all sufficiently
smooth vector functions v on Γ the following holds:

∫

Γ

κnΓ · v ds = −
∫

Γ

(∆ idΓ) · v ds =

∫

Γ

∇ idΓ ·∇v ds

We show how this result is used to construct an approximation fΓh
(vh) of the

curvature localized force term in the important case (which we also use in our experi-
ments) that the finite element space Vh for the level set function consists of piecewise
quadratics.

For ease of notation, we choose a fixed t and suppress the time-dependence
throughout the rest of this section. Let φh ∈ Vh be a given approximation of the
level set function φ. Recall that Γ = {x ∈ Ω | φ(x) = 0 }. First we explain how
an approximation Γh of Γ is constructed. Let K(T ) be the set of 8 children of T
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that results from a regular refinement of a tetrahedron T ∈ Tk. Let I(φh) be the
continuous piecewise linear function which interpolates φh at all four vertices ν of T ′,
for all T ′ ∈ K(T ), i. e.:

∀ T ∈ Tk, ∀ T ′ ∈ K(T ), ∀ vertices ν of T ′ : I(φh)(ν) = φh(ν)

The approximation of the interface is defined by

Γh := {x ∈ Ω | I(φh)(x) = 0 } (3.9)

Note that Γh depends on the given approximation φh ∈ Vh and that Γh consists of
planar segments. Hence, Γh is a C0,1 embedding of a manifold in R

3. We now describe
how Γh is used to compute an approximation fΓh

(vh) of the curvature localized force
term. There is a collection of child tetrahedra I ⊂ {T ′ ∈ K(T ) | T ∈ Tk } such that

{

ΓT ′ := Γh ∩ T ′ is a plane segment, for all T ′ ∈ I,
and Γh = ∪T ′∈IΓT ′

(3.10)

This collection of children I can easily be determined by looking at the signs of φh(ν)
for all vertices ν of each T ′. We apply the partial integration described in theorem 3.1
and use Γh as an approximation for Γ. Thus for a function v ∈ Vh we get

fΓ(v) = τ

∫

Γ

κnΓ · v ds = τ

∫

Γ

∇ idΓ ·∇v ds

≈ τ

∫

Γh

∇ (idΓh
) · ∇v ds = τ

∑

T ′∈I

∫

ΓT ′

∇ (idΓT ′
) · ∇v ds

= τ
∑

T ′∈I

3
∑

i=1

∫

ΓT ′

∇ (idΓT ′
)i · ∇vi ds =: fΓh

(v)

(3.11)

Because vi lies in Vh we have to evaluate integrals of the form

∫

ΓT ′

∇ (idΓT ′
)i · ∇ v ds (3.12)

with ΓT ′ = Γh ∩ T ′ a plane segment and v ∈ Vh a piecewise quadratic function.
We derive simple explicit formulas for these integrals. One easily verifies that ΓT ′ is
either a triangle (=: case 1) or a quadrilateral (=: case 2). Let Q be the (possibly
degenerated) reference quadrilateral with vertices (0, 0), (1, 0), (0, 1), (a, b), a > 0, b >
0, and let P ∈ R

3, A ∈ R
3×2 be such that the affine mapping ω(z) = Az + P is a

parametrization of ΓT ′ , i. e., ω(Q) = ΓT ′ . In case 1 we take (a, b) = (1
2 ,

1
2 ) and in case

2 we have a+ b 6= 1. The vertices of ΓT ′ are denoted by

P = ω

(

0
0

)

, Q := ω

(

1
0

)

, R := ω

(

0
1

)

, S := ω

(

a
b

)

The following elementary result holds.
Lemma 3.2. For f ∈ P1 we have

∫

ΓT ′

f(s) ds =
1

6

√
detATA

[

f(P ) + f(Q) + f(R) + (a+ b− 1)
(

f(S) + f(Q) + f(R)
)

]
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Proof. Apply the integral transformation formula
∫

ΓT ′

f(s) ds =
√

detATA

∫

Q

f(ω(z)) dz

and use the following exact quadrature rule for a linear function ℓ : Q → R

∫

Q

ℓ(z) dz =
1

6

(

ℓ(0, 0) + ℓ(1, 0) + ℓ(0, 1)
)

+
1

6
(a+ b− 1)

(

ℓ(a, b) + ℓ(1, 0) + ℓ(0, 1)
)

2

We then obtain simple explicit formulas for computing the integrals in (3.12):
Theorem 3.3. Define B := A(ATA)−1AT and let ei be the i-th basis vector in

R
3. For v ∈ P2 the following identity holds:

∫

ΓT ′

∇ (idΓT ′
)i · ∇ v ds =

1

6

√
detATA (Bei)

T
[

∇v(P ) + ∇v(Q) + ∇v(R)

+ (a+ b− 1)
(

∇v(S) + ∇v(Q) + ∇v(R)
)

]

Proof. From (3.8) we get

∇ (idΓT ′
)i(x) = ∇xi = A(ATA)−1AT∇xi = Bei

∇ v(x) = A(ATA)−1AT∇v(x) = B∇v(x)

Since B = BT and BB = B this yields

∇ (idΓT ′
)i(x) · ∇ v(x) = (Bei) · (B∇v(x)) = (Bei)

T∇v(x)

Finally note that x→ (Bei)
T∇v(x) is linear and apply lemma 3.2. 2

Summarizing, given a piecewise quadratic approximation φh of the level set func-
tion φ and a piecewise quadratic nodal basis function ξ = (ξ1, ξ2, ξ3) ∈ Vh we have
the following procedure for computing fΓh

(ξ) ≈ fΓ(ξ):
1. Determine the piecewise planar interface Γh — which is the 0-level set of the

linear interpolation I(φh) — and the associated collection of child tetrahe-
dra I (as in (3.9), (3.10)).

2. For i = 1, 2, 3 and T ′ ∈ I with T ′ ∈ K(T ), T ⊂ supp(ξi) determine
∫

ΓT ′

∇ (idΓT ′
)i · ∇ ξi ds

using the exact quadrature rule from theorem 3.3 and add these contributions
as described in (3.11).

Note that P,Q,R, S lie on edges of T ′ and thus the values of the linear function ∇ξi
at these points can easily be obtained from the values of ∇ξi at the vertices of T .

3.4. Treatment of discontinuities in density and viscosity. In the discrete
variational formulation integrals of the form

Ih :=

∫

Ω

σ(φh(x))G(x) dx

with a discontinuous piecewise constant function σ(φh) as in (2.3) and a continuous
(piecewise) smooth function G have to be approximated. Note that the continuous
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smooth level set Γ (0-level of φ) has been approximated by a piecewise planar approx-
imation Γh (0-level of φh). For G(x) = 1 this yields an error

∣

∣

∣

∣

∫

Ω

σ(φh(x)) dx−
∫

Ω

σ(φ(x)) dx

∣

∣

∣

∣

= O(h2)

Hence, in general it does not make sense to compute Ih with very high accuracy. For
the approximation of Ih there are two obvious approaches. Firstly, one can determine
the discrete interface Γh (as explained in the previous section) and split the integration
in an integration over two subdomains where σ(φh) is constant:

Ih =

∫

Ω

σ(φh(x))G(x) dx = σ1

∫

Ωh,1

G(x) dx+ σ2

∫

Ωh,2

G(x) dx

A favorable property of this approach is that the integration now has to be performed
only for the (smooth) function G. A less nice property is that technical difficulties
arise due to the fact that in general certain tetrahedra are intersected by Γh and thus
one has to integrate over parts of these tetrahedra.

In the second approach the Heaviside function is replaced by a regularized one,
for example:

Hε(x) :=











0 if x ≤ −ε
ν(x

ε
) if |x| < ε

1 if x ≥ ε

(3.13)

with (cf. [41])

ν(ζ) =
1

2
+

1

32
(45ζ − 50ζ3 + 21ζ5) (3.14)

The function σε(φ) is as defined in (2.3) but with H replaced by Hε. We then apply
quadrature to the integral

Iε :=

∫

Ω

σε(φh(x))G(x) dx

Clearly, this method is much easier to implement than the first one. A disadvantage of
the second approach is that one has to chose an appropriate value for the regularization
parameter ε. An extensive analysis and comparison of these two approaches for the
2D case is given in [41]. Based on these investigations the second approach is used in
[42].

In our implementation we also use the approach based on the regularized Heaviside
function with a smoothing function ν as in (3.14) and with ε ≈ h in (3.13). In the
examples in Section 7 the jumps in the coefficients are rather small and there is only
a very weak dependence of the results on the value of ε (as long as ε ≈ h). For the
quadrature we use rules that are exact for polynomials of degree 2.

4. Time discretization. In this section we discuss the fractional step θ-scheme
which we use for time discretization. This technique is introduced in [15] (cf. also
[2, 32, 43]). The main motivation for using this particular method is that it allows
the reuse of fast iterative solvers for discretized (instationary) Stokes equations that
have already been implemented.

12



We briefly recall the underlying main ideas from [15]. Let there be given a
(Hilbert) space H and F : H → H, f : [0, T ] → H, u0 ∈ H. Consider an initial
value problem of the form

du

dt
+ F (u) = f(t), u(0) = u0

For a given decomposition F = F1+F2 and a given parameter θ ∈ (0, 1
2 ), the fractional

step θ-scheme for time discretization is based on a subdivision of each time interval
[n∆t, (n+1)∆t] in three subintervals with endpoints (n+θ)∆t, (n+1−θ)∆t, (n+1)∆t.
For given un the approximations un+θ, un+1−θ, un+1 at these endpoints are defined
by

un+θ − un

θ∆t
+ F1(u

n+θ) + F2(u
n) = fn+θ (4.1)

un+1−θ − un+θ

(1 − 2θ)∆t
+ F1(u

n+θ) + F2(u
n+1−θ) = fn+1−θ (4.2)

un+1 − un+1−θ

θ∆t
+ F1(u

n+1) + F2(u
n+1−θ) = fn+1 (4.3)

There are several ways to apply this approach to the instationary Navier-Stokes equa-
tions

∂u

∂t
− ∆u + (u · ∇)u + ∇p = f

div u = 0
(4.4)

A popular variant (cf. [31, 43]) is based on a splitting of the Navier-Stokes operator
F = αF + (1 − α)F . This then leads to a scheme as in (4.1)-(4.3) in which one has
to solve Navier-Stokes equations in each of the three substeps. We refer to [43] for a
detailed explanation of this variant.

We follow another approach, introduced in [15] and further analyzed in [22]. This
method is based on a splitting in the subspace of divergence free functions of the
operator F (u) = −∆u + (u · ∇)u into F1(u) = −α∆u and F2(u) = −(1 − α)∆u +
(u ·∇)u, which leads to the following method for the problem (4.4), presented in [15]:











u
n+θ−u

n

θ∆t
− α∆un+θ + ∇pn+θ

= fn+θ + (1 − α)∆un − (un · ∇)un

div un+θ = 0

(4.5)

{

u
n+1−θ−u

n+θ

(1−2θ)∆t
− (1 − α)∆un+1−θ + (un+1−θ · ∇)un+1−θ

= fn+1−θ + α∆un+θ −∇pn+θ
(4.6)











u
n+1−u

n+1−θ

θ∆t
− α∆un+1 + ∇pn+1

= fn+1 + (1 − α)∆un+1−θ − (un+1−θ · ∇)un+1−θ

div un+1 = 0

(4.7)

An important property of this method is that the nonlinearity and incompressibility
condition in the Navier-Stokes equations are decoupled. The problems in (4.5), (4.7)
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are linear Stokes type of equations and the problem in (4.6) consists of a nonlinear
elliptic system for the velocity unknowns.

Clearly, this approach can also be applied after discretization of the space vari-
ables. We use this technique for the coupled system in (3.5)-(3.7), where for clarity we
drop the arrow notation in ~u and in the other quantities. This results in the following
variant of the fractional step θ-scheme, with β1 := 1

θ∆t
, β2 := 1

(1−2θ)∆t
, θ′ := 1 − θ,

α′ := 1 − α:


























[

[

β1M + αA
]

(φn+θ)
]

un+θ + BT pn+θ

=
[

g + fΓh

]

(φn+θ) +
[

[

β1M − α′A
]

(φn)
]

un − C(φn,un)un

Bun+θ = 0
[

[

β1E + αH
]

(un+θ)
]

φn+θ =
[

[

β1E − α′H
]

(un)
]

φn

(4.8)



















[

[

β2M + α′A
]

(φn+θ′

)
]

un+θ′

+ C(φn+θ′

,un+θ′

)un+θ′

=
[

g + fΓh

]

(φn+θ′

) +
[

[

β2M − αA
]

(φn+θ)
]

un+θ − BT pn+θ

[

[

β2E + α′H
]

(un+θ′

)
]

φn+θ′

=
[

[

β2E − αH
]

(un+θ)
]

φn+θ

(4.9)



























[

[

β1M + αA
]

(φn+1)
]

un+1 + BT pn+1

=
[

g + fΓh

]

(φn+1) +
[

[

β1M − α′A
]

(φn+θ′

)
]

un+θ′ − C(φn+θ′

,un+θ′

)un+θ′

Bun+1 = 0
[

[

β1E + αH
]

(un+1)
]

φn+1 =
[

[

β1E − α′H
]

(un+θ′

)
]

φn+θ′

(4.10)

The choice of the parameters is based on the analysis in [15]:

θ = 1 − 1

2

√
2, α =

1 − 2θ

1 − θ
= 2 −

√
2 .

Note that the discretization of the level set equation is based on the same α-splitting
as for the Navier-Stokes equations and thus is implicit, too. Furthermore, there is a
strong coupling between the velocity field and the level set function.

5. Iterative solvers. We outline the iterative solution strategy that is used
for the fractional step θ-scheme (4.8)-(4.10). The nonlinear coupling between the
flow variables (u,p) and the level set function φ is linearized by a standard Picard
iteration. This turns out to be satisfactory in our simulations. In (4.9) we then
obtain a linear system for the level set unknowns and a nonlinear system for the
velocity unknowns. To the latter system we again apply the Picard technique. The
resulting linear systems for level set unknowns and velocity unknowns are solved using
a preconditioned GMRES method. This is a robust and fairly efficient approach. The
latter is due to the fact that the mass matrices coming from the time integration
improve the conditioning of these linear systems significantly. In (4.8) and (4.10) we
have to solve a linear system for the level set unknowns and a discrete Stokes type
of problem for velocity and pressure. The major computational effort is needed for
solving these discrete Stokes equations. For this we use an inexact Uzawa type of
method that was introduced in [5] and further investigated in [29]. We briefly discuss
this method.
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The discrete Stokes problem has a matrix-vector representation of the form
(

K BT

B 0

)(

x

y

)

=

(

f1
f2

)

, K := A + βM ,

where the parameter β is proportional to 1/∆t. The Schur complement of this matrix
is denoted by S = BK−1BT . A basic method for such a saddle point problem is the
Uzawa method. This method is closely related to the block factorization

K :=

(

K BT

B 0

)

=

(

K 0
B −I

) (

I K−1BT

0 S

)

Let (xk,yk) be a given approximation to the solution (x,y). Note that using the
block factorization we get

(

x

y

)

=

(

xk

yk

)

+ K−1

[(

f1
f2

)

−K
(

xk

yk

)]

=

(

xk

yk

)

+

(

I −K−1BT S−1

0 S−1

) (

K−1 0
BK−1 −I

)[(

f1
f2

)

−K
(

xk

yk

)]

We construct an iterative method based on a symmetric positive definite precondi-
tioner QK of K. The Schur complement is replaced by the approximation

Ŝ := BQ−1
K BT

We use a (nonlinear) approximate inverse of Ŝ, which is denoted by Ψ, i. e., Ψ(b)

is an approximation to the solution of the system Ŝv = b. With K−1 ≈ Q−1
K ,

S−1 ≈ Ŝ−1 ≈ Ψ(·) and rk
1 := f1 − Kxk − BT yk we obtain the (nonlinear) iterative

method

xk+1 = xk + Q−1
K rk

1 − Q−1
K BT Ψ

(

B(Q−1
K rk

1 + xk) − f2
)

yk+1 = yk + Ψ
(

B(Q−1
K rk

1 + xk) − f2
)

This yields the following algorithmic structure:






































































(

x0

y0

)

a given starting vector; r0
1 := f1 − Kx0 − BT y0

for k ≥ 0 :

w := xk + Q−1
K rk

1 (5.1)

z := Ψ(Bw − f2
)

(5.2)

xk+1 := w − Q−1
K BT z (5.3)

yk+1 := yk + z (5.4)

rk+1
1 := rk

1 − K(xk+1 − xk) − BT z (5.5)

This is the same method as the one presented in Section 4 in [5]. A very efficient
Poisson solver is the multigrid method. Thus for the preconditioner QK we use the
following:

Q−1
K b =

{

One symmetric multigrid V -cycle iteration, using one
symmetric Gauss-Seidel iteration for pre- and post-
smoothing, with starting vector 0 applied to Kv = b.

(5.6)
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A natural choice for Ψ(Bw − f2) is the following:

Ψ(Bw − f2) =

{

Result of ℓ PCG iterations with starting vector 0
and preconditioner QS applied to Ŝv = Bw − f2.

(5.7)

An important issue is the choice of the Schur complement preconditioner QS . We use
an approach as presented in [14]. If the jump in the viscosity (or density) coefficient is
very large then modifications as discussed in [25, 26] are needed. A further important
issue in the algorithm is the stopping criterion for the inner PCG iteration. From
the analysis presented in [29] we deduce the following stopping criterion: We stop the
PCG iteration if

‖rℓ‖2 ≤ σacc‖r0‖2 is satisfied, with a given σacc ∈ [0.2, 0.6].

Here ri denotes the residual in the PCG algorithm. The arithmetic costs per iteration
of the algorithm are dominated by the evaluations of Q−1

K . The method can be
implemented in such a way that per outer iteration of the algorithm (5.1)-(5.7) we
need ℓ+1 evaluations of Q−1

K , ℓ evaluations of Q−1
S , ℓ+1 matrix-vector multiplications

with B, ℓ matrix-vector multiplications with BT and one matrix-vector multiplication
with K.

A comparison of this method with other well-known Stokes solvers is presented
in [29]. A convergence analysis is given in [5, 29].

6. Maintenance of the level set function. Relying only on the advection
equation (2.6) for the evolution of the level set function is not enough. The level set
function would degenerate over time. Strategies to prevent this undesirable behavior
are discussed in this section.

6.1. Reparametrization of the level set function. During the evolution of
the level set function φ, which is driven by the velocity field, the property of φ being
close to a (signed) distance function is lost. This affects the treatment of the discon-
tinuities and the refinement of the interfacial region. Moreover, the advection of φ
becomes less accurate. Therefore, a reparametrization technique is used to reestab-
lish this property. Important issues related to this reparametrization of φ are the
following:

1. The 0-level of φ should be preserved.
2. The norm of the gradient of φ should be close to one: ‖∇φ‖ ≈ 1.
3. The reparametrization can be used to smooth φ (close to the interface) and

thus stabilize the evolution of the level set function.
Different reparametrization techniques are known in the literature, cf. [35, 36]. The
most often used method is based on a pseudo time stepping scheme for the Eikonal
equation

‖∇ψ‖ = 1

Let φh be a given approximation of the level set function, and consider the following
first order partial differential equation for ψ = ψ(x, τ):

dψ

dτ
= Sα(φh)(1 − ‖∇ψ‖) , τ ≥ 0, x ∈ Ω (6.1)

ψ(x, 0) = φh ,
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with

Sα(ζ) =
ζ

√

ζ2 + α2
, ζ ∈ R,

where α is a regularization parameter (0 < α ≪ 1). The function Sα is a smoothed
sign function. It keeps the 0-level invariant (due to Sα(0) = 0) and guarantees that
the solution converges for τ → ∞ to a solution of the Eikonal equation. Thus, for
sufficiently large T > 0 one can use the function ψ(·, T ) as a reparametrization of φh.

The equation (6.1) can be reformulated in the more convenient form

dψ

dτ
+ w(ψ) · ∇ψ = Sα(φh) with w(ψ) := Sα(φh)

∇ψ
‖∇ψ‖ (6.2)

The equation (6.2) can be solved numerically and then yields a reparametrization of
φh. To stabilize the evolution a diffusion term can be added to the equation. For
a further discussion of this reparametrization method we refer to the literature. We
implemented such a method, but encountered the following two difficulties with this
approach. Firstly, the algorithm is difficult to control because several parameters have
to be chosen: the regularization parameter α, the diffusion parameter, the time T ,
the time step in the evolution. Secondly, and more important, in our simulations the
0-level was changed too much.

We then considered alternative reparametrization methods. A simple variant
of the Fast Marching method (cf. [21, 34]) turned out to perform much better in
our numerical simulations. Because this variant is new we give a rather detailed
explanation.

Let there be given a continuous piecewise quadratic function φh ∈ Vk correspond-
ing to the triangulation Tk. We introduce some notation. The regular refinement of
Tk is denoted by T ′

k := {T ′ ∈ K(T ) | T ∈ Tk }. The collection of all vertices in T ′
k is

denoted by V. Note that φh is uniquely determined by its values on V. For T ∈ T ′
k ,

V (T ) is the set of the four vertices of T . Furthermore, for v ∈ V, T (v) is the set of
all tetrahedra which have v as a vertex: T (v) = {T ∈ T ′

k | v ∈ V (T ) }. Finally, for
v ∈ V, N(v) is the collection of all neighboring vertices of v (i. e., for each w ∈ N(v)
there is an edge in T ′

k connecting v and w): N(v) = ∪T∈T (v)V (T ) \ {v}.
Let Γh be the discrete approximation of the interface as defined in (3.9) and

I ⊂ T ′
k the collection of tetrahedra which “contains” the discrete interface as defined

in (3.10), i. e. (for ease of notation we now use T instead of T ′):

{

ΓT := Γh ∩ T is a plane segment, for all T ∈ I,
and Γh = ∪T∈IΓT

(6.3)

The plane segment ΓT in (6.3) is either a triangle or a quadrilateral.

We first explain the initialization phase of the reparametrization algorithm. We
define the set of vertices corresponding to I:

F := { v ∈ V (T ) | T ∈ I } (6.4)

For each v ∈ F we define a discrete (approximate) distance function d(v) as follows.
For v ∈ F and T ∈ T (v) ∩ I let ΓT be the plane segment as in (6.3), with vertices
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denoted by Q1, . . . , Qm, m = 3 or 4. Let W be the plane in R
3 which contains the

plane segment ΓT and PW : R
3 →W the orthogonal projection on W . We define

dT (v) :=

{

‖v − PW v‖ if PW v ∈ T

min1≤j≤m ‖v −Qj‖ otherwise
, for v ∈ F , T ∈ T (v) ∩ I

The quantity dT (v) is a measure for the distance between v and ΓT . Note that if
PW v ∈ T holds, then dT (v) is precisely this distance. Since Γh consists of piecewise
planar segments ΓT (T ∈ I) we define as an approximate distance function:

d(v) := min
T∈T (v)∩I

dT (v) for v ∈ F (6.5)

After this initialization phase the grid function { (v, d(v)) | v ∈ F } is an approximate
distance function from the interface Γh for the vertices v ∈ F .

The second phase of the reparametrization algorithm consists of a loop in which
the approximate distance function is extended to neighbor vertices of F and then
to neighbors of neighbors, etc. To explain this more precisely we introduce a set of
so-called active vertices A, which consists of vertices v /∈ F that have a neighboring
vertex in F :

A := { v ∈ V \ F | N(v) ∩ F 6= ∅ } (6.6)

For v ∈ A we define an approximate distance function in a similar way as in the
initialization phase. Take v ∈ A and T ∈ T (v) with V (T ) ∩ F 6= ∅. Note that such a
T exists if A is nonempty. There are three possible cases, namely |V (T ) ∩ F| = 1, 2
or 3. If |V (T ) ∩ F| = 1, say V (T ) ∩ F = {w}, we define dT (v) := d(w) + ‖v − w‖.
For the other two cases, i. e., V (T ) ∩ F = {wi}1≤i≤m with m = 2 or m = 3, we use
an orthogonal projection as in the initialization phase. Let W be the line (plane) in
R

3 through the points w1, w2 (w3) and PW : R
3 → W the orthogonal projection on

W . We define

dT (v) :=

{

d(PW v) + ‖v − PW v‖ if PW v ∈ T

min1≤j≤m

[

d(wj) + ‖v − wj‖
]

otherwise
(6.7)

The value d(PW v) in (6.7) is determined by linear interpolation of the known values
d(wj), 1 ≤ j ≤ m. Note that PW v ∈ T is satisfied if all faces of T are acute triangles.
The approximate distance function at active vertices is defined by

d(v) := min{ dT (v) | T ∈ T (v) with V (T ) ∩ F 6= ∅ } , v ∈ A (6.8)

The reparametrization method is as follows:

1. Initialization: construct F and compute d(F) as in (6.4), (6.5).
2. Construct active set A and compute d(A) as in (6.6), (6.8).
3. Determine vmin ∈ A such that d(vmin) = minv∈A d(v).
4. Construct F := F ∪ {vmin}, N := N(vmin) \ F , A := (A ∪N ) \ {vmin}.
5. (Re)compute d(v) for v ∈ N .
6. If |A| > 0 then go to 3.
7. For all v ∈ V, set d(v) := sign(φh(v)) · d(v)
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After this reparametrization we have a grid function d(v), v ∈ V, which uniquely
determines a continuous piecewise quadratic function χh ∈ Vk on the triangulation
Tk. This χh is the reparametrization of φh. For χh one can construct an approximate
0-level set Γ̃h as described in Section 3.3. The reparametrization procedure guarantees
Γ̃h ⊂ I. However, in general we have Γ̃h 6= Γh, i. e., the discrete 0-level set may
be slightly changed. Since χh is close to a signed distance function, the variations
in ∇χh are usually smaller than the variations in ∇φh. Due to this property, the
reparametrization method has a stabilizing effect.

In our simulations the time needed for the reparametrization is negligible com-
pared to the computing times for discretization and iterative solution of the Navier-
Stokes equations.

6.2. Smoothing the level set function. In the continuous model the interface
is smoothed due to the surface tension force. When the surface tension coefficient τ is
enlarged, this force increases and the time scale in which the smoothing effect occurs
decreases. The finite resolution of the spatial discretization causes small geometric
irregularities at the interface. For small τ values they are smoothed out as expected.
For a large τ value, however, the time scale in which the smoothing takes place can be
smaller than the time resolution of the numerical scheme. In such a situation the sur-
face tension force is applied over a too long time period during the evolution, shifting
the interface too far. This results in an oscillatory instead of a smooth interface.

This undesirable effect can be overcome by using either a higher resolution in
time and/or space or some numerical interface smoothing procedure. Clearly, the
first approach results in higher accuracy but in general is also more costly in terms
of computing time. To allow larger time steps we implemented a strategy from [42]
in which a smoothed interface is used to calculate fΓh

. This prevents that spurious
(nonphysical) forces spoil the computations.

The smoothing of the interface is based on an artificial diffusion equation for the
level set function, i. e., we solve the following equation for some small parameter ε
(we usually have ε ≈ 10−10):

φsmooth − ε∆φsmooth = φ

The discretized version has the form

[Mφ + εAφ]φsmooth = Mφφ

with Mφ the mass matrix and Aφ the stiffness matrix in the finite element space Vh.
This system can be solved with a PCG or multigrid method.

6.3. Conservation of mass. The algorithm (4.8)-(4.10) does not conserve
mass. Due to the surface tension, we usually lose mass from Ω1. This loss of mass is
reduced if the grid is refined. Such finer grids, however, result in higher computational
costs. Therefore we introduce another strategy to compensate for the mass loss.

After each time step, we shift the interface in normal direction such that the
volume of Ω1 at current time is the same as at time t = 0. To realize this we exploit
the fact that the level set function is close to a signed distance function. In order
to shift the interface over a distance d in outward normal direction, we only have to
subtract d from the level set function.

Let V (φ) := vol{x ∈ Ω | φ(x) < 0 } denote the volume of Ω1 corresponding to a
level set function φ and let φh be the discrete level set function at a given time. We
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have to find d ∈ R such that

V (φh − d) − vol(Ω1(0)) = 0

holds. In order to keep the number of evaluations of V low, we use a method with
a high rate of convergence, namely the Anderson-Björk method [1], to solve this
equation. We then set φnew

h := φh − d and discard φh.
Note that this strategy only works if Ω1 consists of a single component. If there

are multiple components, mass must be preserved for each of them. In this case the
algorithm can be modified to shift φh only locally. Discontinuities that may occur in
the level set function can be removed by a reparametrization step.

Finally note that the shifting of the level set function to obtain a better mass
conservation introduces a new source of discretization errors.

7. Numerical results. In this section we present results of three different ex-
periments performed with the software package DROPS. The first two experiments
concentrate on selected issues, namely the reparametrization method and the effects
of the surface tension. In the third example we consider a realistic two-phase flow
experiment.

7.1. Experiment 1: Reparametrization and smoothing. The first exper-
iment shows the effect of the reparametrization and the smoothing of the level set
function. For better visualization only 2D results are presented. The illustrated
phenomena also occur in 3D.

We start on the unit square with a level set function φ0 as shown in Figure 7.1.
The interface is the intersection of φ0 with the zero plane. Close to the interface we
have ‖∇φ0‖ ≈ 3.2.

Fig. 7.1. Initial level set function shown from above and below the zero plane.

Figure 7.2 shows the level set function after the application of the Fast Marching
method presented in Section 6.1. The interface is well preserved, but now ‖∇φ‖ ≈ 1.
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Fig. 7.2. Reparametrized level set function.

For the following calculations we added random noise to φ0 to obtain a new
initial level set function φ1, shown in Figure 7.3. Note, that the noise also moves the
interface.

Fig. 7.3. Noisy level set function.

As expected, the Fast Marching method applied to φ1 yields a level set function
whose shape is roughly the same as in Figure 7.2. However, due to the noise there
are small distortions of the 0-level as shown in the left blow up picture in Figure 7.4.
To smooth the interface we apply the technique from Section 6.2 and obtain the level
set function shown on the right in Figure 7.4.

7.2. Experiment 2: Effect of the surface tension. In this experiment we
study the effect of the surface tension on a drop in a quiescent fluid, i. e., we concen-
trate on the localized force term on the right-hand side in (2.4).
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Fig. 7.4. Detail of noisy level set function after the reparametrization and additional smoothing.

Because u = 0 the free boundary condition reduces to [pn]Γ = τκn and we obtain
a jump relation for the pressure:

∆p := pΩ1
− pΩ2

= τκ (7.1)

We take a spherical drop with radius rD = 2 · 10−3 which is located in the middle
of a cube Ω with edge length 6 · 10−3. We consider the equations (2.4) – (2.6) with
homogeneous Dirichlet boundary conditions for u. As initial conditions we have u0 =
0 and φ0 a signed distance function w. r. t. the drop. Without gravity (g = 0) the
solution of this problem is stationary with u = 0 and φ = φ0 for all t ≥ 0 independent
of the values of ρ and µ. For simplicity we take ρ1 = ρ2 = µ1 = µ2 = 1 in the
computations.

The triangulation of the cube Ω used for the numerical simulation consists of
4 × 4 × 4 subcubes, each subdivided into 6 tetrahedra, which are then locally refined
three times in the neighborhood of the phase interface. Figure 7.5 shows the computed
pressure distribution for two different surface tension coefficients τ along a line that
is parallel to one of the edges of Ω and goes through the center of the drop. On
the horizontal axis, r denotes the signed distance from the center of the drop. If the
grid is further refined the oscillations at the interface in Figure 7.5 decrease and the
computed pressure gets closer to a piecewise constant function.

Next we consider the difference ∆̃p := p|r=0 − p|r=3·10−3 of computed pressure
values at the center of the drop and at a point outside of the drop (on the boundary of
the cube Ω). Figure 7.6 shows ∆̃p for different values of τ . With κ = 1

rD
+ 1

rD
= 103 the

observed pressure jump behaves as expected: ∆̃p ≈ κτ . We repeated this experiment
for a fixed surface tension τ = 10−3 and different radii of the drop rD, thus varying
the curvature κ. The results shown in Figure 7.7 are also in good agreement with
(7.1).

We conclude that in this experiment the numerical treatment of the localized
force term which models the effect of surface tension yields satisfactory results.

7.3. Experiment 3: Levitated drop in a measuring cell. The final exper-
iment originates from an interdisciplinary research project, cf. [37]. A main topic in
this project is the modeling of flow and mass transfer phenomena at the interface
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Fig. 7.5. Pressure distribution for τ = 1 · 10−2 and τ = 2 · 10−2 respectively.
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Fig. 7.6. Computed pressure jump ∆̃p
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tension τ = 10−3.

between a single droplet and a surrounding fluid. For (NMR) measurements a drop is
levitated in a special device, which consists of a vertical glass tube with a narrowing
in the middle. This device, in horizontal position, is illustrated in Figure 7.8. A fluid
flows from the the top of the tube downwards. A drop, which is lighter than the sur-
rounding fluid, is injected at the bottom of the tube. This drop rises up to a certain
point, where its buoyancy forces are balanced by the forces induced by the flow from
above. The aim of a first numerical simulation is to compute the equilibrium position
and shape of the drop.

Fig. 7.8. Triangulated measuring cell.

The computational domain Ω is shown in Figure 7.8. The tube is 5 · 10−2 [m]
long and has a diameter of din = 7 · 10−3 [m] at the inlet and outlet and a diameter
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of 5 · 10−3 [m] at the narrowest part of the tube. As an initial condition the drop is
assumed to be spherical with a diameter of 3.5 · 10−3 [m]. The center of the drop is
located in the middle of the tube, 7.5 · 10−3 [m] below the narrowest part, which is
near the expected equilibrium position. The initial triangulation T0 is locally refined
in the neighborhood of the drop. The boundary part of this refinement region can
be seen in Figure 7.8. The finest triangulation T2 consists of about 11000 tetrahedra.
Roughly 75% of these tetrahedra are located in the refinement region.

We consider the equations (2.4) – (2.6) with a given inflow at the inlet, outflow
boundary conditions at the outlet and no-slip (homogeneous Dirichlet) boundary con-
ditions for u at the remaining boundaries of Ω. The inflow velocity has a stationary
parabolic profile with maximum value of vin = 25 · 10−3 [ms−1] in the middle of the
inlet. For the initial conditions, φ0 is taken as a signed distance function for the initial
spherical drop and u0 is taken as the solution of the stationary Stokes problem

−div (µ(φ0)D(u)) + ∇p = ρ(φ0)g

div u = 0

The densities have values ρ1 = 955 [kgm−3], ρ2 = 1107 [kgm−3], the dynamic viscosi-
ties are µ1 = 10.4 · 10−3 [N sm−2], µ2 = 4.8 · 10−3 [N sm−2] and the surface tension
coefficient is τ = 2 · 10−3 [N m−1]. The Reynolds number at the inlet is

Rein :=
ρ2 dinvin
µ2

≈ 34.4

At the outlet the Reynolds number is roughly the same because of similar conditions.
At the narrowest part of the tube the Reynolds number is about 56.5 due to higher
velocities.

Fig. 7.9. Interface and velocity field for t = 0 and t = 0.015 resp.

Figures 7.9 and 7.10 show the velocity field and the interface of the drop at
different times. For visualization purposes, the solution is plotted on a 2D cartesian
grid intersecting the unstructured tetrahedral grid. The 3D shape of the drop at its
equilibrium position is shown in Figure 7.11.

Compared to the real system, a silicon oil drop in D2O, the viscosities used in
this simulation are 4 times larger and the surface tension coefficient is about 20 times
smaller. The reason why we used larger viscosities is that we first wanted to test the
solver for a problem with small Reynolds numbers. In a next step the problem with
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Fig. 7.10. Interface and velocity field for t = 0.07 and t = 0.265 resp.

Fig. 7.11. Interface and velocity field for t = 0.76.

larger Reynolds numbers will be treated using a streamline diffusion stabilization,
which is already implemented for the discretization of the level set equation, for the
Navier-Stokes equation, too. The reason why we consider a smaller surface tension co-
efficient is twofold. Firstly, for the physically realistic value the rising droplet remains
very close to spherical which is less nice for demonstrating the interface capturing be-
havior of the level set technique. Secondly, for (very) large surface tension coefficients
we are not satisfied with our solver, yet. This is due to the fact that in this case we
have (very) large forces at the interface which can be controlled either by increasing
the resolution of the level set function or using some stabilization technique. This is
a topic of current research.
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