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FINITE ELEMENT DISCRETIZATION ERROR ANALYSIS OF A

SURFACE TENSION FORCE IN TWO-PHASE INCOMPRESSIBLE

FLOWS

SVEN GROß AND ARNOLD REUSKEN

Abstract. We consider a standard model for a stationary two-phase incompressible flow with
surface tension. In the variational formulation of the model a linear functional which describes
the surface tension force occurs. This functional depends on the location and the curvature of the
(unknown) interface. In a finite element discretization method the functional has to be approximated.
For an approximation method based on a Laplace-Beltrami representation of the curvature we derive
sharp bounds for the approximation error. A new modified approximation method with a significantly
smaller error is introduced.
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1. Introduction. Let Ω ⊂ R
3 be a polyhedral domain that contains a flow of

two different immiscible incompressible newtonian phases (fluid-fluid or fluid-gas).
At the interface between the two phases there are surface tension forces that are
significant and can not be neglected. An example is a (rising) liquid drop contained
in a surrounding fluid. The standard model to describe such a flow problem consists of
instationary Navier-Stokes equations with certain coupling conditions at the interface
which describe the effect of surface tension. In this paper we analyze errors that are
due to the discretization of the surface tension force that occurs in the continuous
model. To simplify the presentation and the analysis we assume a stationary flow.

The domains which contain the phases are denoted by Ω1 and Ω2 with Ω1∪Ω2 = Ω
and ∂Ω1 ∩ ∂Ω = ∅. The interface between the two phases (∂Ω1 ∩ ∂Ω2) is denoted by
Γ. To model the forces at the interface we make the standard assumption that the
surface tension balances the jump of the normal stress on the interface, i. e., we have
an interface condition

[σn]Γ = τKn,

with n = nΓ the unit normal at the interface (pointing from Ω1 in Ω2), τ the surface
tension coefficient (material parameter), K the curvature of Γ and σ the stress tensor,
i. e.,

σ = −pI + µD(u), D(u) = ∇u + (∇u)T ,

with p = p(x, t) the pressure, u = u(x, t) the velocity vector and µ the viscosity.
We assume continuity of the velocity across the interface. In combination with the
conservation laws of mass and momentum this yields the following standard model,
cf., for example, [20, 19, 23, 22]:







− div(µiD(u)) + ρi(u · ∇)u −∇p = ρig in Ωi

div u = 0 in Ωi

for i = 1, 2 (1.1)

[σn]Γ = τKn, [u]Γ = 0 . (1.2)
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The vector g is a known external force (gravity). In addition we need boundary
conditions for u at ∂Ω. For simplicity we take homogeneous Dirichlet boundary
conditions. The two Navier-Stokes equations in (1.1) and the coupling conditons at
the interface in (1.2) can be reformulated in one Navier-Stokes equation in the whole
domain in which the effect of the surface tension is expressed in terms of a localized
force at the interface, cf. the so-called continuum surface force (CSF) model [3, 4]. We
consider this alternative formulation in a standard weak form (as in [10, 24, 25, 26, 27])
in the spaces

V := H1
0 (Ω)3, Q := L2

0(Ω) = { q ∈ L2(Ω) |
∫

Ω

q dx = 0 }.

For the L2 scalar product we use the notation (f, g) :=
∫

Ω fg dx (and similarly for
vector functions). The standard norm in V is denoted by ‖·‖1. The weak formulation
is as follows: determine (u, p) ∈ V ×Q such that

∫

Ω

µD(u) : D(v) dx + (ρu · ∇u,v) + (div v, p) = (ρg,v) + fΓ(v) ∀ v ∈ V

(div u, q) = 0 ∀ q ∈ Q,

(1.3)

with

fΓ(v) = τ

∫

Γ

KnΓ · v ds, (1.4)

and D(u) : D(v) = tr
(

(D(u)D(v)
)

. The functions µ and ρ are strictly positive and
piecewise constant in Ωi, i = 1, 2. For Γ sufficiently smooth we have supx∈Γ |K(x)| ≤
c <∞ and thus

|fΓ(v)| ≤ c τ

∫

Γ

|nΓ · v| ds ≤ c ‖v‖L2(Γ) ≤ c‖v‖1 for all v ∈ V. (1.5)

Here and in the remainder we use the notation c for a generic constant. ¿From (1.5)
we see that fΓ ∈ V′ and thus under the usual assumptions (cf. [11]) the stationary
Navier-Stokes equations (1.3) have a unique solution. We emphasize that the loca-
tion of the interface is in general unknown and has to be determined (approximated)
before the Navier-Stokes equations (1.3) can be solved. In this paper we assume that
the unknown interface is captured using a level set technique. For a discussion of
level set methods in incompressible two-phase flow problems we refer to the literature
[4, 12, 18, 21]. We assume that the interface Γ is characterized as the zero level of the
level set function d, which locally (close to the interface) is a signed distance function.

We now turn to the discretization of (1.3). We assume that S is a triangulation
of Ω consisting of tetrahedra. With this triangulation we associate a mesh size pa-
rameter H . Let VH ⊂ V, QH ⊂ Q be standard polynomial finite element spaces
corresponding to the triangulation S, for example, the Hood-Taylor P2-P1 pair. In
practice, the triangulation S is locally refined close to the interface Γ but not aligned
with this interface, cf. Figures 2.1, 6.1. The Galerkin discretization is as follows:
determine (uH , pH) ∈ VH ×QH such that

∫

Ω

µD(uH) : D(vH) dx+ (ρuH · ∇uH ,vH) + (div vH , pH)

= (ρg,vH) + fΓ(vH) for all vH ∈ VH

(div uH , qH) = 0 for all qH ∈ QH .

(1.6)
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For this discrete problem, many important theoretical issues are still unsolved. For
example, regarding iterative solvers there is the issue of robustness w.r.t. large jumps
in the density and viscosity coefficients (results for Stokes equations are given in
[17, 16, 15]). A second example is the effect of errors in the approximation of fΓ(vH)
on the accuracy of the flow variables. In this paper we treat the latter topic.

As mentioned above, the interface Γ has to be approximated. Furthermore, to
evaluate the integral in (1.4) the curvature of Γ has to be approximated and a quadra-
ture rule may be needed. Thus the term fΓ(vH) on the right handside in (1.6) will be
replaced by an approximation f̃(vH). For the effect of the surface tension force ap-
proximation error on the accuracy of the velocity and pressure variables the quantity

sup
v∈VH

fΓ(vH) − f̃(vH)

‖vH‖1
(1.7)

is crucial (Strang lemma). The two main ingredients in the approximation method
that we use are the following. Firstly, a Laplace-Beltrami characterization of the
curvature is used. This technique has been applied in mean curvature flows (cf. [5]),
and in flows with a free capillary surface (cf. [1, 2]). Application of this technique in
two-phase incompressible flows can be found in [10, 9, 12, 14]. Secondly, the unknown
interface Γ (zero level of d) is approximated as the zero level Γh of a finite element
approximation dh of d. The approximate interface Γh consists of triangular faces. The
parameter h is the maximal diameter of these faces and is not necessarily of the same
order of magnitude as H . For this approximation technique we derive a sharp bound
for the quantity in (1.7). The main result of this paper is the O(

√
h) bound given in

Corollary 4.8. We do not know of any literature in which for this technique or for any
other technique for approximating fΓ(vH) rigorous bounds for the quantity in (1.7)
are derived. A numerical experiment (given in section 6) indicates that the O(

√
h)

is sharp. Our analysis reveals how the approximation method can be improved. A
modified new approach, resulting in an O(h) bound, is presented in section 5.

2. Approximation of the surface tension force fΓ(vH). In this section we
explain how the localized surface tension force term, fΓ(vH) in (1.6), is approximated.
For this we first need some notions from differential geometry.

Let U be an open subset in R
3 and Γ a connected C2 compact hypersurface

contained in U . For a sufficiently smooth function g : U → R the tangential derivative
(along Γ) is defined by projecting the derivative on the tangent space of Γ, i. e.

∇Γg = ∇g −∇g · nΓ nΓ. (2.1)

The Laplace-Beltrami operator of g on Γ is defined by

∆Γg := ∇Γ · ∇Γg.

It can be shown that ∇Γg and ∆Γg depend only on values of g on Γ. For vector valued
functions f, g : Γ → R

3 we define

∆Γf := (∆Γf1,∆Γf2,∆Γf3)
T , ∇Γf · ∇Γg :=

3
∑

i=1

∇Γfi · ∇Γgi.

We recall the following basic result from differential geometry.
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Theorem 2.1. Let idΓ : Γ → R
3 be the identity on Γ and K = κ1 + κ2 the sum

of the principal curvatures. For all sufficiently smooth vector functions v on Γ the
following holds:

∫

Γ

KnΓ · v ds = −
∫

Γ

(∆Γ idΓ) · v ds =

∫

Γ

∇Γ idΓ ·∇Γv ds. (2.2)

In a finite element setting (which is based on a weak formulation) it is natural to use
the expression on the right handside in (2.2) as a starting point for the discretization.
This idea is used in, for example, [8, 2, 10, 12]. In this discretization we use an
approximation Γh of Γ. Given this approximation the localized force term fΓ(vH) is
approximated by

f̃(vH) = fΓh
(vH) := τ

∫

Γh

∇Γh
idΓh

·∇Γh
vH ds. (2.3)

We now introduce some additional notation and formulate assumptions on Γh. In
Remark 3 we explain how in practice a discrete interface Γh can be computed which
satisfies these assumptions.

We assume that Γ is the zero level set of a signed distance function d : U → R,
i.e., |d(x)| = dist(x,Γ) for all x ∈ U . We assume d < 0 on the interior of Γ (that is,
in Ω1) and d > 0 on the exterior. Note that nΓ = ∇d on Γ. We define n(x) := ∇d(x)
for all x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U . Here and in the
remainder ‖ · ‖ denotes the Euclidean norm. The Hessian of d is denoted by H:

H(x) = D2d(x) ∈ R
3×3 for all x ∈ U.

The eigenvalues of H(x) are denoted by κ1(x), κ2(x) and 0. For x ∈ Γ the eigenvalues
κi(x), i = 1, 2, are the principal curvatures.

We will need the orthogonal projection

P(x) = I − n(x)n(x)T for x ∈ U.

Note that the tangential derivative can be written as ∇Γg = P∇g. Let {Γh}h>0

be a family of polyhedrons. Each Γh is contained in U and consists of a set Fh of
triangular faces: Γh = ∪T∈Fh

T . For T1, T2 ∈ Fh with T1 6= T2 we assume that T1∩T2

is either empty or a common edge or a common vertex. The parameter h denotes the
maximal diameter of the triangles in Fh: h = maxT∈Fh

diam(T ). By nh we denote
the outward pointing unit normal on Γh. This normal is piecewise constant with
possible discontinuities at the edges of the triangles in Fh.

The approximation Γh is assumed to be close to Γ in the following sense:

|d(x)| ≤ ch2 for all x ∈ Γh, (2.4)

ess infx∈Γh
n(x)T nh(x) ≥ c > 0, (2.5)

ess supx∈Γh
‖P(x)nh(x)‖ ≤ ch. (2.6)

Here c denotes a generic constant independent of h.
Remark 1. The conditions (2.5), (2.6) are satisfied if

ess supx∈Γh
‖n(x) − nh(x)‖ ≤ min{c0, ch}, with c0 <

√
2, (2.7)
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holds. This easily follows from

‖n(x) − nh(x)‖2 = 2
(

1 − n(x)T nh(x)
)

,

and

‖P(x)nh(x)‖ = ‖P(x)
(

n(x) − nh(x)
)

‖ ≤ ‖n(x) − nh(x)‖.

Under these assumptions on Γh we will derive, in section 4, a bound for the
approximation error

sup
vH∈VH

fΓ(vH) − fΓh
(vH)

‖vH‖1
, with fΓh

(vH) as in (2.3). (2.8)

Remark 2. From Theorem 2.1, the fact that fΓ(v) = τ
∫

Γ Kv ·n ds is a bounded
linear functional on V and a density argument it follows that the linear functional

fΓ : v → τ

∫

Γ

∇Γ idΓ ·∇Γv ds , v ∈
(

C∞
0 (Ω)

)3
, (2.9)

has a unique bounded extension to V. Therefore, for fΓ : V → R we can use both the
representation in (1.4) and the one in (2.9) (these are the same on a dense subset).
This, however, is not the case for fΓh

. Because Γh is not sufficiently smooth, a partial
integration result as in Theorem 2.1 does not hold. The linear functional

v → τ

∫

Γh

∇Γh
idΓh

·∇Γh
v ds

is not necessarily bounded on V. For this reason the restriction to vH from the finite
element space VH in (2.8) is essential.

Remark 3. We briefly explain the approach that is used in [12] (cf. also [7])
for computing Γh. Let S be the (locally refined) triangulation of Ω, consisting of
tetrahedra, that is used for the discretization of the flow variables with finite ele-
ments, cf. (1.6) (in our approach we use the Hood-Taylor P2-P1 pair). The level set
equation for d is discretized with continuous piecewise quadratic finite elements on
a triangulation T . This triangulation is either equal to S or obtained from one or a
few regular refinements of S (subdivision of each tetrahedron in 8 child tetrahedra).
The piecewise quadratic finite element approximation of d on T is denoted by dh. We
now introduce one further regular refinement of T , resulting in T ′. Let I(dh) be the
continuous piecewise linear function on T ′ which interpolates dh at all vertices of all
tetrahedra in T ′. The approximation of the interface Γ is defined by

Γh := { x ∈ Ω | I(dh)(x) = 0 }

which consists of piecewise planar segments. The mesh size parameter h is the maxi-
mal diameter of these segments. This (maximal) diameter is approximately the (max-
imal) diameter of the tetrahedra in T ′ that contain the discrete interface, i.e., h is
approximately the maximal diameter of the tetrahedra in T ′ that are close to the
interface. In Figure 2.1 we illustrate this construction for the two-dimensional case.

Each of the planar segments of Γh is either a triangle or a quadrilateral. The
quadrilaterals can (formally) be divided into two triangles. Thus Γh consists of a set
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T

T ′

Γ
Γh

Fig. 2.1. Construction of approximate interface for 2D case.

Fh of triangular faces. Related to the assumptions (2.4)-(2.6) we note the following.
If we assume |I(dh)(x) − d(x)| ≤ c h2 for all x in a neighbourhood of Γ, which is
reasonable for a smooth d and piecewise quadratic dh, then for x ∈ Γh we have
|d(x)| = |d(x) − I(dh)(x)| ≤ c h2 and thus (2.4) is satisfied. Instead of (2.5), (2.6)
we consider the sufficient condition (2.7). We assume ‖∇d(x) − ∇I(dh)(x)‖ ≤ c h

for all x in a neighbourhood of Γ (x not on an edge), which again is reasonable
for a smooth d and piecewise quadratic dh. Due to ‖∇d‖ = 1 we then also have
‖∇I(dh)(x)‖ = 1 + O(h), in a neighbourhood of Γ. For x ∈ Γh (not on an edge) we
obtain

‖nh(x) − n(x)‖ =
∥

∥

∥

∇I(dh)(x)

‖∇I(dh)(x)‖ − ∇d(x)
∥

∥

∥

≤
∣

∣

1

‖∇I(dh)(x)‖ − 1
∣

∣ · ‖∇I(dh)(x)‖ + ‖∇I(dh)(x) −∇d(x)‖ ≤ c h,

and thus (2.7) is satisfied (for h sufficiently small).

3. Preliminaries. In this section we collect some results that will be used in
the analysis in section 4. The techniques that we use come from the paper [6]. For
proofs of certain results we will refer to that paper.

We introduce a locally (in a neighborhood of Γ) orthogonal coordinate system by
using the projection p : U → Γ:

p(x) = x− d(x)n(x) for all x ∈ U.

We assume that the decomposition x = p(x)+ d(x)n(x) is unique for all x ∈ U . Note
that

n(x) = n(p(x)) for all x ∈ U.

We use an extension operator defined as follows. For a (scalar) function v defined on
Γ we define

ve
Γ(x) := v(x− d(x)n(x)) = v(p(x)) for all x ∈ U,

i.e., v is extended along normals on Γ. We will also need extensions of functions
defined on Γh to U . This is done again by extending along normals n(x). For v
defined on Γh we define, for x ∈ Γh,

ve
Γh

(x+ αn(x)) := v(x) for all α ∈ R with x+ αn(x) ∈ U. (3.1)

The projection p and the extensions ve
Γ, ve

Γh
are illustrated in Figure 3.1.
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x̂1

x1 = p(x̂1)

n1

x̂2

x2 = p(x̂2)

n2

Γh

Γ

Fig. 3.1. Example for projection p and construction of extension operators. n1 and n2 are
straight lines perpendicular to Γ. For v defined on Γ we have v

e

Γ
≡ v(x1) on n1. For vh defined on

Γh we have v
e

Γh
≡ vh(x̂2) on n2.

We define a discrete analogon of the orthogonal projection P:

Ph(x) := I − nh(x)nh(x)T for x ∈ Γh, x not on an edge.

The tangential derivative along Γh can be written as ∇Γh
g = Ph∇g. In the analysis

a further technical assumption is used, namely that the neighbourhood U of Γ is
sufficiently small in the following sense. We assume that U is a strip of width δ > 0
with

δ−1 > max
i=1,2

‖κi(x)‖L∞(Γ). (3.2)

Assumption 1. In the remainder of the paper we assume that (2.4), (2.5),
(2.6)and (3.2) hold.

We present two lemmas from [6]. Proofs are elementary and can be found in [6].
Lemma 3.1. For the projection operator P and the Hessian H the relation

P(x)H(x) = H(x)P(x) = H(x) for all x ∈ U

holds. For v defined on Γ and sufficiently smooth the following holds:

∇Γh
ve
Γ(x) = Ph(x)

(

I− d(x)H(x)
)

P(x)∇Γv(p(x)) a.e. on Γh. (3.3)

Proof. Given in section 2.3 in [6].
In (3.3) (and also below) we have results “a.e. on Γh” because quantities (deriva-

tives, Ph, etc.) are not well-defined on the edges of the triangulation Γh.
Lemma 3.2. For x ∈ Γh (not on an edge) define

µ(x) =
[

Π2
i=1(1 − d(x)κi(x))

]

n(x)T nh(x), (3.4)

A(x) =
1

µ(x)
P(x)

[

I − d(x)H(x)
]

Ph(x)
[

I − d(x)H(x)
]

P(x). (3.5)

Let Ae
Γh

be the extension of A as in (3.1). The following identity holds for functions
v and ψ that are defined on Γh and sufficiently smooth:

∫

Γh

∇Γh
v · ∇Γh

ψ ds =

∫

Γ

Ae
Γh
∇Γv

e
Γh

· ∇Γψ
e
Γh
ds. (3.6)
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Proof. Given in section 2.3 in [6].
Due to the assumptions in (2.5) and (3.2) we have ess infx∈Γh

µ(x) > 0 and thus
A(x) is well-defined.

We now derive two further results that are needed in the analysis in section 4.
Lemma 3.3. There exists a constant c independent of h such that

‖∇Γv
e
Γh

‖L2(Γ) ≤ c ‖∇Γh
v‖L2(Γh) for all v ∈ H1(Γh) ∩ C(Γh).

Proof. Due to Lemma 3.2 we have

‖∇Γh
v‖2

L2(Γh) =

∫

Γ

Ae
Γh

(y)∇Γv
e
Γh

(y) · ∇Γv
e
Γh

(y) ds(y)

with ds(y) the surface measure on Γ. Take x ∈ Γh with p(x) = y. If x does not
lie on an edge, we have Ae

Γh
(y) = A(x) with A(x) as in (3.5). We drop the symbol

x in the notation and write A(x) = A = 1
µP(I − dH)Ph(I − dH)P. Decompose

nh as nh = αn + βn⊥ with ‖n⊥‖ = 1 and nT n⊥ = 0. From (2.5) is follows that
α ≥ c > 0 and thus β2 ≤ 1 − c2 < 1. Take z ∈ range(P) with ‖z‖ = 1. We then have
‖Phz‖ ≥ ‖z‖ − |zTnh| = ‖z‖ − |β||zTn⊥| ≥ (1 − |β|)‖z‖. Hence, there is a constant
c > 0 such that

‖PhPw‖ ≥ c ‖Pw‖ for all w ∈ R
3.

Using (3.2) it follows that there is a constant c > 0 such that ‖(I − dH)w‖ ≥ c ‖w‖
for all w ∈ R

3. Note that µ = µ(x) ≥ c > 0 holds. From these results we obtain,
using PH = HP (Lemma 3.1),

wT Aw =
1

µ
wT P(I − dH)Ph(I− dH)Pw

=
1

µ
‖PhP(I − dH)w‖2 ≥ c ‖Pw‖2 for all w ∈ R

3,

with a constant c > 0. This yields, using n(x) = n(p(x)) = n(y),

Ae
Γh

(y)w · w = wT A(x)w ≥ c ‖P(x)w‖2 = ‖P(y)w‖2,

with c > 0. For w = ∇Γv
e
Γh

(y) we have P(y)w = P(y)∇Γv
e
Γh

(y) = ∇Γv
e
Γh

(y) and
thus we get

‖∇Γh
v‖2

L2(Γh) =

∫

Γ

Ae
Γh

(y)∇Γv
e
Γh

(y) · ∇Γv
e
Γh

(y) ds(y)

≥ c

∫

Γ

∇Γv
e
Γh

(y) · ∇Γv
e
Γh

(y) ds(y) = c ‖∇Γv
e
Γh

‖2
L2(Γ),

with a constant c > 0.
Lemma 3.4. The following holds:

ess supy∈Γ‖
(

Ae
Γh

(y) − I
)

P(y)‖ ≤ ch2.
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Proof. Take y ∈ Γ and a corresponding x ∈ Γh such that p(x) = y. Assume that
x does not lie on an edge of the triangulation Γh, which is true for almost all y ∈ Γ.
Then we have

(Ae
Γh

(y) − I)P(y) = (A(x) − I)P(x).

We drop the symbol x in the notation and write A(x) = A = 1
µP(I−dH)Ph(I−dH)P.

Note that |µ| = µ(x) ≥ c > 0 holds. Decompose nh as nh = αn+βn⊥ with ‖n⊥‖ = 1
and nTn⊥ = 0. Due to (2.5) we have α = nTnh ≥ c > 0. From (2.6) we get
‖Pnh‖ = |β| ≤ ch. Hence,

|nT nh − 1| = 1 − α =
1 − α2

1 + α
≤ 1 − α2 = β2 ≤ c h2. (3.7)

Using this and |d(x)| ≤ ch2, |κi(x)| ≤ c, we obtain |µ− 1| ≤ c h2. Thus

∣

∣

1

µ
− 1

∣

∣ =
|µ− 1|
µ

≤ c h2 (3.8)

holds. We have

(A − I)P =
1

µ
P(I − dH)Ph(I − dH)P − P

=
[

( 1

µ
− 1

)

P(I − dH)Ph(I − dH)P
]

+
[

P(I − dH)Ph(I − dH)P − P
]

and consider the two terms on the right handside separately. For the first term we
get, using (3.8),

‖
( 1

µ
− 1

)

P(I − dH)Ph(I − dH)P‖ ≤
∣

∣

1

µ
− 1

∣

∣(1 + c h2)(1 + c h2) ≤ c h2.

For the second term we obtain, using (2.6),

‖P(I − dH)Ph(I − dH)P − P‖ ≤ ‖PPhP − P‖ + c h2

= ‖Pnhn
T
h P‖ + c h2 = ‖Pnh‖2 + c h2 ≤ c h2.

Combination of these bounds completes the proof.

4. Approximation error analysis. We are interested in the difference between
the terms

τ

∫

Γ

∇Γ idΓ ·∇ΓvH ds and τ

∫

Γh

∇Γh
idΓh

·∇Γh
vH ds for vH ∈ VH .

Since ∇Γ idΓ ·∇ΓvH =
∑3

i=1 ∇Γ(idΓ)i · ∇Γ(vH)i we consider only one term in this
sum, say the i-th. We write idΓ and v for the scalar functions (idΓ)i and (vH)i,
respectively. We write idΓh

for (idΓh
)i. Note that

∇Γ idΓ = P∇ idΓ = Pei, ∇Γh
idΓh

= Ph∇ idΓh
= Phei,

with ei the i-th basis vector in R
3. We introduce scalar versions on the functionals

fΓ and fΓh
defined in (2.9) and (2.3) (without loss of generality we can take τ := 1):

g(v) :=

∫

Γ

∇Γ idΓ ·∇Γv ds, gh(v) :=

∫

Γh

∇Γh
idΓh

·∇Γh
v ds.

9



As noted in Remark 2, g is a bounded linear functional on H1(U). To guarantee that
gh and the extension operator in (3.1) are well-defined we assume v ∈ H1(Γh)∩C(Γh).
Therefore, in the analysis in this section we use the function space W := H1(U) ∩
H1(Γh) ∩ C(Γh).

Remark 4. If we use a Hood-Taylor pair VH ×QH in the discretization of the
Navier-Stokes equations, then the i-th component v ∈ VH of vH ∈ VH = (VH)3

is continuous and piecewise polynomial (on the tetrahedral triangulation S). Thus
v ∈ W holds.

In this section we first derive, for v ∈ W , a bound for |g(v) − gh(v)| in terms of
‖v‖1,U := ‖v‖H1(U) and ‖∇Γh

v‖L2(Γh). This bound is given in Corollary 4.4. Using
this bound we then derive a bound for

sup
v∈VH

g(v) − gh(v)

‖v‖1
,

cf. Theorem 4.7. This immediately implies a bound for the approximation error as in
(2.8), cf. Corollary 4.8.

The analysis is based on the following splitting

g(v) − gh(v)

=

∫

Γ

∇Γ idΓ ·∇Γv ds−
∫

Γh

∇Γh
ide

Γ ·∇Γh
v ds+

∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds

(3.6)
=

∫

Γ

∇Γ idΓ ·∇Γv ds−
∫

Γ

Ae
Γh
∇Γ idΓ ·∇Γv

e
Γh
ds+

∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds

=

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds+

∫

Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh
ds

+

∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds. (4.1)

In the lemmas below we derive bounds for the three terms in (4.1). Note that the
first two terms do not involve idΓh

.
Lemma 4.1. The following holds:

∣

∣

∫

Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh
ds

∣

∣ ≤ c h2 ‖∇Γh
v‖L2(Γh) for all v ∈ W.

Proof. Using the Cauchy-Schwarz inequality and the results in Lemma 3.3,
Lemma 3.4 we obtain

∣

∣

∫

Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh
ds

∣

∣ =
∣

∣

∫

Γ

(I − Ae
Γh

)P∇Γ idΓ ·∇Γv
e
Γh
ds

∣

∣

≤ ess supy∈Γ‖(I− Ae
Γh

(y))P(y)‖ ‖∇Γ idΓ ‖L2(Γ) ‖∇Γv
e
Γh
‖L2(Γ)

≤ c h2 ‖∇Γh
v‖L2(Γh),

and thus the result holds.
Lemma 4.2. The following holds:

∣

∣

∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds
∣

∣ ≤ c h‖∇Γh
v‖L2(Γh) for all v ∈ W.

10



Proof. ¿From Lemma 3.1 we get for x ∈ Γh (not on an edge),

∇Γh
ide

Γ(x) = Ph(x)
(

I − d(x)H(x)
)

P(x)∇Γ idΓ(p(x))

= Ph(x)
(

I − d(x)H(x)
)

P(x)ei.

We also have ∇Γh
idΓh

= Ph∇ idΓh
= Phei. Hence,

∣

∣

∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds
∣

∣ (4.2)

=
∣

∣

∫

Γh

(

Ph(I − dH)Pei − Phei

)

· ∇Γh
v ds

∣

∣

≤ c ess supx∈Γh
‖Ph(x)

(

I − d(x)H(x)
)

P(x) − Ph(x)‖ ‖∇Γh
v‖L2(Γh)

≤ c ess supx∈Γh

(

‖Ph(x)P(x) − Ph(x)‖ (4.3)

+ |d(x)|‖Ph(x)H(x)P(x)‖
)

‖∇Γh
v‖L2(Γh). (4.4)

Note that |d(x)| ≤ c h2 for x ∈ Γh, and

ess supx∈Γh
‖Ph(x)H(x)P(x)‖ ≤ ess supx∈Γh

‖H(x)‖ ≤ c.

For the term in (4.3) we have (we drop x in the notation):

‖PhP − Ph‖ = ‖PhnnT ‖ ≤ ‖Phn‖ ≤ ‖Phn + Pnh‖ + ‖Pnh‖.

For the first term we get, using (3.7),

‖Phn + Pnh‖ =
∥

∥(1 − nTnh)(n + nh)
∥

∥ ≤ 2|1 − nT nh| ≤ c h2.

¿From (2.6) we get ‖Pnh‖ ≤ c h (a.e. on Γh). Thus ‖Ph(x)P(x)−Ph(x)‖ ≤ c h holds
a.e. on Γh. As an upper bound for (4.2) we obtain ch ‖∇Γh

v‖L2(Γh).
Lemma 4.3. The following holds:

∣

∣

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds
∣

∣ ≤ ch‖v‖1,U for all v ∈ W.

Proof. We take v ∈ C1(U). For y ∈ Γ we have ve
Γh

(y) = v(y ± δ(y)n(y)) with
a unique δ(y) ≥ 0 such that y ± δ(y)n(y) ∈ Γh. Note that δ(y) ≤ c h2 holds. Let
Um ⊂ U be a strip around Γ that contains Γh and has width m ≤ c h2. We now have

∣

∣

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds(y)
∣

∣ = |
∫

Γ

∆Γ idΓ

(

v(y) − v(y ± δ(y)n(y))
)

ds(y)
∣

∣

≤
∫

Γ

|∆Γ idΓ

∣

∣

∣

∣

∫ δ(y)

0

∂v

∂t
(y ± tn(y)) dt

∣

∣ ds(y)

≤ c

∫

Γ

∫ δ(y)

0

∣

∣

∂v

∂t
(y ± tn(y))

∣

∣ dt ds(y).

For x = y ± tn(y) with 0 ≤ t ≤ δ(y) we use n(x) = n(p(x)) = n(y) and obtain

∣

∣

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds(y)
∣

∣ ≤ c

∫

Um

|n(x) · ∇v(x)| dx

≤ c
(

∫

Um

1 dx
)

1
2

(

∫

Um

(∇v)2 dx
)

1
2 ≤ c h ‖v‖1,U .
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A density argument yields the same bound for all v ∈W .
A direct consequence of the previous three lemmas is the following corollary.
Corollary 4.4. The three terms in (4.1) can be bounded by

∣

∣

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds
∣

∣ ≤ c h ‖v‖1,U , (4.5)

∣

∣

∫

Γ

(I− Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh
ds

∣

∣ ≤ c h2 ‖∇Γh
v‖L2(Γh), (4.6)

∣

∣

∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds
∣

∣ ≤ c h ‖∇Γh
v‖L2(Γh), (4.7)

and thus

|g(v) − gh(v)| ≤ c h ‖v‖1,U + c h2 ‖∇Γh
v‖L2(Γh) + c h ‖∇Γh

v‖L2(Γh) for all v ∈ W

holds.
In view of Corollary 4.4 and the error measure in (2.8) we want to derive a bound

for ‖∇Γh
v‖L2(Γh) in terms of ‖v‖1 for v from the scalar finite element space VH . An

obvious approach is to apply an inverse inequality combined with a trace theorem,
resulting in:

‖∇Γh
v‖L2(Γh) ≤ c h−1

min‖v‖L2(Γh) ≤ c h−1
min‖v‖1 for all v ∈ VH . (4.8)

This, however, is too crude (cf. the bound in Corollary 4.4). In order to be able
to derive a better bound than the one in (4.8) we have to introduce some further
assumptions related to the family of triangulations {Γh}h>0. This family is assumed
to be shape-regular, i.e., all angles in of all triangles are uniformly (w.r.t. h) bounded
from below, but not necessarily quasi-uniform. We assume that to each triangulation
Γh = ∪T∈Fh

T there can be associated a set of tetrahedra Sh with the following
properties:

For each T ∈ Fh there is a corresponding ST ∈ Sh with T ⊂ ST . (4.9)

For T1, T2 ∈ Fh with T1 6= T2 we have meas3(ST1
∩ ST2

) = 0. (4.10)

The family {Sh}h>0 is shape-regular. (4.11)

c0h ≤ diam(ST ) ≤ ch for all T ∈ Fh, with c0 > 0 (quasi-uniformity). (4.12)

For each ST ∈ Sh there is a tetrahedron S ∈ S such that ST ⊂ S. (4.13)

Recall that S is the (fixed) tetrahedral triangulation that is used in the finite element
discretization of the Navier-Stokes problem in (1.6). Note that the set of tetrahedra
Sh has to be defined only close to the approximate interface Γh and that this set not
necessarily forms a regular tetrahedral triangulation.

Remark 5. Consider the construction of {Γh}h>0 as in Remark 3. The approxi-
mate interface Γh is the zero level of the function I(dh), which is continuous piecewise
linear on the tetrahedral triangulation T ′:

Γh = ∪TT.

Each T is a triangle or a quadrilateral. To each T there can be associated a tetrahe-
dron ST ∈ T ′ such that T ⊂ ST . If T is a quadrilateral then we can subdivide T and
ST in two disjoint triangles T1, T2 and two disjoint tetrahedra ST1

, ST2
, respectively,
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such that Ti ⊂ STi
⊂ ST for i = 1, 2. One can check that this construction results in

a family {Sh}h>0 that satisfies the conditions (4.9)-(4.13).
We note that the construction of the approximate interface does not guarantee that
the family {Γh}h>0 is shape-regular. In practice relatively few triangles with small
interior angles are likely to occur, which, however in our experience does not lead to
a significant deterioration of the approximation quality.

In the following lemma we consider a standard affine mapping between a tetrahe-
dron ST ∈ Sh and the reference unit tetrahedron and apply it to the triangle T ⊂ ST .

Lemma 4.5. Assume that the family {Γh}h>0 is shape-regular and that for the
associated family of sets of tetrahedra {Sh}h>0 the conditions (4.9)-(4.13) are satisfied.
Take T ∈ Fh and the corresponding ST ∈ Sh. Let Ŝ be the reference unit tetrahedron
and F (x) = Jx+b be an affine mapping such that F (Ŝ) = ST . Define T̂ := F−1(T ).
The following holds:

‖J‖2 meas3(Ŝ)

meas3(ST )
≤ c h−1, (4.14)

‖J−1‖2 meas2(T )

meas2(T̂ )
≤ c, (4.15)

with constants c independent of T and h.

Proof. Let ρ(ST ) be the diameter of the maximal ball contained in ST and
similarly for ρ(Ŝ). From standard finite element theory we have

‖J‖ ≤ diam(ST )

ρ(Ŝ)
, ‖J−1‖ ≤ diam(Ŝ)

ρ(ST )
.

Using (4.11) and (4.12) we then get

‖J‖2 meas3(Ŝ)

meas3(ST )
≤ c

diam(ST )2

meas3(ST )
≤ c diam(ST )−1 ≤ c h−1,

and thus the result in (4.14) holds.
The vertices of T̂ = F−1(T ) are denoted by V̂i, i = 1, 2, 3. Let V̂1V̂2 be a longest

edge of T̂ and M̂ the point on this edge such that M̂V̂3 is perpendicular to V̂1V̂2.
Define Vi := F (V̂i), i = 1, 2, 3, and M := F (M̂). Then Vi, i = 1, 2, 3, are the
vertices of T and M lies on the edge V1V2. Using the fact that T is an element of a
shape-regular family we get

meas2(T̂ ) =
1

2
‖V̂1 − V̂2‖‖V̂3 − M̂‖ =

1

2
‖J−1(V1 − V2)‖‖J−1(V3 −M)‖

≥ 1

2
‖J‖−2‖V1 − V2‖‖V3 −M‖ ≥ c

ρ(Ŝ)2

diam(ST )2
meas2(T),

with a constant c > 0. Thus we obtain

‖J−1‖2 meas2(T )

meas2(T̂ )
≤ c

diam(Ŝ)2

ρ(ST )2
diam(ST )2

ρ(Ŝ)2
≤ c,

which completes the proof.
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Theorem 4.6. Assume that the family {Γh}h>0 is shape-regular and that for
the associated family of sets of tetrahedra {Sh}h>0 the conditions (4.9)-(4.13) are
satisfied. The following holds:

‖∇Γh
v‖L2(Γh) ≤ c h−

1
2 ‖v‖1 for all v ∈ VH .

Proof. Note that

‖∇Γh
v‖2

L2(Γh) =
∑

T∈Fh

‖∇T v‖2
L2(T ).

Take T ∈ Fh and let ST be the associated tetrahedron as explained above. Let Ŝ be
the reference unit tetrahedron and F : Ŝ → ST as in Lemma 4.5. Define v̂ := v ◦ F .
Using standard transformation rules and Lemma 4.5 we get

‖∇T v‖2
L2(T ) = ‖Ph∇v‖2

L2(T ) ≤ ‖∇v‖2
L2(T ) =

∑

|α|=1

‖∂αv‖2
L2(T )

≤ c ‖J−1‖2
∑

|α|=1

‖(∂αv̂) ◦ F−1‖2
L2(T )

≤ c ‖J−1‖2 meas2(T )

meas2(T̂ )

∑

|α|=1

‖∂αv̂‖2
L2(T̂ )

≤ c
∑

|α|=1

‖∂αv̂‖2
L2(T̂ )

≤ c
∑

|α|=1

max
x∈T̂

∣

∣∂αv̂(x)
∣

∣

2 ≤ c
∑

|α|=1

max
x∈Ŝ

∣

∣∂αv̂(x)
∣

∣

2
,

with a constant c independent of T . From (4.13) it follows that v̂ is a polynomial on
Ŝ of maximal degree k, where k depends only on the choice of the finite element space
VH . On P ∗

k := { p ∈ Pk | p(0) = 0 } we have, due to equivalence of norms:

∑

|α|=1

max
x∈Ŝ

∣

∣∂αv̂(x)
∣

∣

2 ≤ c
∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

for all v̂ ∈ P ∗
k .

Because, for v̂ ∈ Pk and |α| = 1, ∂αv̂ is independent of v̂(0), the same inequality holds
for all v̂ ∈ Pk. Thus we get

‖∇T v‖2
L2(T ) ≤ c

∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

≤ c ‖J‖2
∑

|α|=1

‖(∂αv) ◦ F‖2
L2(Ŝ)

= c ‖J‖2 meas3(Ŝ)

meas3(ST )

∑

|α|=1

‖∂αv‖2
L2(ST ) ≤ c h−1‖∇v‖2

L2(ST ) ,

with a constant c independent of T and h. Using (4.10) we finally obtain

‖∇Γh
v‖2

L2(Γh) ≤ c h−1
∑

T∈Fh

‖∇v‖2
L2(ST )

≤ c h−1

∫

Ω

(∇v)2 dx ≤ c h−1‖v‖2
1 ,

which proves the result.
We now present the main result of this paper.
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Theorem 4.7. Let the assumptions be as in Theorem 4.6. The following holds:

sup
v∈VH

g(v) − gh(v)

‖v‖1
≤ c

√
h.

Proof. Combine the result in Corollary 4.4 with the one in Theorem 4.6.
As a direct consequence we obtain:
Corollary 4.8. Let the assumptions be as in Theorem 4.6. For fΓ and fΓh

as
defined in section 2 the following holds:

sup
v∈VH

fΓ(vH) − fΓh
(vH)

‖vH‖1
≤ τc

√
h.

Proof. Note that

fΓ(vH)−fΓh
(vH) = τ

3
∑

i=1

(

∫

Γ

∇Γ(idΓ)i ·∇Γ(vH)i ds−
∫

Γh

∇Γh
(idΓh

)i ·∇Γh
(vH)i ds

)

,

and use the result in Theorem 4.7.
An upper bound O(

√
h) as in Corollary 4.8 for the error in the approximation of

the localized force term may seem rather pessimistic, beause Γh is an O(h2) accurate
approximation of Γ. Numerical experiments in section 6, however, indicate that the
bound is sharp.

5. Improved approximation of the localized force term fΓ(vh). In this
section we show how the approximation of the localized force term can be improved,
resulting in an improved error bound of the form O(h) (instead of O(

√
h)).

¿From Corollary 4.4 and Theorem 4.6 we see that the
√
h behaviour is caused by

the estimate in (4.7):

∣

∣

∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds
∣

∣ ≤ c h ‖∇Γh
v‖L2(Γh). (5.1)

The term ∇Γh
idΓh

that is used in gh(v) occurs in (5.1) but not in the other two terms
of the splitting, cf. (4.5), (4.6). We consider

g̃h(v) =

∫

Γh

mh · ∇Γh
v ds

and try to find a function mh = mh(x) such that g̃h(v) remains easily computable and
the bound in (5.1) is improved if we use mh instead of ∇Γh

idΓh
. The latter condition

is trivially satisfied for mh = ∇Γh
ide

Γ (leading to a bound 0 in (5.1)). This choice,
however, does not satisfy the first condition, because Γ is not known. We now discuss
another possibility, that is used in the experiments in section 6.

Due to |d(x)| ≤ ch2 we get from Lemma 3.1, for x ∈ Γh:

∇Γh
ide

Γ(x) = Ph(x)P(x)∇Γ idΓ(p(x)) + O(h2) = Ph(x)P(x)ei + O(h2).

In the construction of the interface Γh, cf. Remark 3, we have a piecewise quadratic
function dh ≈ d available. Define

ñh(x) :=
∇dh(x)

‖∇dh(x)‖ , P̃h(x); = I − ñh(x)ñh(x)T , x ∈ Γh.
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Thus an obvious modification is based on the choice mh(x) = Ph(x)P̃h(x)ei, i.e.,

g̃h(v) :=

∫

Γh

Ph(x)P̃h(x)ei · ∇Γh
v ds. (5.2)

In this approach the approximate interface Γh is not changed (piecewise planar). For
piecewise quadratics dh and v, the function ∇Γh

v = Ph∇v is piecewise linear and
PhP̃hei is piecewise (very) smooth on the segments of Γh. Hence, the functional in
(5.2) can be evaluated easily.

Under reasonable assumptions the modified functional indeed yields a better error
bound:

Lemma 5.1. Assume that there exists p > 0 such that

‖∇dh(x) −∇d(x)‖ ≤ c hp, for x ∈ Γh. (5.3)

Then the following holds:

∣

∣

∫

Γh

(

∇Γh
ide

Γ −PhP̃hei

)

· ∇Γh
v ds

∣

∣ ≤ c hmin{p,2} ‖∇Γh
v‖L2(Γh) for all v ∈W.

Proof. Using ‖∇d‖ = 1 it follows that ‖∇dh‖ = 1 +O(hp) holds. We can use the
line of reasoning as in the proof of Lemma 4.2. The term in (4.4) remains the same.
Instead of the term in (4.3) we now get ‖Ph(x)P(x) − Ph(x)P̃h(x)‖. We drop x in
the notation and using the assumption we obtain

‖PhP − PhP̃h‖ = ‖Ph(P − P̃h)‖ ≤ ‖nnT − ñhñ
T
h ‖

≤ ‖(n− ñh)nT ‖ + ‖ñh(n − ñh)T ‖ = 2‖n− ñh‖

= 2
∥

∥∇d− ∇dh

‖∇dh‖
∥

∥

≤ 2
∣

∣1 − ‖∇dh‖−1
∣

∣‖∇dh‖ + 2‖∇d−∇dh‖ ≤ c hp.

Thus we get an estimate ‖PhP − PhP̃h‖ ≤ c hp. Combined with the inequality
|d(x)|‖Ph(x)H(x)P(x)‖ ≤ c h2 for the term in (4.4) this proves the result.

If we assume that the condition in (5.3) is satisfied for p = 2, which is reasonable
for a piecewise quadratic approximation dh of d, we get the following improvement
due to the modified functional g̃h, cf. Corollary 4.4:

|g(v) − g̃h(v)| ≤ c h ‖v‖1,U + c h2 ‖∇Γh
v‖L2(Γh) for all v ∈ W.

Combining this with the result in Theorem 4.6 yields (under the assumption as in
Theorem 4.6):

|g(v) − g̃h(v)| ≤ c h ‖v‖1,U + c h1 1
2 ‖v‖1 for all v ∈ VH .

Hence, using this modified functional g̃h we have a O(h) error bound. This significant
improvement (compared to the O(

√
h) error bound for the functional gh) is confirmed

by the numerical experiments in the next section.
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Fig. 6.1. Lower half part of the 4 times refined mesh T4.

6. Numerical experiments. In this section we present results of a numerical
experiment which indicates that the O(

√
h) bound in Corollary 4.8 is sharp. Further-

more, for the improved approximation described in section 5 the O(h) bound will be
confirmed numerically.

We consider the domain Ω := [−1, 1]3 where the ball Ω1 := {x ∈ Ω | ‖x‖ < R} is
located in the center of the domain. In our experiments we take R = 1

2 .
For the discretizaton a uniform tetrahedral mesh T0 is used where the vertices form
a 6 × 6 × 6 lattice, hence h0 = 1

5 . This coarse mesh T0 is locally refined in the
vicinity of Γ = ∂Ω1 using an adaptive refinement algorithm presented in [13]. This
repeated refinement process yields the gradually refined meshes T1, T2, . . . with local
(i.e., close to the interface) mesh sizes hi = 1

52−i, i = 1, 2, . . .. Part of the tetrahedral
triangulation T4 is shown in figure 6.1. The corresponding finite element spaces Vi :=
Vhi

= (Vhi
)3 consists of vector functions where each component is a continuous

piecewise quadratic function on Ti.

The interface Γ = ∂Ω1 is a sphere and thus the curvature K = 2
R is constant.

If we discretize the flow problem using Vi as discrete velocity space, we have to
approximate the surface tension force

fΓ(v) =
2τ

R

∫

Γ

nΓ · v ds = τ

∫

Γ

∇Γ idΓ ·∇Γv ds, v ∈ Vi. (6.1)

To simplify notation, we take a fixed i ≥ 0 and the corresponding local mesh size
parameter is denoted by h = hi. For the approximation of the interface we use
the following approach (cf. Remark 3). The interface Γ is the zero level of the
signed distance function d. In this test problem d is known. For the finite element
approximation dh ∈ Vh of d we take the continuous piecewise quadratic function on
Ti that interpolates d at the vertices and midpoints of edges. Then I(dh) ∈ Vhi+1

is the continous piecewise linear function on T ′
i that interpolates dh at the vertices

of all tetrahedra in T ′
i , cf. Remark 3 (note that in this test problem dh can also be

computed by piecewise linear interpolation of d on T ′
i ). The approximation of Γ is

defined by

Γh = { x ∈ Ω | I(dh)(x) = 0 }.
17



The discrete approximation of the surface tension force is

fΓh
(v) = τ

∫

Γh

∇Γh
idΓh

·∇Γv ds, v ∈ Vi.

We are interested in, cf. Corollary 4.8,

‖fΓ − fΓh
‖V′

i
:= sup

v∈Vi

fΓ(v) − fΓh
(v)

‖v‖1
. (6.2)

The evaluation of fΓ(v), for v ∈ Vi, requires the computation of integrals on curved
triangles or quadrilaterals Γ ∩ S where S is a tetrahedron from the mesh Ti. We are
not able to compute these exactly. Therefore, we introduce an artificial force term
which, in this model problem with a known constant curvature, is computable and
sufficiently close to fΓ.

Lemma 6.1. For v ∈ V = (H1
0 (Ω))3 define

f̂Γh
(v) :=

2τ

R

∫

Γh

nh · v ds.

(nh: piecewise constant outward unit normal on Γh). Then the following inequality
holds:

‖fΓ − f̂Γh
‖V′ ≤ ch. (6.3)

Proof. Let Ω1,h ⊂ Ω be the domain enclosed by Γh, i.e. ∂Ω1,h = Γh. We define
D+

h := Ω1 \ Ω1,h, D−
h := Ω1,h \ Ω1 and Dh := D+

h ∪D−
h . Due to Stokes theorem, for

v ∈ V we have

|fΓ(v) − f̂Γh
(v)| =

2τ

R
|
∫

Ω1

div v dx −
∫

Ω1,h

div v dx| (6.4)

=
2τ

R
|
∫

D+

h

div v dx −
∫

D−

h

div v dx| (6.5)

≤ 2τ

R

∫

Dh

| div v| dx. (6.6)

Using the Cauchy-Schwarz inequality, we get the estimate

|fΓ(v) − f̂Γh
(v)| ≤ c

√

|Dh|‖v‖1 for all v ∈ V.

For the piecewise planar approximation Γh of the interface Γ we have |Dh| = O(h2)
and thus (6.3) holds.

¿From Lemma 6.1 we obtain ‖fΓ − f̂Γh
‖V′

j
≤ c h with a constant c independent

of j. Thus we have

‖f̂Γh
− fΓh

‖V′

i
− ch ≤ ‖fΓ − fΓh

‖V′

i
≤ ‖f̂Γh

− fΓh
‖V′

i
+ ch. (6.7)

The term ‖f̂Γh
−fΓh

‖V′

i
can be evaluated as follows. Since Γh is piecewise planar and

v ∈ Vi is a piecewise quadratic function, for v ∈ Vi, both f̂Γh
(v) and fΓh

(v) can
be computed exactly (up to machine accuracy) using suitable quadrature rules. For
the evaluation of the dual norm ‖ · ‖V′

i
we proceed as follows. Let {φj}j=1,...,n be the

18



standard nodal basis in Vi and J : R
n → Vi the isomorphism J~x =

∑n
k=1 xkφk. Let

Mh be the mass matrix and Ah the stiffness matrix of the Laplacian:

(Mh)i,j :=

∫

Ω

φi · φj dx,

(Ah)i,j :=

∫

Ω

∇φi · ∇φj dx.

1 ≤ i, j ≤ n.

Define Ch = Ah + Mh. Note that for v = J~x ∈ Vi we have ‖v‖2
1 = 〈Ch~x, ~x〉. Take

e ∈ V′
i and define ~e ∈ R

n by ej := e(φj), j = 1, . . . , n. Due to

‖e‖V′

i
= sup

v∈Vi

|e(v)|
‖v‖1

= sup
~x∈Rn

|∑n
j=1 xje(φj)|

√

〈Ch~x, ~x〉

we obtain

‖e‖V′

i
= sup

~x∈Rn

〈~x,~e〉
√

〈Ch~x, ~x〉
= ‖C−1/2

h ~e‖ =
√

〈C−1
h ~e,~e〉. (6.8)

Thus for the computation of ‖e‖V′

i
we proceed in the following way:

1. Compute ~e =
(

e(φj)
)n

j=1
.

2. Solve the linear system Ch~z = ~e up to machine accuracy.
3. Compute ‖e‖V′

i
=

√

〈~z,~e〉.
We applied this strategy to e := f̂Γh

−fΓh
. The results are given in the second column

in table 6.1. The numerical order of convergence in the third column of this table
clearly indicates an O(

√
h) behaviour. Due to (6.7) this implies the same O(

√
h)

convergence behaviour for ‖fΓ − fΓh
‖V′

i
. This indicates that the O(

√
h) bound in

Corollary 4.8 is sharp.
The same procedure can be applied with fΓh

replaced by the modified (improved)
approximate surface tension force

f̃Γh
(v) = τ

3
∑

i=1

g̃h,i(vi)

with g̃h,i as defined in (5.2). This yields the results in the fourth column in table 6.1.
For this modification the numerical order of convergence is significantly better, namely
at least first order in h. From (6.7) it follows that for ‖fΓ − f̃Γh

‖V′

i
we can expect

O(hp) with p ≥ 1.
Summarizing, we conclude that the results of these numerical experiments confirm
the theoretical O(

√
h) error bound derived in the analysis in section 4 and show that

the modified approximation indeed leads to (much) better results.
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