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Abstract

This paper generalizes the non-conforming FEM of Crouzeix and Raviart
and its fundamental projection property by a novel mixed formulation for
the Poisson problem based on the Helmholtz decomposition. The new for-
mulation allows for ansatz spaces of arbitrary polynomial degree and its
discretization coincides with the mentioned non-conforming FEM for the
lowest polynomial degree. The discretization directly approximates the gra-
dient of the solution instead of the solution itself. Besides the a priori and
medius analysis, this paper proves optimal convergence rates for an adaptive
algorithm for the new discretization. These are also demonstrated in numer-
ical experiments. Furthermore, this paper focuses on extensions of this new
scheme to quadrilateral meshes, mixed FEMs, and three space dimensions.

Keywords non-conforming FEM, Helmholtz decomposition, mixed FEM, adaptive FEM,
optimality
AMS subject classification 65N30, 65N12, 65N15

1 Introduction

Non-conforming finite element methods (FEMs) play an important role in com-
putational mechanics. They allow the discretization of partial differential equa-
tions (PDEs) for incompressible fluid flows, for almost incompressible materials in
linear elasticity, and for low polynomial degrees in the ansatz spaces for higher-
order problems. The projection property of the interpolation operator of the P1

non-conforming FEM, also named after Crouzeix and Raviart [21], states that the
L2 projection of ∇H1

0 (Ω) onto the space of piecewise constant functions equals the
space of piecewise gradients of the non-conforming interpolation of H1

0 (Ω) func-
tions in the P1 non-conforming finite element space. This property is the basis for
the proof of the discrete inf-sup condition for the Stokes equations [21] as well as
for the analysis of adaptive algorithms [6].

Many possible generalizations of the P1 non-conforming FEM to higher poly-
nomial degrees have been proposed. All those generalizations are either based on
a modification of the classical concept of degrees of freedom [23, 22, 41], are re-
stricted to odd polynomial degrees [20, 3], or employ an enrichment by additional
∗This work was supported by the Berlin Mathematical School.
†Institut für Numerische Simulation, Universität Bonn, Wegelerstraße 6, D-53115 Bonn, Ger-
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bubble-functions [29, 28]. However, none of those generalizations possesses a cor-
responding projection property of the interpolation operator for higher moments
(see Remark 3.15 below). This paper introduces a novel formulation of the Poisson
equation (in (3.3) below) based on the Helmholtz decomposition along with its dis-
cretization of arbitrary (globally fixed) polynomial degree. This new discretization
approximates directly the gradient of the solution, which is often the quantity of
interest, instead of the solution itself. For the lowest-order polynomial degree, the
discrete Helmholtz decomposition of [4] proves equivalence of the novel discretiza-
tion with the known non-conforming Crouzeix-Raviart FEM [21] and therefore
they appear in a natural hierarchy. In the context of the novel (mixed) formu-
lation, these discretizations turn out to be conforming. Although the complexity
of the new discretization itself is competitive with that of a standard FEM, the
method requires the pre-computation of some function ϕ such that its divergence
equals the right-hand side. If this is not computable analytically, this results in an
additional integration (see also Remark 3.6 below). However, this paper focuses on
the Poisson problem as a model problem to introduce the idea of the new approach
and to give a broad impression over possible extensions as quadrilateral discretiza-
tions (including a discrete Helmholtz decomposition on quadrilateral meshes for
the non-conforming Rannacher-Turek FEM [33] as a further highlight of this pa-
per), the generalization to three dimensions, or inhomogeneous mixed boundary
conditions. The advantages of the new approach in some applications will be the
topic of forthcoming papers [36, 37].

The presence of singularities for non-convex domains usually yields the same
sub-optimal convergence rate for any polynomial degree. This motivates adaptive
mesh-generation strategies, which recover the optimal convergence rates. This
paper presents an adaptive algorithm and proves its optimal convergence. The
proof essentially follows ideas from the context of the non-conforming Crouzeix-
Raviart FEM [6, 32]. This illustrates that the novel discretization generalizes it
in a natural way. Since the efficient and reliable error estimator involves a data
approximation term without a multiplicative power of the mesh-size, the adaptive
algorithm is based on separate marking.

A possible drawback of the new FEMs is that the gradient of the solution ∇u is
approximated, but not the solution u itself. This excludes obvious generalizations
to partial differential equations where u appears in lower-order terms.

The remaining parts of this paper are organized as follows. Section 2 defines
some notation. Section 3 introduces the novel formulation based on the Helmholtz
decomposition and its discretization together with an a priori error estimate. The
equivalence with the P1 non-conforming FEM for the lowest-order case is proved in
Subsection 3.3. Section 4 summarizes some generalizations. Section 5 is devoted to
a medius analysis of the FEM, which uses a posteriori techniques to derive a priori
error estimates. Section 6 proves quasi-optimality of an adaptive algorithm, while
Section 7 outlines the generalization to 3D. Section 8 concludes this paper with
numerical experiments.
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2 Notation

Throughout this paper Ω ⊆ R2 is a simply connected, bounded, polygonal Lip-
schitz domain. Standard notation on Lebesgue and Sobolev spaces and their norms
is employed with L2 scalar product (•, •)L2(Ω). Given a Hilbert space X, let
L2(Ω;X) resp. Hk(Ω;X) denote the space of functions with values in X whose
components are in L2(Ω) resp. Hk(Ω) and let L2

0(Ω) denote the subset of L2(Ω)
of functions with vanishing integral mean. The space of L2 functions whose weak
divergence exists and is in L2 is denoted with H(div,Ω). The space of infinitely
differentiable functions reads C∞(Ω) and the subspace of functions with compact
support in Ω is denoted with C∞c (Ω). The piecewise action of differential operators
is denoted with a subscript NC. The formula A . B represents an inequality
A ≤ CB for some mesh-size independent, positive generic constant C; A ≈ B
abbreviates A . B . A. By convention, all generic constants C ≈ 1 do neither
depend on the mesh-size nor on the level of a triangulation but may depend on
the fixed coarse triangulation T0 and its interior angles. The Curl operator in two
dimensions is defined by Curlβ := (∂β/∂x2,−∂β/∂x1) for sufficiently smooth β.

A shape-regular triangulation T of a bounded, polygonal, open Lipschitz do-
main Ω ⊆ R2 is a set of closed triangles T ∈ T such that Ω =

⋃
T and any two

distinct triangles are either disjoint or share exactly one common edge or one ver-
tex. Let E(T ) denote the edges of a triangle T and E := E(T) :=

⋃
T∈T E(T ) the

set of edges in T. Any edge E ∈ E is associated with a fixed orientation of the unit
normal νE on E (and τE = (0,−1; 1, 0)νE denotes the unit tangent on E). On
the boundary, νE is the outer unit normal of Ω, while for interior edges E 6⊆ ∂Ω,
the orientation is fixed through the choice of the triangles T+ ∈ T and T− ∈ T

with E = T+ ∩ T− and νE := νT+ |E is then the outer normal of T+ on E. In this
situation, [v]E := v|T+ − v|T− denotes the jump across E. For an edge E ⊆ ∂Ω on
the boundary, the jump across E reads [v]E := v. For T ∈ T and X ⊆ Rn, let

Pk(T ;X) :=

{
v : T → X

∣∣∣∣
each component of v is a polynomial
of total degree ≤ k

}
;

Pk(T;X) := {v : Ω→ X | ∀T ∈ T : v|T ∈ Pk(T ;X)}

denote the set of piecewise polynomials and Pk(T) := Pk(T;R). Given a subspace
X ⊆ L2(Ω;Rn), let ΠX : L2(Ω;Rn)→ X denote the L2 projection onto X and let
Πk abbreviate ΠPk(T;Rn). Given a triangle T ∈ T, let hT := (meas2(T ))1/2 denote
the square root of the area of T and let hT ∈ P0(T) denote the piecewise constant
mesh-size with hT|T := hT for all T ∈ T. For a set of triangles M ⊆ T, let ‖ • ‖M
abbreviate

‖ • ‖M :=

√∑

T∈M
‖ • ‖2

L2(T )
.

Given an initial triangulation T0, an admissible triangulation is a regular triangu-
lation which can be created from T0 by newest-vertex bisection [40]. The set of
admissible triangulations is denoted by T.
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3 Problem formulation and discretization

This section introduces the new formulation based on the Helmholtz decomposition
in Subsection 3.1 and its discretization in Subsection 3.2. Subsection 3.3 discusses
the equivalence with the P1 non-conforming Crouzeix-Raviart FEM [21].

3.1 New mixed formulation of the Poisson problem

Given the simply connected, bounded, polygonal Lipschitz domain Ω ⊆ R2 and
f ∈ L2(Ω), the Poisson model problem seeks u ∈ H1

0 (Ω) with

−∆u = f in Ω and u = 0 on ∂Ω. (3.1)

The novel weak formulation is based on the classical Helmholtz decomposition [35]

L2(Ω;R2) = ∇H1
0 (Ω)⊕ Curl(H1(Ω) ∩ L2

0(Ω)) (3.2)

for any simply connected domain Ω ⊆ R2, where the sum is orthogonal with
respect to the L2 scalar product.

Remark 3.1. Note that for Ω ⊆ R2, the definition of the Curl implies

H(Curl,Ω) := {β ∈ L2(Ω) | Curlβ ∈ L2(Ω)} = H1(Ω).

Define X := L2(Ω;R2) and Y := H1(Ω)∩L2
0(Ω) and let ϕ ∈ H(div,Ω) satisfy

−divϕ = f . The novel weak formulation of the Poisson problem (3.1) seeks
(p, α) ∈ X × Y with

(p, q)L2(Ω) + (q,Curlα)L2(Ω) = (ϕ, q)L2(Ω) for all q ∈ X,
(p,Curlβ)L2(Ω) = 0 for all β ∈ Y.

(3.3)

This formulation is the point of departure for the numerical approximation of ∇u
in Subsection 3.2.

Remark 3.2 (existence of solutions). Since CurlY ⊆ X, any β ∈ Y satisfies the
inf-sup condition

‖Curlβ‖L2(Ω) ≤ sup
q∈X\{0}

(q,Curlβ)L2(Ω)

‖q‖L2(Ω)
.

This and Brezzi’s splitting lemma [11] imply the unique existence of a solution
(p, α) ∈ X × Y to (3.3). The L2 orthogonality of p and Curlα implies

‖p‖2L2(Ω) + ‖Curlα‖2L2(Ω) = ‖ϕ‖2L2(Ω).

Remark 3.3 (equivalence of (3.1) and (3.3)). The second equation of (3.3) and
the Helmholtz decomposition (3.2) imply the existence of ũ ∈ H1

0 (Ω) with p = ∇ũ.
Since ϕ ∈ H(div,Ω) satisfies −divϕ = f , the L2 orthogonality in (3.2) implies
that any v ∈ H1

0 (Ω) satisfies

(p,∇v)L2(Ω) = (ϕ,∇v)L2(Ω) = (f, v)L2(Ω)

and, hence, ũ solves (3.1).
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Remark 3.4 (mixed boundary conditions). Let ∂Ω = ΓD ∪ ΓN with ΓD closed,
ΓD ∩ΓN = ∅, and each connectivity component of ΓD has positive length. Assume
that the triangulation resolves ΓD. Let H−1/2(ΓN ) denote the space of generalized
normal traces of H(div,Ω) functions and let uD ∈ H1(Ω) and g ∈ H−1/2(ΓN )
in the sense that there holds g = q · ν on ΓN in the sense of distributions for
some q ∈ H(div,Ω). Consider the mixed boundary value problem −∆u = f in
Ω with u|ΓD = uD on ΓD and (∇u · ν)|ΓN = g on ΓN . Let H1

D(Ω) denote the
subspace of H1(Ω) of functions with vanishing trace on ΓD. For ΓD = ∅, define
H1
D(Ω) := H1(Ω) ∩ L2

0(Ω). Define

H1
? (Ω) := {β ∈ Y | β is constant on each connectivity component of ΓN}.

The Helmholtz decomposition

L2(Ω;R2) = ∇H1
D(Ω)⊕ CurlH1

? (Ω)

for mixed boundary conditions [24, Corollary 3.1] then leads to the following for-
mulation. Let ϕ ∈ H(div,Ω) with −divϕ = f additionally fulfil the boundary
condition ϕν|ΓN = g and seek (p, α) ∈ L2(Ω;R2)×H1

? (Ω) with

(p, q)L2(Ω) + (q,Curlα)L2(Ω) = (ϕ, q)L2(Ω) for all q ∈ L2(Ω;R2),

(p,Curlβ)L2(Ω) = (∇uD,Curlβ)L2(Ω) for all β ∈ H1
? (Ω).

Since p = ϕ−Curlα ∈ H(div,Ω), the equivalence follows as in Subsection 3.1 and
with

(p · ν)|ΓN = (ϕ · ν)|ΓN − (Curlα · ν)|ΓN = g − (∇α · τ)|ΓN = g.

Remark 3.5 (multiply connected domains). If Ω ⊆ R2 is a multiply connected
polygonal bounded Lipschitz domain and ∂Ω = ΓD ∪ ΓN , such that all parts of ΓD
lie on the outer boundary of Ω (on the unbounded connectivity component of R2\Ω),
then the Helmholtz decomposition of Remark 3.4 still holds and a discretization as
above is then immediate. However, if the Dirichlet boundary ΓD also covers parts
of interior boundary, that Helmholtz decomposition does no longer hold: There
exist harmonic functions which are constant on different parts of ΓD and, hence,
are neither in ∇H1

ΓD
(Ω), nor in CurlH1

? (Ω).

Remark 3.6 (computation of ϕ). The computation of ϕ appears as a practical
difficulty because ϕ needs to be defined through an integration of f . If f has some
simple structure, e.g., f is polynomial, this can be done manually, while for more
complicated f , a numerical integration of f has to be employed, but is possible in
parallel.

3.2 Discretization

Let T be a regular triangulation of Ω and k ∈ N ∪ {0} and define

Xh(T) := Pk(T;R2) and Yh(T) := Pk+1(T) ∩ Y.
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The discretization of (3.3) seeks ph ∈ Xh(T) and αh ∈ Yh(T) with

(ph, qh)L2(Ω) + (qh,Curlαh)L2(Ω) = (ϕ, qh)L2(Ω) for all qh ∈ Xh(T), (3.4.a)

(ph,Curlβh)L2(Ω) = 0 for all βh ∈ Yh(T). (3.4.b)

Remark 3.7. Since there are no continuity conditions on qh ∈ Xh(T) and since
CurlYh(T) ⊆ Xh(T), the first equation is fulfilled in a strong form, i.e.,

ph + Curlαh = Πkϕ.

In contrast to classical finite element methods, the approximation ph of ∇u is a
gradient only in a discrete orthogonal sense, namely (3.4.b). For k = 0, Subsec-
tion 3.3 below proves that this discrete orthogonal gradient property is equivalent
to being a non-conforming gradient of a Crouzeix-Raviart finite element function.
The main motivation of the novel formulation is the generalization of this scheme
to any polynomial degree k.

Remark 3.8 (existence of discrete solutions). Since CurlYh(T) ⊆ Xh(T), the
discrete inf-sup condition

‖Curlβh‖L2(Ω) ≤ sup
qh∈Xh(T)\{0}

(qh,Curlβh)L2(Ω)

‖qh‖L2(Ω)
for all βh ∈ Yh(T)

is fulfilled. This and Brezzi’s splitting lemma [11] imply the unique existence of a
solution (ph, αh) ∈ Xh(T)× Yh(T) to (3.4). The equality in

‖ph‖2L2(Ω) + ‖Curlαh‖2L2(Ω) = ‖Πkϕ‖2L2(Ω) ≤ ‖ϕ‖2L2(Ω).

follows from the L2 orthogonality of ph and Curlαh.

The conformity of the method and the inf-sup conditions from Remarks 3.2
and 3.8 imply the following best-approximation result.

Theorem 3.9 (best-approximation). The solution (p, α) ∈ X × Y to (3.3) and
the discrete solution (ph, αh) ∈ Xh(T)× Yh(T) of (3.4) satisfy

‖p− ph‖L2(Ω) + ‖Curl(α− αh)‖L2(Ω) (3.5)

.
(

min
qh∈Xh(T)

‖p− qh‖L2(Ω) + min
βh∈Yh(T)

‖Curl(α− βh)‖L2(Ω)

)
.

Remark 3.10. A direct analysis of the bilinear form B :
(
X×Y

)
×
(
X×Y

)
→ R

defined by

B((p, α), (q, β)) := (p, q)L2(Ω) + (q,Curlα)L2(Ω) + (p,Curlβ)L2(Ω) (3.6)

for all p, q ∈ X and all α, β ∈ Y reveals that the inf-sup constant of B equals 5
and, hence, the constant hidden in . in (3.5) is 5.
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Remark 3.11. The best-approximation of Theorem 3.9 contains the term

min
βh∈Yh(T)

‖Curl(α− βh)‖L2(Ω)

on the right-hand side, which depends on the choice of ϕ. This seems to be worse
than the best-approximation results for standard FEMs, which do not involve such
a term. However, if ϕ is chosen smooth enough, then Curlα = ϕ−∇u has at least
the same regularity as ∇u, and therefore the convergence rate is not diminished.
On the other hand, the approximation space for p does not have any continuity
restriction and so the first approximation term

min
qh∈Xh(T)

‖p− qh‖L2(Ω) (3.7)

is superior to the best-approximation of a standard FEM, where p = ∇u is approx-
imated with gradients of finite element functions. However, [42, Theorem 3.2] and
the comparison results of [15] prove equivalence of (3.7) and the best-approximation
with gradients of a standard FEM up to some multiplicative constant.

The following lemma proves a projection property. This means that for any v ∈
H1

0 (Ω), the best-approximation of ∇v in Xh(T) is a discrete orthogonal gradient in
the sense that it is orthogonal to CurlYh(T) and so belongs to the set of discrete
orthogonal gradients Wh(T) defined by

Wh(T) := {qh ∈ Xh(T) | (qh,Curlβh)L2(Ω) = 0 for all βh ∈ Yh(T)}. (3.8)

The projection property is the key ingredient in the optimality analysis of Sec-
tion 6.

Lemma 3.12 (projection property). It holds thatWh(T) = ΠXh(T)∇H1
0 (Ω). More-

over, if T? is an admissible refinement of T, then ΠXh(T)Wh(T?) = Wh(T).

Proof. Let q ∈ ∇H1
0 (Ω). Since CurlYh(T) ⊆ Xh(T) and Yh(T) ⊆ Y , the orthogo-

nality in the Helmholtz decomposition (3.2) implies for any βh ∈ Yh(T) that

(ΠXh(T)q,Curlβh)L2(Ω) = (q,Curlβh)L2(Ω) = 0.

This proves ΠXh(T)∇H1
0 (Ω) ⊆ Wh(T). For the converse direction, let ph ∈ Wh(T)

and let u ∈ H1
0 (Ω) be a solution (possibly not unique) to

(ΠXh(T)∇u,ΠXh(T)∇v)L2(Ω) = (ph,ΠXh(T)∇v)L2(Ω) for all v ∈ H1
0 (Ω).

The orthogonality of ph − ΠXh(T)∇u to ∇H1
0 (Ω) implies the existence of α ∈ Y

such that ph − ΠXh(T)∇u = Curlα. Therefore, Curlα ∈ Xh(T) and, hence, α
is a piecewise polynomial of degree ≤ k + 1 and therefore α ∈ Yh(T). But since
ph ∈Wh(T), it holds that

‖Curlα‖2L2(Ω) = (ph −ΠXh(T)∇u,Curlα)L2(Ω) = 0

and, hence, α = 0. This proves ΠXh(T)∇u = ph and, therefore, Wh(T) ⊆
ΠXh(T)∇H1

0 (Ω).
A similar proof applies in the discrete case and proves ΠXh(T)Wh(T? = Wh(T).
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Remark 3.13 (computational costs). Problem (3.4) is equivalent to the problem:
Find (ph, αh) ∈ Xh(T)× Yh(T) such that

(Curlβh,Curlαh)L2(Ω) = (ϕ,Curlβh)L2(Ω) for all βh ∈ Yh(T),

ph = ΠXh(T)ϕ− Curlαh.

Therefore, the system matrix is (in 2D) the same than that of a standard FEM
(up to degrees of freedom on the boundary).

3.3 Equivalence with Crouzeix-Raviart FEM

The non-conforming Crouzeix-Raviart finite element space [21] reads

CR1
0(T) :=

{
vCR ∈ P1(T)

∣∣∣∣
vCR is continuous at midpoints of interior edges
and vanishes at midpoints of boundary edges

}
.

Since CR1
0(T) 6⊆ H1

0 (Ω) (if the triangulation consists of more than one triangle),
the weak gradient of a function vCR ∈ CR1

0(T) does not exist in general. However,
the piecewise version ∇NCvCR ∈ P0(T;R2) defined by (∇NCvCR)|T := ∇(vCR|T ) for
all T ∈ T exists. The P1 non-conforming discretization of the Poisson problem
seeks uCR ∈ CR1

0(T) with

(∇NCuCR,∇NCvCR)L2(Ω) = (f, vCR)L2(Ω) for all vCR ∈ CR1
0(T). (3.9)

The lowest-order space of Raviart-Thomas finite element functions [34] reads

RT0(T) :=

{
qRT ∈ H(div,Ω)

∣∣∣∣
∀T ∈ T ∃aT ∈ R2, bT ∈ R
with qRT(x) = aT + bTx

}
. (3.10)

The Raviart-Thomas functions have the property that the integration by parts
formula holds for functions in H1

0 (Ω) as well as for functions in CR1
0(T).

The following proposition proves the equivalence of the P1 non-conforming dis-
cretization and the discretization (3.4) for k = 0. Note that the discretization (3.9)
is a non-conforming discretization, while the discretization (3.4) is a conforming
one.

Proposition 3.14 (equivalence with CR-NCFEM). Let f ∈ P0(T) be piecewise
constant and let ϕRT ∈ RT0(T) satisfy −divϕRT = f . Then the discrete solution
(ph, αh) ∈ P0(T;R2) × (P1(T) ∩ Y ) to (3.4) for k = 0 and the gradient of the
discrete solution uCR ∈ CR1

0(T) to (3.9) coincide,

ph = ∇NCuCR. (3.11)

Proof. The crucial point is the discrete Helmholtz decomposition [4]

P0(T;R2) = ∇NCCR1
0(T)⊕ Curl(P1(T) ∩ Y ). (3.12)

Since ph is L2 orthogonal to Curl(P1(T) ∩ Y ), this implies ph = ∇NCũCR for some
ũCR ∈ CR1

0(T). Let qh = ∇NCvCR for some vCR ∈ CR1
0(T). Then qh is L2

8
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orthogonal to Curl(P1(T) ∩ Y ) and a piecewise integration by parts and (3.4)
imply

(∇NCũCR,∇NCvCR)L2(Ω) = (ph, qh)L2(Ω) = (ϕRT, qh)L2(Ω)

= (−divϕRT, vCR)L2(Ω) = (f, vCR)L2(Ω).

Hence, ũCR = uCR solves (3.9).

The projection property from Lemma 3.12 generalizes the famous integral mean
property ∇NCINCv = ΠP0(T;R2)∇v for all v ∈ H1

0 (Ω) of the non-conforming interpo-
lation operator INC.

Remark 3.15 (higher polynomial degrees). For higher polynomial degrees k ≥ 1,
the discretization (3.4) is not equivalent to known non-conforming schemes [23,
20, 21, 28], in the sense that Wh(T) 6= ∇NCVh(T) for those non-conforming finite
element spaces Vh(T). This follows from ∇NCVh(T) 6⊆ Wh(T) for non-conforming
FEMs with enrichment. A dimension argument shows

dim(Wh(T)) > dimVh(T)

for the non-conforming FEMs of [23, 20] without enrichment and thereforeWh(T) 6=
∇NCVh(T). Moreover, this proves that the generalization of the projection property
to higher moments from Lemma 3.12 cannot hold for those finite element spaces,
in contrast to the discretization (3.4).

4 Extensions

Subsection 4.1 generalizes the novel FEM to quadrilateral meshes and proves a new
discrete Helmholtz decomposition for the Q1 rotated non-conforming Rannacher-
Turek FEM [33]. Subsection 4.2 discusses a discretization with Raviart-Thomas
functions.

4.1 Quadrilateral finite elements

For this subsection, consider a regular partition T of Ω in quadrilaterals. Define
for the reference rectangle T̂ = [0, 1]2

Qk(T̂ ) := {vh ∈ P2k(T̂ ) | ∃f, g ∈ Pk([0, 1]) : vh(x, y) = f(x)g(y)}.
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Given T ∈ T, let ψT : T̂ → T denote the bilinear transformation from the reference
rectangle to T . For consistency, let P−1([0, 1]) := {0} and set

VQ,k(T) :=
{
βh ∈ Y

∣∣∣ ∀T ∈ T : (βh ◦ ψT )|
T̂
∈ Qk(T̂ )

}
,

Xrect
k (T̂ ) :=




τh ∈ L2(T̂ ;R2)

∣∣∣∣∣∣∣∣

∃a ∈ R, b, c ∈ Pk−2([0, 1]), d, e ∈ Qk−1(T̂ )

such that ∀(x̂, ŷ) ∈ T̂
τh(x̂, ŷ) = a

(
−x̂kŷk−1

x̂k−1ŷk

)
+

(
x̂kb(ŷ) + d(x̂, ŷ)
ŷkc(x̂) + e(x̂, ŷ)

)




,

Xrect
k (T) :=




τh ∈ L2(Ω;R2)

∣∣∣∣∣∣∣∣

∀T ∈ T ∃ρT ∈ Xrect
k (T̂ ) such that

(τh ◦ ψT )|
T̂

=

(
0 1
−1 0

)
D(ψ−1

T )> ◦ ψT
(

0 −1
1 0

)
ρT




.

Then a discretization with respect to the quadrilateral partition seeks ph ∈ Xrect
k (T)

and αh ∈ VQ,k(T) with

(ph, qh)L2(Ω) + (qh,Curlαh)L2(Ω) = (ϕ, qh)L2(Ω) for all qh ∈ Xrect
k (T),

(ph,Curlβh)L2(Ω) = 0 for all βh ∈ VQ,k(T).

Let βh ∈ VQ,k(T), i.e., (βh ◦ψT )|
T̂
∈ Qk(T̂ ). A direct calculation reveals for all

T ∈ T

((Curlβh)> ◦ ψT )|T = (∇(βh ◦ ψT ◦ ψ−1
T ))> ◦ ψT

(
0 1
−1 0

)

= (∇(βh ◦ ψT ))>D(ψ−1
T ) ◦ ψT

(
0 1
−1 0

)
.

Let (βh◦ψT )(x̂, ŷ) = (ax̂k+f(x̂))(bŷk+g(ŷ)) with a, b ∈ R and f, g ∈ Pk−1([0, 1]).
Then it holds

∇(βh ◦ ψT ) = abk

(
x̂k−1ŷk

ŷk−1x̂k

)
+

(
bŷk∂f(x̂)/∂x̂
ax̂k∂g(ŷ)/∂ŷ

)
+

(
akx̂k−1g(ŷ) + g(ŷ)∂f(x̂)/∂x̂
bkŷk−1f(x̂) + f(x̂)∂g(ŷ)/∂ŷ

)

and therefore

(∇(βh ◦ ψT ))>
(

0 −1
1 0

)

=

(
abk

(
ŷk−1x̂k

−x̂k−1ŷk

)
+

(
ax̂k∂g(ŷ)/∂ŷ
−bŷk∂f(x̂)/∂x̂

)
+

(
bkŷk−1f(x̂) + f(x̂)∂g(ŷ)/∂ŷ
−akx̂k−1g(ŷ)− g(ŷ)∂f(x̂)/∂x̂

))>

=: (ρT (x̂, ŷ))>.

This implies ρT ∈ Xrect
k (T̂ ) and (∇(βh ◦ ψT )) = (0, 1;−1, 0)ρT . The combination

of the previous equalities leads to

((Curlβh) ◦ ψT )|T =

(
0 1
−1 0

)
D(ψ−1

T )> ◦ ψT
(

0 −1
1 0

)
ρT .

Consequently, Curlβh ∈ Xrect
k (T). This and the conformity of the method prove

as in Section 3 the following statements

10



Generalization of P1 non-conforming FEM

(i) unique existence of solutions,

(ii) the best-approximation result

‖p− ph‖L2(Ω) + ‖Curl(α− αh)‖L2(Ω)

.
(

min
qh∈Xrect

k (T)
‖p− qh‖L2(Ω) + min

βh∈VQ,k(T)
‖Curl(α− βh)‖L2(Ω)

)
,

(iii) the projection property

ΠXrect
k (T)∇H1

0 (Ω) ⊆W rect
h (T)

for

W rect
h (T) = {qh ∈ Xrect

k (T) | ∀βh ∈ VQ,k(T) : (qh,Curlβh)L2(Ω) = 0}. (4.1)

Remark 4.1. The properties (i)–(iii) still hold for any X̃h(T) with Xrect
k (T) ⊆

X̃h(T) ⊆ X.

The remaining part of this subsection proves the equivalence of the lowest-order
rectangular discretization with the non-conforming Rannacher-Turek FEM [33].
To this end, define for the reference rectangle T̂ and the bilinear transformation
ψT : T̂ → T ,

Qrot(T̂ ) := span{1, x, y, x2 − y2},

V rot
NC (T) :=



vh ∈ L

2(Ω)

∣∣∣∣∣∣

∀T ∈ T : (vh ◦ ψT )|
T̂
∈ Qrot(T̂ ) and´

E vh ds is continuous for all interior
edges E and vanishes at boundary edges E



 . (4.2)

The following lemma proves a relation between the cardinalities of the quadri-
laterals, nodes, and interior edges of a quadrilateral partition similar to Euler’s
formulae

card(E) + card(E(Ω)) = 3 card(T),

card(E(Ω)) + card(N) = 2 card(T) + 1
(4.3)

on triangles. This enables a dimension argument in the proof of the discrete
Helmholtz decomposition in Theorem 4.3 below.

Lemma 4.2 (Euler formula for quadrilateral partitions). Let T be a regular parti-
tion of Ω in quadrilaterals with edges E, interior edges E(Ω), and vertices N. Then
it holds that 3card(T) + 1 = card(E(Ω)) + card(N).

Proof. Define a triangulation T∆ of Ω in triangles by the division of each quadri-
lateral into two triangles by a diagonal cut. Let E∆ denote the edges of T∆, E∆(Ω)
the interior edges and N∆ the vertices. Then the following relations between the
two partitions hold

card(T∆) = 2card(T), card(E∆) = card(E) + card(T),

card(E∆(Ω)) = card(E(Ω)) + card(T), card(N∆) = card(N).

11



Generalization of P1 non-conforming FEM

This and Euler’s formulae for triangles (4.3) prove

card(E(Ω)) + card(N) = card(E∆(Ω))− card(T) + card(N∆)

= 2card(T∆) + 1− card(T) = 3card(T) + 1.

The following theorem proves that the solution space W rect
h (T) from (4.1)

equals the piecewise gradients of functions in V rot
NC (T) on a partition in squares

for k = 1.

Theorem 4.3 (discrete Helmholtz decomposition on squares). Let T be a regular
partition of Ω in squares. Then,

Xrect
1 (T) = ∇NCV

rot
NC (T)⊕ CurlVQ,1(T) (4.4)

and the decomposition is L2 orthogonal.

Remark 4.4. The L2-orthogonality in (4.4) still holds for a partition in parallel-
ograms. However, ∇NCV

rot
NC (T) 6⊆ Xrect

1 (T) for general quadrilateral partitions.

Proof of Theorem 4.3. Let vh ∈ V rot
NC (T) and βh ∈ VQ,1(T). A piecewise integra-

tion by parts leads to

(∇NCvh,Curlβh)L2(Ω) =
∑

E∈E

ˆ
E

[vh]E∇βh · τE ds.

Since T consists of parallelograms, the bilinear transformation ψT : T̂ → T is
affine and, hence, βh|E is affine on each edge E ∈ E. This implies that ∇βh ·
τE is constant. Since the integral mean of [vh]E vanishes, this proves the L2

orthogonality.
Let vh ∈ V rot

NC (T). A computation reveals for all T ∈ T that there exist fT ∈ R
and gT ∈ R2 such that

∇vh(x, y) = D(ψ−1
T )>

(
fT

(
−x
y

)
+ gT

)
.

For k = 1, Xrect
1 (T) reads

Xrect
1 (T) =




τh ∈ L2(Ω;R2)

∣∣∣∣∣∣∣∣∣∣

∀T ∈ T ∃aT ∈ R, dT ∈ R2 such that

(τh ◦ ψT )|
T̂

=

(
0 1
−1 0

)
(D(ψ−1

T )>

◦ψT )

(
0 −1
1 0

)(
aT

(
−x
y

)
+ dT

)




.

Since all T ∈ T are squares, DψT and (0, 1;−1, 0) commute, and, hence, ∇vh ∈
Xrect

1 (T). Thus,∇NCV
rot

NC (T)⊕CurlVQ,1(T) ⊆ Xrect
1 (T). The dimension of∇NCV

rot
NC (T)

equals card(E(Ω)) and the dimension of CurlVQ,1(T) equals card(N)−1, while the
dimension of Xrect

1 (T) equals 3card(T). This and Lemma 4.2 prove the asser-
tion.

Remark 4.5 (arbitrary quadrilaterals). The best-approximation (ii) from above
proves quasi-optimal convergence even for arbitrary quadrilaterals. Standard in-
terpolation error estimates for VQ,1(T) and for P0(T;R2) ⊆ Xrect

1 (T) [19] lead to
first-order convergence rates of h for sufficiently smooth solutions. This should
be contrasted with [33], where quasi-optimal convergence is only obtained for a
modification of (4.2) where V rot

NC (T) is defined in terms of local coordinates.
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4.2 Relation to mixed Raviart-Thomas FEM

This subsection shows that the classical mixed Raviart-Thomas FEM [34] can be
regarded as a particular choice of the ansatz spaces in the new mixed scheme.

Let T denote a regular triangulation of Ω in triangles. Define the space of
Raviart-Thomas functions [34]

XRT(T) = {qRT ∈ H(div,Ω) | ∀T ∈ T : qRT|T (x) ∈ Pk(T ;R2) + Pk(T )x}
and

YRT(T) := Pk+1(T) ∩ Y.
Then the following problem is a discretization of (3.3): Seek (pRT, αRT) ∈ XRT(T)×
YRT(T) with

(pRT, qRT)L2(Ω) + (qRT,CurlαRT)L2(Ω) = (ϕ, qRT) for all qRT ∈ XRT(T),

(pRT,CurlβRT)L2(Ω) = 0 for all βRT ∈ YRT(T).
(4.5)

Since CurlYRT(T) ⊆ Pk(T;R2) and div Curl vRT = 0 for all vRT ∈ YRT(T), it
follows CurlYRT(T) ⊆ XRT(T). This and the conformity of the method guarantee
as in Section 3 and in Subsection 4.1 the unique existence of solutions, a best-
approximation result, and the projection property

ΠXRT(T)∇H1
0 (Ω) ⊆WRT(T)

:= {qRT ∈ XRT(T) | ∀βRT ∈ YRT(T) : (qRT,CurlβRT)L2(Ω) = 0}.
The discrete Helmholtz decomposition of [26, 5, 12] proves

XRT(T) = ∇RTPk(T)⊕ CurlYRT(T)

with the operator ∇RT : Pk(T)→ XRT(T) defined for all vRT ∈ Pk(T) by

(∇RTvRT, qRT)L2(Ω) = −(vRT, div qRT)L2(Ω) for all qRT ∈ XRT(T).

This decomposition yields the equivalence of (4.5) with the problem: Seek (pRT, ũRT) ∈
XRT(T)× Pk(T) with

pRT = ∇RTũRT,

(wRT, div pRT)L2(Ω) = (div ΠXRT(T)ϕ,wRT)L2(Ω) for all wRT ∈ Pk(T).

This is the classical Raviart-Thomas discretization with f replaced by div ΠXRT(T)ϕ.
Assume now that the right-hand side ϕ ∈ XRT(T) is a Raviart-Thomas func-

tion. Since by definition YRT(T) = Yh(T) with Yh(T) from Subsection 3.2 and
since αRT is the solution of

(CurlβRT,CurlαRT)L2(Ω) = (ϕ,CurlβRT)L2(Ω) for all βRT ∈ YRT(T),

it holds αRT = αh with αh from (3.4). Since ϕ = pRT + CurlαRT and ΠXh(T)ϕ =
ph + Curlαh, it follows

ph = ΠXh(T)pRT.

For k = 0, the equivalence with the Crouzeix-Raviart FEM (3.11) then proves the
identity

∇NCuCR = ΠXh(T)pRT,

which is also known as Marini identity [3, 27].

13
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5 Medius analysis

The medius analysis of [25, 15] proves for the discrete solution uCR ∈ CR1
0(T) to

(3.9) the best-approximation result

‖∇NC(u− uCR)‖L2(Ω) . min
vCR∈CR1

0(T)
‖∇NC(u− vCR)‖L2(Ω) + osc(f,T). (5.1)

The following theorem proves a generalization for the discretization (3.4) for the
lowest order case k = 0.

Theorem 5.1 (best-approximation property). Let (p, α) ∈ X × Y be the solution
to (3.3) and (ph, αh) ∈ P0(T;R2)× (P1(T)∩ Y ) be the solution to (3.4). Then the
following best-approximation result holds

‖p− ph‖L2(Ω) . ‖p−Π0p‖L2(Ω) + osc(f,T)

+ sup
vCR∈CR1

0(T)\{0}

(f, vCR)L2(Ω) − (ϕ,∇NCvCR)L2(Ω)

‖∇NCvCR‖L2(Ω)
.

(5.2)

Remark 5.2. If ϕ is a lowest-order Raviart-Thomas function, then it allows for
an integration by parts formula also with Crouzeix-Raviart functions (see Subsec-
tion 3.3). Therefore, the third term on the right-hand side of (5.2) vanishes. This
and the equivalence with the non-conforming FEM of Crouzeix and Raviart from
Subsection 3.3 reveal the best-approximation result (5.1).

The remaining part of this section is devoted to the proof of Theorem 5.1.
The following lemma from [17, 14] is the key ingredient of this proof. Recall the
definition of CR1

0(T) from Subsection 3.3.

Lemma 5.3 (companion). For any vCR ∈ CR1
0(T) there exists v ∈ H1

0 (Ω) with
the following properties

(i) Π0∇NC(v − vCR) = 0,

(ii) Π0(v − vCR) = 0,

(iii) ‖h−1
T (vCR − v)‖L2(Ω) + ‖∇NC(vCR − v)‖L2(Ω) . ‖∇NCvCR‖L2(Ω).

Proof of Theorem 5.1. Define qh := Π0p−ph ∈ P0(T;R2). The projection property
of Lemma 3.12 implies that qh ∈Wh(T) and the discrete Helmholtz decomposition
(3.12) guarantees the existence of vCR ∈ CR1

0(T) with qh = ∇NCvCR. Let v ∈
H1

0 (Ω) denote the companion of vCR from Lemma 5.3. Then

(p− ph, qh)L2(Ω) = (p,∇NC(vCR − v))L2(Ω) + (p,∇v)L2(Ω)

− (ph,∇NCvCR)L2(Ω).
(5.3)

The properties (i) and (iii) from Lemma 5.3 yield for the first term on the right-
hand side

(p,∇NC(vCR − v))L2(Ω) = (p−Π0p,∇NC(vCR − v))L2(Ω)

. ‖p−Π0p‖L2(Ω) ‖∇NCvCR‖L2(Ω).
(5.4)
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The problems (3.3) and (3.4) lead for the second and third term on the right-hand
side of (5.3) to

(p,∇v)L2(Ω) − (ph,∇NCvCR)L2(Ω) = (ϕ,∇v)L2(Ω) − (ϕ,∇NCvCR)L2(Ω).

Since −divϕ = f , it follows

(ϕ,∇v)L2(Ω) − (ϕ,∇NCvCR)L2(Ω)

= (f, v − vCR)L2(Ω) + (f, vCR)L2(Ω) − (ϕ,∇NCvCR)L2(Ω).

Properties (ii) and (iii) of Lemma 5.3 prove

= (f, v − vCR)L2(Ω) . osc(f,T)‖∇NCvCR‖L2(Ω).

The combination with (5.3) and (5.4) and a Cauchy inequality yield

(p− ph, qh)L2(Ω) .

(
‖p−Π0p‖L2(Ω) + osc(f,T)

+ sup
vCR∈CR1

0(T)\{0}

(f, vCR)L2(Ω) − (ϕ,∇NCvCR)L2(Ω)

‖∇NCvCR‖L2(Ω)

)
‖qh‖L2(Ω).

This and

‖p− ph‖2L2(Ω) = ‖p−Π0p‖2L2(Ω) + ‖qh‖2L2(Ω) = ‖p−Π0p‖2L2(Ω) + (p− ph, qh)L2(Ω)

prove the assertion.

Remark 5.4 (higher polynomial degrees). For k ≥ 1, Remark 3.15 implies that
an analogue of Lemma 5.3 cannot be proved in the same way.

6 Adaptive algorithm

This section defines an adaptive algorithm based on separate marking and proves
its quasi-optimal convergence.

6.1 Adaptive algorithm and optimal convergence rates

Let T0 denote some initial shape-regular triangulation of Ω, such that each triangle
T ∈ T is equipped with a refinement edge ET ∈ E(T ). A proper choice of these
refinement edges guarantees an overhead control [7].

Let T(N) denote the subset of T of all admissible triangulations with at most
card(T0)+N triangles. The adaptive algorithm involves the overlay of two admis-
sible triangulations T,T? ∈ T, which reads

T ⊗ T? := {T ∈ T ∪ T? | ∃K ∈ T,K? ∈ T? with T ⊆ K ∩K?}. (6.1)
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Given a triangulation T`, define for all T ∈ T` the local error estimator contri-
butions by

λ2(T`, T ) := ‖hT curlNC ph‖2L2(T ) + hT
∑

E∈E(T )

‖[ph]E · τE‖2L2(E),

µ2(T ) := ‖ϕ−Πkϕ‖2L2(T )

(6.2)

and the global error estimators by

λ2
` := λ2(T`,T`) with λ2(T`,M) :=

∑

T∈M
λ2(T`, T ) for any M ⊆ T`,

µ2
` := µ2(T`) with µ2(M) :=

∑

T∈M
µ2(T ) for any M ⊆ T`.

(6.3)

The adaptive algorithm is driven by these two error estimators and runs the fol-
lowing loop.

Algorithm 6.1 (AFEM).
Input: Initial triangulation T0, parameters 0 < θA ≤ 1, 0 < ρB < 1, 0 < κ.

for ` = 0, 1, 2, . . . do
Solve. Compute solution (p`, α`) ∈ Xh(T`)× Yh(T`) of (3.4) with respect

to T`.
Estimate. Compute local contributions of the error estimators

(
λ2(T`, T )

)
T∈T`

and (µ2(T ))T∈T` .
if µ2

` ≤ κλ2
` then

Mark. The Dörfler marking chooses a minimal subset M` ⊆ T` such that
θAλ

2
` ≤ λ2

` (T`,M`).
Refine. Generate the smallest admissible refinement T`+1 of T` in which

at least all triangles in M` are refined.
else

Mark. Compute a triangulation T ∈ T with µ2(T) ≤ ρBµ2
` .

Refine. Generate the overlay T`+1 of T` and T.
end if

end for
Output: Sequence of triangulations (T`)`∈N0

, discrete solutions (p`, α`)`∈N0 and
error estimators (λ`)`∈N0 and (µ`)`∈N0 . �

Remark 6.2 (separate versus collective marking). The residual-based error esti-
mator

√
λ2 + µ2 involves the term ‖ϕ−Πkϕ‖L2(T ) without a multiplicative positive

power of the mesh-size. Therefore, the optimality of an adaptive algorithm based on
collective marking (that is κ = ∞ and λ replaced by

√
λ2 + µ2 in Algorithm 6.1)

does not follow from the abstract framework from [13]. The reduction property
(axiom (A2) from [13]), is not fulfilled. Algorithm 6.1 considered here is based on
separate marking. In this context, the optimality of the adaptive algorithm (see
Theorem 6.6) can be proved with a reduction property that only considers λ.

Remark 6.3. The step Mark in the second case (µ2
` > κλ2

`) can be realized by the
algorithm Approx from [7, 16], i.e., the thresholding second algorithm [8] followed
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by a completion algorithm. For this algorithm, the assumption (B1) optimal data
approximation, which is assumed to hold in the following, follows from the axioms
(B2) and (SA) from Subsection 6.5 [16]. For a discussion about other algorithms
that realize Mark in the second case, see [16].

For s > 0 and (p, α, ϕ) ∈ X × Y ×H(div,Ω) define

|(p, α, ϕ)|As := sup
N∈N0

N s inf
T∈T(N)

(
‖p−ΠXh(T)p‖L2(Ω)

+ inf
βT∈Yh(T)

‖Curl(α− βT)‖L2(Ω) + ‖ϕ−ΠXh(T)ϕ‖L2(Ω)

)
.

Remark 6.4 (pure local approximation class). Since Ω is assumed to be a Lip-
schitz domain, all patches in an admissible triangulation T ∈ T are edge-connected,
i.e., for all vertices z ∈ N and triangles T,K ∈ T with z ∈ T ∩ K, there exists
m ∈ N0 and K0, . . . ,Km ∈ T with K0 = T , Km = K, z ∈ K0 ∩ · · · ∩ Km and
Kj−1∩Kj ∈ E for all 1 ≤ j ≤ m. Under this assumption, [42, Theorem 3.2] shows

min
vh∈Pk+1(T)∩H1(Ω)

‖∇(v − vh)‖L2(Ω) ≈ ‖∇v −Πk∇v‖L2(Ω) for all v ∈ H1(Ω).

Hence,

|(p, α, ϕ)|As ≈ |(p, α, ϕ)|A′s
:= sup

N∈N0

N s inf
T∈T(N)

(
‖p−ΠXh(T)p‖L2(Ω)

+
∥∥Curlα−ΠXh(T) Curlα

∥∥
L2(Ω)

+ ‖ϕ−ΠXh(T)ϕ‖L2(Ω)

)
.

In the following, we assume that the following assumption (B1) holds for the
algorithm used in the step Mark for µ2

` > κλ2
` (see Remark 6.3).

Assumption 6.5 ((B1) optimal data approximation). Assume that |(p, α, ϕ)|Aσ
is finite. Given a tolerance Tol, the algorithm used in Mark in the second case
(µ2
` > κλ2

`) in Algorithm 6.1 computes T? ∈ T with

card(T?)− card(T0) . Tol−1/(2σ) and µ2(T?) ≤ Tol.

The following theorem states optimal convergence rates of Algorithm 6.1.

Theorem 6.6 (optimal convergence rates of AFEM). For 0 < ρB < 1 and suf-
ficiently small 0 < κ and 0 < θ < 1, Algorithm 6.1 computes sequences of tri-
angulations (T`)`∈N and discrete solutions (p`, α`)`∈N for the right-hand side ϕ of
optimal rate of convergence in the sense that

(card(T`)− card(T0))s
(
‖p− p`‖L2(Ω) + ‖Curl(α− α`)‖L2(Ω)

)
. |(p, α, ϕ)|As .

The proof follows from the abstract framework of [16], which employs the
bounded overhead [7] of the newest-vertex bisection, under the assumptions (A1)–
(A4) and (B2) and (SA) which are proved in Subsections 6.2–6.5.
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6.2 (A1) stability and (A2) reduction

The following two theorems follow from the structure of λ.

Theorem 6.7 (stability). Let T? be an admissible refinement of T and M ⊆ T∩T?.
Let (pT? , αT?) ∈ Xh(T?) × Yh(T?) and (pT, αT) ∈ Xh(T) × Yh(T) be the respective
discrete solutions to (3.4). Then,

|λ(T?,M)− λ(T,M)| . ‖pT? − pT‖L2(Ω).

Proof. This follows with triangle inequalities, inverse inequalities and the trace
inequality from [10, p. 282] as in [18, Proposition 3.3].

Theorem 6.8 (reduction). Let T? be an admissible refinement of T. Then there
exists 0 < ρ2 < 1 and Λ2 <∞ such that

λ2(T?,T? \ T) ≤ ρ2λ
2(T,T \ T?) + Λ2‖pT? − pT‖2L2(Ω).

Proof. This follows with a triangle inequality and the mesh-size reduction property
h2
T?
|T ≤ h2

T|T /2 for all T ∈ T? \ T as in [18, Corollary 3.4].

6.3 (A4) discrete reliability

The following theorem proves discrete reliability, i.e., the difference between two
discrete solutions is bounded by the error estimators on refined triangles only.

Theorem 6.9 (discrete reliability). Let T? be an admissible refinement of T with
respective discrete solutions (pT? , αT?) ∈ Xh(T?)× Yh(T?) and (pT, αT) ∈ Xh(T)×
Yh(T). Then,

‖pT − pT?‖2L2(Ω) + ‖Curl(αT − αT?)‖2L2(Ω) . λ
2(T,T \ T?) + µ2(T,T \ T?).

Proof. Recall the definition of Wh(T?) from (3.8). Since pT − pT? ∈ Xh(T?), there
exist σT? ∈ Wh(T?) and rT? ∈ Yh(T?) with pT − pT? = σT? + Curl rT? . Since
Wh(T?)⊥L2(Ω) CurlYh(T?),

‖σT?‖2L2(Ω) + ‖Curl rT?‖2L2(Ω) = ‖pT − pT?‖2L2(Ω).

The orthogonality furthermore implies that the discrete error can be split as

‖pT − pT?‖2L2(Ω) = (pT − pT? , σT?)L2(Ω) + (pT − pT? ,Curl rT?)L2(Ω).

The projection property, Lemma 3.12, proves ΠXh(T)σT? ∈ Wh(T). Hence, prob-
lem (3.4) implies that the first term of the right-hand side equals

(pT − pT? , σT?)L2(Ω) = (ΠXh(T)ϕ− ϕ, σT?)L2(Ω) = (ΠXh(T)ϕ−ΠXh(T?)ϕ, σT?)L2(Ω).

For any triangle T ∈ T ∩ T?, it holds (ΠXh(T)ϕ−ΠXh(T?)ϕ)|T = 0. Therefore,

(ΠXh(T)ϕ−ΠXh(T?)ϕ, σT?)L2(Ω) ≤ ‖ΠXh(T)ϕ−ΠXh(T?)ϕ‖T\T? ‖σT?‖L2(Ω).
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Since T? is a refinement of T, it holds

‖ΠXh(T)ϕ−ΠXh(T?)ϕ‖T\T? = ‖ΠXh(T?)(ΠXh(T)ϕ− ϕ)‖T\T? ≤ ‖ϕ−ΠXh(T)ϕ‖T\T? .
Let rT ∈ Yh(T) denote the quasi interpolant from [39] of rT? which satisfies the

approximation and stability properties

‖h−1
T (rT? − rT)‖L2(Ω) + ‖Curl(rT? − rT)‖L2(Ω) . ‖Curl rT?‖L2(Ω)

and (rT)|E = (rT?)|E for all edges E ∈ E(T) ∩ E(T?). Since pT ∈ Wh(T) and
pT? ∈Wh(T?),

(pT − pT? ,Curl rT?)L2(Ω) = (pT,Curl(rT? − rT))L2(Ω). (6.4)

An integration by parts leads to

(pT,Curl(rT? − rT))L2(Ω) = −(curlNC pT, rT? − rT)L2(Ω)

+
∑

E∈E(T)

ˆ
E

[pT · τE ]E(rT? − rT) ds.

For a triangle T ∈ T ∩ T?, any edge E ∈ E(T ) satisfies E ∈ E(T) ∩ E(T?). Hence,
(rT)|T = (rT?)|T for all T ∈ T ∩ T?. This, the Cauchy inequality and the approxi-
mation and stability properties of the quasi interpolant lead to

−(curlNC pT, rT? − rT)L2(Ω) . ‖hT curlNC pT‖T\T? ‖Curl rT?‖L2(Ω) .

Since (rT)|E = (rT?)|E for all edges E ∈ E(T) ∩ E(T?), the approximation and
stability properties of the quasi interpolant and the trace inequality [10, p. 282]
lead to
∑

E∈E

ˆ
E

[pT · τE ]E(rT? − rT) ds

.
√ ∑

E∈E(T)\E(T?)

hT ‖[pT · τE ]E‖2L2(E)
‖Curl rT?‖L2(Ω) .

(6.5)

The combination of the previous displayed inequalities yields

‖pT − pT?‖2L2(Ω) . λ
2(T,T \ T?) + µ2(T,T \ T?).

Since CurlαT = ΠXh(T)ϕ − pT and CurlαT? = ΠXh(T?)ϕ − pT? , the triangle in-
equality yields the assertion.

The discrete reliability of Theorem 6.9 together with the convergence of the
discretization proves reliability of the residual-based error estimator. This is sum-
marized in the following proposition.

Proposition 6.10 (efficiency and reliability of the residual-based error estimator).
Let (p, α) ∈ X × Y and (ph, αh) ∈ Xh(T) × Yh(T) be the solutions to (3.3) and
(3.4) for some T ∈ T. There exist constants Ceff , Crel > 0 with

C−2
eff (λ2(T,T) + µ2(T)) ≤ ‖p− ph‖2L2(Ω) + ‖Curl(α− αh)‖2L2(Ω)

≤ C2
rel(λ

2(T,T) + µ2(T)).

Proof. The a priori error estimate from Theorem 3.9 implies the convergence of
the discrete solutions. This and Theorem 6.9 proves the reliability. The efficiency
follows from the standard bubble function technique [43].
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6.4 (A3) quasi-orthogonality

The following theorem proves quasi-orthogonality of the discretization (3.4).

Theorem 6.11 (general quasi-orthogonality). Let (Tj | j ∈ N) be some sequence
of triangulations with discrete solutions (pj , αj) ∈ Xh(Tj) × Yh(Tj) to (3.4). Let
` ∈ N. Then,

∞∑

j=`

(
‖pj − pj−1‖2L2(Ω) + ‖Curl(αj − αj−1)‖2L2(Ω)

)
. λ2

`−1 + µ2
`−1.

Proof. The projection property, Lemma 3.12, proves ΠXh(Tj−1)pj ∈Wh(Tj−1) with
Wh(Tj−1) from (3.8). Hence, problem (3.4) leads to

(pj−1, pj − pj−1)L2(Ω) = (ϕ,ΠXh(Tj−1)pj − pj−1)L2(Ω),

(pj , pj − pj−1)L2(Ω) = (ϕ, pj)− (ϕ,ΠXh(Tj−1)pj)L2(Ω).

The subtraction of these two equations and an index shift leads, for any M ∈ N
with M > `, to

M∑

j=`

‖pj − pj−1‖2L2(Ω) =

M∑

j=`

(ϕ, pj −ΠXh(Tj−1)pj)L2(Ω)

−
M∑

j=`

(ϕ,ΠXh(Tj−1)pj)L2(Ω) +
M−1∑

j=`−1

(ϕ, pj)L2(Ω)

= (ϕ, p`−1 − pM )L2(Ω) + 2
M∑

j=`

(ϕ, pj −ΠXh(Tj−1)pj)L2(Ω).

(6.6)

Since pj − ΠXh(Tj−1)pj ∈ Xh(Tj) is L2-orthogonal to Xh(Tj−1), a Cauchy and a
weighted Young inequality imply

2

M∑

j=`

(ϕ, pj −ΠXh(Tj−1)pj)L2(Ω)

= 2
M∑

j=`

(ΠXh(Tj)ϕ−ΠXh(Tj−1)ϕ, pj −ΠXh(Tj−1)pj)L2(Ω)

≤ 2
M∑

j=`

‖ΠXh(Tj)ϕ−ΠXh(Tj−1)ϕ‖2L2(Ω) +
1

2

M∑

j=`

‖pj −ΠXh(Tj−1)pj‖2L2(Ω).

(6.7)

The orthogonality ΠXh(Tj)ϕ − ΠXh(Tj−m)ϕ⊥L2(Ω)Xh(Tj−m) for all 0 ≤ m ≤ j
proves

M∑

j=`

‖ΠXh(Tj)ϕ−ΠXh(Tj−1)ϕ‖2L2(Ω) = ‖ΠXh(TM )ϕ−ΠXh(T`−1)ϕ‖2L2(Ω). (6.8)
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The definition of µ` yields

‖ΠXh(TM )ϕ−ΠXh(T`−1)ϕ‖L2(Ω) = ‖ΠXh(TM )(ϕ−ΠXh(T`−1)ϕ)‖L2(Ω)

≤ µ`−1.
(6.9)

The combination of (6.6)–(6.9) and ‖pj − ΠXh(Tj−1)pj‖L2(Ω) ≤ ‖pj − pj−1‖L2(Ω)

leads to
1

2

M∑

j=`

‖pj − pj−1‖2L2(Ω) ≤ 2µ2
`−1 + (ϕ, p`−1 − pM )L2(Ω). (6.10)

The combination of the arguments of (6.4)–(6.5) proves

(Curl(αM − α`−1), p`−1)L2(Ω) . λ`−1 ‖Curl(αM − α`−1)‖L2(Ω) (6.11)

This, the discrete problem (3.4), and the discrete reliability ‖Curl(αM − α`−1)‖L2(Ω) .
λ`−1 + µ`−1 from Theorem 6.9 lead to

(p`−1 − pM ,ΠXh(T`−1)ϕ)L2(Ω) = (p`−1 − pM , p`−1 + Curlα`−1)L2(Ω)

= (p`−1 − pM , p`−1)L2(Ω) = (Curl(αM − α`−1), p`−1)L2(Ω)

. λ`−1 ‖Curl(αM − α`−1)‖L2(Ω) . (λ`−1 + µ`−1)2.

This and a further application of Theorem 6.9 leads to

(ϕ, p`−1 − pM )L2(Ω)

= (ϕ−ΠXh(T`−1)ϕ, p`−1 − pM )L2(Ω) + (p`−1 − pM ,ΠXh(T`−1)ϕ)L2(Ω)

. ‖ϕ−ΠXh(T`−1)ϕ‖L2(Ω) ‖p`−1 − pM‖L2(Ω) + (λ`−1 + µ`−1)2
L2(Ω)

. (λ`−1 + µ`−1)2.
(6.12)

The combination of (6.10) with (6.12) implies

M∑

j=`

‖pj − pj−1‖2L2(Ω) . λ
2
`−1 + µ2

`−1. (6.13)

The Young inequality, the triangle inequality, and Curlαj = ΠXh(Tj)ϕ− pj imply

M∑

j=`

‖Curl(αj − αj−1)‖2L2(Ω)

≤ 2
M∑

j=`

‖pj − pj−1‖2L2(Ω) + 2
M∑

j=`

‖ΠXh(Tj)ϕ−ΠXh(Tj−1)ϕ‖2L2(Ω).

Since M > ` is arbitrary, the combination with (6.8), (6.9), and (6.13) yields the
assertion.
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6.5 (B) data approximation

The following theorem together with Assumption 6.5 form the axiom (B) from [16].

Theorem 6.12 ((B2) quasimonotonicity and (SA) sub-additivity). Any admissi-
ble refinement T? of T satisfies

µ2(T?) ≤ µ2(T) and
∑

T∈T?
T⊆K

µ2(T ) ≤ µ2(K) for all K ∈ T.

Proof. This follows directly from the definition of µ.

7 Extension to 3D

This section is devoted to the generalization to 3D. Subsection 7.1 defines the novel
discretization and comments on basic properties, while Subsection 7.2 is devoted
to optimal convergence rates for the adaptive algorithm.

7.1 Weak formulation and discretization

For this section, let Ω ⊆ R3 be a simply connected, bounded, polygonal Lipschitz
domain in R3. For the sake of simplicity, we also assume that ∂Ω is connected
(i.e., Ω is contractible). The Curl operator acts on a sufficiently smooth vector
field β : Ω → R3 as Curlβ = ∇ ∧ β with the cross product or vector product ∧.
Let H(Curl,Ω) denote the space of all β ∈ L2(Ω;R3) with Curlβ ∈ L2(Ω;R3) for
the weak Curl, i.e.,

ˆ
Ω
v · Curlβ dx =

ˆ
Ω
β · Curl v dx for all v ∈ C∞c (Ω;R3).

In contrast to the two-dimensional case, H(Curl,Ω) 6= H1(Ω;R3). The Helmholtz
decomposition in 3D reads

L2(Ω;R3) = ∇H1
0 (Ω)⊕ CurlH(Curl,Ω) (7.1)

and the sum is L2 orthogonal. It is a consequence of the identity

{r ∈ H(div,Ω) | div r = 0} = CurlH(Curl,Ω)

in the De Rham complex [9].
Let ϕ ∈ H(div,Ω) with −divϕ = f . Then the Poisson problem (3.1) is

equivalent to the problem: Find (p, α) ∈ L2(Ω;R3)×H(Curl,Ω) with

(p, q)L2(Ω) + (q,Curlα)L2(Ω) = (ϕ, q)L2(Ω) for all q ∈ L2(Ω;R3),

(p,Curlβ)L2(Ω) = 0 for all β ∈ H(Curl,Ω).
(7.2)

In contrast to the two-dimensional case, the operator Curl : H(Curl,Ω)→ L2(Ω;R3)
has a non-trivial kernel. Classical results [35] characterize this kernel as ∇H1(Ω).
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To enforce uniqueness, we can reformulate (7.2) as follows. Seek (p, α, w) ∈
L2(Ω;R3)×H(Curl,Ω)× (H1(Ω) ∩ L2

0(Ω)) with

(p, q)L2(Ω) + (q,Curlα)L2(Ω) = (ϕ, q)L2(Ω) for all q ∈ L2(Ω;R3),

(p,Curlβ)L2(Ω) + (β,∇w)L2(Ω) = 0 for all β ∈ H(Curl,Ω),

(α,∇v)L2(Ω) = 0 for all v ∈ (H1(Ω) ∩ L2
0(Ω)).

Note that {β ∈ H(Curl,Ω) | Curlβ = 0} = ∇H1(Ω) implies w = 0.
Standard finite element spaces to discretize H(Curl,Ω) in 3D are the Nédélec

finite element spaces [30, 31] (also called edge elements) which are known from the
context of Maxwell’s equations. Let T be a regular triangulation of Ω in tetrahedra
in the sense of [19]. The spaces of first kind Nédélec finite elements read

YN,k(T ) := Pk(T ;R3) + (x ∧ Pk(T ;R3)),

YN,k(T) := {βh ∈ H(Curl,Ω) | ∀T ∈ T : βh|T ∈ YN,k(T )}.

Let Xh(T) := Pk(T;R3). Since CurlYN,k(T) ⊆ Xh(T), a generalization of (3.4) to
3D seeks (ph, αh) ∈ Xh(T)× YN,k(T) with

(ph, qh)L2(Ω) + (qh,Curlαh)L2(Ω) = (ϕ, qh)L2(Ω) for all qh ∈ Xh(T),

(ph,Curlβh)L2(Ω) = 0 for all βh ∈ YN,k(T).
(7.3)

The discrete exact sequence [9] implies that the elements in YN,k(T) with vanishing
Curl are exactly the gradients of functions in Uh(T) := Pk+1(T)∩H1(Ω)∩L2

0(Ω).
Therefore, the uniqueness in (7.3) can be obtained in the following formulation.
Seek (ph, αh, wh) ∈ Xh(T)× YN,k(T)× Uh(T) with

(ph, qh)L2(Ω) + (qh,Curlαh)L2(Ω) = (ϕ, qh)L2(Ω) for all qh ∈ Xh(T),

(ph,Curlβh)L2(Ω) + (βh,∇wh)L2(Ω) = 0 for all βh ∈ YN,k(T),

(αh,∇vh)L2(Ω) = 0 for all vh ∈ Uh(T).

(7.4)

Note that ∇Uh(T) is the kernel of Curl : YN,k(T)→ Pk(T;R3) and so (7.4) implies
wh = 0. This variable is introduced in order that (7.4) has the form of a standard
mixed system. The discrete Helmholtz decomposition of [1, Lemma 5.4] proves
that for the lowest order discretization k = 0, ph is a Crouzeix-Raviart function and
so (7.4) can be seen as a generalization of the non-conforming Crouzeix-Raviart
FEM to higher polynomial degrees.

The inf-sup condition follows from ∇Uh(T) ⊆ YN,k(T) and CurlYN,k(T) ⊆
Xh(T). This and the conformity of the method lead to the best-approximation
result

‖p− ph‖L2(Ω) + ‖Curl(α− αh)‖L2(Ω) + ‖∇(w − wh)‖L2(Ω)

.
(

min
qh∈Xh(T)

‖p− qh‖L2(Ω) + min
βh∈YN,k(T)

‖Curl(α− βh)‖L2(Ω)

+ min
sh∈Uh(T)

‖∇(w − sh)‖L2(Ω)

)
.
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Since w = wh = 0, this is equivalent to

‖p− ph‖L2(Ω) + ‖Curl(α− αh)‖L2(Ω)

.
(

min
qh∈Xh(T)

‖p− qh‖L2(Ω) + min
βh∈YN,k(T)

‖Curl(α− βh)‖L2(Ω)

)
.

The following proposition states a projection property similar to Lemma 3.12 for
the two-dimensional case. To this end, define

Zh(T) := {βh ∈ YN,k(T) | ∀vh ∈ Uh(T) : (βh,∇vh)L2(Ω) = 0)},
Wh(T) := {qh ∈ Xh(T) | ∀βh ∈ Zh(T) : (qh,Curlβh)L2(Ω) = 0}.

Since ∇Uh(T) is the kernel of Curl : YN,k(T)→ Xh(T), it holds

CurlYN,k(T) = CurlZh(T).

This implies

Wh(T) = {qh ∈ Xh(T) | ∀βh ∈ YN,k(T) : (qh,Curlβh)L2(Ω) = 0}.

Lemma 7.1 (projection property). Let q ∈ L2(Ω;R3) with (q,Curlβ)L2(Ω) = 0
for all β ∈ H(Curl,Ω) (that means that q is a gradient of a H1

0 (Ω) function). Then
ΠXh(T)q ∈ Wh(T). If T? is an admissible refinement of T, then ΠXh(T)Wh(T?) ⊆
Wh(T).

Proof. Since CurlYN,k(T) ⊆ Xh(T) and YN,k(T) ⊆ H(Curl,Ω), the assertion fol-
lows with the arguments in the proof of Lemma 3.12.

7.2 Adaptive algorithm

This subsection outlines the proof of optimal convergence rates for Algorithm 6.1
in 3D driven by the error estimators λ and µ defined by the local contributions

λ2(T`, T ) := ‖hT CurlNC ph‖2L2(T ) + hT
∑

E∈E(T )

‖[ph ∧ νE ]E‖2L2(E),

µ2(T ) := ‖ϕ−ΠXh(T)ϕ‖2L2(T )

and (6.3). Here, E(T ) denotes the faces of a tetrahedron T ∈ T and hT ∈ P0(T)
denotes the piecewise constant mesh-size function defined by hT|T := hT :=
meas3(T )1/3. The refinement of triangulations in Algorithm 6.1 is done by newest-
vertex bisection [40]. Let T(N) denote the space of admissible triangulations with
at most N tetrahedra more than T0. As in Subsection 6.1, define the seminorm

|(p, α, ϕ)|As := sup
N∈N0

N s inf
T∈T(N)

(
‖p−ΠXh(T)p‖L2(Ω)

+ inf
βT∈YN,k(T)

‖Curl(α− βT)‖L2(Ω) + ‖ϕ−ΠXh(T)ϕ‖L2(Ω)

)
.

Assume that Assumption 6.5 holds. The following theorem states optimal conver-
gence rates for Algorithm 6.1 for 3D.
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Theorem 7.2 (optimal convergence rates of AFEM for 3D). Let s > 0. For
0 < ρB < 1 and sufficiently small 0 < κ and 0 < θ < 1, Algorithm 6.1 computes
sequences of triangulations (T`)`∈N and discrete solutions (p`, α`)`∈N for the right-
hand side ϕ of optimal rate of convergence in the sense that

(card(T`)− card(T0))s
(
‖p− p`‖L2(Ω) + ‖Curl(α− α`)‖L2(Ω)

)
. |(p, α, ϕ)|As .

The proof follows as in Section 6 from (A1)–(A4) and (B) from [16] and the
efficiency of λ and µ. The proof of efficiency follows with the standard bubble-
function technique [43]. The proofs of the axioms (A1)–(A4) and (B) are outlined
in the following.

The axioms (A1) stability and (A2) reduction follow as in Subsection 6.2 with
triangle inequalities, inverse inequalities, a trace inequality similar to [10, p. 282],
and the mesh-size reduction property h3

T?
|T ≤ h3

T|T /2 for all T ∈ T? \ T. However,
for (A3) quasi-orthogonality and (A4) discrete reliability, the interpolation oper-
ator of [39] cannot be applied directly to rT? ∈ YN,k(T?) as done in the proof of
Theorem 6.9, because YN,k(T?) 6⊆ H1(Ω;R3). This can be overcome by a quasi-
interpolation based on a quasi-interpolation operator from [38] and a projection
operator from [44]. Its properties are summarized in the following theorem.

Theorem 7.3 (quasi-interpolation). Let T? be an admissible refinement of T and
define R(T,T?) := {T ∈ T | ∃K1 ∈ T \ T?∃K2 ∈ T with K1 ∩ K2 6= ∅ and T ∩
K2 6= ∅}. Let γT? ∈ Zh(T?). Then there exists γT ∈ YN,k(T), ρ ∈ H1(Ω), and
Φ ∈ H1(Ω;R3) with

γT? − γT = ∇ρ+ Φ,

(γT? − γT)|T = 0 for all T ∈ T \ R(T,T?),

‖h−1
T Φ‖L2(Ω) + ‖∇Φ‖L2(Ω) . ‖Curl γT?‖L2(Ω) .

Proof. This follows as in the proof of [44, Theorem 5.3] and with the ellipticity on
the discrete kernel from [2, Proposition 4.6].

The differences between the proof of (A4) discrete reliability and the proof
of Theorem 6.9 are outlined in the following. Let (pT? , αT?) ∈ Xh(T?) × Zh(T?)
and (pT, αT) ∈ Xh(T) × Zh(T) denote the discrete solutions to (7.3). As in the
proof of Theorem 6.9, let σT? ∈ Wh(T?) and rT? ∈ Zh(T?) such that pT − pT? =
σT? + Curl rT? . The first term of the right-hand side of

‖pT − pT?‖2 = (pT − pT? , σT?)L2(Ω) + (pT − pT? ,Curl rT?)L2(Ω)

is estimated as in the proof of Theorem 6.9, while for the second term, the quasi-
interpolant rT ∈ YN,k(T) of rT? with rT? − rT = ∇ρ + Φ for ρ ∈ H1(Ω) and
Φ ∈ H1(Ω;R3) from Theorem 7.3 is employed. This yields

(pT − pT? ,Curl rT?)L2(Ω) = (pT,Curl(rT? − rT))L2(Ω) = (pT,Curl Φ)L2(Ω).

A piecewise integration by parts and the arguments of the proof of Theorem 6.9
conclude the proof. The crucial point is that Φ ∈ H1(Ω;R3) is smooth enough to
allow for a trace inequality.
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(a) (b)

Figure 1: Red-refined triangle and initial mesh for the L-shaped domain.

The proof of (A3) quasi-orthogonality follows as in the proof of Theorem 6.11
with the projection property of Lemma 7.1 and the following modifications in (6.11).
Since (in the analogue notation as in (6.11)) α`−1 ∈ Zh(T`−1) ⊆ YN,k(TM ),
there exists γM ∈ Zh(TM ) with Curl γM = Curlα`−1. Theorem 7.3 guaran-
tees the existence of β`−1 ∈ YN,k(T`−1), ρ ∈ H1(Ω) and Φ ∈ H1(Ω;R3) with
αM − γM − β`−1 = ∇ρ+ Φ. This implies in (6.11) that

(Curl(αM − α`−1), p`−1)L2(Ω) = (Curl(αM − γM − β`−1), p`−1)L2(Ω)

= (Curl Φ, p`−1)L2(Ω).

Since Φ ∈ H1(Ω;R3) is smooth enough, a piecewise integration by parts and the
arguments of the proof of Theorem 6.9 then prove

(Curl(αM − α`−1), p`−1)L2(Ω) . (λ`−1 + µ`−1) ‖Curl(αM − α`−1)‖L2(Ω) .

This and the arguments of Theorem 6.11 eventually prove the quasi-orthogonality.

8 Numerical experiments

This section presents numerical experiments for the discretization (3.4) for k =
0, 1, 2. Subsections 8.1–8.3 compute the discrete solutions on sequences of uni-
formly red-refined triangulations (see Figure 1a for a red-refined triangle) as well
as on sequences of triangulations created by the adaptive algorithm 6.1 with bulk
parameter θ = 0.1 and κ = 0.5 and ρ = 0.75. The convergence history plots are
logarithmically scaled and display the error ‖p − ph‖L2(Ω) against the number of
degrees of freedom (ndof) of the linear system resulting from the Schur comple-
ment. The underlying L-shaped domain Ω := (−1, 1)2 \ ([0, 1] × [−1, 0]) with its
initial triangulation is depicted in Figure 1b.

8.1 L-shaped domain, I

The function u given in polar coordinates by

u(r, φ) = r2/3 sin((2/3)φ)
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is harmonic. For the following experiment we choose ϕ ≡ 0 and uD := g u with
perturbation function g ∈ H2(Ω),

g(x) :=





0 if |x| ≤ 1/2,

16|x|4 − 64|x|3 + 88|x|2 − 48|x|+ 9 if 1/2 ≤ |x| ≤ 1,

1 if |x| ≥ 1,

such that g|Γ = 1 for Γ := ∂Ω \ ({0} × (−1, 0)∪ (0, 1)× {0}). Since u|∂Ω\Γ = 0, it
holds uD|∂Ω = u. Let B1/2(0) := {x ∈ R2 | |x| < 1/2} denote the ball with radius
1/2 and midpoint (0, 0). Since g|B1/2(0) = 0 and u ∈ H2(Ω \ B1/2(0)), it holds
uD ∈ H2(Ω).

For non-homogeneous Dirichlet data, the jump [ph]E ·τE is defined for boundary
edges E ∈ E, E ⊆ ΓD, with adjacent triangle T+ by

[ph]E · τE := ph|T+ · τE −∇uD · τE .

The error estimator λ is then defined by (6.2)–(6.3). The local data error estimator
contributions read

µ2(T ) := ‖(ϕ−∇uD)−Πk(ϕ−∇uD)‖2L2(T ).

The global error estimator µ is defined by (6.3).
The errors and error estimators for the approximation ph ∈ Pk(T;R2) of ∇u

for k = 0, 1, 2 are plotted in Figure 2 against the number of degrees of freedom.
The errors and error estimators show an equivalent behaviour with an overestima-
tion of approximately 10. Uniform refinement leads to a suboptimal convergence
rate of h2/3 ≈ ndof−1/3 for k = 0, 1, 2. The adaptive refinement reproduces the
optimal convergence rates of ndof−(k+1)/2 for k = 0, 1, 2. Figure 3 depicts three
meshes created by the adaptive algorithm for k = 0, 1, and 2 with approximately
1000 degrees of freedom. The singularity at the re-entrant corner leads to a strong
refinement towards (0, 0), while the refinement for k = 0, 1 also reflects the be-
haviour of the right-hand side, i.e., one also observes a moderate refinement on
the circular ring {x ∈ Ω | 1/2 ≤ |x| ≤ 1}. The marking with respect to the
data-approximation (µ2

` > κλ2
` in Algorithm 6.1) is applied at the first 7 (resp. 5

and 10) levels for k = 0 (resp. k = 1 and k = 2) and then at approximately every
third level.

8.2 L-shaped domain, II

For f ≡ −1 and uD ≡ 0 define ϕ(x, y) := (1/2)(x, y) with −divϕ = f .
The error estimators are plotted against the degrees of freedom in Figure 4 for

k = 0, 1, 2. The error estimators show for k = 0, 1, 2 a suboptimal convergence rate
of h2/3 ≈ ndof−1/3 for uniform refinement. The adaptive algorithm 6.1 recovers the
optimal convergence rate of ndof−(k+1)/2. Adaptively refined meshes are depicted
in Figure 5 for approximately 1000 degrees of freedom. The strong refinement
towards the singularity at the re-entrant corner is clearly visible. The smoothness
of ϕ ∈ P1(Ω;R2) implies that the data-approximation error estimator µ` vanishes
on all triangulations for k = 1, 2. For k = 0, µ` does not vanish, nevertheless,
since µ2

` ≤ κλ2
` for all `, only the Dörfler marking is applied.
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Figure 2: Errors and error estimators from Subsection 8.1.
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Figure 3: Adaptively refined triangulations for the experiment from Subsection 8.1.
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Figure 4: Error estimators for the experiment from Subsection 8.2.
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Figure 5: Adaptively refined triangulations for the experiment from Subsection 8.2.

8.3 Singular α

This subsection is devoted to a numerical investigation of the dependence of the
error ‖p− ph‖L2(Ω) on the regularity of α. The exact smooth solution u ∈ C∞(Ω)
of

−∆u = 2 sin(πx) sin(πy) in Ω and u|ΓD = 0

reads u(x, y) = sin(πx) sin(πy). Define ϕ = ∇u+Curl(α̃) with α̃ ∈ H1(Ω)\H2(Ω)
defined by α̃(r, φ) = r2/3 sin(2φ/3). Then ϕ ∈ H(div,Ω) with −divϕ = f .

The errors and error estimators are plotted in Figure 6 against the number of
degrees of freedom. The convergence rate on uniform red-refined meshes for k =
1, 2 is h2/3 ≈ ndof−1/3 and, hence, the convergence rate seems to depend on the
regularity of α. The errors and error estimators show the same convergence rate.
Figure 7 focuses on the results for k = 0 and uniform mesh-refinement. The error
‖p− ph‖L2(Ω) and the error estimator

√
λ2 + µ2 show a convergence rate between

h and h2/3, while ‖Curl(α− αh)‖L2(Ω) converges with a rate of h2/3 ≈ ndof−1/3

due to the singularity of α. This numerical experiment suggests that the error
‖p− ph‖L2(Ω) does not depend on the regularity of α (at least in a preasymptotic
regime). The triangle inequality implies ‖Curl(α− αh)‖L2(Ω) ≤ ‖p− ph‖L2(Ω) +µ.
This upper bound is also plotted in Figure 7.

Figure 8 depicts adaptively refined meshes for k = 0, 1, 2 with approximately
1000 degrees of freedom. The singularity of α leads to a strong refinement towards
the re-entrant corner. The marking with respect to the data-approximation (µ2

` >
κλ2

` in Algorithm 6.1) is only applied at levels 1–5, 7, 12, and 18 for k = 0. All
other marking steps for k = 0, 1, 2 use the Dörfler marking (µ2

` ≤ κλ2
` ).
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