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Abstract This paper presents a multiscale Petrov-Galerkin finite element
method for time-harmonic acoustic scattering problems with heterogeneous
coefficients in the high-frequency regime. We show that the method is
pollution-free also in the case of heterogeneous media provided that the sta-
bility bound of the continuous problem grows at most polynomially with the
wave number k. By generalizing classical estimates of [Melenk, Ph.D. The-
sis 1995] and [Hetmaniuk, Commun. Math. Sci. 5 (2007)] for homogeneous
medium, we show that this assumption of polynomially wave number growth
holds true for a particular class of smooth heterogeneous material coefficients.
Further, we present numerical examples to verify our stability estimates and
implement an example in the wider class of discontinuous coefficients to show
computational applicability beyond our limited class of coefficients.
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1 Introduction

The time-harmonic acoustic wave-propagation is customarily described by the
Helmholtz equation, which is of second-order, elliptic, but indefinite. Its nu-
merical solution therefore exhibits severe difficulties especially in the regime
of high wave numbers k. It is well-known that the mesh size h required for
the stability of a standard finite element method must be much smaller than
a mesh size H which would be sufficient for a reasonable representation of the
solution. The phenomenon that the ratio H/h tends to infinity as k grows,
is known as the pollution effect [1]. A method is referred to as pollution-free,
if h and H have the same order of magnitude and so proper resolution of
the solution — usually a certain fixed number of grid points per wave length
— implies quasi-optimality of the method.

When studying acoustic wave-propagation, it is often assumed to have
constant material properties such as density and speed of sound, while in
real complex materials, such as composites, these may be heterogeneous.
Therefore, in this paper we study a multiscale Petrov-Galerkin method for
the Helmholtz equation with large wave numbers k£ and possibly heteroge-
neous material coefficients as a generalization of |7, 16]. Standard first-order
piecewise polynomials on the scale H serve as trial functions in this method,
whereas the test functions involve a correction by solutions to coercive cell
problems on the scale h. The size of the cells is proportional to H, where the
proportionality constant m —the oversampling parameter— can be adjusted.
Typically m = log k, depending on the stability of the problem, leads to a
quasi-optimal method. These local problems are translation invariant. There-
fore, in periodic media only a small number of corrector problems must be
solved depending on the number of local mesh configurations.

The stability of the method requires that the stability constant of the
continuous operator depends polynomially on k. Such results are very rare in
the literature even for the case of homogeneous media. We shall emphasize
that such an assumption does not hold true in general [2]|. The first positive
estimates of this type go back to [14] for convex planar domains with pure
Robin boundary. They were later generalized to other settings and three
spatial dimensions in [4, 11]. For instance, in the particular case of pure
impedance boundary conditions with 02 = I'g, it was proved in [4, 6, 14],
by employing a technique of [12], that the inf-sup constant is bounded, i.e.
v(k, 2, A,V?) < k. Further setups allowing for polynomially well-posedness
in the presence of a single star-shaped sound-soft scatterer are described in
[11]. For multiple scattering and, in particular, for scattering in heterogeneous
media, the situation is completely open. To show that the assumption is
satisfiable for non-trivial heterogeneous media, in this work we determine a
class of smooth heterogeneous coefficients that allow for explicit-in-k stability
estimates.
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1.1 Heterogeneous Helmholtz Problem

We begin with some standard notation on complex-valued Lebesgue and
Sobolev spaces that applies throughout this paper. The bar indicates complex
conjugation and i is the imaginary unit. The L? inner product is denoted by
(v, w)r2(0) = /. o vwdz. The Sobolev space of complex-valued LP functions
over a domain w whose generalized derivatives up to order [ belong to L
is denoted by W!P(w) and H!(w) := W!?2(w). Further, the notation A < B
abbreviates A < C'B for some constant C' that is independent of the mesh-
size, the wave number k, and all further parameters in the method like the
oversampling parameter m or the fine-scale mesh-size h; A =~ B abbreviates
A<SB<A

We now begin with some notation and problem setting. Let 2 C R? be an
open bounded Lipschitz domain with polyhedral boundary for d € {1,2,3}.
We wish to find a solution u that satisfies

—div (A(z)Vu) — E*V?(2)u = f in 2, (1)

along with the boundary conditions

u=0on Ip, (2a)
A(x)Vu-v=0on Iy, (2b)
A(x)Vu v —ikp(z)u = g on I'g. (2¢)

Here, v denotes the outer normal to 92 = I'p U I'y U ['r, where the bound-
ary sections are assumed disjoint. We suppose that |I'g| > 0, but allow the
other portions of the boundary to have measure zero. Although the results
in this paper hold for a weaker dual space here we suppose f € L%(f2) and
g € L?(I'g). For the coefficients, we suppose A(x),V?(z) € WH*°(£2), and
B(x) € L>(42) are real valued. Moreover, we suppose there exist positive con-
stants Aomin, Amazs Bmin, Bmazs Vmin, and Vi,q. independent of k£ such that
for almost all x € 2 we have

Amin SA(J:) S Amaxa (3&)
Bmin Sﬁ(m) S ﬂmaaza (3b)
V’r?zin SVQ (I) < VYI2La3L" (3C)

We denote the space
Vi={uc H(2)|u=0onI'p}

and denote the norm weighted with A(x), V(x), and k to be for w C 2
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2

(4)

._ 2 1
lully,,, == \/kVu|L2(w) +atd, .
where if w = (2, we simply write |lu||;,. We have the following variational
form corresponding to (1): Find u € V' such that

a(u,v) = (f,v)r2(0) + (9, v)L2(ry) for allv €V, (5)

where the complex-valued sesquilinear form a : V x V — C is given by

a(u,v) = (A(x)Vu, Vo) r2(0) — (K*V(2)u,0) 12(0) — (ikﬂ(Z)U,U)LQ(FR)kG)

Here we write (u,v)r2(0) = [, uvde and similarly (u,v)r2(rp) = [, uvds.

1.2 Motiwvation for a Multiscale Method and Stability
Analysis

It is well known [1] that the pollution effect cannot be avoided in standard
methods. However, it may be overcome by coupling the polynomial degree
of the method with the wave number k [15]. Therefore, multiscale methods
appear to be a natural tool to incorporate fine-scale features in a low-order
discretization. Moreover, the parameters of this method must be coupled loga-
rithmically with the wave number and therefore require the stability constant
of the continuous problem to be polynomially dependent of k to arrive at a
computationally efficient method. Hence, the stability of the continuous het-
erogeneous problem (1) is critical to the analysis of the related algorithms.
In general, it is often shown (or possibly assumed) that there exists some
constant Cysap(k, 2, A, V?) > 0, which depends on k, the geometry, and the
coeflicients, such that

llly < Cotan (ks 2, 4,V2) (Ifll () + 9l 1)) - (7)

Further, turning to the inf-sup type lower bound, it is often shown, or pos-
sibly assumed, that there exists some constant ~(k, (2, A,V?), related to
Cstap(k, 2, A, V?), such that

vk, 2,A, V)"t < inf sup Rea(v, w) . (8)
veV\{0} wevi{o} llvllv[lwllv

As noted, it is often the case that these constants depend merely polynomially
on k. However, it has been demonstrated that there are special instances of
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exponential k& dependence on Cyap(k, £2, A, V?) 2], and thus, highly unstable
inf-sup constants v(k, 2, A, V?).

2 Stability of the Heterogeneous Helmholtz Model

As discussed in Section 1, the stability and regularity of the continuous prob-
lem has been investigated for constant coefficients in various contexts. In this
section, we shall investigate the stability of the continuous problem with re-
spect to wave number in the case of heterogeneous coefficients. We proceed
using the variational techniques with geometric constraints [11].

As noted in Section 1, in the case of constant coefficients, there exist vari-
ous methods to bound ~(k, £2, A, V?) from (8) in terms of k. Most importantly,
the possible exponential dependence discussion in [2], will be excluded here.
We will show in this section, that for certain classes of coefficients, we are
able to obtain a favorable polynomial bound for v(k, £2, A, V?). To this end,
we will employ variational techniques and so-called Rellich type identities
with restrictions on the types of geometries similar to the work of [11] and
references therein.

As we use the variational techniques we will make the geometric assump-
tions made by [11]. That is we suppose that there exists a o € R? and a
n > 0 such that

(x —x0)-v<O0on Ip, (9a)
(x —xo)-v=0o0n Iy, (9b)
(x —x0)-v>non kg (9¢)

For a summary of such possible domains, we refer the reader to [11]. However,
to get some sense of a geometry the reader may envision a convex domain
with pure impedance boundary conditions. This of course may be weakened.

2.1 Statement of Stability, Connections to Inf-Sup
Constants, and Boundedness

In this section we present our main stability result. The variational techniques
employed require assumptions on the class of coefficients to remain valid.
We outline these constraints and obtain a bounded-in-k result. We further
relate these to the inf-sup constants and explore the boundedness of the non-
constant coefficient case.

Theorem 1. Suppose 2 C R%, is a bounded connected Lipschitz domain and
satisfies the geometric assumptions (9). Let u be a solution of (1) with the
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boundary conditions (2), coefficients satisfying the bounds (3), and k > ko >
0, for some ko. Further, we suppose the reqularity u € H3/?>T9(8) for some
4> 0.

Define the following function

S(z) = div ((22((;))) (z — m) (10)

and further, we will denote Cq to be the minimal constant so that

VA VA
2 Le2(£2)
We suppose that
Sonin = ;%18 S(z) >0, (12a)
VA V2
Smin — (d - 2) + CG () mar ~, (), (12b)
( A Lo (1) Amin
We then have the following estimate
. 1
foll <€ (14 35 ) (s + ol eir,) (13

where C* depends only on the (3) and £2, but not on k.
Proof. See Appendix below. 0O

Remark 1. The assumption from Theorem 1 that w satisfy the regularity
u € H3/?19((2) is an assumption on the configuration of the boundary de-
composition into I'p, 'y, I'r. It is not a further restriction on the coefficients
Aor V2

Now that we have an explicit bound for a class of constant variable coef-
ficients, we now will relate the constant Ciqp(k, 2, A, V?) := C* (1 + k%) to
v(k, 2, A, V?) given by (8).

Theorem 2. Supposing the assumptions in Theorem 1, we have the following
estimate

E1<A NS inf sup Rea(v, w) :

veV\{0} wevi\ (o} [[vllv [[wllv

Where, 5 := (1+C* (k+ 1) V,2,.)-

(14)

Proof. We proceed by a standard argument from [6], adapted to the hetero-
geneous case. Given u € H'(£2), define 2 € H'({2) as the solution of

2k* (v, Vu) 12(0) = a(v, z), for allv € V. (15)
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Then, from the estimate (13), we have

Iy <€ (14 3 ) Viawk e (16)
Note that
Rea(u,u) = (A(x)Vu, Vu)2(0) — (kzzvz(:ﬂ)u,u)p(m
and using (15) and taking v = u + z implies
Rea(u,v) = Rea(u,u) + Rea(u, z) = ||u\|%/ (17)

Using (16) we obtain
* 1 2 2
lolly <llully +lzly < luly + 0" {14 55 ) Vimaek® llull 2
1
<0 (k) V) luly
Hence, Rea(u,v) = |[ully, = (1+C* (k+ §) Vi2aa) ™ I0lly llully, , taking

~ 1
Fi=(1+C" (k+k> VZ o)~k
yields the result. O

Finally, for completeness, we include a brief proof of the boundedness of the
variational from.

Theorem 3. Supposing the assumptions in Theorem 1, the variational form
(6) has the following boundedness property

la(u,v)| < Ca Jully 0]y - (18)

Here C, may depend on the bounds (3), multiplicative trace constants, and
(2, but not k.

Proof. From the variational form we have
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la(u, v)| < \(A%VU,A%W)LZ(Q)‘ + | BV, V) 2o |

|8, (BR)30) 2y

1 1
< |[4#vy Lz(rz)H Vel vy T IVl IRV Ol
1 1
* H(ﬁk)zu‘ L2(IR) (Bk)%‘ L2(In)
< 2 ’ 3 ‘ :
<l ol + w2l , - f@mte] ,

We have from the multiplicative trace inequality

2
cou (i
L2(I'r)

1

+ diam(Q)_l’ k?u

2
LQ(-Q))
2

L2(9)>

< Cur (llully + diam(2)~ kulF2)) S Cor lully

l ‘
2U

L2(£2) H(£2)

since k > 1. Applying this to the I'r terms we arrive at (18). O

2.2 Example Coefficients

In this subsection, we will provide a few examples that satisfy the assump-
tions on the coefficients (12). Hence, the set of bounded smooth coefficients
that yields polynomial-in-k bounds is non-trivial. We show that for some co-
efficients, as the oscillations become more frequent we violate the conditions
(12). In particular, it appears that the restriction on the amplitude of the
coefficients is related to the restrictions on the frequency of oscillations.

To simplify things, yet provide non-trivial coefficients, we will only consider
radially symmetric conditions in R?. Indeed, even with this symmetry, we are
able to highlight the complexities and restrictiveness in these conditions. We
will see that the frequency of oscillations play a considerable role in violation
of these conditions, as well as the amplitude.

We take 2 C R? to be given by the unit circle 2 := {(z,y) € R? | 22432 <
1} and 02 = {(z,y) € R? | 22 +y* = 1}. Further, we will take I'y = I'p = 0,
so that I'r = 0£2. We take zy = (0,0) € 2, and so m = (z — xg) = r#,
where 72 = 22 4+ y? and 7 is the standard unit normal in radial coordinates.
Then, clearly, m - v = 1 on I'g and so the geometric assumptions (9) are
satisfied with this domain. We will take 8(z) = 1, g(x) = 0, and suppose
that f := f(r), is a given radially symmetric forcing. We finally suppose that
the heterogeneities are radially symmetric, V2(x) = V2(r), and A(z) = A(r).
We briefly recall in radial coordinates that for a function A and a vector field



Multiscale Method for Heterogeneous Helmholtz Equation 9

o= (o,,00)

. 10 180’9
0A . laAA
VA= 5T et

27r
/Adacdy—/ / Ardrdf,

where 0 is the standard angular coordinate. By examining the conditions (12),
we are able to produce a few interesting examples.

Case 1: A = 1. Note that from condition (12b), that if A = 1 (or constant),
we see that the conditions simplify slightly since the gradient terms in A will
vanish. Indeed, now we see that only condition (12a) must be satisfied. In
this setting, we must have that div(V?m) > 0 for our estimates to hold, or
rewritten in radial coordinates as

10

~ (V2(r)r*) > 0. (19)

From this condition we may choose a few possible coefficients for V(r). A
trivial example is when V2(r) = r + 1. Clearly,

10

(r® +r):1(37~2+2r):3r+2>0.
ror T

Many such polynomial in r choices exist as long as they do not violate bound-
edness and positivity.

More interesting examples come from oscillatory coefficients. Suppose, for
€ > 0, we take now the innocent looking example

V2(r) = %sin (i””) 45, (20)

and so

1 0 2 2 2 2
(r sin <W> + 57"2) =sin <W> + 7 cos <W> +10. (21)
ror € € € €

A quick investigation shows that if e = 1, then (19) is satisfied, however, when
e = .1 it is violated. Hence, if the coefficient becomes highly oscillatory, the
stability condition is not satisfied. Also note that if we fix e = 1, but extend
the domain from a unit circle to one of radius R, we will eventually enter a
negative region. Hence, the domain size also may have an effect on stability
from the viewpoint of conditions (12).

Case 2: A = V2. Turning to the definition of S(x) in (10), we see that if
A = V2, the functions simplifies to S(x) = d. Thus, condition (12a) is always
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satisfied. For d = 2, (12b) becomes

VA Ao
Ca ( ) —EE > 0. (22)
( A Loo(Q)) Amm

Taking a closer look at the terms related to Cg from Theorem 1, we have in
radial coordinates

(VAA> Vu((z — o) - Vi)da

] (Gs)

5 1 0A(r)
or

du(r)|?

drdf
or "

2
IVl () -
L>(9)

Hence, we may take here C¢ = 2. Noting that

o 1 0A(r)
EIH(A)_A(T) ar

then the condition (22) becomes

= (la

VZ(r) = A(r) = exp (a (sin (z) + 5)) , (24)

for €, a, and ¢ positive, then

« T «
—cos | — = —.
€ €/1lLee(2) €

Note further that A,,,, = exp(a(d + 1)) and A,,;n = exp(a(éd — 1)), and so
Amaz — exp(2a). Hence,

o

or avexp(2a) < e. We see from this calculation that the frequency of oscillation
in the coefficients is related to the amplitude as far as the conditions (12) are
concerned. The more oscillatory the function, the smaller the amplitude must
be in this example.

@) = >0 @

Taking

0

Le=(92)

H) T =1 - gexp(?oz) >0 (25)
€

min
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3 The Multiscale Method

In this section, we will introduce the notation on finite element spaces and
meshes that define the multiscale Petrov-Galerkin method (msPGFEM) for
the heterogeneous Helmholtz problem. This method is based on ideas in an
algorithm developed for homogenization problems in [13, 10, 3| also known
as Localized Orthogonal Decomposition. The ideas have been adapted to the
Helmholtz problem for homogeneous coefficients in [16], and later presented in
the Petrov-Galerkin framework [7, 17]. We will stay in line with the notation
and presentation of [7], as this is the basis for the algorithm applied to a
heterogeneous medium. We begin by defining the basic components needed,
then define the multiscale method as well as some computational aspects.
Finally, we will briefly discuss the error analysis for the method, however,
this will not differ too far from the homogeneous coefficient algorithm and as
thus, will refer the reader to technical proofs in [7].

3.1 Meshes and Data Structures

We begin with the basic notation needed regarding the relevant mesh and
data structures. For the sake of clarity and completeness, we will briefly
recall the notation used in [7]. Let Gy be a regular partition of {2 into in-
tervals, parallelograms, parallelepipeds for d = 1, 2, 3, respectively, such that
UGr = 2 and any two distinct T, 7" € Gy are either disjoint or share exactly
one lower-dimensional hyper-face (that is a vertex or an edge for d € {2, 3}
or a face for d = 3). We suppose the mesh is quasi-uniform. For simplicity, we
are considering quadrilaterals (resp. hexahedra) with parallel faces, this guar-
antees the non-degeneracy of the elements in Gy. Again, the theory of this
paper carries over to partitions satisfying suitable non-degeneracy conditions
or even to meshless methods based on proper partitions of unity [9].
Given any subdomain S C {2, we define its neighborhood to be

Msy:nm(u{Tegszwﬂ§¢®Q.
Furthermore, we introduce for any m > 2 the patch extensions
N'(S):=N(S) and  N™(S):= N(N"(S)).

Note that the shape-regularity implies that there is a uniform bound denoted
Colm, on the number of elements in the mth-order patch, #{K € Gy

K CN(T)} < Com for all T € Gy. We will abbreviate Co := Co1,1. The
assumption that the coarse-scale mesh Gy is quasi-uniform implies that Co
depends polynomially on m. The global mesh-size is H := max{diam(7T)} for

all T € Gy.
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We will denote Q,(Grr) to be the space of piecewise polynomials of partial
degree less than or equal to p. The space of globally continuous piecewise
first-order polynomials is given by S*(Gg) := C°(2)NQ1(Gx), and by incor-
porating the Dirichlet condition we arrive at the standard @, finite element
space denoted here as

Vi = SYGu)N V.

The set of free vertices, or the degrees of freedom, is denoted by
Ny :={2€ 02 : zisavertex of Gy and 2 ¢ I'p}.

To construct our fine-scale and, thus, multiscale spaces we will need to
define a coarse-grid quasi-interpolation operator. For simplicity of presenta-
tion,we suppose here that this quasi-interpolation is also projective. This
assumption may be lifted c.f. [9] and references therein. We let Iy : V — Vi
be a surjective quasi-interpolation operator that acts as a stable quasi-local
projection in the sense that /3 = Iy and that for any 7' € Gy and allv € V
the following local stability result holds

H v = Il 2ery + IVIgvl r2(ry < Cry Vol L2nery)- (26)

Under the mesh condition that

kH <1
is bounded by a generic constant, this implies stability in the || - ||y norm
||IHU||V < CIH,V”U”V for all v € V, (27)

with a k-independent constant C7r, . However, Cr, v, will depend on the
constants in (3).

One possible choice and which we use in our implementation of the method,
is to define Iy := Ey o IIy, where Iy is the piecewise L? projection onto
Q1(Gn) and Eg is the averaging operator that maps Q1(Gg) to Vg by as-
signing to each free vertex the arithmetic mean of the corresponding function
values of the neighbouring cells, that is, for any v € Q1(Gy) and any free ver-
tex z € Ny,

Ex@)) = S vlr(2) / L{K Gy + 2 € K}

TeGh
with zeT

Note that with this choice of quasi-interpolation, Ex(v)|r, = 0 by con-
struction. For this choice, the proof of (26) follows from combining the well-
established approximation and stability properties of ITy and Ey shown in
[5]-
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3.2 Definition of the Method

The multiscale method is determined by three parameters, namely the coarse-
scale mesh-size H, the fine-scale mesh-size h, and the oversampling parameter
m. We assign to any T' € Gy its m-th order patch 27 := N™(T'), m € N, and
define for any v, w € V the localized sesquilinear forms of (6) to £2r as

v)

aQT( s
A(x)Vu, V)20 — (kQVQ(x)u7U)L2(QT) — (tkB(x)u,v) L2(rrnonr)-

u
= (
and to T', we have

agy(u,v) = (A(z)Vu, vU)L?(T) - (kQVQ (z)u, U)L?(T) —(ikB(x)u, v)LZ(FROBT)-

Let the fine-scale mesh Gy, be a global uniform refinement of the mesh Gg
over {2 and define

Vi(2r) :={v € Q1(Gr) NV :v =0 outside 2r}.
Define the null space
Wh(.QT) = {Uh S Vh(QT) : IH(’Uh) = 0}

of the quasi-interpolation operator Iy defined in the previous section. This
is the space often referred to as the fine-scale or small-scale space. Given any
nodal basis function A, € Vi, let A, r € Wj,(£27) solve the subscale corrector
problem

aop(w, A1) =ap(w,A,) for all w e Wy (£27). (28)

Let A\, := ZTegH Az, and define the multiscale test function

A=A, — A,
The space of multiscale test functions then reads
Vi :=span{/A, : z € Ng}.

We emphasize that the dimension of the multiscale space is the same as the
original coarse space, dim Vg = dim Vy. Moreover, it is independent of the
parameters m and h. Finally, the multiscale Petrov-Galerkin FEM seeks to
find ug € Vg such that

a(ug, o) = (f,01)r22) + (9:0m) 12(ryy  for all o € Vi, (29)

As in [7], the error analysis and the numerical experiments will show that
the choice H < k=1, m ~ log(k) will be sufficient to guarantee stability and
quasi-optimality properties, provided that k*h < 1 where « depends on the
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stability and regularity of the continuous problem. This constant a was the
subject of Section 2. The conditions on h are the same as for the standard
@1 FEM on the global fine scale. For example, in 2 dimensions, in the case
of pure Robin boundary conditions on a convex domain, it is required that
k3/2h < 1 for stability [18] and k2h < 1 for quasi-optimality [14] is satisfied.

4 Error Analysis

The error analysis for the algorithm presented in Section 3, is very similar
to that developed in [16] and references therein, and in particular for the
Petrov-Galerkin formulation we discuss now in [7]. It is clear the proofs are
unaffected by the coefficients as the arguments rely on very general constants
being bounded such as Cy, Csiap(k, 2, A, V?), and y(k, £2, A, V?), for example.
This is primarily due to the upper and lower boundedness on the coefficients
(3). However, we will highlight the main themes of the analysis here as this
will be useful to refer to in our discussion on Numerical Examples in Section
5 as well as general completeness of the discussion.

We begin the error analysis with some notation. We denote the global
finite element space on the fine scale by V, := V,(£2) = S'(Gn) N V. We
denote the solution operator of the truncated element corrector problem (28)
by Crm. Then, any z € Ny and any T € Gy satisfy A\, 7 = Cr.,(A4,) and we
refer to Crp, as the truncated element correction operator. The map A, — A,
described in Subsection 3.2 defines a linear operator C,,, via C,,(A4,) = A, for
any z € Ny, referred to as correction operator.

For the analysis we introduce idealized counterparts of these correction
operators where the patch 21 equals 2. These global corrections are never
computed and are merely used in the analysis. We define the null space

Wy = {'U eV, : IH(’U) = 0}7

also referred to as the fine-scale space on the global domain. For any v € V,
the idealized element corrector problem seeks Crv € W}, such that

a(w,Crv) = ar(w,v) for all w € Wy, (30)

Furthermore, define

Cv = Z Cruv. (31)

TeGH

Recall, we proved in Section 2 that the form a with heterogeneous coeffi-
cients given by (6), is continuous and there is a constant C, such that

a(v,w) < Collvllv|w]v  for all v,w € V.
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The following result implies the well-posedness of the idealized corrector prob-
lems.

Lemma 1 (Well-posedness for idealized corrector problems). Pro-
vided

CryvVCoaHEk <1, (32)
we have for all w € Wy, equivalence of norms

1

Az Vw2 < llwllv < (Viiae + Amaz)

N|=

Vwllr2(2),
and coercivity
(Vn%az + Amaw) va”%?(n) < Rea(w,w).
Proof. The lower bound is trivial, indeed we have that
1
HU’H%/ = ||k:Vw||%2(Q) + ||A2VU’||%2(Q) 2 Amin||vw||2L2(Q)'
For the upper bound, we note for any w € W}, the property (26) implies

K IVwlZs o) =KV = Inwllizg) < Vi

max

C?H001H2k2||Vw||%2(Q).
Thus, using (32) we arrive at
lwlly = [kVwlliz(q) + 142 VwlZs g

< V2 e Ol Ca H2 B[Vl 220y + Amaz VW] 72 0
< (Vriaz + Amax) ”vw”zL?(Q)'

Note from this we have
1
[V w220y < (Viae + Amaz) [VolF2(0) = A2 V220
< (Vrgw,z + Amaz — Amin) vaH%?(Q)a
and so

1
Rea(w,w) = ||A2Vw||2L2(Q) - ||kvw||%2(9)
> (Vn21a;v + AnLaw) va”%?(ﬂ)

Thus, equivalence and coercivity is proven. 0O

Lemma 1 implies that the idealized corrector problems (31) are well-posed
and the correction operator C is continuous in the sense that

ICvi|lv < Cel|lva|ly for all vy € Vy
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for some constant C¢ ~ 1. Since the inclusion Wy, (£2r) C W}, holds, the well-
posedness result of Lemma 1 carries over to the corrector problems (28) in
the subspace W, (27) with the sesquilinear form ag,..

Again as with the homogeneous coefficient case [7], the proof of well-
posedness of the Petrov-Galerkin method (29) is based on the fact that the
difference (C — Cp,)(v) decays exponentially with the distance from supp(v).
In the next theorem, we quantify the difference between the idealized and
the discrete correctors. As the proof is a bit technical and does not differ
fundamentally from the homogeneous case, we refer the reader to Appendix
of [7] and references therein. The proof is based on the exponential decay of
the corrector CA, and requires the resolution condition (32), namely kH < 1.

Theorem 4. Under the resolution condition (32), there exist constants Cy ~
1= Cy and 0 < 0 < 1 such that any v € Vi, any T € Gy and any m € N
satisfy

||V(CT”U - CT77nv)||L2(Q) < 010m||Vv||L2(T), (33)
||V(CU — Cm’U)||L2(Q) S 02\/ 001,m9m||v11||L2(Q). (34)

Proof. See Appendix of [7]. O

Provided we choose the fine-mesh h small enough, the standard finite el-
ement over the mesh Gy, is stable in the sense that there exists a constant
Creum such that with (&, 2, A, V2) from (8) it holds that

Rea(v,w)

inf sup .
veVi\{0} wevi\ oy IVllv lwllv

(CFEMV(I{’ Qv Aa VQ)) - < (35>

Recall, this is actually a condition on the fine-scale parameter h. In general,
the requirements on h depend on the stability of the continuous problem [14].
We now recall the conditions on the oversampling parameter for the well-
posedness of the discrete problem. Again, the proof here does not rely heavily
on the coefficients, just the general boundedness and ellipticity constants etc.
Thus, we again refer the reader to [7].

Theorem 5 (Well-posedness of the discrete problem). Under the res-
olution conditions (32) and (35) and the following oversampling condition

m 2 llog (Crmary (k. 2, A,V2)| / log(0)], (36)

problem (29) is well-posed and the constant Cpg = 2Cr,, vCcCrrm satisfies

(Cpar(k, Q,A,VQ))_1 < Rea(vy,n)

inf sup — .
vr€VEMO} 5, e\ {0} lvellv]omllv

Proof. See [7]. O
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The quasi-optimality requires the following additional condition on the
oversampling parameter m,

m 2 llog (Crar(k, 2,4,V))| /log(0)]. (37)

Theorem 6 (Quasi-optimality). The resolution conditions (32) and (35)
and the oversampling conditions (36) and (37) imply that the solution ug
to (29) with parameters H, h, and m and the solution uy, of the standard
Galerkin FEM on the mesh Gy satisfy

lun —umllv SN = Ir)unlly = min |lup —vgllyv.
vgEVy

Proof. See [7]. O

The following consequence of Theorem 6 states an estimate for the error
uUu—ug.

Corollary 1. Under the conditions of Theorem 6, the discrete solution ugy
to (29) satisfies with some constant C ~= 1 that

lu—umllv <llu—wuplv +C min |u, —vgly.
v €EVH

For the class of coefficients described in Theorem 1, this leads to the follow-
ing convergence rates. Provided that the geometry allows for H? regularity
of the solution and that h is sufficiently small such that the standard FEM
is quasi-optimal on the fine scale h and the error is dominated by the coarse-
scale part, we have

lu—ully < O(kH).

5 Numerical Examples

In this section, we present the results from our numerical experiments on a
smooth coefficient for both cases when the conditions are satisfied and when
it is violated. Further, we implement the method on discontinuous periodic
coefficients to highlight broader applicability of the method. We give 3 exam-
ple coefficients; based on (20), (24), and a discontinuous example. In all three
experiments we took 2 = (—1,1)? to be the unit square. We use triangular
meshes and continuous P, finite elements as trial functions. We used k = 2°,
g = 0, and the approximate point source

flx) = {eXp (‘W) for |x| < 1/20

0 else.
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(a) The coefficient V2 for example 1. (b) Plot of the solution for example 1.

Fig. 1 Plots for example 1.

The coarse-scale mesh-sizes are H = 273,274,275 276 and the fine-scale
mesh-size is h = 278,

The convergence history plots display the errors in the || - ||y norm as
well as L? norms. We compare the multiscale Petrov-Galerkin method for
oversampling parameters m = 1,2,3 with the standard P; finite element
method and the best-approximation. To compute the error quantity we take
the standard finite element solution at the fine scale h to be the overkill
solution.

For the first example, we take A = 1 and V? as (20). with € = 1 and refer
to this as example 1. Note that this does not violate the stability condition.
The coefficient V2 is displayed in Figure 1(a) and the corresponding compu-
tational solution is displayed in Figure 1(b). We note the spurious oscillation
in Figure 1(b) that breaks the rotational symmetry of the problem. However,
this is due to the Robin boundary condition on the square domain being a
poor choice for an absorbing boundary condition. The normal vector on the
square is a crude approximation to 7. Computing on a circular domain would
yield radially symmetric results.

Figures 2(a)—2(b) display the convergence history in the V-norm and the
L? norm for example 1. In general, we see that the multiscale method appears
to perform much better than the corresponding standard P; finite element.
However, there appears to be some resonance effects of some sort that is
particularly pronounced in the V norm just before the resolution condition
is satisfied. This is not in contradiction with the theory. It has been demon-
strated in [7] that there is no decay of the corrector functions if the resolution
condition is not satisfied, so that in this regime the localization is not justified
and leads to unreliable results.

For the second example, we take A = V2 and V2 as (24), and refer to this
as example 2. For the parameters we took 6 =1, ¢ = 0.1, a = 0.08, and note
that the corresponding stability condition «a exp(2«a) < € is narrowly satisfied.
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(a) Convergence in V norm: example 1. (b) Convergence in L2 norm: example 1.
Fig. 2 Convergence history for example 1.
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Fig. 3 Plots for example 2.

The coefficient V2 is displayed in Figure 3(a) and the computational solution
is displayed in Figure 3(b). Figures 4(a)—4(b) display the convergence history
in the V-norm and the L? norm for example 2. We see that in this example,
we achieve faster convergence and do not see the resonance effects. This is
also the case for the standard finite elements.

We now present a numerical example outside of our stability theory. We
take V2 = 2 except at periodically placed blocks where V2 = 1 and plot the
function in Figure 5(a). We refer to this as example 3. The computational
solution is displayed in Figure 5(b). Figures 6(a)—-6(b) display the convergence
history in the V-norm and the L? norm for example 3. We observe that the
method performs particularly well in this example, especially when compared
against the corresponding P; finite element. We do not see the resonances as
with example 1.
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(a) The coefficient V2 for example 3.

Fig. 5 Plots for example 3.
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Fig. 6 Convergence history for example 3.
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6 Conclusions

In this work, we developed a multiscale method to efficiently solve the hetero-
geneous Helmholtz equation at high frequency. The primary challenge was
establishing k-explicit bounds for the continuous problem as these are criti-
cal in the analysis of the patch truncation parameter. We established these
bounds for a class of smooth coefficients given some restrictions that appear
to depend heavily on the frequency of oscillations and the amplitude of the
coefficients. We then presented our multiscale method whose error analysis
is not significantly modified by the heterogeneities assuming standard upper
and lower boundedness. Finally, we implemented the algorithm on two coef-
ficients that fit inside the class of coefficients in our main theorem and one
that is discontinuous. We see that the method performs well in these cases.
Future work includes exploring if these stability estimates apply to a greater
class of more heterogeneous coefficients with less smoothness.

Appendix: Proof of Stability

Technical and Auxiliary Lemmas

We will now proceed by recalling and demonstrating a few technical and aux-
iliary Lemmas used in the proof of Theorem 1. We begin with two critical
technical lemmas that remain unchanged from the homogeneous case exam-
ined in [11] and are repeated here for completeness.

Lemma 2. Let m € W4 (02)? and for all ¢ € H*(£2) we have

/ lg|*m - vds = / div(m)|q|*dz + 2Re/ gm - Vqdx. (38)
BYe; Q 2

Proof. See [11], Lemma 3.1. O

Lemma 3. Let m € W' (2)? and for all ¢ € H} (£2) N H3/?T0.6 >0, we
have

/ |Vql>m - vds — / 10,q)*m - vds
6Q\FD FD

:/ div(m)|Vq|*dx — 2Re/ Vq - (VqV)mdx
2 o)

— 2Re/ Ag(m - Vq)dx + 2Re/ Ovg(m - Vq)ds (39)
2 AT

Proof. See [8]. O
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Here we will present a few auxiliary Lemmas.

Lemma 4. Let 2 C R? be a bounded connected Lipschitz domain. Let u €
H(2) be a weak solution of (1), with f € L*(£2) and g € L*(I'r). Then, we
have for any € > 0

1 1
#lull FR)<6(f||L2 4 Bellulan +ﬂ_||g||Lz<pR>). (10)

Proof. Taking v = u into the variational form (5) and looking at the imagi-
nary part we have

S(a(u,uw)) = =(kB(z)u, u) = I((9,w) 2(rp) + (;0) 2(2));

and so

2
kﬁmin”uHL?(FR)

< ||U||L2(Q £ 22y + Nl o (rpy 190 22 (1)

k&1

2 2 2
< ng ||f||L2(Q) + ||UHL2(Q) + o 2%, l9lIZ2rp) + §||U||L2(FR)-

Multiplying by k, dividing by Bmin, and setting £ = Bmink we obtain

K26
||U||L2(n)

2 1 1 2
kK2 [ullz2(pyy < B (261||f|L2(Q)

k23
2 min
+ %Hgﬂm(m) + 7” |L2(FR)>

and we obtain

k‘2

2 1 1 2 k2 & 1
?HUHL%FR) < B <2€1f||L2(!2) +—

2
||u||L2(Q + 2B ||g||L2(FR)> .

Taking & = € > 0 we arrive at the estimate. 0O
We will also need the estimate below.

Lemma 5. Let 2 C R? be a bounded connected Lipschitz domain. Let u €
H(2) be a weak solution of (1) with f € L*(2) and g € L*>(I'r). Then, we
have

2
IVullL2 ()

1 €4 €3
< A |:k (VT?LG“T—i_ >||u||L2(Q)

min 6m1n

1 1 1 1 )
+ %‘Fm I£1122 @) T B T e 191172 (rp) | -
(41)
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for any &3,&4 > 0.

Proof. Taking v = u into the variational form (5) and looking at the real part
we have

Re(a(u,u)) = (A(x)Vu, Vu) 20y — (k2V2(z)u,u)Lz(Q)
=Re((g,w)r2(rp) + (s 0)12(02)),

and so we have
1 2 2
|2 wu] , ) <RIV o) + o)1 2oy + Il o2y

Using the maximal and minimal values we have for any £3 > 0 that

2 2
Apin|Vullz2(0y < K2V ullz20) + 1l 2oy 11| 220y + 1l 2 190 220
k& 1
2772 2 2
] R e
1 2 2
+ 2 192y + K[l z2(ry)- (42)

Using estimate (40) we may write for any € > 0

2 1 2 1 2 1 2
Rl < g (Pelulae + £y + gl ) - (49

Inserting the above inequality into (42) we obtain
2
Ann’n ||VU||L2(Q)

1272 k2§3 2 1 2
mazx 2 ||u||L2( 2]4725 ||f||L2 @HQHL?(FR)

1 2 Le2 1 2
+ (k26||uL2<n) + =2 + -”g””(“‘)> '
Brmin € Brmin

Taking € = &4 the above inequality becomes

2 &a §3
Aminl V22 ) < K2 (vm o ) el 0

+ (5pr + g ) Iy + il 2 ol
2k%6  Bminta r2@) T\ gz T gz ) WL re)-

Thus, we obtained our estimate. O
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Proof of Main Stability Result

We are now in a position to prove Theorem 1. The key observation is that
the Laplacian may be rewritten using (1) and combined with the technical
and auxiliary lemmas. This leads to the conditions on the coefficients (12).

Proof (Proof of Theorem 1).
Using (39) where we write

1
—Au = Z(f + E2*V2u+ VA - Vu),
dyu=0on I'y, and d,u = ikfu+ g on ', we obtain

/ |Vu\2m~uds—/ |0, ul?m - vds
QQ\FD FD

:/ div(m)|Vu|*dz — 2Re/ Vu - (VaV)mdz
+ 2Re/ Z(f + E*V2u+ VA - Vu)(m - Va)dx
2

+2Re / (ikBu + g)(m - Vu)ds.
I'r
Using (38) with the transform m — VTZm, we have
V2
k2/ |u|? () m - vds
00 A
V2 V2
= kz/ div <m> lu|?dx + 2k* Re/ u <) m - Vadz.
o A o \A
Using this to replace the term Re [, (%) u(m - Vu)dz, we have

/ |Vul>m - vds — / |0, u|*m - vds
8Q\FD FD

:/ div(m)|Vu|2dm—2Re/ Vu - (VaV)mdx
2 2

+2Re/9<£> (m-Vu)dm—i—QRe/g(v/(l) Vu(m - Vi)dz

+2Re/ (ikBu+ g)(m - Vu)ds
I'r

V2 V2
—k‘2/ div (m) qux—l—k‘Q/ ul? ()m.yds.
, ™) lul [m\ "\

Expanding out the boundary terms in each of the portions we have
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—/ |8Vu|2m-1/ds+/ |Vul|*m - vds
I'p

I'n

2
-|-/ |Vul*m - vds + kz/ div <Vm> lu|?dx
r 2 A

:/ div(m)|Vu|*dz — 2Re/ Vu - (VaV)mdx
2 2

+2Re/Q (D (m-Va)dx+2Re/Q(Vf> - Vu(m - Vi)de

2 2
+ k2/ |u|? <V> m - vds + k2/ |u|? (V) m - vds
I'n A I'n A

+2Re / (ikBu+ g)(m - Vu)ds.
I'r

(45)

Now we suppose we make the geometric assumptions made by [11] outlined
in (9). Recall, we have for m = 2 — 2, thus we compute

div(z — x9) = d in £2,
Vu - (VaV)(z — zg) = |Vul|* in 2,

(x —x0)-v<0on Ip,

(x —x0)-v=0on Iy,

(x —xzg)-v>non Ig.

Using the above relations in (45) we obtain

n/F’|Vu|2ds+k2/Qdiv (‘f:(x—xo)> luf2da
S(dZ)/Q|Vu|2dx+2Re/Q<fl> ((x — xo) - Vu)dz

T A (46)

+ 2Re/ () Vu((z — o) - Va)dz
o\ A
V2
+ kQ/ |ul|? <) (x —x0) - vds + 2Re/ (tkBu+ g)(m - Vu)ds.
I'r A I'r
Recall, (10), where we define the following function
2
S(z) := div <<‘1/4<(;))> (x — x0)>
(47)

() ()

and from (12), we have a minimum for S(x) exists and is positive
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Smin = min S(z) > 0.
Te(?

Further, from (12), we have C¢ to be the minimal constant so that

VA VA
2| [ (5) vt — o) Vaae| < Ce | (52)| 19l (19
Q Lo=(£2)
Returning to inequality (46), we obtain
IV ullZ2 () + K Sminllul 720
VA
< (d=2)|[Vulj2q) + Ca ( ) ) IVal72 o)
L (Q)
1
+C1 (M1 Vullagy + Ul Ve,
2 (Va
+Cy <k <A:nniz> Hu”};?(rR) +k ||5HL<>O(FR) ||uL2(FR)||vu||L2(FR)>

(49)
where Cj is independent of k and the bounds (3). Note that on the right
hand side we have for any &5, & > 0 the terms

k ||5||L<x>(FR) HUHL?(FR)HVUHLZ(FR) < o 25 || HL2(FR) JF ||5HL°<:(FR) ||VU||L2(FR)

||g||L2(FR)HquL2(FR) S ||9||L2(FR) + ||VU||L2 (I'r)"

We choose &5, & so that

5
5= 01 BTy = =0y

and SO
kz Bl sy k2
265~ 277 - l811Z (Ir) ™ -

We then obtain
& V2
kQSmin”uHi2(9) S Cl <( ||5||LOO(FR) + Ama3?> szu”L2 . ))

1 2
+Cy (Amm|f||L2(Q)HVUHL2(Q) + 2779|L2(FR))

(%)

+(d = 2)[|Vul|Za(q) + Co IVullZz q)-

Lo (£2) (50)
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Taking C%4 = C (% ||ﬂHioc(FR) + Zi‘?“”) and letting € = Bin&7/C5¢ in the
inequality (40) we have the relation

(C3 o
o )nfnm 4Rl @) + 5ol 5D

Applying this above inequality to (50), we obtain

2
C3 R |ull 2y <

k2 (Smin — 57)HU||2L2(9)

1 Cl
<q (_||f|L2(Q)||Vu||Lz< 1ol m)

Amln
VA> 9
[Vl
( A Lw(rz)) He

(C31)? C3
/32 Hf||L2(Q) + 52 ||9||L2(FR)

(52)

+ ((d—2)+CG
+

Recall the estimate (41), with C4? = ((d -2)+Cq || (¥2) HLOQ ), and tak-
ing é4= % =&

2
O3Vl 72 )

CER? (o &
Amin Vmaz Bmzn * 58 HUHLZ(Q

chd 1 1 cbd 1 1 ,
. Apin \ 4k2&5 + Bruinks ||f||L2(_Q) + —-— Ao \ B2 + el 191172 (rp)-

and so, using the above estimate (52)we obtain

<

Cy [, f 2

1 Ciy 2
<o (Wnﬂmmnwnmm + ol

e et L ) I+ (ot ga ) ol
Amin k2§8 BminfS L2 A /Bgun 4k2 g L2(In)

C de
;%W’ 1915000 + gl

(53)
Finally to deal with the remaining term on the right hand side that contains
_ & _ Vi : ;

> = -=e= and multiplying by

Vu, we note using (41),
59/(2Amzn); 59 > O, we obtain
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&
94, ||VU||L2(Q
&o { 2 L2012 2 1 2
< 2V paak” |lul| + + (hal
2Amzn Lz(n) mzn‘/ﬁlax k2v7727,(1x L2((Z)
+ (g + ) Mol
g s
min 4k2 L2(FR)
and so

1
m”fHLQ(Q)HquLQ(Q)
1

[ —

= 260A,, ||fHL2(Q HVU||L2(Q)
59 maw 2

ST k2 llull 720

min

1 &9 2 1 )
" (QAmin§9 2A2 ( vt 2k2v’r?zaa:>> 111222

min mzn max

& 1 1
+ 2A2 = T 0 452 ||g||L2(FR)'

min m’L'ﬂ

Applying this into (53), we obtain

C 2 g 0159 mazx 2
R el LT ) B (L

min

1 &9 2 1 ,
< 2
=G <2Amm§9 e ( V2 2]“2‘/7%@1;)) 1 11Z2 ()

min mzn max

Cq &9 1 1 2
v (Gt g (= + 3 ) Wllece

min

cb /o1 1 )
T Ao <4k258 * @nmgs) 171222

o (1 (Clay? i
+Amin el lgll7 o)t o o ||f||L2(_Q)+ﬁ2 HQHLZ(FR)

mzn mzn
(54)
L. . dev2
Hence, we see that the critical term is S,,i, — W Recall,
VA
3= | (d—2)+Cq ( ) :
A g (o)
thus, from (12), we have
A V2
Spmin — | (d—2) + Cg (V ) Zmaz - . (55)
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Since (55) is assumed to hold, we take &7, &s, and &g, so that

dev2 de 1 C V2
(5o = S 6= 0 (1) - ) >0

min

for some & > 0, and taking C3? to be the global constant bound for (54) we
obtain

Ccye 1
Rllulzzq) < == (1 + k) (1022 + glZocry) . (56)

and using (41), and taking C2? to be the global constant bound we obtain

2 1 2 2
Vel < €8 (14 35) (I aer +lalo) . 67

as desired. O
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