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Abstract

This paper studies global stability properties of the Rayleigh-Ritz
approximation of eigenvalues of the Laplace operator. The focus lies on
the ratios λ̂k/λk of the kth numerical eigenvalue λ̂k and the kth exact
eigenvalue λk. In the context of classical finite elements, the maximal
ratio blows up with the polynomial degree. For B-splines of maximum
smoothness, the ratios are uniformly bounded with respect to the de-
gree except for a few instable numerical eigenvalues which are related
to the presence of essential boundary conditions. These phenomena
are linked to the inverse inequalities in the respective approximation
spaces.

Keywords Rayleigh-Ritz, eigenvalues, finite element method, B-splines, isogeo-
metric analysis
AMS subject classification 65N12, 65N15, 65N30

1 Introduction

The accuracy of the Rayleigh-Ritz method for symmetric eigenvalue prob-
lems naturally depends on the approximation properties of the underlying
ansatz space. In the case of finite elements, explicit convergence rates are
known since [BBSW66, SF73, BO91]. However, because of smallness con-
ditions on the finite element mesh, these results are restricted to the lower
part of the discrete spectrum (cf. Figure 1) and numerical experiments have
shown that the remaining discrete eigenvalues are inaccurate, especially for
high polynomial degrees (cf. [Zha15] and [HER14]). A possible way to re-
duce these errors is to replace the finite element functions with splines of
higher regularity, which is referred to as the concept of isogeometric analysis
(IGA) (cf. [HCB05] and [CHB09]). Numerical experiments in [CRBH06]
∗Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Tech-
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Figure 1: Frequency ratios
√
λ̂k/λk for the one-dimensional Laplace eigenvalue

problem with Dirichlet boundary conditions computed with finite element functions
of degree p on a one-dimensional grid consisting of 200 elements.

indicate that except for a small number of so-called outlier frequencies the
overall accuracy of the resulting discrete spectra is much greater than in the
case of finite element spaces; see also Figure 2. In other words, the isoge-
ometric approach provides an accurate approximation of more eigenvalues
compared with classical finite elements when the comparison is based on the
same number of degrees of freedom.

This paper aims to explain these phenomena by investigating global prop-
erties of the discrete spectrum resulting from the Rayleigh-Ritz method with
either classical finite element functions or splines of maximum smoothness.
The term “global” refers to characteristics of the eigenvalues that concern
the whole discrete spectrum. We address two questions: First, we study the
stability of the method, i.e., we derive bounds of the form

λk ≤ λ̂k ≤ C λk,

where λk denotes the kth eigenvalue of the original differential operator
and λ̂k its discrete counterpart. We show that the constant C > 0 can
be chosen uniformly in the case of splines (except for the aforementioned
outlier eigenvalues) whereas it depends on the polynomial degree in the finite
element framework. The second question is concerned with the behavior of
the largest eigenvalues in the discrete spectrum. Using the sharpness of the
inverse inequality, we will show that in the case of finite element spaces the
ratio of the largest discrete eigenvalue and its corresponding exact eigenvalue
λ̂k/λk diverges with increasing polynomial degree. A similar statement can
be derived in the isogeometric framework. Notably, these results show that
in both frameworks the largest discrete eigenvalue diverges at a similar rate
if the comparison is based on equal numbers of degrees of freedom. The
analysis is restricted to the simple case of the Laplace eigenvalue problem on
the unit cube and uses only uniform, rectangular meshes for the definition
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Figure 2: Frequency ratios
√
λ̂k/λk for the one-dimensional Laplace eigenvalue

problem with Dirichlet boundary conditions computed with splines of maximum
smoothness of degree p on a one-dimensional grid consisting of 200 elements.

of the discrete spaces. For the case of hp finite elements, the arguments
can be transferred to more general settings in a straightforward way. For
tensor-product splines the situation appears to be more restrictive because
the domain needs a tensor-product structure. Hence, in the case of splines,
the results essentially hold for configurations with the unit cube as parameter
domain.

A uniformly accurate approximation of the spectrum is desirable in sev-
eral applications, e.g., in computational wave propagation. The work [HRS08]
established a relationship between the discrete spectrum and the wavenum-
ber in Helmholtz problems, see also the dispersion analysis of [DJQ15]. The
close connection of the discrete spectrum with the inverse inequality also
shows that the CFL condition in explicit time-stepping methods is prescribed
by the largest numerical eigenvalue. A uniformly stable numerical spectrum
would therefore imply a relaxation of the CFL condition. This fact is ex-
ploited, e.g., in [PS16] where special operator-dependent spline-type basis
functions replace classical finite elements to achieve feasible CFL numbers
on adaptive spatial meshes. Despite their improved spectral properties, the
standard IGA approximations are not yet sufficient for a CFL relaxation
because of the outlier frequencies arising from the Dirichlet boundary condi-
tion. Based on numerical experience, the works [CRBH06, HRS08] suggest a
nonlinear parametrization of the control points in order to reduce the outlier
modes.

The paper is structured as follows. Section 2 states the eigenvalue prob-
lem and an abstract stability result for the Rayleigh-Ritz method. This
estimate is applied to hp finite elements and splines of maximum smooth-
ness in the subsequent Sections 3 and 4. The presentation is concluded with
a numerical illustration for the two-dimensional model situation in Section 5.
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2 The Rayleigh-Ritz Method and its Stability

Standard notation on Lebesgue and Sobolev spaces applies throughout this
paper. Let Ω ⊆ Rd for, d ≥ 1, be a bounded Lipschitz domain and define
V := H1

0 (Ω) along with the bilinear forms a : V ×V → R and b : V ×V → R
given by

a(v, w) :=

∫
Ω
∇v · ∇w dx and b(v, w) :=

∫
Ω
vw dx for all v, w ∈ V.

The Laplace eigenvalue problem seeks eigenpairs (λ, u) ∈ R× V such that

a(u, v) = λb(u, v) for all v ∈ V.

Given some finite-dimensional subspace V̂ ⊆ V , the Rayleigh-Ritz method
seeks eigenpairs (λ̂, û) ∈ R× V̂ such that

a(û, v̂) = λ̂b(û, v̂) for all v̂ ∈ V̂ .

It is well-known that the eigenvalues are non-negative and have no finite
accumulation point. They can be sorted in ascending order

0 < λ1 ≤ λ2 ≤ . . . and 0 < λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂dim V̂
.

The Rayleigh quotient is defined byR(v) := a(v, v)/b(v, v) for any v ∈ V \{0}
and allows the characterization

λk = min
V (k)⊆V

dimV (k)=k

max
v∈V (k)\{0}

R(v) for all k ∈ N, (2.1a)

λ̂k = min
V̂ (k)⊆V̂

dim V̂ (k)=k

max
v̂∈V̂ (k)\{0}

R(v̂) for all k ∈ {1, 2, . . . ,dim V̂ }. (2.1b)

This minmax principle implies the well-known inequality λk ≤ λ̂k for all
k ∈ {1, 2, . . . ,dim V̂ }. Therefore, defining the ratio C(V̂ , k) := λ̂k/λk, we
obtain the elementary two-sided estimate

λk ≤ λ̂k ≤ C(V̂ , k)λk. (2.2)

This means that from the knowledge of upper bounds for C(V̂ , k) we can
deduce stability of the Rayleigh-Ritz method. Let, for example, Ω = (0, 1)d

be the hypercube and n be a positive integer. Let N = 2n and let T be a
uniform rectangular grid with (N + 1) vertices in each coordinate direction.
Define V̂ ⊆ V to be the finite element subspace over Th consisting of con-
tinuous and piecewise polynomial functions of a fixed maximal degree. Let
m ≤ n and M = 2m and k = (M − 1)d. We note that the finite element
space defined over the coarser grid of mesh size h = 1/M is a subspace of
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V̂ . Then, this subspace is an admissible choice for the minimum in (2.1b).
The inverse inequality [BS08] then states that there is a constant Cinv, which
depends on the used polynomial degree and the space dimension, such that
λ̂k ≤ Cinvh

−2. On the other hand, the classical asymptotic behavior of the
Laplacian eigenvalues due to Weyl [Wey11] states that

lim
k→∞

λk
k2/d

=
4π2

(ωd meas(Ω))2/d
(2.3)

where ωd denotes the volume if the unit ball in Rd. (For the unit cube there
are even explicit formulas for the eigenvalues λk. However, property (2.3)
is valid for more general domains.) This means that for some constant Cd
there holds that λk ≥ Cdk

2/d, and, thus, with h−1 = M = (k1/d + 1), we
obtain

C(V̂ , k) ≤ Cinv

Cd
k−2/d(k1/d + 1)2 ≤ Cstab (2.4)

for some (h, k)-independent constant Cstab. The constant Cinv, however,
deteriorates for large polynomial degrees. Hence, the stability estimate is
sensitive to the choice of the polynomial degree. Still, in Section 3 we will
prove that, at least for the largest discrete eigenvalue, the stability estimate
(2.4) is sharp by sketching a proof of the well-known sharpness [Sch98] of
the inverse inequality with respect to the polynomial degree p.

3 Application to hp FEM

Let us derive upper bounds for C(V̂ , k) in the finite element framework. We
restrict ourselves to the Laplace eigenvalue problem on the hypercube Ω =
(0, 1)d. LetN be a positive integer and set h = N−1. We then assume that Th
is a uniform rectangular grid with N+1 vertices in each coordinate direction.
By Vh,p ⊆ V we denote the finite element space over Th of continuous and
piecewise polynomial functions of maximum degree p ∈ N. Note that for this
setting the dimension of Vh,p is given by dimVh,p = (pN − 1)d.

Theorem 1. For each k ∈ {1, 2, . . . ,dimVh,p} the constant C(Vh,p, k) in
(2.2) can be bounded from above by

C(Vh,p, k) ≤ C1 q
2
k (3.1)

with some positive constant C1 and qk ∈ {1, 2, . . . , p} being the smallest
integer satisfying k ≤ (qkN − 1)d.

Proof. We fix a pair (k, qk) and note that there exists a unique

κ ∈ {1, 2, . . . , blog2(N)c}
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such that

k∗ :=

(
qk

⌊
N

2κ

⌋
− 1

)d
< k ≤

(
qk

⌊
N

2κ−1

⌋
− 1

)d
=: k∗. (3.2)

We can choose a coarsening TH of Th such that the minimal mesh size in
each coordinate direction is given by H = 2κ−1h. Let VH,qk ⊆ Vh,p be the
finite element subspace of piecewise polynomial functions over TH of maximal
degree qk. Note that by this choice the dimension of VH,qk is dimVH,qk = k∗

and that consequently VH,qk is an admissible subspace for the minimum in
the minmax characterization (2.1b) of λ̂k∗ . By the inverse inequality [Sch98]
there exists a constant Cinv such that

λ̂k ≤ λ̂k∗ ≤ Cinv d
q4
k

H2
.

By the choice of H, it is easy to see that we can bound q2
k/H

2 by C k2/d
∗ ,

where C > 0 is some universal constant. Finally, the application of Weyl’s
law (2.3) yields

λ̂k ≤ C Cinv d q
2
k k

2/d ≤ C1 q
2
k λk

with some constant C1 > 0, which depends on d and Ω.

Let Kp = dimVh,p. According to Theorem 1 the largest eigenvalue λ̂Kp

satisfies the estimate
λKp ≤ λ̂K ≤ C1 p

2λK .

As we have seen in the proof of Theorem 1, the crucial estimate for the
upper bound of λ̂Kp is the inverse inequality for finite element spaces. It is
a well-known fact that this inequality is sharp with respect to p [Sch98]. We
show the sharpness by an explicit construction using Legendre polynomials.

The Legendre polynomials (Lk)k∈N0
on the interval Ω̂ = [−1, 1] are given

by the formula

Lk(x) =
1

k!2k
dk

dxk

[
(x2 − 1)k

]
, x ∈ [−1, 1], k = 0, 1, 2, . . . .

We recall that the Legendre polynomials are symmetric if k is even and anti-
symmetric if k is odd [Sch98, (C.2.6)]. Moreover, the Legendre polynomials
(Lk)k∈N0

constitute a complete orthogonal system for L2(Ω̂) with

(Lk, L`)L2(Ω̂) =
2

2k + 1
δk` for all k, ` ∈ N0. (3.3)

Using the completeness of the Legendre basis and equation (3.3), it can be
shown (following the lines of [Sch98, p. 148]) that the derivatives of Legendre
polynomials satisfy

(
d

dx
Lk,

d

dx
L`

)
L2(Ω̂)

=


`(`+ 1), if ` ≤ k and (k + `) ∈ 2N0,

k(k + 1), if k < ` and (k + `) ∈ 2N0,

0, otherwise.
(3.4)
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We use (3.3) and (3.4) to derive the sharpness of the inverse inequality.

Lemma 1. Let a, b ∈ R and assume that h = b − a > 0. There exists a
constant c > 0 such that for all p ∈ N, there exists a nonzero polynomial v
of degree p on the interval (a, b) satisfying

|v|2H1(a,b)

‖v‖2L2(a,b)

≥ c p
4

h2
and v(a) = 0. (3.5)

Proof. We first show Lemma 1 for the case (a, b) = (0, 1) and deduce (3.5)
by a scaling argument. Assume that p = 2q + 1 for q ∈ N and define the
polynomial w̃ : (−1, 1)→ R as a linear combination of Legendre polynomials:

w̃(x) :=

q∑
k=0

akL2k+1(x), with ak :=
√

4k + 3. (3.6)

The orthogonality relation (3.3) immediately implies

‖w̃‖2L2(−1,1) = 2(q + 1) = p+ 1.

Using (3.4) and rearranging sums, we obtain

|w̃|2H1(−1,1) ≥ 2

q∑
k=0

k−1∑
`=0

a2
` (2`+ 1)(2`+ 2) +

q∑
k=0

a2
k(2k + 1)(2k + 2).

For both terms the following relations can be shown by induction:

q∑
k=0

k−1∑
`=0

(4`+ 3)(2`+ 1)(2`+ 2) =
1

5
q(q + 1)(q + 2)(4q2 + 3q − 2),

q∑
k=0

(4k + 3)(2k + 1)(2k + 2) = (q + 1)(q + 2)(2q + 1)(2q + 3).

Summing up these terms and using p = 2q + 1 we obtain

|w̃|2H1(−1,1)

‖w̃‖2L2(−1,1)

≥ 1

20
(p+ 1)4.

Since w̃ is antisymmetric, its restriction to (0, 1) satisfies (3.5) for (a, b) =
(0, 1). The analogue result for even polynomial degree can be reduced to the
case of odd degree by choosing p+ 1 instead of p. For general intervals (a, b)
the statement follows from a scaling argument.

An immediate consequence of Lemma 1 is the sharpness of the upper
bound in Theorem 1 for the largest discrete eigenvalue.
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Theorem 2. There exists a constant C2 > 0 such that

lim inf
p→∞

λ̂Kp

λKp

1

p2
≥ C2. (3.7)

Proof. In the one-dimensional case d = 1, let xk, xk+1 and xk+2 be neigh-
boring vertices of the grid Th for an arbitrary k ∈ {1, 2, . . . , N − 1}. Let
v : (0, h) → R be a polynomial function of degree p satisfying (3.5), with
mesh size h. Then, the piecewise polynomial function defined by

ŵp(x) :=


v(x− xk), for x ∈ (xk, xk+1),

v(xk+2 − x), for x ∈ (xk+1, xk+2),

0, otherwise,
(3.8)

is contained in the finite element space Vh,p. For higher dimensions, we
define wh to be a suitable tensor product of univariate functions given by
(3.8). The characterization (2.1b) and Lemma 1 yield

λ̂Kp = max
v̂p∈Vh,p

R(v̂p) ≥ R(ŵp) ≥ c d
p4

h2
.

As Kp = (p/h− 1) we obtain with Weyl’s law

lim
p→∞

K
2/d
p

λKp

=
(ωd)

2/d

4π2
.

Finally, combining the last two expressions shows (3.7) for d = 1. In the case
of higher dimension the proof follows the same line of arguments, where ŵp
is defined as a tensor product function of the univariate counterpart.

4 Application to Splines

With a similar reasoning as for finite element spaces, we can apply the ele-
mentary stability estimate (2.2) to spaces of splines of maximum smoothness.
We employ the same notation as in Section 3 and denote by Sh,p ⊆ V the
space of all spline functions over Th of degree p ∈ N that are p−1 times con-
tinuously differentiable in the hypercube Ω. We recall that for this setting
the dimension of Sh,p is given by (N + p− 2)d [TT15].
The following stability result relies on an enhanced inverse inequality for
splines of maximum smoothness, stated in [TT15]:

|ṽp|2H1(Ω) ≤
12d

h2
‖ṽp‖2L2(Ω) . (4.1)

It is important to note that the inequality in (4.1) does only hold for spline
functions ṽp contained in a certain subspace S̃h,p ⊆ Sh,p with dimension

K̃ := dim S̃h,p =

{
(N − 2)d, if p is even,
(N − 1)d, if p is odd.

(4.2)
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Theorem 3. Let K̃ be given by (4.2). Then, for each k ∈ {1, 2, . . . , K̃}
the constant C(Sh,p, k) in (2.2) can be bounded from above uniformly by a
positive constant C3:

C(Sh,p, k) ≤ C3. (4.3)

Proof. Without loss of generality we may assume that p is odd. The case
that p is even can be treated in an analogous way. For fixed index k ∈
{1, 2, . . . , K̃} there exists a unique κ ∈ {1, 2, . . . , blog2(N)c} such that

k∗ :=
(⌊ n

2κ

⌋
− 1
)d

< k ≤
(⌊ n

2κ−1

⌋
− 1
)d
. (4.4)

Similarly to the proof of Theorem 1, we choose a coarsening TH of Th such
that the minimal mesh size is given by H = 2κ−1h. Let SH,p ⊆ Sh,p be the
corresponding subspace of splines of degree p over TH and let S̃H,p denote the
subspace of SH,p for which the inverse inequality [TT15, Theorem 9] holds.
Since by (4.2) this space has dimension k∗, the minmax characterization of
λ̂k∗ yields the existence of a constant Cinv such that

λ̂k ≤ λ̂k∗ ≤ Cinv dH
−2.

Using standard estimates we can bound H−2 from above by a multiple of
k2/d and derive (4.3) by an application of Weyl’s law (2.3).

Since the inverse inequality [TT15] applies only to a subspace S̃h,p ⊆ Sh,p,
the upper bound in Theorem 3 does not hold for all discrete eigenvalues if
p > 1. We show, that there exists splines in Sh,p\S̃h,p for which the Rayleigh
quotient behaves like the square of the polynomial degree p.

Lemma 2. For every p ∈ N, there exists a spline function ŵp ∈ Sh,p such
that

lim
p→∞

1

p2
R(ŵp) =

d

2h2
. (4.5)

Proof. It suffices to consider the case d = 1. Let ŵp : (0, 1)→ R be the spline
function given by

ŵp(x) =


2(1− x

2h)p − 2(1− x
h)p, in [0, h),

2(1− x
2h)p, in [h, 2h),

0, otherwise.

In fact, ŵp is the unique B-spline basis function of degree p having support
in the first two elements. The idea behind this choice is to exploit the steep
slope of ŵp near zero. An iterative application of the integration by parts
formula yields explicit expressions for the norms of ŵp:

‖ŵp‖2L2(Ω) =
12h

2p+ 1
− 8h

p+ 1
Ap, and |ŵp|2H1(Ω) =

6p2

(2p− 1)h
− 4p

h
Ap−1.
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Here, Ap is a perturbed partial sum of the geometric series

Ap =

p∑
j=0

αp,j (−2)−j with αp,j :=
p!(p+ 1)!

(p− j)!(p+ j + 1)!
.

Comparing the limit limp→∞Ap with the alternating geometric series
∑∞

j=0(−2)−j

it can be shown that limp→∞Ap = 2/3. The statement of Lemma 2 now
follows from the expressions of the norms ‖ŵp‖L2(Ω) and |ŵp|H1(Ω).

Theorem 4. Let Kp := dimSh,p. There exists a constant C4 > 0 such that

lim inf
p→∞

λ̂Kp

λKp

≥ C4

h2
. (4.6)

Proof. This is merely a consequence of Lemma 2. The minmax characteri-
zation of λ̂Kp yields

λ̂Kp

λKp

≥ 1

λKp

R(ŵp) =
K

2/d
p

λKp

R(ŵp)

p2

p2

K
2/d
p

(4.7)

where ŵp is a spline function in Sh,p satisfying (4.5). According to Weyl’s
law (2.3), in the limit as p → ∞, the first term converges to some constant
C4 > 0, while the limit of second fraction is given by Lemma 2. Finally, the
last term of (4.7) converges to 1 as K2/d

p = (N + p− 2)2.

Remark 1. Numerical experiments indicate that the right-hand side in (4.6)
may not be optimal (cf. Figure 2) and that the eigenvalue ratio λ̂Kp/λKp

diverges with rate p2 as p tends to infinity.

Remark 2. The statement of Theorem 4 is formulated with respect to the
mesh size h of the mesh Th. Note that in this case the dimension of the spline
space Sh,p is significantly smaller than the dimension of the corresponding fi-
nite element space Vh,p, in particular for large p. If the grid for Sh,p is refined
in such a way that the spline space has approximately the same dimension as
Vh,p (still defined with respect to the original mesh), then it is easy to show
that λ̂Kp/λKp diverges with the same rate as for the finite element case, i.e.,
with rate p2.

5 Numerical Illustration

This section illustrates the previous analytical results in a two-dimensional
model situation. We consider the unit square Ω = (0, 1)2 equipped with a
fixed uniform rectangular grid Th consisting of N = h−1 elements in each
coordinate direction (see Figure 3). The discrete eigenvalue problem is solved

10



On the stability of the Rayleigh-Ritz method for eigenvalues

0.0 0.5 1.0
0.0

0.5

1.0

Figure 3: Uniform rectangular grid Th on Ω = (0, 1)
2 with N = h−1 = 15.
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Figure 4: Frequency ratios λ̂k/λk for the Laplace eigenvalue problem on the unit
square with Dirichlet boundary conditions computed with finite element functions
of degree p on a uniform rectangular grid consisting of 15× 15 elements.

numerically using both the finite element spaces Vh,p and the spline spaces
Sh,p. In either case we first fix a grid width h and compute the discrete
eigenvalue spectra for polynomial degrees p = 1, 2, . . . , 5. Figure 4 depicts
the resulting square roots of the eigenvalue ratios λ̂k/λk for the computation
with finite element functions on a grid consisting of N2 = 152 elements. The
numerical results illustrate the convergence of the lower part of the discrete
spectrum for increasing polynomial degrees and confirm the divergence of the
eigenvalue ratio associated to the largest discrete eigenvalue λ̂Kp for growing
polynomial degree as stated in Theorem 2. The outcome of the analogous
experiment involving the spline spaces Sh,p are displayed in Figure 5. In this
case we used a grid of N2 = 70 elements in order to obtain a comparable
number of degrees of freedom. In accordance with Theorem 3 the bulk of the
eigenvalue ratios is bounded while the upper part of the discrete spectrum
exhibits a limited number of outlier frequencies. Note that like in the finite
element setting the square root of the uppermost eigenvalue ratio λ̂Kp/λKp

seems to increase linearly with the polynomial degree (cf. Figure 6) which
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Figure 5: Frequency ratios λ̂k/λk for the Laplace eigenvalue problem on the unit
square with Dirichlet boundary conditions computed with splines of maximum
smoothness of degree p on a uniform rectangular grid consisting of 70 × 70 ele-
ments.
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Figure 6: Evolution of the frequency ratios corresponding to the six largest discrete
eigenvalues evaluated with splines of maximum smoothness for increasing polyno-
mial degrees p. All eigenvalues are computed on a uniform rectangular grid on the
unit square consisting of 10× 10 elements.

indicates that the right-hand side in (4.6) is not optimal and should exhibit
some dependence on p (cf. Remark 1).
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