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Abstract

The Courant-Friedrichs-Lewy (CFL) condition guarantees the stability of the
popular explicit leapfrog method for the wave equation. However, it limits
the choice of the time step size to be bounded by the minimal mesh size in the
spatial finite element mesh. This essentially prohibits any sort of adaptive
mesh refinement that would be required to reveal optimal convergence rates
on domains with re-entrant corners. This paper shows how a simple subspace
projection step inspired by numerical homogenisation can remove the critical
time step restriction so that the CFL condition and approximation properties
are balanced in an optimal way, even in the presence of spatial singularities.

Keywords CFL condition, hyperbolic equation, finite element method, adaptive mesh
refinement
AMS subject classification 65M12, 65M60, 35L05

1 Introduction

We consider the discretisation of the wave equation

ü−∆u = f in (0, T )× Ω,

u(0) = u0 in Ω,

u̇(0) = v0 in Ω,

u|∂Ω = 0 in (0, T )

(1.1)

on a polygonal, bounded Lipschitz domain Ω ⊆ Rd, d ∈ {2, 3}, with (possibly) re-
entrant corners. This typically reduces the regularity of the solution and leads to
u(t) 6∈ H2(Ω). To reveal optimal convergence rates, non-uniform mesh refinement
in space proves advantageous for the wave equation [25].
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The spatial discretisation with linear finite elements (or any other suitable
Ritz-Galerkin method) based on some regular triangulation Th of Ω turns prob-
lem (1.1) into a system of ordinary differential equations. Explicit central differ-
ence schemes are very popular for the discretisation of this time-dependent system.
In the context of H1-conforming finite elements, explicit means that the scheme
avoids the expensive application of the inverse finite element stiffness matrix in
every time step as it would be required by implicit backward differences. Only the
mass matrix, which is well-conditioned after suitable diagonal scaling, needs to be
inverted. In particular, no sort of advanced multi-level preconditioning is neces-
sary. This is one reason for the wide use of central differences. Another reason
is that the symmetry of central differences leads to conservation of the inherent
energy of the problem. Among the most simple and successful schemes of this
type is the leapfrog, also known as second order explicit Newmark’s scheme and
Störmer-Verlet method.

As usual for explicit time discretisation schemes, the numerical stability is
conditional and guaranteed only under the sharp Courant-Friedrichs-Lewy (CFL)
condition [8]. In the present context of linear finite elements, it bounds the time
step size by the minimal mesh size of the spatial mesh

∆t . hmin .

While on (quasi-)uniform meshes the admissible choice ∆t ≈ hmin ≈ hmax is
considered as a natural balance of space and time discretisation, the CFL condition
is not at all compatible with non quasi-uniform meshes in the sense that the
efficiency of adaptive mesh refinement in space causes tiny time steps that destroy
the overall complexity. Essentially, the CFL condition forbids any type of spatial
adaptivity.

The aim of this paper is to show that this phenomenon is a consequence of
the high flexibility of adaptive finite elements. The restriction of the time step by
the minimal spatial mesh size can easily be removed by projecting the adaptive
finite element space to some subspace VH with similar (optimal) approximation
properties for weak solutions of the wave equation under the moderate regularity
assumption ü(t) ∈ L2(Ω) for almost all t. The underlying technique is well-
established in the context of numerical homogenisation [24], also for a semi-discrete
wave equation [1]. The reduced space VH allows for an improved inverse inequality
that decouples the time step from the minimal mesh size and turns the leapfrog into
a feasible numerical scheme also on adaptive spatial meshes. The basis functions
of the reduced space VH have to be computed and do not have in general a local
support. These additional costs can be reduced by a localisation approach, see
Section 4. Moreover, in the numerical experiment in Section 5, the combination
of the proposed method with mass lumping still shows the optimal convergence
rate. This turns the method in a fully explicit scheme.

Another approach for avoiding (global) fine time step sizes consists in a com-
bination of fine time step sizes in regions with small spatial elements and of larger
time step sizes in regions with coarser spatial elements. This approach was in-
troduced in [10] and is motivated by small geometric features. It seems to work
very well in the case of locally isolated refinement and essentially two separate
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spatial discretisation scales. However, adaptive triangulations arising from spatial
singularities are typically graded towards the singularity and encounter an ever
increasing number of spatial discretisation scales. Although the generalisation of
local time stepping to this case with an increasing number of different time step
sizes is possible [11], its realisation is certainly challenging and its behaviour with
regard to stability and computational complexity is still open in such scenarios.
Our aim is to provide an alternative approach for the stabilisation of explicit time
stepping that is based on reduction of spatial degrees of freedom rather than en-
riching the temporal discretisation.

Other approaches to overcome a strong CFL condition is the locally implicit
method analysed in [19], which combines an explicit method with an implicit
method in the region, where the mesh-size is small, and the singular complement
method [7], which adds singular functions to the standard ansatz space.

The remaining parts of this paper are organised as follows. Section 2 defines a
generalised finite element space and proves optimal approximation properties and
the improved inverse inequality in Lemma 2.1. Section 3 introduces the discreti-
sation of the wave equation and states an error estimate. Section 4 discusses some
practical aspects and generalisations of the method, while Section 5 concludes the
paper with a numerical experiment.

Standard notation on Lebesgue and Sobolev spaces is employed throughout
the paper and ‖ • ‖ := ‖ • ‖L2(Ω) abbreviates the L2 norm over Ω, while (•, •)L2(Ω)

denotes the L2 scalar product. The notation • abbreviates the identity mapping.
The space L2(0, T ;X) denotes the space of Bochner square integrable functions
from [0, T ] with values inX. The dual pairing between f ∈ H−1(Ω) and v ∈ H1

0 (Ω)
is denoted by 〈f, v〉H−1(Ω)×H1

0 (Ω). The symbol C denotes a generic constant which
is independent of the mesh size.

2 Spatial reduction

This section recalls the CFL condition for the leapfrog discretisation from Section 3
below in the context of adaptive (spatial) finite elements and presents our novel
reduction technique.

2.1 CFL condition, inverse inequality and approximation

Given a shape regular triangulation Th, let S1
0(Th) denote the standard P1-FEM

space of Th-piecewise affine and globally continuous functions, which vanish on
∂Ω. The precise CFL condition for the leapfrog discretisation with underlying
finite element space S1

0(Th) reads

∆t ≤
√

2

Cinv(S1
0(Th))

, (2.1)

where Cinv(S1
0(Th)) is the best constant in the inverse inequality in S1

0(Th), i.e.,

‖∇vh‖ ≤ Cinv(S1
0(Th))‖vh‖ for all vh ∈ S1

0(Th).
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In other words, the inverse inequality constant Cinv(S1
0(Th))2 is the maximal

Rayleigh quotient ‖∇vh‖2L2(Ω)/‖vh‖
2
L2(Ω) amongst all shape functions vh ∈ S1

0(Th)

and, hence, Cinv(S1
0(Th))2 is the largest eigenvalue of the discrete Laplacian in

the sense of finite elements; see also Subsection 2.3 below. It is well known and
easy to see that it scales like the reciprocal of the minimal mesh size hmin of the
underlying finite element mesh Th,

Cinv(S1
0(Th)) ≤ Ch−1

min.

Thus, the CFL condition (2.1) says that the time step must not exceed some fixed
multiple of the minimal spatial mesh size. This suggests the use of quasi-uniform
meshes in space. However, in the presence of singularities, quasi-uniform meshes
TH with mesh size H lead to the suboptimal best approximation error

inf
vH∈S1

0(TH)
‖(u− vH)‖H1(Ω) ≤ CHδ‖∆u‖ for all u ∈ V with ∆u ∈ L2(Ω), (2.2)

where V := H1
0 (Ω) and δ < 1 depends on the domain Ω.

The following Subsection 2.2 constructs a generalised finite element space VH
with dim(VH) = dim(S1

0(TH)) such that the (quasi-uniform) mesh size H of TH
satisfies simultaneously the (optimal) approximation property (2.2) with δ = 1
and the inverse inequality

‖∇vH‖ ≤ Cinv(VH)‖vH‖ for all vH ∈ VH (2.3)

with Cinv(VH) ≤ CH−1. Provided ∆t ≤ C̃H, this allows for the stability of
explicit time stepping schemes without losing optimal approximation properties
in space.

2.2 Construction of reduced space

We consider a quasi-uniform shape regular triangulation TH with (maximal) mesh
size H and some (possibly) non-quasi-uniform shape regular triangulation and
refinement Th of TH with corresponding finite element spaces S1

0(TH) and S1
0(Th)

and with approximation property

inf
vh∈S1

0(Th)
‖u− vh‖H1(Ω) ≤ CH‖∆u‖ for all u ∈ V with ∆u ∈ L2(Ω). (2.4)

The construction of the generalised finite element space is based on a projective
quasi-interpolation operator IH : V → S1

0(TH) with approximation and stability
properties

‖H−1(v − IHv)‖+ ‖∇IHv‖ ≤ C(1)
IH
‖∇v‖ for all v ∈ V (2.5)

and the L2 stability

‖IHv‖ ≤ C(0)
IH
‖v‖ for all v ∈ V. (2.6)

While (2.5) is a standard property of quasi-interpolations, the L2-stability (2.6)
is not, e.g., the Scott-Zhang quasi-interpolation [28] is not L2 stable. For an
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admissible projective quasi-interpolation, which satisfies both (2.5) and (2.6), one
may think of the L2 projection onto S1

0(TH), which is H1 stable on quasi-uniform
meshes [2]. Another example for this Clément-type quasi-interpolation is given in
Subsection 2.4 below. Denote the kernel of IH as Wh := ker(IH |S1

0(Th)) ⊆ S1
0(Th).

Given vH ∈ S1
0(TH), define the projection CvH ∈Wh of vH onto Wh by

(∇wh,∇CvH)L2(Ω) = (∇wh,∇vH)L2(Ω) for all wh ∈Wh. (2.7)

Section 4 below discusses the efficient computation of this projection, e.g., by
localisation. Define the space VH by VH := (1− C)S1

0(TH), which implies

S1
0(Th) = Wh ⊕ VH (2.8)

and the sum is orthogonal with respect to (∇•,∇•)L2(Ω). The following lemma
proves that the inverse inequality (2.3) holds with constant Cinv(VH) ≤ CH−1

independent of the minimal mesh size in Th. Moreover, a direct consequence of
this lemma is that the approximation property (2.4) is preserved in the coarse
space VH .

Lemma 2.1. There exists a constant Cappr such that for all u ∈ V with ∆u ∈
L2(Ω) and all uh ∈ S1

0(Th) with (∇uh,∇vh)L2(Ω) = (−∆u, vh)L2(Ω) for all vh ∈
S1

0(Th), it holds

inf
vH∈VH

‖uh − vH‖H1(Ω) ≤ CapprH‖∆u‖. (2.9)

Furthermore, the constant Cinv(VH) from (2.3) satisfies Cinv(VH) ≤ CH−1.

Proof. Let uH ∈ VH be the Galerkin projection of uh onto VH , i.e.,

(∇uH ,∇vH)L2(Ω) = (∇uh,∇vH)L2(Ω) for all vH ∈ VH .

Set eh := uh − uH ∈ S1
0(Th). The Galerkin orthogonality

(∇eh,∇vH)L2(Ω) = 0 for all vH ∈ VH

and the orthogonality of the subspace decomposition (2.8) imply that eh ∈ Wh.
The approximation properties (2.5) of IH therefore lead to

‖eh‖ = ‖eh − IHeh‖ ≤ C
(1)
IH
H‖∇eh‖

and, hence,

‖∇eh‖2 = (∇eh,∇eh)L2(Ω) = (∇uh,∇eh)L2(Ω) = (−∆u, eh)L2(Ω)

≤ C(1)
IH
H‖∆u‖ ‖∇eh‖.

This proves the approximation property (2.9).
For the proof of the inverse inequality let vH ∈ VH . Since (1−C) is a projection

onto VH and (1− IH) is a projection into Wh, it is easily seen that

(1− C)IHvH = (1− C)vH − (1− C)(1− IH)vH = vH .
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The orthogonality of (1− C) with respect to (∇•,∇•)L2(Ω), hence, leads to

‖∇vH‖ = ‖∇(1− C)IHvH‖ ≤ ‖∇IHvH‖.

The classical inverse inequality in S1
0(TH) [4] and the L2 stability of IH from (2.6)

lead to

‖∇IHvH‖ ≤ CH−1‖IHvH‖ ≤ CC(0)
IH
H−1‖vH‖.

The combination of the previous two inequalities concludes the proof.

In the case of an adaptive refinement Th of TH , Lemma 2.1 indicates that the
reduced space VH approximates any function u ∈ V with ∆u ∈ L2(Ω) indeed with
the same rate as the full space S1

0(Th). We shall now try to relate the correspond-
ing approximation errors more explicitly using techniques from a posteriori error
analysis. Let

osc(T,∆u) := ‖hT(∆u−ΠT
0∆u)‖

denote the oscillations of ∆u with respect to a triangulation T, where ΠT
0 is the

L2 projection onto T-piecewise constant functions and hT is the piecewise constant
mesh size function. Let |T | denote the area of a triangle for d = 2 or the volume
of a tetrahedron for d = 3. For a function f that is constant on T ∈ TH , we have

‖Hf‖L2(T ) = (f |T )H |T |1/2 ≤ C(TH ,Th) (f |T )

√ ∑
T⊇K∈Th

h2
K |K| = C(TH ,Th) ‖hThf‖L2(T )

with

C(TH ,Th) := max
T∈TH

(
H|T |1/2

/
max

T⊇K∈Th
(hK |K|1/2)

)
.

Since Th is a refinement of TH , it holds that hTh |K ≤ H for all K ∈ Th and we
have

‖H∆u‖ ≤ ‖HΠTH
0 ∆u‖+ osc(TH ,∆u) ≤ C(TH ,Th)‖hTh∆u‖+ (C(TH ,Th) + 1)osc(TH ,∆u).

If, e.g., only triangles at a corner singularity are refined, the constant C(TH ,Th)
is uniformly bounded independent of the mesh sizes. The efficiency

‖hTh∆u‖ ≤ Ceff‖∇(u− uh)‖+ osc(Th,∆u)

from a posteriori error analysis [29] then proves together with a triangle inequality,
Lemma 2.1 and Céa’s lemma

‖∇(u− uH)‖ ≤ C
(
‖∇(u− uh)‖+ osc(TH ,∆u)

)
for the Galerkin projection uH of u in VH , where C depends on C(TH ,Th). This
means that the Galerkin approximation of u in VH is comparable with that in
S1

0(Th) up to oscillations.
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Figure 1: Sample triangulations TH (left) and Th (right). The shaded area in
the left triangulation marks the support of functions in the kernel space Wh (see
Subsection 4.1.1).
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Figure 2: Spectra of finite element discretisations of the Laplacian based on the
spaces S1

0(TH), S1
0(Th) and the generalised finite element space VH (left) for the

triangulations from Figure 1. The exact eigenvalues of the Laplacian with homo-
geneous Dirichlet boundary condition are depicted for reference. On the right,
the relative eigenvalue errors for the approximations in VH and S1

0(TH) of the
eigenvalues in S1

0(Th) are plotted for the first branch.
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2.3 Illustration by finite element eigenvalues

We shall finally have a look at the advantageous properties of the reduced ansatz
space VH from a different angle. Figure 2 shows the eigenvalues related to the P1

finite element discretisation of the Laplacian with homogeneous Dirichlet bound-
ary condition on the refined triangulation Th depicted in Figure 1. Essentially, the
spectrum consists of three branches indicated by the dotted lines. The eigenvalues
in the first branch are meaningful approximations of the corresponding exact eigen-
values of the Laplacian and the corresponding eigenfunctions reflect true modes of
the operator. The eigenvalues of the second and third branch are spurious in the
sense that they do not approximate Laplacian eigenvalues. The artificial modes
of the second branch are related to the fact that the finite element space does not
satisfy ∆S1

0(Th) ⊆ L2(Ω) [14]. The artificial eigenvalues of the third branch are
related to the degrees of freedom introduced by the local mesh refinement. The
largest of them scales like the reciprocal squared minimal mesh size which leads
to the restrictive CFL condition.

In a way, this restriction is the result of additional flexibility of the finite ele-
ment space introduced through local mesh refinement. The role of the reduction
process is to eliminate those artificial modes of the third branch while preserving
the first branch extremely accurately, in particular, much more accurately than
standard finite elements on the coarse mesh. That this is indeed the case is also
illustrated in Figure 2 where the right plot shows that the novel subspace reduc-
tion improves the approximation of the first branch by orders of magnitude when
compared with the standard finite elements S1

0(TH) of the same dimension. The
largest eigenvalues in VH and S1

0(TH) are very close to each other, and therefore
the CFL condition leads to almost the same restriction of the time step size. For
a rigorous analysis of eigenvalue errors that justifies these observations we refer to
previous works on two-level methods for linear and non-linear eigenvalue problems
[16, 22, 23].

2.4 Example for L2 and H1 stable quasi interpolation

This subsection gives an example for a projective quasi interpolation operator IH
that satisfies (2.5) and (2.6).

Define the space of (possibly discontinuous) piecewise affine functions over TH
as

P1(TH) := {w ∈ L2(Ω) | ∀T ∈ TH : w|T is affine}.

Given wH ∈ P1(TH), define the nodal averaging operator J1 : P1(TH) → S1
0(TH)

by the averaging over the values of adjacent simplices, i.e.,

J1wH(z) := (card({K ∈ TH | z ∈ K}))−1
∑
K∈TH
z∈K

wH |K(z)

for all interior nodes z of TH . This kind of operator is well known in the context
of fast solvers [3, 26] and in the a posteriori analysis of discontinuous Galerkin
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methods [21]. Let ΠTH
1 : V → P1(TH) denote the L2 projection onto P1(TH) and

define IH : V → S1
0(TH) by

IHv := J1(ΠTH
1 v) for all v ∈ V.

Then IH is a projection. The following lemma proves that it satisfies the L2 sta-
bility (2.6) and the approximation and stability properties (2.5).

Lemma 2.2 (stability of IH). The operator IH is H1 and L2 stable in the sense
that it satisfies (2.5) and (2.6).

Proof. The proof follows from the more general situation in [13], but is given here
for the sake of completeness and self-contained reading.

We first prove the L2 stability of J1 : P1(TH) → S1
0(TH) and then conclude

the approximation properties and the H1 and L2 stability of IH .
Let wH ∈ P1(TH) and T = conv{z0, . . . , zd} ∈ TH and let |T | denote the (d-

dimensional) volume of T . The definition of J1 involves adjacent simplices of T .
For such an adjacent simplex K, let λmax(T ) and λmin(K) denote the maximal
and the minimal eigenvalue of the mass matrix on the simplex T and K. The
definition of J1 then implies

‖J1wH‖2L2(T ) ≤ λmax(T )
d∑
j=0

|(J1wH)(zj)|2 ≤ Cλmax(T )
d∑
j=0

∑
K∈TH
zj∈K

∣∣wH |K(zj)
∣∣2

≤ C
d∑
j=0

∑
K∈TH
zj∈K

λmax(T )

λmin(K)
‖wH‖2L2(K).

The shape regularity of TH implies that there exists a generic constant c > 0 with
|T | ≤ c|K| for any K ∈ TH with K ∩ T 6= ∅. This implies

λmax(T )

λmin(K)
≤ C.

Therefore, J1 satisfies a (local) L2 stability, which together with the fact that the
number of overlapping simplices is bounded leads to the L2 stability

‖J1wH‖ ≤ C‖wH‖.

Since ΠTH
1 : V → P1(TH) is the L2 projection, this operator is L2 stable. The

L2 stability of J1 therefore implies the L2 stability (2.6) of IH = J1 ◦ΠTH
1 .

Let now v ∈ V . A triangle inequality, the fact that ‖v−ΠTH
1 v‖ ≤ ‖v−ΠTH

0 v‖ for
the L2 projection ΠTH

0 onto piecewise constants and a piecewise Poincaré inequality
lead to

H−1‖v − IHv‖ ≤ H−1‖v −ΠTH
1 v‖+H−1‖ΠTH

1 v − J1ΠTH
1 v‖

≤ C‖∇v‖+H−1‖ΠTH
1 v − J1ΠTH

1 v‖.
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Define the set of hyper-surfaces F and let [•]F denote the jump across a hyper-
surface F ∈ F. The stability of J1 from [5, Lemma 4.8] proves

H−2‖ΠTH
1 v − J1ΠTH

1 v‖2 ≤ C

(
‖∇ΠTH

1 v‖2 +
∑
F∈F

H−1‖[ΠTH
1 v]F ‖2L2(F )

)
.

Since v is continuous in the sense of traces, the trace inequality from [9, Lemma 1.49]
and the finite overlap of patches imply∑

F∈F
H−1‖[ΠTH

1 v]F ‖2L2(F ) =
∑
F∈F

H−1‖[v −ΠTH
1 v]F ‖2L2(F )

≤ C
(
H−2‖v −ΠTH

1 v‖2 + ‖∇(v −ΠTH
1 v)‖2

)
.

Again, a piecewise Poincaré inequality bounds the first term on the right-hand side
by ‖∇v‖. An inverse inequality, the L2 stability of ΠTH

1 and ΠTH
1 ΠTH

0 v = ΠTH
0 v

prove for all T ∈ TH that

‖∇ΠTH
1 v‖L2(T ) = ‖∇(ΠTH

1 v −ΠTH
0 v)‖L2(T ) ≤ CH−1‖ΠTH

1 (v −ΠTH
0 v)‖L2(T )

≤ CH−1‖v −ΠTH
0 v‖L2(T ) ≤ C‖∇v‖L2(T ).

The combination of the previous inequalities yield the approximation property

H−1‖v − IHv‖ ≤ C‖∇v‖ (2.10)

of IH .
For the proof of the H1 stability of IH let v ∈ V . An inverse, a triangle and a

piecewise Poincaré inequality and the approximation property (2.10) lead to

‖∇IHv‖ = ‖∇(IHv −ΠTH
0 v)‖ ≤ CH−1‖IHv −ΠTH

0 v‖

≤ CH−1‖v − IHv‖+ CH−1‖v −ΠTH
0 v‖ ≤ C‖∇v‖.

This proves (2.5) and concludes the proof.

3 Application to the wave equation

This section defines the leapfrog discretisation of the wave equation based on the
spatial Galerkin approximation in the reduced space VH in Subsection 3.1 and
states an error estimate and stability in Subsection 3.2.

Given f ∈ L2(0, T ;L2(Ω)), the wave equation (1.1) in its weak form seeks
u ∈ L2(0, T ;V ) with u̇ ∈ L2(0, T ;L2(Ω)) and ü ∈ L2(0, T ;H−1(Ω)) such that for
almost all t ∈ [0, T ] and all v ∈ V

〈ü(t), v〉H−1(Ω)×H1
0 (Ω) + (∇u(t),∇v)L2(Ω) = (f(t), v)L2(Ω). (3.1)
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3.1 The leapfrog in the reduced space

Let the time step size ∆t satisfy the relaxed CFL-condition

∆t <
√

2/Cinv(VH) (3.2)

and let N = dT/∆te be the number of time steps. Recall the definition of the space
VH from Subsection 2.2. Given approximations u0

H ∈ VH to u(0) and u1
H ∈ VH to

u(∆t), this method seeks (unH)n=0,...,N with unH ∈ VH such that for all n = 2, . . . , N
and all vH ∈ VH(

un+1
H − 2unH + un−1

H

(∆t)2
, vH

)
L2(Ω)

+ (∇unH ,∇vH)L2(Ω) = (f(n∆t), vH)L2(Ω) .

(3.3)
This is the standard leapfrog time discretisation. We shall emphasise that the
pre-computation of the space VH needs to be done only once.

Lemma 2.1 proves that Cinv(VH) ≤ CH−1 and, hence, the CFL condition (3.2)
states that the time step size is in the range of the mesh size of the (coarse) quasi-
uniform triangulation TH . In the presence of singularities, this is a much weaker
condition compared with the CFL condition (2.1) for the space S1

0(Th).
One of the fundamental properties of the leapfrog scheme is the conservation of

energy in the following sense. Given (vnH)n=0,...,N with vnH ∈ VH for n = 0, . . . , N ,
define the discrete time derivative by

v̇
n+1/2
H =

vn+1
H − vnH

∆t

for n = 1, . . . , N − 1 and define the discrete energy as

En+1/2((vkH)k=0,...,N ) := 1
2

(
‖v̇n+1/2
H ‖2 + (∇vnH ,∇vn+1

H )
)
.

Then the discrete energy of the solution (ukH)k=0,...,N of (3.3) is conserved in the
sense that

En+1/2((ukH)k=0,...,N ) = En−1/2((ukH)k=0,...,N ) + 1
2∆t

(
f(tn), u̇

n+1/2
H + u̇

n−1/2
H

)
L2(Ω)

.

3.2 Stability and error estimates

The following theorem estimates the difference between the discrete solution of (3.3)
and the exact solution u of (3.1). Let zH ∈ L2(0, T ;VH) denote the auxiliary semi-
discrete solution, i.e., żH ∈ L2(0, T ;VH), z̈H ∈ L2(0, T ;VH) and zH solves

〈z̈H(t), vH〉H−1(Ω)×H1
0 (Ω) + (∇zH(t),∇vH)L2(Ω) = (f(t), vH)L2(Ω) for all vH ∈ VH

for almost all t ∈ [0, T ] with initial conditions zH(0) = u0
H and żH(0) = z0

H for
some z0

H . As usual, the error is split in the time discretisation error (En)n=0,...,N

defined by En := unH − zH(n∆t) and the space discretisation error zH(n∆t) −
u(n∆t) = zH(n∆t) − ΠVHu(n∆t) − ε(n∆t) with the best-approximation error
ε(t) := u(t) − ΠVHu(t), where ΠVHu(t) denotes the orthogonal projection of u(t)
onto VH with respect to the bilinear form (∇•,∇•)L2(Ω).
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The proof of the following theorem is based on the conservation of the discrete
energy from Subsection 3.1 and follows as for the standard leapfrog scheme (see [6,
20]) and is therefore dropped.

Theorem 3.1 (error estimate for reduced FEM). If the relaxed CFL condition (3.2)
is satisfied, then (3.3) is stable in the sense that

‖u̇n+1/2
H ‖+ ‖∇un+1

H ‖ ≤ C

(
‖u̇1/2

H ‖+ ‖∇u0
H‖+ ‖∇u1

H‖+
n∑
k=2

∆t‖f(k∆t)‖

)
.

Furthermore, if ü ∈ L1(0, T ;L2(Ω)) and z̈H ∈ C(0, T ;VH), then it holds with
tn = n∆t that∥∥∥∥∥(unH − u(tn))− (un−1

H + u(tn−1))

∆t

∥∥∥∥∥+ ‖∇(unH − u(tn))‖

≤ C
(
‖Ė1/2‖+ ‖∇E1‖+ ‖żH(0)−ΠVH u̇(0)‖+ ‖∇(zH(0)−ΠVHu(0)‖

+

∥∥∥∥ε(tn)− ε(tn−1)

∆t

∥∥∥∥+ ‖∇ε(tn)‖+

∫ tn

0
‖ε̈(s)‖ ds

+

n∑
j=1

∆t

∥∥∥∥zH(tj+1)− 2zH(tj) + zH(tj−1)

(∆t)2
− z̈H(tj)

∥∥∥∥
 .

(3.4)

Note that the fifth to seventh term on the right-hand side of (3.4) only contain
the best-approximation error ε of u in VH . Therefore, Lemma 2.1 can be applied. If
u ∈ C2(0, T ;L2(Ω)) and f ∈ C(0, T ;L2(Ω)), then ∆u = ü− f ∈ C0(0, T ;L2(Ω)),
and the term ‖∆u‖L2(Ω) in the right-hand side of (2.9) is bounded. Therefore,
under the additional (standard) regularity assumptions u ∈ C4(0, T ;L2(Ω)) and
f ∈ C2(0, T ;L2(Ω)), the fifth to seventh term can be bounded by H. With
the regularity assumption zH ∈ C4(0, T ;L2(Ω)), the last term on the right-hand
side of (3.4) converges as (∆t)2. For suitable initial conditions, this leads to a
convergence rate of the approximation (3.3) of H + (∆t)2.

4 Practical aspects and possible generalisations

This section is concerned with practical aspects of the computation of (unH)n=0,...,N

from (3.3). Subsection 4.1 discusses the sparsity properties of the stiffness and
mass matrix associated with the reduced space VH . Since the computation of
VH has to be done only once, the sparsity properties serve as measure for the
overall complexity. Subsection 4.2 shows that the inverse diagonal is an optimal
preconditioner for the mass matrix of the reduced space. Subsection 4.3 concludes
this section with a generalisation to discontinuous Galerkin FEMs.

4.1 Sparsity of the reduced space

In contrast to standard finite element spaces, basis functions of VH are not a priori
known, but can be defined by the canonical choice λz−Cλz for the standard nodal
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basis functions λz of S1
0(TH). However, problem (2.7) for the computation of Cλz

is formulated on the whole domain Ω, and might lead to global basis functions and
dense stiffness and mass matrices. This subsection identifies cases where sparsity
is automatically preserved (Subsection 4.1.1) and shows how to achieve sparse
approximations in the general case (Subsection 4.1.2).

4.1.1 Sparsity on locally adaptive meshes

We consider the case that the triangulation Th refines TH only locally in the sense
that only a small number of coarse elements is actually refined, for an example see
Figure 1. In this case the corrector problem (2.7) reduces to a local one because
the kernel space Wh vanishes outside of (one layer around) the refined region (see
the following proposition). Therefore, Cλz = 0 for all basis functions λz for nodes
z of TH with the property that the two-layer patch

Ωz := {x ∈ Ω | ∃T, T ′ ∈ TH such that z ∈ T, x ∈ T ′ and T ∩ T ′ 6= ∅}

lies in the non-refined region, Ωz ⊆
⋃

(TH ∩ Th). In the example of Figure 1, all
nodes z for which Cλz 6= 0 are highlighted as well as the union of the supports of
functions in Wh.

Proposition 4.1 (locality of problems (2.7)). Assume that IH satisfies the local
L2 stability

‖IHv‖L2(T ) ≤ C‖v‖L2(ΩT ) for all v ∈ V

for all T ∈ TH and ΩT =
⋃
{K ∈ TH | K ∩ T 6= ∅}. Let wh ∈Wh. Then wh|Ω̃ = 0

for Ω̃ =
⋃
{T ∈ TH | ∀K ∈ TH with K ∩ T 6= ∅ it holds K ∈ TH ∩ Th}.

Proof. Let N denote the set of nodes in Th that are not in TH and define wy :=
λy − IHλy for y ∈ N. We want to show that the functions wy for y ∈ N are linear
independent. Let αy ∈ R such that∑

y∈N
αywy = 0.

On the one hand, the definition of wy leads to
∑

y∈N αyλy =
∑

y∈N αyIHλy ∈
S1

0(TH), i.e., the function
∑

y∈N αyλy is piecewise affine on the triangulation TH .
On the other hand, the functions λy vanish at all nodes in TH . This implies that
the functions wy are linear independent. A dimension argument proves that they
form a basis of Wh. The local L2 stability implies that wy has the local support
{x ∈ Ω | ∃T, T ′ ∈ TH such that x ∈ T, y ∈ T ′ and T ∩ T ′ 6= ∅}.

Proposition 4.1 implies that the number of additional non-zero entries in the
mass and stiffness matrix depends only on the number of triangles of TH that are
refined in Th.
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4.1.2 Sparsification on graded meshes

In this subsection we consider an arbitrary refinement Th of TH . Given a coarse
nodal basis function λz, it was shown in [24] that Cλz decays exponentially fast
outside of the support of λz (see [27] for illustrations). This decay allows the
truncation of the computational domain for (2.7) to local subdomains of diameter
mH, roughly, where m denotes a new discretisation parameter, namely the local-
isation or oversampling parameter. The obvious way would be to simply replace
the global domain Ω in the computation of Cλz with suitable neighbourhoods of
the nodes z. This procedure was used in [24]. However, it turned out that it is
advantageous to consider the following slightly more involved technique based on
element correctors [18, 17]. Define the m-th order patch

ΩT,m :=
⋃{

K ∈ TH

∣∣∣∣ ∃K0, . . . ,Km ∈ TH with K0 = T,Km = K
and Kj ∩Kj+1 6= ∅ for all j = 0, . . . ,m− 1

}
.

We introduce corresponding truncated function spaces

Wh(ΩT,m) := {wh ∈Wh | supp(wh) ⊆ ΩT,m}.

Given any coarse nodal basis function λz ∈ S1
0(TH), let CT,mλz ∈Wh(ΩT,m) solve

the localised element problem

(∇wh,∇CT,mλz)L2(Ω) =

∫
T
∇wh · ∇λz for all wh ∈Wh(ΩT,m)

and define Cmλz :=
∑

T∈TH CT,mλz. Note that we impose homogeneous Dirichlet
boundary conditions on the artificial boundary of the patch ΩT,m which is well
justified by the fast decay. Under the assumption that Th is shape regular and
that IH is a local operator (as the one introduced in Subsection 2.4) it is proved
in [18, 24, 17] that this leads to the existence of constants C > 0 and β > 0 such
that

‖∇(Cλz − Cmλz)‖ ≤ C exp(−βm)‖∇λz‖. (4.1)

This justifies the utilisation of

V
(m)
H := span{λz − Cmλz | z interior node of TH}

as an approximation to VH . Due to the exponential decay (4.1), the choice of
m ≈ |log(H)| ensures that this perturbation does not affect the advantageous
approximation properties of VH .

For the construction of the basis, O(H−d) problems have to be solved. Each of
these problems consists of O((log(H)H/hmin)d) degrees of freedoms in the worst
case, depending on the grading of the fine triangulation. These costs are offline
costs in the sense that the basis has to be constructed in the beginning only and
does not depend on the number of time steps. It does only depend on the coarse
and the fine mesh. The non-zero entries in the mass and stiffness matrix amount
to O((2 log(H)/H)d).
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4.2 Diagonal preconditioning of the mass matrix

This subsection proves that the inverse of the diagonal of the mass matrix is a
suitable preconditioner for it. Although this is shown for VH with basis functions
λz−Cλz, the arguments and therefore also the result hold as well for the perturbed
spaces V (m)

H of Subsection 4.1.2 spanned by the local basis functions λz − Cmλz.
Define D := dim(S1

0(TH)). Let (Λk)k=1,...,D denote the basis of S1
0(TH) consist-

ing of the standard nodal basis functions. Then (λk)k=1,...,D with λk = (1− C)Λk
for C from (2.7) defines a basis of VH . Let M and M denote the mass matrices
with respect to (Λk)k=1,...,D and (λk)k=1,...,D. Let x ∈ RD and let

UH :=

D∑
k=1

xkΛk ∈ S1
0(TH) and uH :=

D∑
k=1

xkλk = (1− C)UH ∈ VH

denote the corresponding functions in S1
0(TH) and VH . Then,

x>Mx = ‖uH‖2 = ‖(1− C)UH‖2 ≤ (‖UH‖+ ‖CUH‖)2.

Since CUH ∈ Wh, the approximation properties (2.5) and the inverse inequal-
ity (2.3) imply

‖UH‖+ ‖CUH‖ ≤ ‖UH‖+ C
(1)
IH
H‖∇UH‖ ≤

(
1 + C

(1)
IH
HCinv(S1

0(TH))
)
‖UH‖

=
(

1 + C
(1)
IH
HCinv(S1

0(TH))
)√

x>Mx.

On the other hand, since UH = IHuH , the L2 stability (2.6) leads to
√
x>Mx = ‖UH‖ ≤ C(0)

IH
‖uH‖ = C

(0)
IH

√
x>Mx.

Given A,B ∈ R, let A ≈ B abbreviate that there exist generic constants C1 >
0, C2 > 0 independent of the mesh size, such that A ≤ C1B ≤ C2A. Since
Cinv(S1

0(TH)) ≈ H−1, the above result reads

x>Mx ≈ x>Mx.

Since this result also holds for the unit vectors ej ∈ RD, this implies

x>diag(M)x =

D∑
j=1

x2
je
>
j Mej ≈

D∑
j=1

x2
je
>
j Mej = x>diag(M)x.

Since x>diag(M)x ≈ x>Mx [30], it follows

x>diag(M)x ≈ x>diag(M)x ≈ x>Mx ≈ x>Mx.

Therefore, (diag(M))−1 is a suitable preconditioner for M and the application
of M−1 may be replaced with a few iterations of the preconditioned conjugate
gradient method.
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Figure 3: Triangulations TH,1 and Th,1 for the numerical experiment from Sec-
tion 5.

4.3 Generalisation to other FEMs

The reduction approach is not at all restricted to linear conforming finite elements.
The generalisation to many non-standard schemes is possible. If one considers,
e.g., a discontinuous Galerkin discretisation instead of a FEM approximation,
then IH = ΠdG the L2 projection onto the discontinuous Galerkin space satisfies
the approximation properties (2.5) and the L2 stability (2.6) with ‖∇• ‖ replaced
by the dG norm √∑

T∈Th

‖∇ • ‖2
L2(T )

+
∑
F∈F

σ

diam(F )
‖[•]F ‖2L2(F )

,

where F denotes the set of hyper-surfaces of Th (e.g., the set of edges for d = 2
and the set of faces for d = 3), [•]F denotes the jump across a hyper-surfaces F
and σ is some penalty parameter. Furthermore, Lemma 2.1 holds equally with
this choice of quasi-interpolation. In the context of numerical homogenisation, the
reduced space for discontinuous Galerkin discretisations was utilised in [12].

Higher order elements are also possible in principal, if ∆u is sufficiently smooth.
The design of a suitable interpolation operator IH with additional properties is cru-
cial: Additional orthogonality properties have to ensure that the term (−∆u, eh)L2(Ω)

with eh ∈ ker(IH |S1
0(Th)) in the proof of Lemma 2.1 converges with the correct rate.

5 Numerical experiment

In this example we consider the wave equation (1.1) on the spatial L-shaped do-
main Ω := (−1, 1)2 \ ([0, 1]× [−1, 0]) ⊆ R2 for the time interval [0, 0.5] with inho-
mogeneous Dirichlet boundary conditions u|∂Ω and right-hand side f and initial
conditions u(0) and u̇(0) given by the exact singular solution

u(t, x) = sin(πt) (r(x))2/3 sin(2kθ(x)/3)

in polar coordinates (r, θ). The discretisation (3.3) can naturally be generalised
to this case of inhomogeneous Dirichlet boundary conditions.

We consider a sequence of uniform triangulations (TH,`)`=1,...,10, such that
TH,`+1 is created from TH,` by a proper bisection of every triangle (i.e., the longest
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` 1 2 3 4 5 6 7 8 9 10 11
∆t 1.9e-2 1.3e-2 9.8e-3 6.9e-3 4.9e-3 3.4e-3 2.4e-3 1.7e-3 1.2e-3 8.6e-4 6.1e-4
∆th 6.5e-3 3.4e-3 1.6e-3 5.7e-4 4.0e-4 2.1e-4 1.0e-4 3.7e-5 2.6e-5

Table 1: Time-step sizes for uniform triangulations TH and refined triangulations
Th defined by (5.1). The small time-step sizes ∆th limit the feasible computations
of a solution of the standard leapfrog FEM on S1

0(Th) to the first nine levels.

edge in a triangle is bisected). The sequence (Th,`)`=1,...,10 consists of triangula-
tions such that Th,` is a refinement of TH,` created similar as in the algorithm
threshold from [15], i.e., Th,` is graded towards the re-entrant corner (0, 0). The
first triangulations TH,1 and Th,1 are depicted in Figure 3. These triangulations
define the finite element spaces S1

0(TH), S1
0(Th). Let IH,` := J1 ◦Π

TH,`

1 as in Sub-
section 2.4. This defines VH . The time step size ∆t for the standard leapfrog FEM
on S1

0(TH) and the reduced FEM from (3.3) (resp. ∆th for the standard leapfrog
FEM on S1

0(Th)) is defined by

∆t :=
√

2/Cinv(S1
0(TH)) (resp. ∆th :=

√
2/Cinv(S1

0(Th))). (5.1)

These time step sizes are summarised in Table 1 for the triangulations (TH,`)`=1,...,10

and (Th,`)`=1,...,10. While ∆t is only moderately small for all considered triangu-
lations, the fine time step-size ∆th decreases with higher rate, such that 50 times
more time steps are needed for the leapfrog on S1

0(Th) compared with S1
0(TH)

for ` = 9. The approximation V
(m)
H of VH from Subsection 4.1.2 is employed in

the numerical computations with m = d−0.5 log2(H)e, which implies 1 ≤ m ≤ 3
for the performed computations. The inversions of the mass matrices M are per-
formed with the preconditioned conjugate gradients method with preconditioner
diag(M)−1. The number of non-zero entries in the mass matrices are plotted in
Figure 4 and serve as a measure of the complexity. The errors

N∑
k=1

∆t
∥∥∥∇(u(k∆t)− Uk)

∥∥∥ (5.2)

for the discrete solution (Uk)k=1,...,N of the reduced FEM of (3.3), of the standard
leapfrog FEM on S1

0(TH) (i.e., (3.3) with VH replaced by the coarse FEM space
S1

0(TH)), and of the standard leapfrog FEM on S1
0(Th) (with ∆t replaced with

the fine time step size ∆th and N replaced by dT/∆the) serve as approximations
for the error in L2(0, T ;H1

0 (Ω)) and are plotted in Figure 5 against the number
of degrees of freedom (ndof) in S1

0(TH) (which equals the number of degrees of
freedom in VH). The error for the standard leapfrog FEM for S1

0(TH), i.e., on
uniform triangulations, shows a suboptimal convergence rate of ndof1/3 ≈ H2/3,
while the approximation with (3.3) and the standard leapfrog FEM on S1

0(Th) yield
the optimal convergence rate of ndof1/2 as predicted by Theorem 3.1. Figure 5
also contains the errors of the leapfrog FEM for VH with the mass matrix replaced
by the lumped mass matrix, i.e., the diagonal matrix whose entry Mjj equals the
sum of the row entries (Mjk)k=1,...,dim(VH). The error shows the same behaviour
as without mass lumping.
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Figure 4: Number of non-zero entries in the mass matrices.
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Due to the small time step sizes, implicit schemes were previously employed for
numerical experiments on adaptive meshes [25], which require the expensive inver-
sion of the stiffness matrix in every time step. The reduced space VH overcomes
the restrictive CFL condition and turns the leapfrog into a practicable scheme: At
the expense of a moderately increased complexity, the optimal convergence rate is
recovered, but with the same time step sizes as for uniform meshes.
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