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Abstract

In this paper, we investigate the minimization of a quadratic functional subject to a boundary value
problem of a second order linear elliptic partial differential equation. There are no inequality constraints
for state and control. This problem is discretized by hp-finite elements. The main focus of this talk is
the development of efficient solution methods for the corresponding system of linear algebraic equations.
From the literature it is known that this system is symmetric and indefinite. This paper considers two
different iterative solvers

• a conjugate gradient (CG) method in a special inner product, following Schöberl/Zulehner, and

• the minimal residual method.

In both methods, efficient preconditioners for finite element mass and stiffness matrix acclerate the con-
vergence speed of the underlying iterative method. This contribution presents overlapping hp- FEM pre-
conditioners for mass and stiffness matrix. Optimal condition number estimates are proved. Robustness
with respect to the regularization parameter can be shown for the CG-method. Finally several numerical
examples show the efficiency of the presented algorithm.

1 Introduction
This paper deals with the numerical solution to the following optimal control problem: Minimize the func-
tional J(y, u) given by

min
y,u

J(y, u) = min
y,u

(
1

2

∫
Ω

(y(x)− yd(x))2 dx+
α

2

∫
Ω

u2(x) dx

)
(1)

subject to: Find y ∈ H1
ΓD

(Ω) := {v ∈ H1(Ω) : v |ΓD= 0} such that

a(y, v) :=

∫
Ω

(D(x)∇y · ∇v + c(x)yv) dx =

∫
Ω

(u+ f)v dx ∀v ∈ H1
ΓD (Ω). (2)

Here, the control is denoted by u, while the solution y to (2) is the corresponding state. For the precise
statement of the assumptions on the data of this problem we refer to Section 2. Under these assumptions,
the optimal control problem is uniquely solvable, [50]. The numerical solution to the optimal control
problem (1), (2) requires efficient discretization methods for the approximate solution to boundary value
problems as in (2) for given u and f . Among other methods, the finite element method (FEM) of low order,
i.e. the h-version of the FEM, is a very powerful method for the discretization of (2), see e.g. [13, 18].
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The discretization of optimal control problems subject to elliptic partial differential equations by means of
FEM is a well investigated topic. Usually, (adaptive) h-FEM is applied, see [1, 4, 15, 16, 19, 34, 35] and the
references therein.
For the discretization of boundary value problems of the form (2) with smooth solutions, spectral methods
(see e.g. [27]) and finite elements of higher order (p-version, see e.g. [20, 21, 45, 47] and the references
therein) have become more and more popular. In contrast to h-FEM, in the p-version of the FEM the
polynomial degree p is increased and the mesh-size h is kept constant. Both ideas, mesh refinement and in-
creasing the polynomial degree, are combined in the so-called hp-version of the FEM. The advantage of the
p-version and hp-version in comparison to the h-version is that the discrete solution converges faster to the
exact solution with respect to the number of unknownsN (of course provided that the solution is sufficiently
smooth). However, additional singularities can occur in the case of inequality constraints. Applications of
hp-FEM to optimal control problems are investigated in [7,8,51,52] with inequality constraints and in [17]
without inequality constraints. In [7, 8, 51] a special hp-discretization, the boundary concentrated FEM
(BC-FEM), [29] is applied.
After the discretization of the optimal control problem (1), (2) it remains to solve a huge system of algebraic
finite element equations Ax = g. If there is no inequality constraint, it is possible to rewrite the problem in
a saddle point formulation, see e.g., [32,42,44,46]. The system matrix A is symmetric, but indefinite. Pos-
sible iterative solvers are the preconditioned conjugate gradient method (PCG) in a special scalar product,
see [44] or the method of minimal residuals, (MINRES), see [23]. The convergence speed of the iterative
solvers depends strongly on the distribution of the eigenvalues of the matrix A. Therefore, preconditioners
are applied in order to acclerate the calculation of the solution to the saddle point system. In this special
case, the two main ingredients of such a preconditioner are

• a preconditioner for the finite element mass matrix M ,

• a preconditioner for a linear combination of the mass matrix M and the stiffness matrix of the dis-
cretization of (2).

The papers mentioned above use piecewise linear elements for the discretization. Alternative ideas using
multigrid can be found in [24, 40, 43] and the references therein. We refer also to [11] concerning time
dependent problems.
This paper is devoted to the efficient numerical solution of the linear systems of algebraic equations arising
from the discretization of the optimal control problems by means of hp-FEM. Using the saddle point formu-
lation of [44], the system Ax = g is solved by the PCG method in a special scalar product, see [44] as well
as MINRES. In case of hp-discretizations, it has to be considered, that not only good preconditioners for the
stiffness matrix as in case of h-refinement, but also for the mass matrix are necessary, since the condition
number of the mass matrix depends strongly on the polynomial degree p, [33]. Most preconditioners for hp-
FEM use additive Schwarz methods as domain decomposition methods with inexact subproblem solvers,
see e.g [48] and the references therein. Therefore, preconditioners for h-FEM (see e.g. [12,53,54]) have to
be combined with preconditioners for p-FEM (see e.g. [3,37]). We refer also to [5,10,22,30,31,41]. Using
overlapping additive Schwarz preconditioners as in [37], we are able to prove that the convergence speed
of the underlying iterative solution method does not depend on the meshsize h and the polynomial degree
p. In addition, we are able to prove robustness with respect to the regularization parameter α in the case of
PCG method by Schöberl-Zulehner. To the knowledge of the authors, there are only a few publications for
the efficient solution of systems of algebraic equations arising from the discretization of PDE-constrained
optimization by means of hp-FEM. For BC-FEM in two space dimensions, direct solvers can be applied [8],
see also [28]. However, the fast complexity goes lost in three space dimensions.
The outline of the paper is follows. The setting of the problem is described in Section 2. The discretization
with hp-finite elements is described in section 3. Section 4 deals with the numerical solution to the system
of linear algebraic equations. The main convergence results are proved. Several numerical experiments are
presented in Section 5.
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Throughout this paper, the integer p denotes the polynomial degree. For two real symmetric and positive
definite n × n matrices A,B, the relation A � B means that A − cB is negative definite, where c > 0 is
a constant independent of h, or p. The relation A ∼ B means A � B and B � A, i.e. the matrices A and
B are spectrally equivalent. The isomorphism between a function u =

∑
i uiψi ∈ L2 and the vector of

coefficients u = [ui]i with respect to the basis [Ψ] = [ψ1, ψ2, . . .] is denoted as u = [Ψ]u.

2 Setting of the problem
Considered is the distributed optimal control problem (1), (2), namely

min
y,u

J(y, u) = min
y,u

(
1

2

∫
Ω

(y(x)− yd(x))2 dx+
α

2

∫
Ω

u2(x) dx

)
subject to: Find y ∈ H1

ΓD
(Ω) := {v ∈ H1(Ω) : v |ΓD= 0} such that

a(y, v) :=

∫
Ω

D(x)∇y · ∇v + c(x)yv dx =

∫
Ω

(u+ f)v dx ∀v ∈ H1
ΓD (Ω).

Concerning the data, the following assumptions hold:

Assumption 2.1. The domain Ω ⊂ Rd is open, bounded, Lipschitz and has a polygonal boundary ∂Ω :=
Γ = ΓD ∪ ΓN and ΓN ∩ ΓD = ∅. For the coefficients D and c, it holds that D, c ∈ L∞(Ω), D > 0, c ≥ 0
a.e., and if meas(ΓD) = ∅ it holds c > 0. Moreover, D and c are chosen such that the differential operator
is bounded and uniformly elliptic in H1. For the regularization parameter α, it holds α > 0, the desired
state satisfies yd ∈ L2(Ω) and the right hand side f ∈ L2(Ω).

To solve the optimal control problem the adjoint state q is introduced. The adjoint state q ∈ H1
ΓD

(Ω) is the
unique solution to the variational equation

a(v, q) =

∫
Ω

(yd − y)v dx ∀v ∈ H1
ΓD (Ω). (3)

Since there are no bounds on the control, the control is computed by the projection formula

u(x) =
1

α
q(x) in Ω, (4)

see e.g. [50]. The goal is to write the problem (2) - (4) in a saddle point formulation. This paper follows
the ansatz in [44]. Therefore, two variational equations are derived. For the first equation, the equations
(3) with the test function v = q̃ and the weak formulation of (4) are added. The second equation is the
variational formulation of (2). The spaces Y = H1

ΓD
(Ω), U = L2(Ω) and Q = H1

ΓD
(Ω) and W = Y × U

are introduced. With the Hilbert spaces W and Q and the functions w = (y, u), w̃ = (ỹ, ũ), the optimal
control problem is reformulated as: Find (w, q) ∈W×Q such that

a(w, w̃) + b(w̃, q) = 〈F, w̃〉Ω for all w̃ ∈W,

b(w, q̃) = 〈G, q̃〉Ω for all q̃ ∈ Q
(5)

with the bilinear forms

a(w, w̃) =

∫
Ω

yỹ dx+ α

∫
Ω

uũdx and b(w, q̃) = a(y, q̃)−
∫

Ω

uq̃ dx, (6)

and the linear forms

〈F, w̃〉Ω =

∫
Ω

ydỹ dx and 〈G, q̃〉Ω =

∫
Ω

f q̃ dx.

The existence and uniqueness of solutions to (5) is proved by using Brezzis theorem.
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Theorem 2.2. (Brezzis theorem, see e.g. [14]) Let W,Q denote real Hilbert spaces, a : W ×W → R,
b : W × Q → R are bilinear forms, F : W → R, G : Q → R are continuous linear functionals.
Furthermore, it is assumed that:

1. The bilinear form a(·, ·) is bounded, i.e. it exists a constant a0 <∞ such that

a(w, w̃) ≤ a0‖w‖W‖w̃‖W ∀w, w̃ ∈W.

2. The bilinear form a(·, ·) is coercive on kerB = {w̃ ∈W : b(w̃, q̃) = 0 ∀ q̃ ∈ Q}, i.e. there exists a
constant a1 > 0 such that

a(w,w) ≥ a1‖w‖2W ∀w ∈ kerB.

3. The bilinear form b(·, ·) is bounded:

∃ b0 <∞ : sup
0 6=w∈W

b(w, q)

‖w‖W
≤ b0‖q‖Q ∀ q ∈ Q.

4. The bilinear form b(·, ·) satisfies the inf-sup condition: There exists a constant b1 > 0 such that

sup
06=w∈W

b(w, q)

‖w‖W
≥ b1‖q‖Q ∀ q ∈ Q.

Then, problem (5) admits a unique solution. Moreover, the a-priori estimates

‖w‖W ≤
1

a1
‖F‖W∗ +

1

b1

(
1 +

a0

a1

)
‖G‖Q∗ and ‖q‖Q ≤ 1

b1

(
1 +

a0

a1

)
‖F‖W∗ +

a0

b21

(
1 +

a0

a1

)
‖G‖Q∗

hold.

Our aim is to check the assumptions of Brezzis theorem 2.2 with constants a0, a1, b0 and b1 independent of
α. Following [44], non-standard scalar products are introduced. Therefore let

〈u, ũ〉U = α〈u, ũ〉Ω,
〈y, ỹ〉Y = 〈y, ỹ〉Ω +

√
α a(y, ỹ),

〈q, q̃〉Q =
1

α
〈q, q̃〉Ω +

1√
α
a(q, q̃) =

1

α
〈q, q̃〉Y

denote scalar products in U,Y and Q, respectively. The scalar product in the space W is given by

〈w, w̃〉W = 〈u, ũ〉U + 〈y, ỹ〉Y with w = (y, u), w̃ = (ỹ, ũ) ∈W.

Then, the energy norms are defined as

‖w‖2W = 〈w,w〉W, and ‖q‖2Q = 〈q, q〉Q.

Remark 2.3. For a fixed α > 0 the introduced norms on Y and Q are equivalent to the usual H1(Ω) norm.

Next, the assumptions of Brezzis theorem 2.2 are checked.

Lemma 2.4. Let the bilinear forms a(·, ·) and b(·, ·) be given by (6), respectively. Then:

1. The bilinear form a(·, ·) is bounded, i.e. a(w, w̃) ≤ ‖w‖W‖w̃‖W ∀w, w̃ ∈W.
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2. The bilinear form a(·, ·) is coercive on kerB, i.e. a(w,w) ≥ 2
3‖w‖

2
W ∀w ∈ ker B.

3. The bilinear form b(·, ·) is bounded , i.e. sup06=w̃∈W
b(w̃,q)
‖w̃‖W ≤ ‖q‖Q ∀ q ∈ Q.

4. The bilinear form b(·, ·) fulfills the inf-sup-condition sup06=w̃∈W
b(w̃,q)
‖w̃‖W ≥

√
3
4‖q‖Q ∀ q ∈ Q.

Proof. The proof is separated in four parts and follows the proof [44, Lemma 4.1], see also [55]. There, the
case D = c = 1 is proven. Furthermore the proof uses ideas of [26, Lemma 3.1].

1. For proving the first inequality, one starts with the bilinear form, applies the triangle inequality and
Cauchy-Schwarz inequality and yields

|a(w, w̃)| =
∣∣∣∣∫

Ω

yỹ dx+

∫
Ω

αuũdx

∣∣∣∣ ≤ ‖y‖L2(Ω)‖ỹ‖L2(Ω) + α‖u‖L2(Ω)‖ũ‖L2(Ω).

The assertion follows by using the Cauchy-Schwarz inequality in R2.

2. The proof coercivity on kerB of the bilinear form a(·, ·) starts from b(w̃, q̃) = 0 with w̃ = (ỹ, ũ)
i.e.

a(ỹ, q̃) =

∫
Ω

D∇ỹ · ∇q̃ dx+

∫
Ω

cỹq̃ dx =

∫
Ω

ũq̃ dx ≤ ‖ũ‖L2(Ω)‖q̃‖L2(Ω). (7)

This gives the estimate

‖w̃‖2W = ‖ỹ‖2Y + ‖ũ‖2U = ‖ỹ‖2L2(Ω) +
√
α a(ỹ, ỹ) + α‖ũ‖2L2(Ω)

(7) with q̃=ỹ
≤ ‖ỹ‖2L2(Ω) +

√
α ‖ũ‖L2(Ω)‖ỹ‖L2(Ω) + α‖ũ‖2L2(Ω).

This is equivalent to a(w̃, w̃) ≥ 2
3‖w̃‖

2
W for all w̃ ∈ kerB.

3. For the boundedness of the bilinear form b(·, ·) an application of Cauchy-Schwarz leads to

|b(w, q)| =
∣∣∣∣a(y, q)− ∫

Ω

uq dx

∣∣∣∣ ≤ √
a(y, y)

√
a(q, q) + ‖u‖L2(Ω)‖q‖L2(Ω) ≤‖w‖W‖q‖Q.

4. It remains to prove the inf-sup condition sup06=w̃∈W
b(w̃,q)
‖w̃‖W ≥ b1‖q‖Q. We choose the function

w = (y, u) = (
√
αq,−2q). This gives

sup
06=w̃∈W

b2(w̃, q)

‖w̃‖2W
≥ b2(w, q)

‖w‖2W
=

(
√
α a(q, q) + 2〈q, q〉Ω)

2

α
√
α a(q, q) + 5α〈q, q〉Ω

=
1

α

(
√
α a(q, q) + 2〈q, q〉Ω)

2

√
α a(q, q) + 5〈q, q〉Ω

(a+2b)2≥ 3
4 (a+b)(a+5b)

≥ 3

4α

(√
α a(q, q) + 〈q, q〉Ω

)
=

3

4
‖q‖2Q,

which proves the result.

Since the assumptions of Brezzis theorem are fulfilled, the existence and uniqueness of the solution follows.
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Theorem 2.5. The saddle point problem (5) with the non-standard norms ‖w‖W, ‖q‖Q has a unique solu-
tion.

Proof. As proven in Lemma 2.4, the assumptions for Theorem 2.2 hold with the α-independent constants

a0 = 1, a1 = 2
3 , b0 = 1 and b1 =

√
3
4 .

Remark 2.6. This paper investigates the case of distributed control only. For boundary control two cases
have to be distinguished:

1. observation on the boundary: If one replaces the L2 terms on Ω by the L2 terms on ΓN in the norms
in U, Y and Q, respectively, this case is completely analogous.

2. observation on the domain: Here, the norms in U are the L2(ΓN ) norm with factor α. The norms on
Y and Q contain the L2(Ω) norm. Using the trace theorem and the Poincare Friedrichs inequality,
the uniqueness of a weak solution can be proved. However, the robustness with respect to α goes lost.
Therefore, the norms on Y and Q are defined without the regularization parameter α, see [46].

3 Galerkin discretization
The next step is to discretize the saddle point problem (5). For the discretization, hp finite elements are
used. Let WN = YN × UN ⊂ W, QN ⊂ Q be finite dimensional spaces. Then, the discrete formulation
of the saddle point problem reads: Find (wN , qN ) ∈WN ×QN such that

a(wN , w̃N ) + b(w̃N , qN ) = 〈F, w̃N 〉Ω ∀ w̃N ∈WN ,

b(wN , q̃N ) = 〈G, q̃N 〉Ω ∀ q̃N ∈ QN .
(8)

For existence and uniqueness of the solution Brezzis theorem shall be applied.

Theorem 3.1. Assume that WN ⊂ W, QN ⊂ Q and WN = YN × UN with YN = QN ⊂ UN . Then,
the discrete saddle point problem (8) possesses a unique solution. Furthermore, the constants in Brezzis
theorem are independent of mesh parameters and the regularization parameter α.

Proof. The result follows from Theorem 2.2. The assumptions are proved as in Lemma 2.4.

In this paper, the choice YN = QN = UN is made. Let [Φ] = [φ1, . . . , φN ] be a basis for YN = QN = UN .
Then, the variational formulation (8) is equivalent to the linear system solve

A
[
wN
q
N

]
=

[
f
N
sN

]
with A =

[
AN B>N
BN 0

]
, AN =

[
MN 0
0 αMN

]
and BN =

[
KN

−MN

]>
,

(9)
where MN denotes the mass matrix representing the L2(Ω) inner product and KN denotes the stiffness
matrix with respect to the bilinear form a(·, ·), i.e.

KN = [a(φi, φj)]
N
i,j=1 , MN = [〈φi, φj〉Ω]

N
i,j=1 . (10)

Remark 3.2. In matrix vector notation, the assumptions of Theorem 2.2 mean that

2

3

(
MN +

√
αKN 0

0 αMN

)
≤ AN ≤

(
MN +

√
αKN 0

0 αMN

)
on kerBN , (11)

√
3

2

(
MN +

√
αKN

)
≤ αBNA

−1
N B>N ≤MN +

√
αKN . (12)
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Next, we specify the space YN = QN = UN and its basis functions [Φ]. The polygonal Lipschitz domain Ω
is decomposed into a triangulation Ts consisting of isotropic quadrilateral (2D) or hexahedral (3D) elements
Rs. With R we denote the reference element (−1, 1)d for d = 2, 3. Φs is the bi-/tri-linear mapping from
the reference elementR to the elementRs. Qk denotes the space of polynomials on (−1, 1)d with maximal
degree k in each variable. The general hp finite element space

YN = QN = UN = {y ∈ H1
ΓD (Ω) : y|Rs

= ỹ ◦ Φ−1
s , ỹ ∈ Qdk}

is introduced. In the next step, the spaces are equipped with basis functions. Note that the Legendre
polynomials on [−1, 1] are defined as

Li(x) =
1

2ii!

di

dxi
(
x2 − 1

)i
.

Moreover, the integrated Legendre polynomials with some scaling factor γi are defined via the relation

L̂i(x) = γi

x∫
−1

Li−1(s) ds i ≥ 2 and L̂0/1(x) =
1± x

2
.

In the following, we use the scaling γi = 1. The shape functions for 2D and 3D can now be constructed by
taking the products

L̂ij(x1, x2) = L̂i(x1)L̂j(x2), 0 ≤ i, j ≤ p,
L̂ijm(x1, x2, x3) = L̂i(x1)L̂j(x2)L̂m(x3), 0 ≤ i, j,m ≤ p,

on the reference element, respectively. The global functions φi can be divided into four groups,

• the vertex functions (V),

• the edge bubble functions,

• face bubble functions (only for d = 3),

• the interior bubble functions,

locally on each element Rs, and globally on the domain Ω. We denote them with [Φ] = [φ1, . . . , φN ], see
e.g. [6], for more details.

4 The solution to the linear system
This section considers the efficient solution to the linear system of algebraic equations (9). In this paper,
iterative solvers with preconditioners are the method of choice. Note that the system matrix is symmetric
but indefinite. We start with a brief summary of two possible solution methods for systems of the form (9)
and its main convergence results.

4.1 Solvers for saddle point systems
In this subsection, a system of the form

A
[
x
q

]
=

[
f
s

]
with A =

[
A B>

B 0

]
(13)

is considered under the following assumptions:
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Assumption 4.1. Let A ∈ RNA×NA be a symmetric and positive semidefinite matrix, B ∈ RNB×NA has
full rank NB ≤ NA. Moreover, it is set N = NA +NB and it holds

〈Ax, x〉 > 0 for all x ∈ kerB with x 6= 0.

The first method is the modified PCG method by Schöberl and Zulehner [44]. The Schöberl-Zulehner PCG
method is based on choosing a suitable preconditionerPcg,Â,Ŝ in order to apply the CG method with respect
to a non-standard scalar product. The preconditioner for the matrix A (13) is chosen as

Pcg,Â,Ŝ =

[
Â B>

B BÂ−1B> − Ŝ

]
, (14)

where Â and Ŝ are symmetric and positive definite matrices with respect to the standard scalar product.

Theorem 4.2. [44, Theorems 2.1,2.2] Let assumption 4.1 be fulfilled. Furthermore, it is assumed that the
relations Â > 0 and Ŝ > 0 with

〈Aw,w〉 ≥ ν1〈Âw,w〉 for all w ∈ kerB and Â ≥ A,

and

Ŝ ≤ BÂ−1B> ≤ ν2Ŝ,

with constants ν1, ν2 and 0 < ν1 ≤ 1 and ν2 ≥ 1 hold. Let Pcg,Â,Ŝ be defined by (14). Then, all
eigenvalues of P−1

cg,Â,Ŝ
A are real and positive. Moreover, the maximal and minimal eigenvalue satisfy the

estimates

λmax(P−1
cg A) ≤ ν2

(
1 +

√
1− ν−1

2

)
and λmin(P−1

cg A) ≥ ν1

 2√
1− ν−1

2 +
√

5− ν−1
2

2

> 0.

Remark 4.3. If in addition, Â > A and Ŝ < BÂ−1B>, then P−1

cg,Â,Ŝ
A is symmetric and positive definite

with respect to the scalar product〈[
x
p

]
,

[
w
q

]〉
D

= 〈(Â−A)x,w〉+ 〈(BÂ−1B> − Ŝ)p, q〉.

This method requires the explicit eigenvalue bounds Â > A and Ŝ < BÂ−1B> for the preconditioner (14).
This can be done by explicit estimates or an inverse vector iteration. In order to avoid this, the MINRES
can be used. This method has been designed for symmetric indefinite system solves. The preconditioned
version uses the preconditioner

Pminres,Ã,S̃ =

[
Ã 0

0 S̃

]
, (15)

where Ã and S̃ are spd preconditioners for A and the Schur complement S = BA−1B>, respectively.
Then, the following result can be proved:

Theorem 4.4. ( [2, Corollary 2]) LetA and Pminres,Ã,S̃ be defined by (13) and (15), respectively, where Ã
and S̃ are symmetric and positive definite preconditioners for A and S. Then, all eigenvalues P−1

minres,Ã,S̃
A

are contained in the intervals[
−λmax(S̃−1S),

−λmin(S̃−1S)

1 + 1
λmin(Ã−1A)

]
∪
[
λmin(Ã−1A), λmax(Ã−1A) + λmax(S̃−1S)

]
.
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4.2 Additive Schwarz preconditioners
Summarizing, both proposed iterative methods require preconditioners for the matrix AN and the Schur
complement SN = BNA

−1
N B>N . Due to the definition of AN and BN , see (9), and the spectral equivalence

relations (11), (12) this means the construction of preconditioners for the mass matrix MN and the linear
combination YN =

√
αKN +MN of stiffness and mass matrix in (10). Therefore, efficient solvers for MN

and YN are required. Here, overlapping additive Schwarz methods are preferred.
For the definition of the preconditioner, some notation is introduced. Let

Vh =
{
y ∈ H1

Γ1
(Ω) : y |Rs

= ỹ(F−1
s (x1, . . . , xd)), ỹ ∈ Q1

}
(16)

be the space of all finite element functions of maximal polynomial degree 1. For a given node v, let
Ωv = {∪sRs : v ⊂ Rs} be the closed patch associated to a node v of the finite element mesh. Then, for
each node v of the finite element mesh, we introduce

Vv = {y ∈ YN : supp y ⊂ Ωv} (17)

as the patch space, cf. a two-dimensional example in Figure 1.

v

Figure 1: Patch Ωv of a node v (2D) (marked colored).

Theorem 4.5. Let Vv and Vh be defined via (17) and (16), respectively. Then, for all y ∈ YN there exists
a decomposition y = yh +

∑
v yv with yh ∈ Vh and yv ∈ Vv such that

a(y, y) � inf
y=yh+yv

(
a(yh, yh) +

∑
v

a(yv, yv)

)
and

〈y, y〉Ω � inf
y=yh+yv

(
〈yh, yh〉Ω +

∑
v

〈yv, yv〉Ω

)
hold. Moreover, for all decompositions y = yh +

∑
v yv, yh ∈ Vh, yv ∈ Vv, the estimates

a(y, y) � a(yh, yh) +
∑
v

a(yv, yv) and

〈y, y〉Ω � 〈yh, yh〉Ω +
∑
v

〈yv, yv〉Ω.

The constants depend neither on h nor p.

Proof. This result in the a-norm has been proven by Pavarino [38]. Using the same decomposition as
in [38], see also [39], the result for the L2 norm is proved, see [9]. The upper estimates follow by a coloring
argument.
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Since, a preconditioner for YN =
√
αKN +MN is required, the bilinear form

y(y, ỹ) =
√
αa(y, ỹ) + 〈y, ỹ〉Ω (18)

on Y× Y is introduced.

Corollary 4.6. Let y be defined by (18). Then, for all y ∈ YN there exists a decomposition y = yh+
∑

v yv
with yh ∈ Vh and yv ∈ Vv such that

y(y, y) � inf
y=yh+yv

(
y(yh, yh) +

∑
v

y(yv, yv)

)
.

Moreover, for all decompositions y = yh +
∑

v yv with yh ∈ Vh and yv ∈ Vv

y(y, y) � y(yh, yh) +
∑
v

y(yv, yv).

The constants depend neither on α, h nor p.

Proof. The independence of h and p follows from Theorem 4.5. The robustness in α is also a consequence
of Theorem 4.5, since the decomposition y = yh +

∑
v yv is the same in both involved norms.

Remark 4.7. The bilinear form b(·, ·) = infy=yh+yv (a(yh, yh) +
∑

v a(yv, yv)) in Theorem 4.5 defines a
preconditioner CK for KN (10) in the following way. Let J(v) =

[
jv1, . . . , j

v
nv

]
be the index set of all basis

functions φj with supp (φj) ⊂ Ωv and J(h) the index set of all vertex functions (V). Due to the partition of
[Φ] into vertex, edge, face and interior functions, the set [φj ]j∈J(v) forms a nv = O(pd) dimensional basis
of the space Vv. Let Pv ∈ Rnv×N be the Boolean matrix with the entries

[Pv]ij =

{
1 if j = jvi , 1 ≤ i ≤ nv
0 else .

Finally, let
Kv =

[
a(φjvi , φjvk)

]nv

i,k=1
. (19)

be the stiffness matrix on Vv. In the same way, Ph and Kh corresponding to the set J(h) are introduced.
Then, the splitting in Theorem 4.5 introduces the preconditioner

C−1
K = P>h K

−1
h Ph +

∑
v

P>v K
−1
v Pv (20)

with KN ∼ CK , see e.g. [49] for more details. In the same way, we introduce the preconditioners

C−1
Y = P>h Y

−1
h Ph +

∑
v

P>v Y
−1
v Pv, C−1

M = P>h M
−1
h Ph +

∑
v

P>v M
−1
v Pv (21)

with
Yv =

[
y(φjvi , φjvk)

]nv

i,k=1
, Mv =

[
〈φjvi , φjvk〉Ω

]nv

i,k=1
.

Due to Theorem 4.5 and Corollary 4.6 they satisfy the spectral equivalence relations

YN ∼ CY and MN ∼ CM . (22)
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4.3 Final condition number estimates
Summarizing, instead of the solution to systems with the matrices YN and MN we have to solve systems
with the patch matrices Yv and Mv as well as systems with the h-FEM matrices Yh and Mh, see (21). In
the following, these solvers are briefly considered:

• The mass matrix Mh for h-FEM is well conditioned. Therefore, it can be replaced by its diagonal
part DM,h = diag(Mh).

• The matrix Yh corresponds to the stiffness matrix according to the bilinear form

y(y, ỹ) =
√
α

∫
Ω

(D(x)∇y · ∇ỹ + c(x)yỹ) dx+

∫
Ω

yỹ dx

Here, one can use multigrid methods, [25], or multilevel preconditioners as the BPX-preconditioner,
[54], [12]. In order to get robustness with respect to the parameter α, the multigrid method of [36]
should be used.

• The mass matrix Mv has a tensor product structure and the solution to a system with Mv can be
performed in optimal arithmetical complexity, i.e. O(pd) operations, see [9].

• The matrix Yv has a size of O(pd), where p denotes the polynomial degree. In the case of boundary
concentrated FEM (BC-FEM), see [29], p ≈ logN . Then, a system with Yv is performed in optimal
arithmetical complexity. In the case of very high polynomial degrees, the matrix Yv can be replaced
by a wavelet preconditioner Cwavelet,Y , see [6]. It is based on the tensor product structure of one
dimensional mass and stiffness matrices. Hence, it can be designed such that it is robust with respect
to the regularization parameter α. However, the condition number κ(C−1

wavelet,Y Yv) grows as (1 +

log p)3 logχ log p) for any χ > 1.

Based on (21), we introduce the preconditioners

C−1
Y,type = P>h C

−1
h,Y,typePh +

∑
v

P>v Y
−1
v Pv and C−1

M,D = P>h D
−1
M,hPh +

∑
v

P>v M
−1
v Pv, (23)

for YN andMN respectively, where type=BPX stands for the BPX preconditioner and type=Mult stands
for the multigrid preconditioner of [36].
Summarizing, the properties of the multigrid preconditioner, see [36] allow us to conclude that

Ch,Y,Mult ∼ Yh. (24)

By (24), (23) and (22) one obtains the spectral equivalence relation YN ∼ CY,Mult. In the same way, the
relation CM,D ∼Mh implies MN ∼ CM,D.
This means that we are able to prove the eigenvalue bounds

c1,Y CY,type ≤ YN ≤ c2,Y CY,type and c1,MCM,D ≤MN ≤ c2,MCM,D (25)

with generic constants c2,M ≥ c1,M > 0, c2,Y ≥ c1,Y > 0. With (23), (25) the preconditioners

ÂN = σ

[
c2,Y CY,Mult 0

0 αc2,MCM,D

]
with σ < 1 (26)

for AN and

ŜN = τ

√
3

2α

c1,Y
c2,Y

(c2,Y CY,Mult) with τ < 1 (27)

for SN = BNA
−1
N B>N , respectively, are introduced.

Therefore, we can prove the following two theorems.
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Theorem 4.8. Let ÂN and ŜN be defined by (26) and (27), respectively. Moreover, let us assume that the
estimates of the eigenvalue bounds (25) can be obtained in O(N) operations.
If the maximal polynomial degree p grows as O(logN), the saddle point system (9) can be solved by the
Schöberl-Zulehner PCG with the preconditioners Pcg,ÂN ,ŜN

(14) in O(N) operations.
For general polynomial degree p, the saddle point system (9) can be solved by the Schöberl-Zulehner PCG
in O(N

√
(1 + logN)3 logχ logN)) operations for any χ > 1. The results are robust with respect to the

regularization parameter α.

Proof. If the eigenvalue bounds in (25) are known, one obtains for the scaled preconditioners c2,Y CY,Mult
and c2,MCM,D the eigenvalue bounds

c−1
2,Y c1,Y (c2,Y CY,Mult) ≤ YN ≤ (c2,Y CY,Mult) and c−1

2,Mc1,M (c2,MCM,D) ≤MN ≤ (c2,MCM,D)

with the upper eigenvalue estimates one. Using (11) and (12), the results

2

3
min

{
c1,Y
c2,Y

,
c1,M
c2,M

}[
c2,Y CY,Mult 0

0 αc2,MCM,D

]
≤ AN ≤

[
c2,Y CY,Mult 0

0 αc2,MCM,D

]
=

1

σ
ÂN < ÂN . (28)

on kerBN and
√

3

2

c1,Y
c2,Y

(c2,Y CY,Mult) ≤ αBNA
−1
N B>N ≤ c2,Y CY,Mult (29)

follow. In order to apply the Schöberl-Zulehner PCG with ÂN (26) and ŜN (27), the assumptions ŜN ≤
BN Â

−1
N B>N and AN < ÂN have to be checked. The last one has been proved in (28).

Moreover, with ŜN = τ
√

3
2α

c1,Y
c2,Y

(c2,Y CY,Mult) and τ < 1, one gets

BN Â
−1
N B>N

(28)
≥ BNA

−1
N B>N

(29)
≥
√

3

2α

c1,Y
c2,Y

(c2,Y CY,Mult)
(27)
= τ−1ŜN > ŜN .

Therefore, the Schöberl-Zulehner PCG can be applied. Note that all eigenvalue estimates are independent
of α, h and p. Hence, the algorithm stops (for a fixed relative accuracy ε) after a bounded number of
iterations. Since systems with Ŝ−1

N and ÂN , or equivalently, with CY,Mult and CM,D can be performed in
optimal complexity, this proves the assertion for the case p ∼ O(logN).
In the general case, the eigenvalue bounds of [6] for κ(C−1

wavelet,Y Yv) enter the estimates.

The preconditioners ÂN (26) and ŜN (27) require the constants in the eigenvalue bounds in (25). The
application of the MINRES does not need these values. Using (23), the preconditioners

ÃN =

[
CY,Mult 0

0 αCM,D

]
and S̃N = CY,Mult (30)

for AN and SN = BNA
−1
N B>N , respectively, are introduced.

Theorem 4.9. Let ÃN and S̃N be defined by (30), respectively. If the maximal polynomial degree p grows
as O(logN), the saddle point system (9) can be solved by the MINRES method with the preconditioner
Pminres,ÃN ,S̃N

(15) in O(N) operations.
For general polynomial degree p, the saddle point system (9) can be solved by the MINRES method in
O(N

√
(1 + logN)3 logχ logN)) operations for any χ > 1.
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Proof. The proof is similar to the proof of the previous theorem. As in (28) and (29), the estimates

AN ∼ ÃN and S̃N ∼ BNA−1
N B>N

follow. Therefore, all eigenvalues of the MINRES preconditioner Pminres (15) lie in the two real intervals
(−µ4,−µ3) and (µ2, µ1), where the constants µi > 0 do not depend on the discretization parameter.
Therefore, the convergence rate of MINRES is independent of h and p, see [23, Theorem 6.13]. If p ∼
logN , the systems with ÃN and S̃N can be solved in O(N) operations.

Remark 4.10. The disadvantage of the MINRES method is that the robustness with respect to α gets lost.

5 Numerical experiments
Finally, some numerical experiments are presented.

5.1 Setting of the problems
In all examples, we choose D(x) = c(x) = 1 and a Neumann boundary, i.e. ΓD = ∅. For the domain Ω,
two cases are distinguished:

• Square: Here, the domain is the unit square Ω = (0, 1)2. The data yd is chosen such that the solution
to this optimal control problem is given by

y(x) = e
1
3x

3
1−x1e

1
3x

3
2−x2 , q(x) = −y(x).

• Hole: In this case Ω = (0, 3)2\[1, 2]2 and the desired state is given by

yd(x) = 10 sin(πx1) + 5 cos(πx2
2),

whereas the exact solution is unknown.

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

Figure 2: BC-refinement: unit square (left), hole (right)

Problem (2) is discretized by p-FEM or by BC-FEM, see Figure 2. The system (9) is solved by means of
the Schöberl-Zulehner PCG or the preconditioned MINRES method with a relative accuracy of ε = 10−10

for BC-FEM and ε = 10−12 for p-FEM, respectively. The preconditioners of (21), i.e.

C−1
Y,type = P>h C

−1
h,Y,typePh +

∑
v

P>v Y
−1
v Pv and C−1

M,D = P>h D
−1
M,hPh +

∑
v

P>v M
−1
v Pv

are chosen for YN and MN , respectively, where
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• type=BPX uses the multilevel diagonally scaled BPX preconditioner for C−1
h,Y,type and

• type=E uses the matrix Ch,Y,type = Yh, e.g. the h part is solved exactly.

In some examples, also the exact matrices YN instead of CY,type and MN instead of CM,D are used as
preconditioner, in order to check the influence of the different preconditioners.

5.2 Schöberl-Zulehner PCG
This solver requires the upper eigenvalue bounds of the preconditioner in the estimates (25). This is per-
formed by an inverse vector or vector iteration. The results for the test example Square are displayed in
Table 1.

N α = 106 α = 102 α = 10−6 α = 10−2

κ1,M κ1,Y κ1,M κ1,Y κ1,M κ1,Y κ1,M κ1,Y

75 4.5 1.5 4.5 1.5 4.5 1.3 4.5 2.2
243 5.8 4.0 5.8 4.0 5.8 4.1 5.8 5.7
507 5.9 4.0 5.9 4.0 5.9 4.1 5.9 5.8
867 6.1 4.0 6.1 4.0 5.9 4.1 5.9 5.9

1323 6.1 4.0 6.1 4.0 6.1 4.1 6.1 5.9
1875 6.2 4.0 6.2 4.0 6.2 4.1 6.2 5.9
2523 6.2 4.0 6.2 4.0 6.2 4.1 6.2 5.9
3267 6.2 4.0 6.2 4.0 6.2 4.1 6.2 5.9

Table 1: estimated parameters for different α and uniform p-refinement for κ1,Y = λmax(C−1
Y,EYN ) and

κ1,M = λmax(C−1
M,DMN ).

From, the results one can see that the eigenvalue bounds are robust with respect to the regularization param-
eter. In all other examples, we choose now α = 1. Table 2 displays the iteration numbers for the square
example with p-FEM. In the experiments, the iteration numbers are bounded. Although the condition num-

N 75 243 507 867 1323 1875 2523 3267
MN , YN 16 18 19 19 19 19 19 19

CM,D, CY,PE 74 196 199 224 199 224 202 216

Table 2: PCG iteration numbers for different preconditioners using p-FEM on the unit square.

bers of C−1
Y,EYN and C−1

M,DMN are quite low, the iteration numbers are about 200. This due to the scaling
in order to guarantee the positive definiteness of the preconditioner.

5.3 MINRES
The first test example for the MINRES method uses the test example square. The iteration numbers are
displayed in Figure 3. For the uniform p-FEM the iteration numbers are bounded and lower in comparison
to the Schöberl-Zulehner-PCG. For the BC-FEM, there is a strong adaptive refinement to the boundary
including hanging nodes. This influences the quality of the BPX preconditioner as h-FEM preconditioner,
cf. if one compares the iteration numbers of the preconditioners CY,BPX and CY,E (red vs. yellow curve or
green vs. light curve in the right picture of Figure 3).
An improvement is expected by using multigrid methods for the h-FEM part and or triangular/tetrahedral
finite elements with red/green refinement in order to avoid hanging nodes.

14



101 102 103 104
20

40

60

80

100

120

140

N

nu
m

be
ro

fi
te

ra
tio

ns

different preconditioners for p-FEM

MN , YN
MN , CY,E
MN , CY,BPX
CM,D, YN
CM,D, CY,E
CM,D, CY,BPX

101 102 103 104 105
0

50

100

150

200

250

300

N

nu
m

be
ro

fi
te

ra
tio

ns

different preconditioners for BC-FEM

MN , YN
MN , CY,E
MN , CY,BPX
CM,D, YN
CM,D, CY,E
CM,D, CY,BPX

Figure 3: Iteration numbers of MINRES for uniform p refinement (left) and BC refinement (right) for the
test example Square.

Figure 4 displays the iteration numbers for the preconditioned MINRES method for the test example hole.
The behavior of the iteration numbers is the same. For uniform p-FEM the absolute numbers are higher
than for the square.
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Figure 4: Iteration numbers of MINRES for uniform p refinement (left) and BC refinement (right) for the
test example Hole.
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