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Abstract

This paper proposes a numerical upscaling procedure for elliptic bound-
ary value problems with diffusion tensors that vary randomly on small
scales. The resulting effective deterministic model is given through a
quasilocal discrete integral operator, which can be further compressed to
an effective partial differential operator. Error estimates consisting of
a priori and a posteriori terms are provided that allow one to quantify the
impact of uncertainty in the diffusion coefficient on the expected effective
response of the process.
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1 Introduction

Homogenization is a tool of mathematical modeling to identify reduced descrip-
tions of the macroscopic response of multiscale models. In the context of the
prototypical elliptic model problem

−div(Aε∇uε) = f

microscopic features on some characteristic length scale ε are encoded in the
diffusion coefficient Aε and homogenization studies the limit as ε tends to zero.
It turns out that suitable limits represented by the so-called effective or homog-
enized coefficient exist in fairly general settings in the framework of G-, H-,
or two-scale convergence [Spa68, DG75, MT78, Ngu89, All92]. However, the
effective coefficient is rarely given explicitly and even its implicit representation
based on cell problems usually requires structural assumptions on the sequence
of coefficients Aε such as local periodicity and scale separation [BLP78, JKO94].
Moreover, in many interesting applications such as geophysics and material sci-
ences where Aε represents porosity or permeability, complete explicit knowledge
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Numerical stochastic homogenization

of the coefficient is unlikely. The coefficient is rather the result of measurements
that underlie errors or it is the result of singular measurements combined with
inverse modeling. In any case, it is very likely that there is uncertainty in the
data Aε. The question is how this uncertainty on the fine scale ε changes the
expected macroscopic response of the process. For works on analytical stochas-
tic homogenization we refer to the classical works [Koz79, PV81, Yur86] and
the recent approaches [BP04], [GO11, GO12, GNO15, GO15, DGO16], and
[AS16, AKM17]. An overview over computational methods in stochastic ho-
mogenization can be found in the review article [ACLB+12].

The aim of this paper is to compute effective, deterministic models such
that the corresponding discrete solution is close to E[uε], the expected value
of uε; closeness is meant in the L2 sense, so that a macroscopic approximation
is achieved. One possible model situation is that the diffusion coefficient Aε

is a random field whose structure is given by a uniform triangulation Tε of
mesh-size ε. The coefficient is piecewise constant with respect to Tε. The
scale of interest H (observation scale) is linked to a coarser triangulation TH

of mesh-size H. The numerical method is based on the multiscale approach
of [MP14, HP13, GP15, Pet16], sometimes referred to as Localized Orthogonal
Decomposition (LOD), that was developed for the deterministic case. The basis
functions therein are constructed by local corrections that solve some elliptic
fine-scale problem on localized patch domains. Their supports are determined
by oversampling lengths H|logH|, where H denotes the mesh-size of a finite
element triangulation TH on the observation scale. This choice of oversampling
is justified by the exponential decay of the correctors away from their source.
The method leads to quasi-optimal a priori error estimates and can dispense
with any assumptions on scale separation.

The recent work [GP16] gives a re-interpretation of the method from [MP14]
as a quasilocal discrete integral operator for the deterministic case. In a further
compression step, this representation allows to extract a piecewise constant dif-
fusion tensor. An application of this procedure for any atom ω in the probability
space leads to an integral operator AH (depending on the stochastic variable)
and a corresponding piecewise constant random field AH on the scale H. It
turns out that this viewpoint is useful in the stochastic setting because it al-
lows to average in the stochastic variable over effective coefficients rather than
over multiscale basis functions and to thereby characterize the resulting effec-
tive model in terms of quasi-local coefficients and even deterministic PDEs. The
averages are given by ĀH := E[AH ] and ĀH := E[AH ] and constitute determin-
istic models which we refer to as quasi-local (ĀH) and local (ĀH), respectively.
The proposed method covers the case of bounded polytopes, which appears still
open in analytical stochastic homogenization. The method itself can dispense
with any a priori information on the coefficient. The validity of the discrete
model is assessed via an a posteriori model error estimator. In order to make
the computation of ĀH and ĀH feasible, one can exploit the structure (if avail-
able) of the stochastic coefficient Aε as well as the underlying mesh. Provided
the dependence of the stochastic variable has a suitable structure, sampling
procedures for AH are purely local and allow to restrict the computations to
reference configurations.

We provide error estimates for the expected error in the L2 norm as well
as the L2 norm of the expected error. The upper bounds are combined from
a priori terms and a posteriori terms. The latter contributions are determined
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by the statistics of the local fluctuations of the upscaled coefficient. Numerical
evidence for a model coefficient suggests that the error estimator is not the
dominant part in the error, as long as the usual scaling H ≈ (ε/H)d/2 from the
central limit theorem (CLT) is satisfied.

The structure of this article is as follows. Section 2 introduces the general
model problem, relevant notation for data structures and function spaces, and
gives an example of a possible model situation. Section 3 presents the upscal-
ing procedure. Section 4 provides error estimates in the L2 norm. Numerical
experiments are presented in Section 5. The comments of Section 6 conclude
the paper.

Standard notation on Lebesgue and Sobolev spaces applies throughout this
paper. The notation a . b abbreviates a ≤ Cb for some constant C that is
independent of the mesh-size, but may depend on the contrast of the coefficient
A; a ≈ b abbreviates a . b . a. The symmetric part of a quadratic matrix M
is denoted by sym(M).

2 Model problem and notation

This section describes the model problem and some notation on finite element
spaces. Finally, an example of a possible model situation is discussed.

2.1 Model problem

Let (Ω,F,P) be a probability space with set of events Ω, σ-algebra F ⊆ 2Ω

and probability measure P. The expectation operator is denoted by E. Let
D ⊆ Rd for d ∈ {1, 2, 3} be a bounded Lipschitz polytope. The set of admissible
coefficients reads

M(D,α, β) =

{
A ∈ L∞(D;Rd×d) s.t. α|ξ|2 ≤ (A(x)ξ) · ξ ≤ β|ξ|2

for a.e. x ∈ D and all ξ ∈ Rd

}
. (2.1)

Note that the elements of A ∈ M(D,α, β) are fairly free to vary within the
bounds α and β and that we do not assume any frequencies of variation or
smoothness.

Let A be an M(D,α, β)-valued random field with β > α > 0 and let, for
the sake of readability, A be pointwise symmetric and let f ∈ L2(D) be deter-
ministic. Throughout this article we suppress the characteristic length scale ε
of the diffusion coefficient in the notation and write A instead of Aε. Consider
the model problem{
−div(A(ω)(x)∇u(ω)(x)) = f(x), x ∈ D

u(ω)(x) = 0, x ∈ ∂D

}
for almost all ω ∈ Ω. (2.2)

Denote the energy space by V := H1
0 (D). The weak formulation of (2.2) seeks

a V -valued random field u such that for almost all ω ∈ Ω∫
D

(A(ω)(x)∇u(ω))(x) · ∇v(x) dx =

∫
D

f(x)v(x) dx for all v ∈ V. (2.3)
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The reformulation of this problem in the Hilbert space L2(Ω;V ) of V -valued
random fields with finite second moments leads to a coercive variational problem
that seeks u ∈ L2(Ω;V ) such that∫

Ω

∫
D

(A(ω)∇u(ω)(x)) · ∇v(ω)(x) dx dP(ω) =

∫
Ω

∫
D

f(x)v(ω)(x) dx dP(ω)

holds for all v ∈ L2(Ω;V ). It is easily checked that this is a well-posed problem
in the sense of the Lax-Milgram theorem with a coercive and bounded bilinear
form

a : L2(Ω;V )× L2(Ω;V )→ R,

(u,v) 7→
∫

Ω

∫
D

(A(ω)(x)∇u(ω)(x)) · ∇v(ω)(x) dx dP(ω)

and a bounded linear functional F on L2(Ω;V ) given by

v 7→
∫

Ω

∫
D

f(x)v(ω)(x) dx dP(ω).

This shows that, for any f ∈ L2(D), there exists a unique solution u ∈ L2(Ω;V )
with

‖∇u‖L2(Ω;V ) :=

(∫
Ω

∫
D

|∇(u(ω))(x)|2 dx dP(ω)

)1/2

≤ C(D)α−1‖f‖L2(D).

Though it would be possible, we disregard the possibility of more general f ∈
H−1(D) or uncertainty in the right-hand side f in this article.

Remark 1. The parameter ε refers to some scale that resolves the stochastic
data. We do not assume any particular structure; the coefficient A = Aε

is not necessarily part of some ergodic sequence. Our viewpoint is that of
coarsening/reducing the given model on the fixed scale ε to the observation
scale H rather than that of the asymptotics for small ε.

2.2 Finite element spaces

Let TH be a quasi-uniform regular simplicial triangulation of D and let VH
denote the standard P1 finite element space, that is, the subspace of V consisting
of piecewise first-order polynomials. Given any subdomain S ⊆ D, define its
neighbourhood via

N(S) := int
(
∪ {T ∈ TH : T ∩ S 6= ∅}

)
.

Furthermore, we introduce for any m ≥ 2 the patch extensions

N1(S) := N(S) and Nm(S) := N(Nm−1(S)).

Throughout this paper, we assume that the coarse-scale mesh TH is quasi-
uniform. The global mesh-size reads H := max{diam(T ) : T ∈ TH}. Note
that the shape-regularity implies that there is a uniform bound C(m) on the
number of elements in the mth-order patch, card{K ∈ TH : K ⊆ Nm(T )} ≤
C(m) for all T ∈ TH . The constant C(m) depends polynomially on m. The
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set of interior (d − 1)-dimensional hyper-faces of TH is denoted by FH . For a
piecewise continuous function ϕ, we denote the jump across an interior edge by
[ϕ]F , where the index F will be sometimes omitted for brevity. The space of
piecewise constant functions (resp. d × d matrix fields) is denoted by P0(TH)
(resp. P0(TH ;Rd×d)).

Let IH : V → VH be a surjective quasi-interpolation operator that acts as an
H1-stable and L2-stable quasi-local projection in the sense that IH ◦ IH = IH
and that for any T ∈ TH and all v ∈ V there holds

H−1‖v − IHv‖L2(T ) + ‖∇IHv‖L2(T ) ≤ CIH‖∇v‖L2(N(T ))

‖IHv‖L2(T ) ≤ CIH‖v‖L2(N(T )).

Since IH is a stable projection from V to VH , any v ∈ V is quasi-optimally
approximated by IHv in the L2(D) norm as well as in the H1(D) norm. One
possible choice is to define IH := IcH ◦ ΠH , where ΠH is the L2(D)-orthogonal
projection onto the space P1(TH) of piecewise affine (possibly discontinuous)
functions and IcH is the averaging operator that maps P1(TH) to VH by assigning
to each free vertex the arithmetic mean of the corresponding function values of
the neighbouring cells, that is, for any v ∈ P1(TH) and any free vertex z of TH ,

(IcH(v))(z) =
∑

T∈TH
with z∈T

v|T (z)

/
card{K ∈ TH : z ∈ K}.

This choice of IH is employed in our numerical experiments.

2.3 Discrete stochastic setting

In this subsection we briefly describe one possible discrete stochastic setting
where the uncertainty is encoded by a triangulation Tε. Although it is not the
most general coefficient that can be treated with the methods described below,
it appears as a natural model situation in a multiscale setting and will therefore
be utilized in the numerical experiments from Section 5.

We assume that the triangulation Tε describing the multiscale structure of
A is a uniform refinement of the triangulation TH on the observation scale. Let
Tε denote a uniform triangulation. The probability space reads

Ω =
∏

T∈Tε

[α, β] = [α, β]cardTε .

Each ω = (ωT )T∈Tε ∈ Ω can be identified with a scalar Tε-piecewise constant
function ιω over D with ιω|T = ωT for any T ∈ Tε. The scalar random diffusion
coefficient A = Aε is a random variable A ∈ L2(Ω;M(D,α, β)). The values are
piecewise constant in space, that is

A(•, ω) = ιω ∈ P0(Tε) for any ω ∈ Ω.

Of course, similar settings are possible for tensor-valued diffusion coefficients.

3 Upscaling method

This section describes the proposed upscaling methods.
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3.1 Upscaling with a quasi-local effective model

This subsection describes the computation of a quasi-local effective coefficient.
The underlying model does not correspond to a PDE but rather to a discrete
integral operator on finite element spaces. The method is very flexible in that it
is not restricted to (quasi-)periodic situations and is able to include boundary
conditions.

The upscaling procedure presented here is based on the multiscale approach
of [MP14, HP13]. For the deterministic case, it was shown in [GP16] that a
variant of those methods corresponds to a finite element system with a quasilocal
discrete integral operator. Its construction for the stochastic setting is described
in the following.

Let W := ker IH ⊆ V denote the kernel of IH . The space W is referred
to as fine-scale space. For any element T ∈ TH define the extended element
patch DT := N`(T ) of order `. The nonnegative integer ` is referred to as the
oversampling parameter. As a crucial parameter in the design of the multiscale
method, it is inherent to all quantities in the upscaled model. The parameter
will always be chosen ` ≈ |logH|. For better readability we will suppress the
explicit dependence on ` whenever there is no risk of confusion, but stress the
fact that quantities like qT,j C, AH , etc. defined below should be understood as

q
(`)
T,j C(`), A

(`)
H .

Let WDT
⊆ W denote the space of functions from W that vanish outside

DT . For any T ∈ TH , any j ∈ {1, . . . , d}, and any vH ∈ VH , the function
qT,j ∈ L2(Ω;WDT

) solves∫
DT

∇w · (A∇qT,j) dx =

∫
T

∇w · (Aej) dx for all w ∈WDT
. (3.1)

Here ej (j = 1, . . . , d) is the jth Cartesian unit vector. The functions qT,j

are called element correctors. We emphasize that the element correctors qT,j

are WDT
-valued random variables. Given vH ∈ VH , we define the corrector

CvH ∈ L2(Ω;W ) by

CvH =
∑

T∈TH

d∑
j=1

(∂jvH |T )qT,j . (3.2)

Again, the operator C depends on the uncertainty parameter ω. Define the
piecewise constant matrix field AH ∈ L2(Ω;P0(TH × TH ;Rd×d)) over TH × TH ,
for T,K ∈ TH by

(AH |T,K)jk :=
1

|T | |K|

(
δT,K

∫
T

Ajk dx− ek ·
∫
K

A∇qT,j dx

)
(3.3)

(j, k = 1, . . . , d) where δ is the Kronecker symbol. The bilinear form a : V ×V →
L2(Ω;R) is given by

a(vH , zH) :=

∫
D

∫
D

∇vH(x) · (AH(x, y)∇zH(y)) dy dx for any vH , zH ∈ VH .

As pointed out in [GP16], there holds for all finite element functions vH , zH ∈ VH
that ∫

D

∇vH · (A∇(1− C)zH) dx = a(vH , zH). (3.4)
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Remark 2. The nonlocal operator AH is sparse in the sense that AH |T,K

equals zero whenever dist(T,K) & `H for T,K ∈ TH . It is therefore referred to
as quasilocal.

Remark 3. The left-hand side of (3.4) corresponds to a Petrov-Galerkin method
with finite element trial functions and modified test functions. Such multiscale
basis functions were proposed in [MP14]. For averaging procedures over the
stochastic variable, it will turn out that the representation from the right-hand
side of (3.4) is preferable. In other words, we average the nonlocal integral
kernel rather than multiscale basis functions. Therefore we employ the vari-
ant from [GP16] where in the discretization the right-hand side of the PDE is
only tested with standard finite element functions, while in the original method
[MP14] the right hand side was tested with multiscale test functions. Those
would be random variables in our case.

If the oversampling parameter ` is chosen in the order of magnitude O(|logH|),
it can be shown (see e.g., [GP16, proof of Prop. 6]) that the bilinear form a is
coercive and continuous

‖∇vH‖L2(D) . a(vH , vH) . ‖∇vH‖L2(D) for all vH ∈ VH (3.5)

for any ω ∈ Ω. Hence, there exists a unique solution uH ∈ L2(Ω;VH) to

a(uH , vH) = (f, vH)L2(D) for all vH ∈ VH . (3.6)

Is is known that the method of [MP14] produces quasi-optimal results for
every fixed ω. More precisely, for the variant considered here, [GP16, Prop. 1]
states

‖u(ω)− uH(ω)‖L2(D) . (H2 + wcba(A(ω),TH))‖f‖L2(D). (3.7)

The term wcba(A(ω),TH)) denotes the worst-case best-approximation error

wcba(A(ω),TH) := sup
g∈L2(D)\{0}

inf
vH∈VH

‖u(g,A(ω))− vH‖L2(D)

‖g‖L2(D)
(3.8)

where for g ∈ L2(D), u(g,A(ω)) ∈ V solves the deterministic model problem
with diffusion coefficient A(ω) and right-hand side g. In particular, the right-
hand side of (3.7) is always controlled by H‖f‖L2(D).

The approximation by a deterministic model is based on the averaged inte-
gral kernel ĀH := E[AH ]. In view of (3.3), the values of the piecewise constant
integral kernel ĀH on two simplices T,K ∈ TH are given by

(ĀH |T,K)jk =
1

|T | |K|

(
δT,K

∫
T

E[Ajk] dx− ek ·
∫
K

E[A∇qT,j ] dx

)
. (3.9)

The corresponding bilinear form ā(·, ·) given by

ā(vH , zH) :=

∫
D

∫
D

∇vH(x) · (ĀH(x, y)∇zH(y)) dy dx for any vH , zH ∈ VH .

The discrete solution uH ∈ VH to the quasilocal deterministic model is given by

ā(uH , vH) = (f, vH)L2(D) for all vH ∈ VH . (3.10)
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Remark 4. In practice, the stochastic averages in (3.9) are approximated
through sampling procedures. This is indeed feasible because for some T ∈ TH

and ω ∈ Ω, the computation of AH |T,K(ω) for any K ∈ TH corresponds to the
solution of problem (3.1), which is posed on the quasilocal neighbourhood DT

of T .

3.2 Compression to a local deterministic coefficient

Given the quasilocal upscaled coefficient, one may ask whether there exists a
suitable approximation by a PDE model. In order to provide a fully local
model, a further compression step is introduced [GP16]. The nonlocal bilinear
form a(·, ·) is approximated by a quadrature-like procedure as follows. Define
the piecewise constant coefficient

AH ∈ L2(Ω;P0(TH ;Rd×d)) by AH |T :=
∑

K∈TH

|K|AH |T,K .

For fixed ω ∈ Ω, the tensor field AH(ω) is the local effective diffusion coefficient
of [GP16] on the mesh TH . In particular, AH still depends on x and ω. We
define the deterministic diffusion tensor by

ĀH := E[AH ].

By linearity of the expectation operator, ĀH is equivalently obtained by com-
pressing the averaged operator ĀH .

It is not guaranteed a priori that ĀH is uniformly positive definite. In what
follows we therefore assume that ĀH ∈ M(D,α/2, 2β). This condition can be
checked a posteriori. We denote by ũH ∈ VH the solution to the following finite
element system∫

D

∇ũH · (ĀH∇vH) dx = (f, vH)L2(D) for all vH ∈ VH . (3.11)

This effective equation is the discretization of a PDE. As described in Sub-
section 4.2, the coefficient ĀH can be regularized to some Āreg

H that leads to
comparable accuracy.

4 Error analysis

This section provides L2 error estimates for the upscaling schemes. The esti-
mates combine a priori and a posteriori terms. The measure for quantifying the
error is the L2(Ω;L2(D)) norm, denoted by

|||v||| :=
√

E[‖v‖2L2(D)].

We will also provide error estimates for the L2 norm of the expected error.

4.1 Error estimate for the quasilocal method

Definition 5 (model error estimator). For any T ∈ TH , denote

X(T ) := max
K∈TH

K∩N`(T )6=∅

|T |
∣∣∣AH |T,K − ĀH |T,K

∣∣∣.
8
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The model error estimator γ is defined by

γ := max
T∈TH

(√
E[X(T )2]

)/(
max
T∈TH

max
K∈TH

E[
∣∣ĀH |T,K

∣∣]).
Remark 6 (normalization of γ). Throughout the analysis of this paper, the
constants hidden in the notation . may involve the contrast. We propose the
scaling of γ as in Definition 5.

The random variable X measures local fluctuations of AH . Its expectation
determines the model error estimator γ that is part of the upper bound in the
subsequent error estimate. It is a term to be computed a posteriori.

Remark 7. Note that we have not assumed any particular structure of the coef-
ficient A. Information on the validity of the discrete model is instead extracted
from the a posteriori model error estimator γ. It is expected that small values of
γ require a certain scale separation in the stochastic variable in the sense of the
CLT scaling. If, for example, A is i.i.d. over Tε (with Tε from Subsection 2.3),
then the value of γ is basically determined by the ratio (H/ε)d/2.

Lemma 8. Let ` ≈ |logH|. Let uH solve (3.6) and let uH solve (3.10) with
right-hand side f ∈ L2(D). Then, for ρ := |logH|,

|||∇(uH − uH)||| . ρdγ‖f‖L2(D)

for the model error estimator γ from Definition 5.

Proof. Denote eH := uH − uH . The coercivity (3.5) of the multiscale bilinear
form for any atom ω ∈ Ω and the representation as integral operator reveal

‖∇eH‖2L2(D) . a(eH , eH) =

∫
D

∫
D

∇(uH(x)− uH(x)) · (AH(x, y)∇eH(y)) dy dx.

Abbreviate E|T,K := ĀH |T,K − AH |T,K . Adding and subtracting ĀH(x, y) to-
gether with the discrete solution properties of uH and uH lead to

‖∇eH‖2L2(D) .
∫
D

∫
D

∇uH(x) · (ĀH(x, y)− (AH(x, y))∇eH(y)) dy dx

=
∑

T∈TH

∑
K∈TH

K∩N`(T )6=∅

|T ||K| ∇uH |T · (E|T,K∇eH |K)

where it was used that ∇uH and ∇eH are piecewise constant. For any fixed
T ∈ TH , the shape regularity of the mesh and equivalence of norms in the
finite-dimensional space RN with N = O(`d) lead to∑

K∈TH

K∩N`(T )6=∅

|T ||K| ∇uH |T · (E|T,K∇eH |K)

. X(T )|T |1/2|∇uH |T |
∑

K∈TH

K∩N`(T ) 6=∅

|K|1/2|∇eH |K |

. `d/2X(T )‖∇uH‖L2(T )‖∇eH‖L2(N`(T )).

9



Numerical stochastic homogenization

The combination of the foregoing two displayed estimates with the Cauchy in-
equality and the finite overlap of the patch domains N`(T ) containing O(`d)
elements therefore proves

‖∇eH‖2L2(D) . `d
√ ∑

T∈TH

X(T )2‖∇uH‖2L2(T )‖∇eH‖L2(D).

After dividing by ‖∇eH‖L2(D), taking squares and the expectation, we arrive
at

|||∇eH |||2 . `2dE

[ ∑
T∈TH

X(T )2‖∇uH‖2L2(T )

]
.

This and the stability of the discrete problem for uH prove

|||∇eH |||2 . `2d max
T∈TH

(
E[X(T )2]

)
‖f‖2L2(D) . `2dγ2‖f‖2L2(D).

This concludes the proof.

Proposition 9 (error estimate for the quasilocal method). Let ` ≈ |logH|. Let
u solve (2.3) and let uH solve (3.10) with right-hand side f ∈ L2(D). Then, for
ρ := |logH|,

|||u− uH ||| . (H2 + E[wcba(A,TH)] + ρdγ)‖f‖L2(D)

. (H + ρdγ)‖f‖L2(D)

(4.1)

for the model error estimator γ from Definition 5. Furthermore, the following
higher-order error estimate holds for the norm of the expected error

‖E[u]− uH‖L2(D) . (H2 + E[wcba(A,TH)] + ρ2dγ2)‖f‖L2(D). (4.2)

Proof. Recall that uH denotes the solution to (3.6). We depart from the triangle
inequality

|||u− uH ||| ≤ |||u− uH |||+ |||uH − uH |||. (4.3)

The first term on the right-hand side of (4.3) is bounded with the estimate (3.7)

|||u− uH ||| . (H2 + E[wcba(A,TH)])‖f‖L2(D). (4.4)

The second term on the right-hand side of (4.3) is controlled through Friedrichs’
inequality and Lemma 8, so that we obtain the first stated estimate of (4.1).
The second follows from the observation that wcba(A,TH) . H.

For the proof of (4.2), we employ a duality argument. Denote eH := uH−uH
and let zH ∈ L2(Ω;V ) solve

a(vH , zH) = (E[eH ], vH)L2(D) for all vH ∈ VH P-a.s. (4.5)

Let zH ∈ VH denote the solution to

ā(vH , zH) = (E[eH ], vH)L2(D) for all vH ∈ VH . (4.6)

Then, (4.5) implies

‖E[eH ]‖2L2(D) = E[(E[eH ], eH)L2(D)] = E[a(uH − uH , zH)].

10
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Furthermore, (3.6), the definition of ā and (3.10) lead to the Galerkin orthogo-
nality

E[a(uH−uH , zH)] = (f, zH)L2(D)−E[a(uH , zH)] = (f, zH)L2(D)−ā(uH , zH) = 0.

Thus,

‖E[eH ]‖2L2(D) = E[a(uH − uH , zH − zH)] . |||∇(uH − uH)||| |||∇(zH − zH)|||.

Each of the terms on the right-hand side can be bounded with the help of
Lemma 8 because (4.5) and (4.6) correspond to (3.6) and (3.10) where the
right-hand side f is replaced by E[eH ]. Therefore,

‖E[eH ]‖2L2(D) . ρ2dγ2‖f‖L2(D)‖E[eH ]‖L2(D).

This proves ‖E[eH ]‖L2(D) . ρ2dγ2‖f‖L2(D). In order to conclude the proof of
(4.2), we use the triangle inequality

‖E[u]− uH‖L2(D) ≤ ‖E[u− uH ]‖L2(D) + ‖E[eH ]‖L2(D)

and observe that Jensen’s inequality implies ‖E[u − uH ]‖L2(D) ≤ |||u − uH |||.
Altogether

‖E[u]− uH‖L2(D) . |||u− uH |||+ ρ2dγ2‖f‖L2(D)

and the combination with (4.4) implies (4.2).

4.2 Error estimate for the fully local method

While the quasilocal method admits an error estimate under mild regularity
assumptions on the solution, the error estimate for the fully local method is
restricted to the planar case and provides sublinear rates depending on the
W s,q regularity of the solution to the deterministic model problem with some
regularized coefficient. More precisely, it was shown in [GP16, Lemma 7] that,
given ĀH , there exists a regularized coefficient Āreg

H ∈W 1,∞(D;Rd×d) such that
1) The piecewise integral mean is conserved, i.e.,∫

T

Āreg
H dx =

∫
T

ĀH dx for all T ∈ TH .

2) The eigenvalues of sym(Āreg
H ) lie in the interval [α/4, 4β]. 3) The derivative

satisfies the bound
‖∇Āreg

H ‖L∞(D) ≤ Cη(ĀH)

for some constant C that depends on the shape-regularity of TH and for the
expression

η(ĀH) := H−1‖[ĀH ]‖L∞(FH)

(
1 + α−1‖[ĀH ]‖L∞(FH)

)/(
(α+ β)/2

)
. (4.7)

Here [·] defines the inter-element jump and FH denotes the set of interior hyper-
faces of TH . The coefficients ĀH and Āreg

H lead to the same finite element
solution. Let ureg ∈ V denote the solution∫

Ω

∇ureg · (Āreg
H ∇v) dx = F (v) for all v ∈ V. (4.8)

11
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In particular, the integral conservation property for Āreg
H stated above implies

that ũH is the finite element approximation to ureg . The solution ureg with
respect to the regularized coefficient Āreg

H serves to quantify smoothness in terms
of elliptic regularity.

Proposition 10 (error estimate for the fully local method). Let d = 2 and
assume that 1 ≤ p ≤ 2 and such that for all interior angles ω of the domain D
the number 2ω/(pπ) is not an integer, and let q ∈ [2,∞) such that 1/p+1/q = 1.
Assume that the solution ureg to (4.8) belongs to W 1+s,q(D) for some 0 < s ≤ 1.
Then, for f ∈ Lq(D) and ρ := |logH|,

|||u− ũH |||
. H‖f‖L2(D) + ρdγ‖f‖L2(D)

+H−d(p−1)/pρd
(
Hs + (Hρ)(d+sq)/q

) (
1 + η(Ā

(`)
H )
)2s‖f‖Lq(D)

for γ from Definition 5.

Proof. The triangle inequality reads

|||u− ũH ||| ≤ |||u− uH |||+ ‖uH − ũH‖L2(D).

The first term is estimated via Proposition 9 and the observation that the term
E[wcba(A,TH)] is bounded by some constant times H. It remains to estimate
the second, purely deterministic term. The difference of uH and ũH was already
estimated in [GP16, Proposition 8] as

‖∇(uH − ũH)‖L2(D) .

H−d(p−1)/p|logH|d
(
Hs + (H|logH|)(d+sq)/q

) (
1 + η(Ā

(`)
H )
)2s‖f‖Lq(D).

This concludes the proof.

Remark 11. The restrictive assumptions in Proposition 10 are due to the ar-
guments employed in the analysis of [GP16]. The result is restricted to planar
domains because the proof involves the Sobolev embedding theorem. Conver-
gence rates close to Hs are achieved if ureg ∈W 1+s,q(D) for large q. Note that
the constant hidden in the notation . may depend on q. The constant in front

of the rate involves the a posteriori term η(Ā
(`)
H ).

5 Numerical illustration

We consider the planar square domain D = (0, 1)2 with homogeneous Dirichlet
boundary and the right-hand side f ≡ 1. The finite element meshes are uniform
red refinements of the triangulation displayed in Figure 1. We adopt the setting
of Subsection 2.3 and the mesh Tε has mesh-size ε = {2−5, 2−6, 2−7}

√
2. The

coefficient is scalar i.i.d. and, on each cell of Tε, it is uniformly distributed in
the interval [α, β] = [1, 10]. The fine-scale mesh for the solution of the corrector
problems and the reference solution uh has mesh-size h = 2−9

√
2. All expected

values are replaced with suitable empirical means.
Figure 2 displays the relative errors |||u−uH ||| and |||u−ũH ||| for the solution

uH ∈ VH to the quasilocal effective model (3.10) and the solution ũH ∈ VH to the

12
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Figure 1: Initial mesh of size H = 2−2
√

2.

local effective model (3.11) in the L2-L2 norm |||·|||. The two approximations are
compared on a sequence of meshes with mesh size H = {2−2, 2−3, 2−4, 2−5}

√
2.

We consider only errors with respect to the reference solution uh. It is observed
that the quasilocal method always leads to a smaller error than the local method.
For coarse meshes we observe a convergence rate between H and H2. For fine
meshes with H &

√
ε, the approximation by the quasilocal method does not

improve with respect to the previous mesh. Our interpretation is that the
stochastic error dominates in this regime.

Figure 3 displays the relative errors ‖E[u]h−uH‖L2(D) and ‖E[u]h−ũH‖L2(D).
On coarse meshes, the convergence rate H2 can be observed. Again, for fine
meshes with H &

√
ε, no improvement is achieved through mesh-refinement. In

terms of the error estimate of Proposition 9 this means, that the term γ (resp.
γ2) on the right-hand side is larger than the error that would be possible in a
deterministic setting. For ε = 2−7

√
2, the values of the model error estimators

γ and Hη are displayed in Figure 4. The value of γ was rescaled as suggested
in Remark 6. It is observed that their values increase for smaller values of H.
Altogether, we observe that the methods perform well up to the critical regime
H ≈

√
ε in this two-dimensional example. This is what one would expect from

the central limit theorem because, in the planar case, each coarse cell covers
O((H/ε)2) many cells in Tε.

6 Conclusive comments

The proposed numerical homogenization procedure approximates the stochastic
coefficient by the expectation of a quasilocal effective model. The design of
intermediate stochastic models that carry more information on the stochastic
dependence than a purely deterministic coefficient will be considered in future
work. The presented error estimates are independent on any assumptions on
the uncertainty and contain an a posteriori model error estimator γ. In the case
that more structure on the coefficient is given, we expect that an a priori error
estimate for γ in terms of H and ε can be derived.
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