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FUNCTION OF INFINITELY MANY VARIABLES CAN HAVE

EVERY TERM SMOOTH

MICHAEL GRIEBEL, FRANCES Y. KUO, AND IAN H. SLOAN

Abstract. The pricing problem for a continuous path-dependent option re-
sults in a path integral which can be recast into an infinite-dimensional inte-

gration problem. We study ANOVA decomposition of a function of infinitely

many variables arising from the Brownian bridge formulation of the contin-
uous option pricing problem. We show that all resulting ANOVA terms can

be smooth in this infinite-dimensional case, despite the non-smoothness of the

underlying payoff function. This result may explain why quasi-Monte Carlo
methods or sparse grid quadrature techniques work for such option pricing

problems.

1. Introduction

In this paper we are concerned with the smoothness of the terms in the ANOVA
decomposition of the integrand for a continuous (and hence infinite-dimensional)
problem motivated by option pricing. Option pricing problems have presented a
particular challenge to modern cubature methods for high-dimensional integration
(we think especially of quasi-Monte Carlo [10] and Smolyak or sparse grid [5] meth-
ods) because of the simple fact that Asian call options, for example, are considered
to be worthless if the average asset value falls below a predetermined strike price
K. For this reason the integrand in the expected value of the payoff then takes the
form

max (average value−K, 0) .

The max function introduces a kink into the integrand, and precludes it from be-
longing to any of the mixed derivative function spaces for which the cubature theo-
ries are built. Yet empirical evidence suggests that the max function is not a barrier
to the practical success of the methods.

This paper attempts to throw light on the apparent success of high-dimensional
cubature methods in the particular case of the Brownian bridge (or more precisely,
Lévy-Ciesielski) construction, by showing, in the infinite-dimensional setting, that
while the integrand might not be smooth, every term in its ANOVA decomposition
is smooth. This expansion is in the classical sense where the terms are obtained by
integration rather than by “anchoring”. ANOVA decomposition in other infinite-
dimensional settings have previously been considered in [2, 9, 15].

The paper builds on our previous results [12, 13] for the discrete-time option
pricing problem. In the second of those papers we showed that all terms in the
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2 MICHAEL GRIEBEL, FRANCES Y. KUO, AND IAN H. SLOAN

(finite) ANOVA decomposition of the integrand for the option pricing problem, for
both the Brownian bridge and standard constructions (see below) are smooth except
for the very last one, the one that depends simultaneously on all the integration
variables.1

That result led us to speculate that for the corresponding infinite-dimensional
problem there are no non-smooth ANOVA terms. We shall show in this paper
that the speculation is, in a certain precise sense, true. The smoothness result for
the ANOVA decomposition of a function of infinitely many variables in this paper
opens a possible path to the error analysis of cubature methods for the finite-
dimensional discrete-time option pricing problem. The idea is that the analysis
might be applied not to the discrete problem itself, but rather to a truncated sum
of the ANOVA decomposition of the option pricing integrand of infinitely many
variables. This truncated sum is smooth, unlike the original integrand; yet we
prove in this paper, see Corollary 5.5, that the expected value of the difference
converges to zero as the dimensionality goes to infinity, or equivalently, as the time
interval of the discretization goes to zero. The next step, not covered here, would
be to quantify the rate of convergence to zero.

The outline of the paper is as follows. In Section 2 we introduce the option pricing
problem, in both its continuous and discrete versions. In Section 3 we review the
ANOVA decomposition in the finite-dimensional setting and summarize the results
from [13]. In Section 4 we establish the theory for the integration problem over the
sequence space. In Section 5 we develop an ANOVA decomposition for a function of
infinitely many variables. In Section 6 we prove that all ANOVA terms are smooth
under conditions that apply in particular to our Brownian bridge formulation of
the finance problem.

2. The option pricing problem

In this paper we consider a continuous version of a path-dependent call option
with strike price K in a Black-Scholes model with risk-free interest rate r > 0 and
constant volatility σ > 0. The price S(t) at time t then satisfies the stochastic
differential equation

(2.1) dS(t) = S(t) (r dt+ σ dB(t)) ,

where B(t) = B(t, ω) denotes standard Brownian motion on some probability space
(Ω,F , P ), that is, for each t ∈ [0, 1], B(t, ·) is a zero-mean Gaussian random vari-
able, and for each pair t, s ∈ [0, 1] the covariance of B(t, ·) and B(s, ·) is

(2.2) E[B(t, ·)B(s, ·)] = min(t, s).

The solution to (2.1) is given explicitly by

S(t) = S(0) exp

((
r − σ2

2

)
t+ σB(t)

)
, 0 ≤ t ≤ T.

1Note that in [13] the main result, Theorem 3.1, though correct, does not as claimed apply to

the Asian option pricing problem because assumption (3.3) in the theorem is not satisfied by the
Asian option pricing problem. A strengthened theorem is given in [14], without this assumption,

as a result of which the conclusions of [13] stand.
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The discounted payoff (taking for definiteness the case of a continuous arithmetic
Asian option with terminal time T ) is

(2.3) P := e−rT max

(
1

T

∫ T

0

S(t) dt−K, 0

)
.

The pricing problem is then to compute the expected value E(P), which in this
setting is an (infinite-dimensional) path integral, see Section 4.

It is instructive to consider first the finite-dimensional problem, in which the
time interval T is divided into intervals of size T/d, and the integral in (2.3) is
replaced by a finite sum,

Pd := e−rT max

(
1

d

d∑
i=1

S(ti)−K, 0

)
,

where ti = iT/d. The expected value of the discounted payoff Pd is then a d–
dimensional Gaussian integral

E(Pd) = e−rT
∫
Rd

max

(
S(0)

d

d∑
i=1

exp

((
r − σ2

2

)
ti + σyi

)
−K, 0

)
(2.4)

×
exp(− 1

2y
TΣ−1d y)√

(2π)d det(Σd)
dy,

where Σd ∈ Rd × Rd is the covariance matrix for the Brownian motion, with the
(i, j)-th entry given by min(ti, tj). Using a factorization

Σd = AdA
T
d,

followed by the substitution y = Adx, the integral (2.4) then reduces to

E(Pd) = e−rT
∫
Rd

max

S(0)

d

d∑
i=1

exp

(r − σ2

2

)
ti + σ

d∑
j=1

Ad,i,jxj

−K, 0


(2.5)

×
exp(− 1

2x
Tx)√

(2π)d
dx.

As is well known, see for example [11], different factorizations of Σd correspond
to different methods of construction of the Brownian motion, the most common
trio being the standard construction, the Brownian bridge construction [6], and
the principal components construction [1]. (There are other methods including the
so-called linear transformation [16].) The standard construction of the Brownian
motion corresponds to the Cholesky factorisation, with Ad lower-triangular, and all
non-zero values equal to

√
T/d. The principal components construction has

Ad = [
√
λ1 ξ1; · · · ;

√
λd ξd],

where λ1, . . . , λd are the eigenvalues of Σd in non-increasing order and ξ1, . . . , ξd
are the corresponding column eigenvectors, normalised to be of unit length in the
`2 sense.

Assuming that d = 2N , the Brownian bridge construction generates the Brow-
nian motion y = (b(Td ), b( 2T

d ), . . . , b(T ))T in the order of T, T/2, T/4, 3T/4, . . . as
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follows

b(0) = 0,

b(T ) =
√
T x1,

b(T2 ) = 1
2 (b(0) + b(T )) +

√
T
4 x2,

b(T4 ) = 1
2 (b(0) + b(T2 )) +

√
T
8 x3,(2.6)

b( 3T
4 ) = 1

2 (b(T2 ) + b(T )) +
√

T
8 x4,

...

b( (d−1)T
d ) = 1

2 (b( (d−2)T
d ) + b(T )) +

√
T
2d xd.

This yields a different matrix Ad in the substitution Adx = y.

3. Smoothness of finite ANOVA decompositions

Let L2(Rd) = L2,ρ(Rd) be the class of square-integrable functions f : Rd → R
with respect to the Gaussian weight

(3.1) ρd(x) =

d∏
j=1

ρ(xj), ρ(x) =
exp(− 1

2x
2)

√
2π

.

For a function f ∈ L2(Rd), the ANOVA decomposition takes the form (see e.g.,
[18, 20, 21])

(3.2) f =
∑

u⊆{1:d}

fu,

where the sum is over all subsets of {1 : d} := {1, 2, . . . , d}, and where fu(x)
depends only on xu = (xj)j∈u; we write for convenience

fu(x) = fu(xu), u ⊆ {1 : d}.
Moreover, each component fu with u 6= ∅ has the property that∫ ∞

−∞
fu(x)ρ(xj) dxj = 0 for j ∈ u,

which with (3.2) implies ∫
Rd

f(x)ρd(x) dx = f∅,

and is also easily seen to imply the L2(Rd)-orthogonality of the terms in (3.2),∫
Rd

fu(x)fv(x) ρd(x) dx = 0 if u 6= v, u, v ⊆ {1 : d}.

This in turn ensures that

σ2(f) =
∑

u⊆{1:d}

σ2(fu),

where

σ2(f) :=

∫
Rd

f2(x) ρd(x) dx−
(∫

Rd

f(x) ρd(x) dx

)2

,
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and

σ2(f∅) = 0 and σ2(fu) =

∫
Rd

f2u (x) ρd(x) dx for u 6= ∅.

The terms fu in the ANOVA decomposition are in a sense obtained by integrating
out from f the variables xj for j /∈ u. More precisely, following [13] we define Pj to
be the projection obtained by integrating out the jth variable,

(Pjf)(x) =

∫ ∞
−∞

f(x1, . . . , xj−1, tj , xj+1, . . . , xd) ρ(tj) dtj ,

and then defining the operator product

Pu =
∏
j∈u

Pj , u ⊆ {1 : d}.

Then it is known that fu is given recursively by

fu = P{1:d}\uf −
∑
v(u

fv, f∅ = P{1:d}f,

and that (see [18]) fu is given explicitly by

(3.3) fu =
∑
v⊆u

(−1)|u|−|v|P{1:d}\vf.

It is the integrating out of the inactive variables (those with labels not in u)
that has the smoothing effect. The essence of the matter is that for a function of
the form f(x) = max(φ(x), 0) with φ a smooth function on Rd and having suitable
behavior at infinity, Pjf is a smooth function provided the partial derivative ∂φ/∂xj
does not change sign; see in particular [13, Theorem 3.1] and the more general [14,
Theorem 1].

For the particular case of option pricing, this property is used to show, in [14],
that for the standard construction and the Brownian bridge construction, all terms
in the ANOVA decomposition are smooth except the last term f{1:d}. That term
f{1:d} does not benefit from any integration, thus this highest term retains all of the
non-smoothness existing in f itself. That led us to speculate that in the infinite-
dimensional case, where there is no highest term, perhaps all terms of the Brownian
bridge construction are smooth.

Later in the paper we shall need, in addition to the finite ANOVA decomposition
(3.2), the so-called “anchored” decomposition: with c ∈ Rd an arbitrarily prescribed
“anchor”, the decomposition is (see [18])

(3.4) f =
∑

u⊆{1:d}

f̃u,

where instead of (3.3) we have

(3.5) f̃u(x) =
∑
v⊆u

(−1)|u|−|v|f(xv, c{1:d}\v),

with (xv, c{1:d}\v) being the d-vector whose jth component is xj if j ∈ v and is cj
if j ∈ {1 : d} \ v. Together (3.4) and (3.5) give the identity

(3.6) f(x) = f(x1, . . . , xd) =
∑

u⊆{1:d}

∑
v⊆u

(−1)|u|−|v|f(xv, c{1:d}\v).
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Unlike the ANOVA case, there is no smoothing property associated with the an-
chored decomposition, because while integration can have a smoothing effect, point
evaluation cannot.

4. The continuous problem

In this section we deal with the continuous version of the problem in Section 2.
This means that instead of the d-dimensional integral we now need to work with
path integrals (see [25]), which are essentially integrals over Banach spaces. For
simplicity, from now on we take T = 1 for the terminating time of the Brownian
motion.

4.1. A path integral formulation. In this subsection our path integrals are in-
tegrals over the different Brownian paths, and the integration domain is the space
C[0, 1] of continuous functions on [0, 1], with the uniform norm ‖ ·‖∞, and equipped
with the Wiener measure µ. More formally, we consider integration with respect to
the measure space (C[0, 1],A, µ) where A is the σ-algebra associated with C[0, 1],
and the Wiener measure µ (see [4, page 34]) is a Gaussian measure. The path
integral is defined for real-valued functions g belonging to the class of measurable
functions with respect to the Wiener measure. Denoting a particular realization of
B(·, ω) by b ∈ C[0, 1], we write the path integral of g as (see [3, Section 15])

(4.1)

∫
C[0,1]

g(b)µ(db).

The covariance (2.2) can then be written as

E[B(t, ·)B(s, ·)] =

∫
C[0,1]

b(t)b(s)µ(db) = min(t, s), t, s ∈ [0, 1].

In our finance applications we need path integrals for which g is non-negative
and satisfies

g(b) ≤ c exp(α‖b‖∞) for some c > 0 and α > 0.

As a concrete example, we have from (2.3), with T = 1,

0 ≤ g(b) := e−r max

(
S(0)

∫ 1

0

exp

((
r − σ2

2

)
t+ σb(t)

)
dt−K, 0

)
(4.2)

≤ e−rS(0) exp

(∣∣∣∣r − σ2

2

∣∣∣∣+ σ‖b‖∞
)
.

Fernique’s theorem [4, Theorem 2.8.5] states that there exists a β > 0 such that∫
C[0,1]

exp(β ‖b‖2∞)µ(db) <∞.

It follows immediately that a function g with merely exponential growth in ‖b‖∞
is integrable.
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4.2. Lévy-Ciesielski construction of Brownian paths. The Lévy-Ciesielski
(or Brownian bridge) construction expresses the Brownian path B(t, ω) in terms of
a Faber-Schauder basis {η0, ηn,i : n ∈ N, i = 1, . . . , 2n−1} of continuous functions
on [0, 1], where η0(t) := t and

(4.3) ηn,i(t) :=


2(n−1)/2

(
t− 2i− 2

2n

)
, t ∈

[
2i− 2

2n
,

2i− 1

2n

]
,

2(n−1)/2
(

2i

2n
− t
)
, t ∈

[
2i− 1

2n
,

2i

2n

]
,

0 otherwise.

For a proof that this is a basis in C[0, 1], see [23, Theorem 2.1(iii)] or [24]. The
Brownian path corresponding to the sample point ω ∈ Ω is in this construction
given by

(4.4) B(t, ω) = X0(ω) η0(t) +

∞∑
n=1

2n−1∑
i=1

Xn,i(ω) ηn,i(t),

where X0 and all the Xn,i, i = 1, . . . , 2n−1, n ∈ N are independent standard normal
random variables.

The Lévy-Ciesielski construction has the important property that it converges
almost surely to a continuous Brownian path. For the following classical theorem see
the original works by [7, 19], and for example [22] for the more general exposition.

Theorem 4.1. The Lévy-Ciesielski expansion (4.4) converges uniformly in t, al-
most surely, to a continuous function, and the limit is a Brownian motion.

For future reference we sketch a proof, following the argument of [8]. For N ∈ N
we define

BN (t, ω) := X0(ω) η0(t) +

N∑
n=1

2n−1∑
i=1

Xn,i(ω) ηn,i(t),

so that BN (t, ω) for each ω is a piecewise-linear function. Note that BN (t, ω) is
equal to B(t, ω) at special values of t: we easily see that

B(0, ω) = BN (0, ω) = 0, B(1, ω) = BN (1, ω) = X0(ω),

and with t = (2`− 1)/2N we have

B

(
2`− 1

2N
, ω

)
= BN

(
2`− 1

2N
, ω

)
, ` = 1, . . . , 2N−1,

because the terms in (4.4) with n > N vanish. The successive values returned
by the usual (discrete) Brownian bridge construction, see (2.6), are the values of
B(t, ω) at the corresponding special t values 0, 1, 12 ,

1
4 ,

3
4 , . . .. Between the values at

which the series has already terminated, BN (t, ω) is a piecewise-linear interpolant.
It is clear that

|BN (t, ω)| ≤ |X0(ω)| +

N∑
n=1

(
max

1≤i≤2n−1
|Xn,i(ω)|

)( 2n−1∑
i=1

ηn,i(t)

)

≤ |X0(ω)| +

N∑
n=1

max
1≤i≤2n−1

|Xn,i(ω)| 2−(n+1)/2,(4.5)
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where in the last step we used the fact that for a given n ≥ 1 the disjoint nature of
the Faber-Schauder functions ensures that at most one value of i contributes to the
sum over i, and also that the ηn,i have the same maximum value 2−(n+1)/2. Thus
if we define

(4.6) Hn(ω) :=

{
|X0(ω)| for n = 0,

max1≤i≤2n−1 |Xn,i(ω)| 2−(n+1)/2 for n ≥ 1,

then we have

|BN (t, ω)| ≤
N∑
n=0

Hn(ω),

in which the right-hand side is independent of t. Now it is known that (see [8, Proof
of Theorem 3]), as a consequence of (4.6) and the Borel-Cantelli lemma, one can
construct a sequence (βn)n≥1 of positive numbers such that

∞∑
n=1

βn <∞, and P (Hn(·) > βn infinitely often) = 0.

Letting Ω be the set of all sample points ω, we may define Ω̃ to be the subset of the
sample points ω for which Hn(ω) > βn for only finitely many values of n. Then Ω̃

is of full Gaussian measure, and for each ω ∈ Ω̃ there exists N(ω) ∈ N such that

Hn(ω) ≤ βn for n > N(ω),

leading for ω ∈ Ω̃ to

|BN (t, ω)| ≤
∞∑
n=1

Hn(ω) ≤
N(ω)∑
n=1

Hn(ω) +

∞∑
n=N(ω)+1

βn < ∞.

Thus almost surely the series BN (t, ω) converges uniformly in t, and hence B(t, ω)
is continuous in t.

That B(t, ω) has the correct covariance structure (2.2) follows (see [7, pp. 406–
407]) from the fact that the value of each Faber-Schauder basis function at t is the
integral from 0 to t of a Haar basis function, where the Haar basis forms a complete
orthonormal set. The last step of the argument uses the Parseval identity.

4.3. The path integral as an integral over a sequence space. The results in
the preceding subsection will allow us to express the path integral in (4.1) as an
integral over a sequence space. We remark that from this point on we will find it
convenient to use generally the language of measure and integration rather than of
probability and expectation.

Recall that the Lévy-Ciesielski expansion (4.4) expresses the Brownian path
B(t, ω) in terms of an infinite sequence X(ω) of independent standard normal ran-
dom variables X0, (Xn,i)n∈N,i=1,...,2n−1 . In the following we will denote a particular
realization of this sequence X by

x =
(
x0, (xn,i)n∈N,i=1,...,2n−1

)
= (x1, x2, . . .) ∈ R∞.

For convenience we will switch between the single-index labeling (x1, x2, . . .) and
the double-index labeling (x0, x1,1, x2,1, x2,2, . . .) as appropriate. Our convention
with indexing is that x1 ≡ x0, and xj ≡ xn,i with j = 2n−1 + i for n ≥ 1 and
1 ≤ i ≤ 2n−1.
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Motivated by the bound (4.5), we define a norm of this sequence x by

(4.7) ‖x‖X := |x0|+
∞∑
n=1

max
1≤i≤2n−1

|xn,i| 2−(n+1)/2,

and we define a corresponding normed space by

X := {x ∈ R∞ : ‖x‖X <∞}.

It is easily seen that X is a Banach space.
Each choice of x ∈ X corresponds to a continuous function b(x) ∈ C[0, 1], defined

by

(4.8) b(x)(t) = b(x, t) := x0 η0(t) +

∞∑
n=1

2n−1∑
i=1

xn,i ηn,i(t), t ∈ [0, 1].

Note that |b(x, t)| ≤ ‖x‖X , implying

(4.9) ‖b(x)‖∞ ≤ ‖x‖X < ∞ for x ∈ X ,

so that (4.8) does indeed define a continuous function.
We define AR∞ to be the σ-algebra generated by products of Borel sets of R, see

[4, p. 372]. On the Banach space X , we now define a product Gaussian measure
(see [4, p. 392 and Example 2.35])

(4.10) ρ(dx) :=

∞⊗
j=1

ρj(dxj),

where

ρj(dxj) := ρ(xj) dxj =
exp(− 1

2x
2
j )√

2π
dxj .

The space X has full Gaussian measure: indeed, the norm ‖X(ω)‖X corresponds
precisely to the sum

∑∞
j=1Hn(ω) in the sketched proof of Theorem 4.1, thus we

have

P (‖X(·)‖X <∞) = P

( ∞∑
j=1

Hn(·) <∞
)

= 1.

We now study integration on the measure space (X ,AR∞ , ρ), and we denote the
integral of a measurable function f by

(4.11)

∫
X
f(x) ρ(dx).

In particular, in connection with the Lévy-Ciesielski construction of the Brown-
ian path, we consider functions f of the special form

(4.12) f(x) := g(b(x)) = g

(
x0η0 +

∞∑
n=1

2n−1∑
i=1

xn,i ηn,i

)
, x ∈ X ,

where g : C[0, 1] → R is non-negative and continuous, and satisfies the conditions
in the following theorem. The theorem ensures that the particular functions g from
our finance problem, see (4.2), are integrable in the measure space (X ,AR∞ , ρ), and
that the integral of f = g(b) is equal to the path integral given by (4.1).
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Theorem 4.2. Let f be given by (4.12), where g : C[0, 1]→ R is non-negative and
continuous, and satisfies

0 ≤ f(x) = g(b(x)) ≤ G(‖x‖X ) for b ∈ C[0, 1],

for some function G : R → R+ which is monotone increasing and having the
property that G(‖ · ‖X ) is integrable in the measure space (X ,AR∞ , ρ). Then f is
integrable in the measure space (X ,AR∞ , ρ), and

(4.13)

∫
X
f(x) ρ(dx) =

∫
C[0,1]

g(b)µ(db).

In the theorem above, the integrability of the measurable function f is ensured
by f being upper-bounded by an integrable function G(‖ · ‖X ). Equation (4.13)
expresses the fact that the integral on the left is merely a concrete representation
of the expected value of g over the Brownian paths on the right. In effect, following
[3, Theorem 37.1], in the representation on the left-hand side we have redefined
the probability space to exclude discontinuous Brownian paths, which occur with
probability zero.

In our finance application we see from (4.2) that g is non-negative and continuous,
and that the upper bound on g in the theorem is satisfied using (4.9) with G given
by

(4.14) G(α) := e−rS(0) exp

(∣∣∣∣r − σ2

2

∣∣∣∣+ σα

)
,

which is monotone increasing, and which by another application of Fernique’s the-
orem G(‖ · ‖X ) is integrable in the measure space (X ,AR∞ , ρ). Thus the conditions
of the theorem are satisfied.

4.4. Approximation by a sequence of finite-dimensional integrals. Given
a function f integrable in the measure space (X ,AR∞ , ρ), we define

(4.15) f [d](x) := f [d](x{1:d}) := f(x{1:d},0{d+1:∞}), x ∈ X .

Then, because f [d] depends only on the components xj of x for which j ∈ {1 : d},
it follows from the definition of the product measure ρ, see (4.10) and (3.1), that

(4.16)

∫
X
f [d](x) ρ(dx) =

∫
Rd

f [d](x{1:d}) ρd(x{1:d}) dx{1:d}.

Note that for f of the form (4.12) and

(4.17) d = 1 +

N∑
n=1

2n−1 = 2N ,

we have

f [d](x) = g

(
x0η0 +

N∑
n=1

2n−1∑
i=1

xn,i ηn,i

)
,

which is just the Brownian bridge approximation to the Brownian path. Thus in
this case the integral (4.16) is the standard Brownian bridge approximation to the
Wiener path integral (4.1). (The integral (4.16) is, however, not exactly the same
as the discrete problem (2.5) in that a rectangle rule is used there to approximate
the inner integral over t.)
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For p ∈ [1,∞), let Lp(X ) denote the class of measurable functions in the measure
space (X ,AR∞ , ρ) with finite norm

(4.18) ‖f‖Lp(X ) :=

(∫
X
|f(x)|p ρ(dx)

)1/p

.

By the Hölder inequality we have ‖f‖L1(X ) ≤ ‖f‖Lp(X ) for p ∈ (1,∞).
In the next theorem we assume continuity of f . Note that continuity is well

defined on the space X with norm (4.7): f is continuous if for each x0 ∈ X
(4.19) ‖x− x0‖X → 0 =⇒ |f(x)− f(x0)| → 0.

The theorem holds for a more general function f than (4.12).

Theorem 4.3. Let f ∈ L1(X ) be continuous and satisfy |f(x)| ≤ G(‖x‖X ) for all
x ∈ X and for some function G : R→ R+ which is monotone increasing and with
the property that G(‖ · ‖X ) ∈ L1(X ). Define f [d](x) for x ∈ X as in (4.15). Then

lim
d→∞

f [d](x) = f(x) for all x ∈ X ,

and

(4.20) lim
d→∞

∫
X
f [d](x) ρ(dx) =

∫
X
f(x) ρ(dx).

Proof. Let N = blog2 dc. Then 2N ≤ d < 2N+1, and from (4.7)

‖x− (x{1:d},0{d+1:∞})‖X ≤
∞∑
n=N

max
1≤i≤2n−1

|xn,i| 2−(n+1)/2

→ 0 as d→∞ for x ∈ X .

Since f is continuous, we conclude that f [d](x) = f(x{1:d},0{d+1:∞}) converges to
f(x) pointwise. Also we have

|f [d](x)| = |f(x{1:d},0{d+1:∞})| ≤ G(‖x{1:d},0{d+1:∞}‖X ) ≤ G(‖x‖X )

which is integrable. The dominated convergence theorem (see [3, Theorem 16.4])
then ensures that (4.20) holds. �

5. ANOVA decomposition of a function of infinitely many variables

In this section we seek to develop an ANOVA decomposition for a function of
the form (4.12), where g : C[0, 1]→ R satisfies the conditions in Theorem 4.2. Note
that x ∈ X has an infinite number of components.

5.1. Defining the projections and the ANOVA terms. As in the finite ANOVA
decomposition in Section 3, the principal tool for ANOVA decomposition is inte-
gration with respect to a restricted subset of the variables. For f ∈ L1(X ) and
u ⊆ N (with u either finite or infinite), we can write the product Gaussian measure
(4.10) as

ρ(dx) = ρu(dxu)⊗ ρN\u(dxN\u),

where ρu(dxu) := ⊗j∈uρj(dxj). Fubini’s theorem [3, Section 18] allows us to in-
terchange the order of integration. We define Puf to be the function obtained by
integrating out all the variables labeled by the indices in u; that is, for x ∈ X ,

(Puf)(x) := (Puf)(xN\u) =

∫
Xu

f(xN\u,yu) ρu(dyu) =

∫
X
f(xN\u,yu) ρ(dy).
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Here yu denotes the restriction of y to the components with indices in the set u,
Xu denotes the corresponding restriction from X , while (xN\u,yu) is the sequence
whose jth component is xj if j /∈ u and is yj if j ∈ u. In particular,

(Pjf)(x) := (P{j}f)(x) =

∫ ∞
−∞

f(xN\{j}, yj) ρ(yj) dyj , j ∈ N,

while Puf = (
∏
j∈u Pj)f for u a finite subset of N, and PNf is precisely the integral

(4.11). It follows from Fubini’s theorem that for any u, v ⊆ N we have PuPv = Pu∪v.

Lemma 5.1. For p ∈ [1,∞), if f ∈ Lp(X ) then Puf ∈ Lp(X ) for all u ⊆ N.

Proof. We note first that for f ∈ Lp(X ) and arbitrary u ⊆ N we can write

‖f‖pLp(X ) =

∫
X
|f(x)|pρ(dx) =

∫
X
|f(x)|p

(
ρu(dxu)⊗ ρN\u(dxN\u)

)
=

∫
X

(∫
X
|f(xN\u,yu)|pρ(dy)

)
ρ(dx),

where the last step follows from Fubini’s theorem. We have

‖Puf‖pLp(X ) =

∫
X

∣∣∣∣∫
X
f(xN\u,yu) ρ(dy)

∣∣∣∣p ρ(dx)

≤
∫
X

(∫
X
|f(xN\u,yu)| ρ(dy)

)p
ρ(dx)

≤
∫
X

(∫
X
|f(xN\u,yu)|p ρ(dy)

)
ρ(dx) = ‖f‖pLp(X ) < ∞,

where the second inequality follows from ‖ · ‖L1(X ) ≤ ‖ · ‖Lp(X ). This completes the
proof. �

For f belonging to the least restrictive space L1(X ) and for u a finite subset of
N, we define the ANOVA term fu by (cf. (3.3))

(5.1) fu :=
∑
v⊆u

(−1)|u|−|v|PN\vf.

From this and Lemma 5.1 we conclude that if f ∈ Lp(X ) then fu ∈ Lp(X ).

Lemma 5.2. Let f ∈ L1(X ) and let u be a non-empty finite subset of N. Then the
ANOVA term fu from (5.1) satisfies

Pjfu = 0 for j ∈ u.

Proof. We have for j ∈ u,

Pjfu =
∑
v⊆u

(−1)|u|−|v|PjPN\vf.

On splitting the terms on the right-hand side into those for which j /∈ v and those
for which j ∈ v (in which case we write v = w ∪ {j}, with j /∈ w), we obtain

Pjfu =
∑
j /∈v⊆u

(−1)|u|−|v|PN\vf +
∑

j /∈w⊆u

(−1)|u|−|w|+1PN\wf = 0,

as required. �
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Lemma 5.3. Let f ∈ L1(X ) and let u be a finite subset of N. Then the ANOVA
terms fv from (5.1) with v ⊆ u satisfy∑

v⊆u

fv = PN\uf, or equivalently, fu = PN\uf −
∑
v(u

fv.

Proof. We have∑
v⊆u

fv(x) =
∑
v⊆u

∑
w⊆v

(−1)|v|−|w|(PN\wf)(x)

=
∑
v⊆u

∑
w⊆v

(−1)|v|−|w|
∫
X
f(xw,yN\w) ρ(dy)

=

∫
X

∑
v⊆u

∑
w⊆v

(−1)|v|−|w|f(xw,yN\w) ρ(dy)

=

∫
X

∑
v⊆u

∑
w⊆v

(−1)|v|−|w|f(xw,yu\w,yN\u) ρ(dy)

=

∫
X
f(xu,yN\u) ρ(dy)

= (PN\uf)(x),

where for the second last equality we used, for a given yN\u, the identity (3.6) with

{1 : d} replaced by u, u replaced by v, v replaced by w, and with anchor c{1:d}
replaced by yu. �

5.2. Infinite sum of the ANOVA terms. To establish the ANOVA decomposi-
tion of a function of infinitely many variables, we need to show that, in a certain
precise sense, f(x) is expressible as an infinite sum of ANOVA terms fu(x).

Theorem 5.4. Let f ∈ L1(X ) be continuous and satisfy |f(x)| ≤ G(‖x‖X ) for
all x ∈ X for some function G : R → R+ which is monotone increasing and with
the property that G(‖ · ‖X + a) ∈ L1(X ) for arbitrary a ∈ R. Then the truncated
sum of the ANOVA terms fu(x) from (5.1) converges pointwise to f(x) for x ∈ X :
precisely,

(5.2) lim
d→∞

∑
u⊆{1:d}

fu(x) = f(x) for all x ∈ X .

Proof. We have from Lemma 5.3, with u replaced by {1 : d} and v replaced by u,
that for all x ∈ X ,

(5.3)
∑

u⊆{1:d}

fu(x) =

∫
X
f(x{1:d},y{d+1:∞}) ρ(dy).

Thus

f(x)−
∑

u⊆{1:d}

fu(x) =

∫
X

(
f(x)− f(x{1:d},y{d+1:∞})

)
ρ(dy).
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Now let N = blog2 dc. Because f is continuous, and because

‖x− (x{1:d},y{d+1:∞})‖X = ‖(0{1:d},x{d+1:∞} − y{d+1:∞})‖X
≤ ‖(0{1:d},x{d+1:∞})‖X + ‖(0{1:d},y{d+1:∞})‖X

≤
∞∑
n=N

(
max

1≤i≤2n−1
|xn,i|+ max

1≤i≤2n−1
|yn,i|

)
2−(n+1)/2

→ 0 as d→∞ for y,x ∈ X ,

it follows that f(x)− f(x{1:d},y{d+1:∞}) converges to 0 pointwise as a function of
y as d→∞. Since we also have

|f(x)− f(x{1:d};y{d+1:∞})| ≤ G(‖x‖X ) +G(‖x‖X + ‖y‖X ),

it follows from the dominated convergence theorem that∫
X

(
f(x)− f(x{1:d};y{d+1:∞})

)
ρ(dy)→ 0 as d→∞.

This completes the proof. �

Note that the f for our finance problem satisfies the condition in the theorem,
with G defined by (4.14).

The integrated form of (5.2) is trivial, since for all d we already have from
Lemma 5.2 that

(5.4)

∫
X

( ∑
u⊆{1:d}

fu(x)

)
ρ(dx) = f∅ =

∫
X
f(x) ρ(dx).

Additionally, from (5.2) we conclude that∣∣∣∣∣ ∑
u⊆{1:d}

fu(x)−
∑

u⊆{1:d−1}

fu(x)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
d∈u⊆{1:d}

fu(x)

∣∣∣∣∣ → 0 as d→∞,

but this does not allow us to conclude that fu(x)→ 0 as |u| → ∞, since the signs
of the terms in the latter sum are uncontrolled.

The following result links the dth partial sum of the ANOVA decomposition of a
function f of infinitely many variables to the finite-dimensional version f [d]. Both
functions depend only on the variables x1, . . . , xd, so we state the result in a form
in which this is apparent. The corollary follows immediately from Theorems 4.3
and 5.4 and Equation (5.4).

Corollary 5.5. Under the conditions in Theorems 4.3 and 5.4, we define f [d] as
in (4.15). Then the truncated sum of the ANOVA decomposition of f satisfies

lim
d→∞

∣∣∣∣∣ ∑
u⊆{1:d}

fu(x{1:d})− f [d](x{1:d})

∣∣∣∣∣ = 0 for all x ∈ X ,

and

lim
d→∞

∣∣∣∣∣
∫
Rd

( ∑
u⊆{1:d}

fu(x{1:d})

)
ρd(x{1:d})dx{1:d}

−
∫
Rd

f [d](x{1:d}) ρd(x{1:d}) dx{1:d}

∣∣∣∣∣ = 0.
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5.3. Analysis of variance. As the name ANOVA (analysis of variance) suggests,
the decomposition even in the finite-dimensional setting has a strong connection
with variance, and so requires an L2 theory. For the next two results we need a
stronger assumption than f ∈ L1(X ), namely, that f ∈ L2(X ), so that the variance

σ2(f) := PN(f − PNf)2 = PN(f2)− (PNf)2

=

∫
X
f2(x) ρ(dx)−

(∫
X
f(x) ρ(dx)

)2

is well defined.

Lemma 5.6. Let f ∈ L2(X ), and assume that u, v ⊆ N with u 6= v. Then

PN(fufv) = 0.

Proof. Since u 6= v, there exists j ∈ N such that either j ∈ u, j /∈ v, or j /∈ u, j ∈ v.
In either case by Lemma 5.2 above we have Pj(fufv) = 0, and hence PN(fufv) =
PN\{j}Pj(fufv) = 0. �

Theorem 5.7. Let f ∈ L2(X ) be continuous and satisfy |f(x)| ≤ G(‖x‖X ) for all
x ∈ X for some function G : R → R+ which is monotone increasing and having
the properties that G(‖ · ‖X + a) ∈ L2(X ) for arbitrary a ∈ R and also that∫

X

∫
X

(G(‖x‖X + ‖y‖X ))2 ρ(dx) ρ(dy) < ∞.

Then the variance of the ANOVA terms of f satisfies

lim
d→∞

∑
u⊆{1:d}

σ2(fu) = σ2(f).

Proof. Clearly f∅ = PNf , σ2(f∅) = 0, and for u a non-empty finite subset of N we
have

σ2(fu) = PN(f2u )− (PNfu)2 = PN(f2u ),

where we used Lemma 5.2. Thus∑
u⊆{1:d}

σ2(fu) =
∑

∅6=u⊆{1:d}

PN(f2u ) = PN

( ∑
∅6=u⊆{1:d}

f2u

)
= PN

( ∑
∅6=u⊆{1:d}

fu

)2

,

where we used Lemma 5.6. From Theorem 5.4 we know that for x ∈ X ,∑
u⊆{1:d}

fu(x) converges to f(x) as d→∞,

which is equivalent to∑
∅6=u⊆{1:d}

fu(x) converges to f(x)− PNf as d→∞,

and in turn this implies that( ∑
∅6=u⊆{1:d}

fu(x)

)2

converges to (f(x)− PNf)
2

as d→∞.
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It remains to prove that the squared sum above is dominated by a suitable
integrable function. We can write as in (5.3) that( ∑

∅6=u⊆{1:d}

fu(x)

)2

=

(∫
X
f(x{1:d},y{d+1:∞}) ρ(dy)− f∅

)2

≤
(∫
X
|f(x{1:d},y{d+1:∞})| ρ(dy) + |f∅|

)2

≤ 2

(∫
X
|f(x{1:d},y{d+1:∞})|2 ρ(dy) +

∫
X
|f(y)|2ρ(dy)

)
≤ 4

∫
X

(G(‖x‖X + ‖y‖X ))2 ρ(dy),

which by assumption is integrable with respect to x. The dominated convergence
theorem then yields

PN

( ∑
∅6=u⊆{1:d}

fu

)2

converges to PN (f − PNf)
2

= σ2(f) as d→∞.

This completes the proof. �

6. Smoothing for functions with kinks

In our finance application, we consider a function f of the form (4.12) with g
given, for example, by (4.2). This motivates us to consider a general function f of
the form

(6.1) f(x) = max(φ(x), 0), x ∈ X ,

with a smooth function φ. In the particular example from (4.2) we have

(6.2) φ(x) := e−r
[
S(0)

∫ 1

0

exp

((
r − σ2

2

)
t+ σ

∞∑
j=1

xj ηj(t)

)
dt−K

]
.

Note that for convenience we here use the single-index labeling for xj and ηj(t),
instead of double-index labeling xn,i and ηn,i(t). For this example, the function f
is continuous but has a kink along the manifold φ(x) = 0. For any j ∈ N we have

∂φ

∂xj
(x) = e−rS(0)

∫ 1

0

σηj(t) exp

((
r − σ2

2

)
t+ σ

∞∑
k=1

xk ηk(t)

)
dt > 0.

Clearly the function φ can be differentiated repeatedly with respect to any variable,
and the derivative will remain nonnegative.

In this section we will establish that all the ANOVA terms fu, |u| < ∞, of f
are smooth. The result holds for all functions φ sharing the same characteristics
as (6.2), and these will be made precise in Theorem 6.5 below. We will follow
the argument from [14] closely, but generalize it to the infinite-dimensional setting.
First we need to define what we mean by smooth in the infinite-dimensional setting,
and for this we need to generalize the definition of weak derivative.
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6.1. The smoothness class Wr
p(X ). For j ∈ N, let Dj denote the partial deriva-

tive operator

(Djf)(x) =
∂f

∂xj
(x) for x ∈ X .

For any multi-index α = (α1, α2, . . .) with each αj ∈ N∪{0} and |α| :=
∑∞
j=1 αj <

∞, we define a(α) := {j : αj > 0} to be the set of active indices, and

(6.3) Dα =
∏

j∈a(α)

D
αj

j =
∏

j∈a(α)

(
∂

∂xj

)αj

=
∂|α|∏

j∈a(α) ∂x
αj

j

,

and we say that the derivative Dαf is of order |α|.
Let C(Rd) = C0(Rd) denote the linear space of continuous functions defined on

Rd. For a nonnegative integer r ≥ 0, we define Cr(Rd) to be the space of func-
tions whose classical derivatives of order ≤ r are all continuous at every point
in Rd, with no limitation on their behavior at infinity. For example, the func-

tion exp(
∑d
j=1 x

2
j ) belongs to Cr(Rd) for all values of r. For convenience we write

C∞(Rd) =
⋂
r≥0 Cr(Rd). We generalize these definitions for any subset of indices

u ⊂ N, to have C∞(Ru) =
⋂
r≥0 Cr(Ru). We also extend these definitions to the

sequence space X (with continuity defined as in (4.19)), to give

C∞(U) :=
⋂
r≥0

Cr(U),

where U = X , or U is a projection of X obtained by removing finitely many vari-
ables.

In addition to classical derivatives, we shall also need a generalization of the
notion of weak derivative.

Definition 6.1. For f ∈ L1(X ) and α a multi-index with finitely many nonzero
entries, i.e., |α| < ∞, we say that w ∈ L1(X ) is a weak derivative of f with
multi-index α, and we denote it by w = Dαf , if it satisfies∫

Ra(α)

w(xa(α),yN\a(α)) v(xa(α)) dxa(α)

= (−1)|α|
∫
Ra(α)

f(xa(α),yN\a(α)) (Dαv)(xa(α)) dxa(α)(6.4)

for all v ∈ C∞0 (Ra(α)) and for almost all y ∈ X , where C∞0 (Ra(α)) denotes the
subset of C∞(Ra(α)) whose members have compact support in Ra(α), and where
the derivatives Dαv on the right-hand side of (6.4) are classical partial derivatives.

The weak derivative is unique, since a function w ∈ L1(X ) that satisfies∫
Ra(α)

w(xa(α),yN\a(α)) v(xa(α)) dxa(α) = 0

for all v ∈ C∞0 (Ra(α)) and for almost all y ∈ X , necessarily vanishes almost every-
where.

It follows easily that DjDk = DkDj for all j, k ∈ N, that is, the ordering of
the weak first derivatives that make up Dα in (6.3) is irrelevant. We stress that
the integrals on both sides of (6.4) are over finitely many variables and there is no
Gaussian weight function.
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For r ≥ 0 and p ∈ [1,∞), we define a class of functions

Wr
p(X ) :=

{
f ∈ L1(X ) : ‖Dαf‖Lp(X ) < ∞ for all |α| ≤ r

}
,

where the Lp(X ) norm is defined in (4.18). For convenience we also write

W0
p (X ) = Lp(X ) and W∞p (X ) =

⋂
r≥0

Wr
p(X ).

6.2. Useful theorems. In this subsection we generalize the three theorems from
[13, Subsection 2.4] to the infinite-dimensional setting. These are needed to obtain
our main result in the next subsection.

Theorem 6.2 (The Leibniz Theorem). Let p ∈ [1,∞). For f ∈ W1
p (X ) we have

DkPjf = PjDkf for all j, k ∈ N with j 6= k.

Proof. The proof follows closely the steps from the proof of [13, Theorem 2.1]. The
differences are due to the new definition of weak derivative. From the definition
(6.4) we need to prove, for all v ∈ C∞0 (R) and all y ∈ X , that
(6.5)

−
∫ ∞
−∞

(Pjf)(xk,yN\{j,k}) (Dkv)(xk) dxk =

∫ ∞
−∞

(PjDkf)(xk,yN\{j,k}) v(xk) dxk.

Since the variables yN\{j,k} are merely passengers in this desired result, we can

simplify the notation by leaving them out temporarily (thereby making it clear
that the infinite-dimensional setting plays here no role). The LHS of (6.5) becomes

−
∫ ∞
−∞

(∫ ∞
−∞

f(yj , xk) ρ(yj) dyj

)
(Dkv)(xk) dxk

=

∫ ∞
−∞

(
−
∫ ∞
−∞

f(yj , xk) (Dkv)(xk) dxk

)
ρ(yj) dyj ,(6.6)

where in the last step we used Fubini’s theorem to interchange the order of inte-
gration. Fubini’s theorem is applicable because the last integral with the integrand
replaced by its absolute value is finite for v ∈ C∞0 (R), being bounded by

sup
x∈supp(v)

|Dkv(x)|
∫ ∞
−∞

(∫
supp(v)

|f(yj , xk)|dxk

)
ρ(yj) dyj .

Now we use again the definition of weak derivative (6.4), this time in the inner
integral of (6.6), followed again by Fubini’s theorem, to obtain

RHS of (6.6) =

∫ ∞
−∞

(∫ ∞
−∞

(Dkf)(yj , xk) v(xk) dxk

)
ρ(yj) dyj

=

∫ ∞
−∞

(∫ ∞
−∞

(Dkf)(yj , xk) ρ(yj) dyj

)
v(xk) dxk

=

∫ ∞
−∞

(PjDkf)(xk) v(xk) dxk,

which is equal to the RHS of (6.5) once the passenger variables are restored. This
proves for j 6= k that DkPjf exists, and is equal to PjDkf . �

Theorem 6.3 (The Inheritance Theorem). Let r ≥ 0 and p ∈ [1,∞). For f ∈
Wr
p(X ) we have

Pjf ∈ Wr
p(X ) for all j ∈ N.
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Proof. The case r = 0 is already established in Lemma 5.1. Consider now r ≥ 1.
Let j ∈ N and let α be any multi-index with |α| ≤ r and αj = 0. We follow the
proof of [13, Theorem 2.2] and write

DαPjf =

( |α|∏
i=1

Dki

)
Pjf =

( |α|∏
i=2

Dki

)
PjDk1f

= · · · = Dk|α|Pj

( |α|−1∏
i=1

Dki

)
f = Pj

( |α|∏
i=1

Dki

)
f = PjD

αf,

where each step involves a single differentiation under the integral sign, and is justi-

fied by the new Leibniz theorem (Theorem 6.2) because (
∏`
i=1Dki)f ∈ W r−`

p (X ) ⊆
W1
p (X ) for all ` ≤ |α| − 1 ≤ r − 1. Note that the ki need not be distinct. It then

follows from Lemma 5.1 that ‖DαPjf‖Lp(X ) = ‖PjDαf‖Lp(X ) <∞. �

The implicit function theorem stated below is crucial for the main results of this
paper. For simplicity, we write

x = (xj ,xN\{j}) = (xj ,x-j)

to separate out the jth component of x in our notation, and we define

X-j := {x-j : (xj ,x-j) ∈ X for some xj ∈ R}.

Theorem 6.4 (The Implicit Function Theorem). Let j ∈ N. Suppose φ ∈ C1(X )
satisfies

(6.7) (Djφ)(x) 6= 0 for all x ∈ X .

Let

(6.8) Uj := interior{x-j ∈ X-j : φ(xj ,x-j) = 0 for some xj ∈ R}.

(The xj in (6.8) if it exists is necessarily unique because of the condition (6.7).)
If Uj is not empty then there exists a unique function ψj ∈ C1(Uj) such that

φ(ψj(x-j),x-j) = 0 for all x-j ∈ Uj ,

and for all k 6= j we have

(Dkψj)(x-j) = − (Dkφ)(x)

(Djφ)(x)

∣∣∣∣
xj =ψj(x-j)

for all x-j ∈ Uj .

If in addition φ ∈ Cr(X ) for some r ≥ 2, then ψj ∈ Cr(Uj).

Proof. The proof is essentially the same as that of [13, Theorem 2.3], but with Rd
replaced by the sequence space X which is a metric space, and with RD\{j} replaced
by X-j . In particular, [17, Theorem 3.2.1] extends to the sequence space X . �

Note that the derivatives in the implicit function theorem are classical deriva-
tives.
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6.3. Main result. We now return to our general function f given by (6.1). For
any k ∈ N, we have the weak derivative

(Dkf)(x) =

{
(Dkφ)(x) if φ(x) > 0,

0 if φ(x) < 0,

noting that the condition (6.7) ensures that the solution set of φ(x) = 0 is of
ρ-measure zero.

If φ ∈ Wr
p(X ) ∩ C∞(X ) for some r ≥ 1 and p ∈ [1,∞), then

‖Dkf‖Lp(X ) =

(∫
X
|(Dkf)(x)|p ρ(dx)

)1/p

=

(∫
x∈X :φ(x)≥0

|(Dkφ)(x)|p ρ(dx)

)1/p

≤ ‖Dkφ‖Lp(X ) < ∞,

and we conclude that f ∈ W1
p (X ) ∩ C(X ). It is clear that in general f /∈ Wr

p(X )
for r > 1 because of the kink from the max function. However, as we prove in
the following theorem, the main result of this paper, we have Pjf ∈ Wr

p(X ) for
arbitrary r ≥ 1 and all j ∈ N, provided that a number of conditions on φ are
satisfied. In addition to the set Uj defined in (6.8), we define

U+
j := {x-j ∈ X-j : φ(xj ,x-j) > 0 for all xj ∈ R},

U−j := {x-j ∈ X-j : φ(xj ,x-j) < 0 for all xj ∈ R}.

Theorem 6.5. Let r ≥ 1, p ∈ [1,∞), and j ∈ N. Let f be given by (6.1), where φ
satisfies the following conditions:

(i) φ ∈ Wr
p(X ) ∩ C∞(X ).

(ii) (Djφ)(x) 6= 0 for all x ∈ X .
(iii) Uj defined in (6.8) is not empty.
(iv) With ψj ∈ C∞(Uj) denoting the unique function such that φ(x) = 0 if and

only if xj = ψj(x-j) for x ∈ X , we assume that every function of the form
G(x-j) =

∏a
i=1[(Dα

(i)

φ)(ψj(x-j),x-j)]

[(Djφ)(ψj(x-j),x-j)]b
ρ(c)(ψj(x-j)), x-j ∈ Uj ,

where a, b, c are integers and α(i) are multi-indices with the constraints

2 ≤ a ≤ 2r − 2, 1 ≤ b ≤ 2r − 3, 0 ≤ c ≤ r − 2, |α(i)| ≤ r − 1,

satisfies both

(6.9) G(x-j)→ 0 as x-j approaches a boundary point of Uj lying in U+
j or U−j ,

and

(6.10)

∫
Uj

|G(x-j)|p ρN\{j}(dx-j) < ∞.

Then

Pjf ∈ Wr
p(X ).

Moreover, if the above conditions hold for all j ∈ N, then Puf ∈ Wr
p(X ) for all

non-empty subsets u ⊆ N, and

fu ∈ Wr
p(X ) for all finite subsets u ⊂ N.
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Proof. The proof for Pjf follows closely that of [14, Theorem 1], but makes use of
the new theorems from the previous subsection. The result for fu then follows from
the new inheritance theorem (Theorem 6.3). �

For the finance application in which φ is given by (6.2) we have verified already
that (Djφ)(x) > 0 for all j ∈ N and all x ∈ X . In our case, φ is essentially a
sum of exponential functions involving only linear combinations of x1, x2, . . . in the
exponents, and therefore (6.9) holds. The derivatives of φ will contain at worst
exponential functions of the same form. Fernique’s theorem then ensures that the
Gaussian expected value (6.10) is finite. Since the result holds for all values of
r and all finite values of p, we conclude that for our Brownian bridge continuous
option pricing problem we have

(6.11) fu ∈ W∞p (X ) for all finite subset u ⊂ N.

7. Concluding remarks

We have shown in (6.11) that all the ANOVA terms of our finance integrand
of infinitely many variables are smooth. Corollary 5.5 indicates that the finite-
dimensional (non-smooth) approximation differs from the smooth truncated sum
of the ANOVA expansion of the continuous problem by a quantity that converges
pointwise to zero. It remains a problem for the future to quantify this rate of
convergence, and the rate of convergence to zero of the corresponding difference of
Gaussian integrals in Corollary 5.5.
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