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NOTE ON “THE SMOOTHING EFFECT OF INTEGRATION

IN Rd AND THE ANOVA DECOMPOSITION”

MICHAEL GRIEBEL, FRANCES Y. KUO, AND IAN H. SLOAN

Abstract. This is a note on [Math. Comp. 82, 383–400 (2013)]. We first

report a mistake, in that the main result Theorem 3.1, though correct, does
not as claimed apply to the Asian option pricing problem. This is because
assumption (3.3) in the theorem is not satisfied by the Asian option pricing

problem. In this note we present a strengthened theorem, which removes that
assumption. The new theorem is immediately applicable to the Asian option
pricing problem with the standard and Brownian bridge constructions. Thus
the option pricing conclusions of our original paper stand.

1. Background

In [3] we studied a d-variate integration problem of the form

Id(f) :=

∫
Rd

f(x) ρd(x) dx,

where ρd is a product of univariate N (0, 1) Gaussian probability densities, and

f(x) := max(ϕ(x), 0),

with ϕ a smooth function of all variables.
The main theorem, Theorem 3.1, states that under certain assumptions the

ANOVA decomposition of f has every term smooth except for the very highest
term, the one that depends on all the variables.

Though the theorem is correct as stated, it does not as claimed apply to the Asian
option pricing problem because one of the assumptions in the theorem, Equation
(3.3), is not satisfied for that problem.

The purpose of this note is first to point out the mistake in the option pricing ap-
plication in [3], and then to present a strengthened form of the main theorem which
does not need assumption (3.3). The new result (Theorem 1) below is immediately
applicable to the Asian option pricing problem in the standard and Brownian bridge
formulations, thus the conclusions of paper [3] stand.
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2 MICHAEL GRIEBEL, FRANCES Y. KUO, AND IAN H. SLOAN

2. The option pricing mistake

In [3, Pages 396–397], we considered integrands arising from the Asian option
pricing problem, which take the form f(x) = ϕ(x)+ := max(ϕ(x), 0), and in par-
ticular, in [3, Equation (4.2)]

(1) ϕ(x) =
S0

d

d∑
ℓ=1

exp

((
µ− σ2

2

)
ℓ∆t+ σ

d∑
i=1

Aℓ,i xi

)
−K.

We claimed erroneously that, in the case of the standard and Brownian bridge
constructions, we have for each j and each fixed xD\{j}, where D = {1, 2, . . . , d},
that

ϕ(x) = ϕ(xj ,xD\{j}) →

{
+∞ as xj → +∞,

−K as xj → −∞.

The correct observation is that

(2) ϕ(x) = ϕ(xj ,xD\{j}) →

{
+∞ as xj → +∞,

Bj(xD\{j}) as xj → −∞,

where

(3) Bj(xD\{j}) :=
S0

d

d∑
ℓ=1

Aℓ,j=0

exp

((
µ− σ2

2

)
ℓ∆t+ σ

d∑
i=1
i ̸=j

Aℓ,i xi

)
−K.

If j is such that the set {ℓ ∈ D : Aℓ,j = 0} is not empty, then Bj(xD\{j}) can
take all values between −K and +∞, from which it follows that the condition [3,
Equation (3.3)], namely

(4) for each xD\{j} ∈ RD\{j} there exists xj ∈ R such that ϕ(xj ,xD\{j}) = 0,

does not hold in general. Hence Theorem 3.1 as it stands does not apply to the
Asian option pricing problem.

3. New theorem in place of Theorem 3.1

The following theorem strengthens Theorem 3.1, in that the condition (4), or [3,
Equation (3.3)], is no longer required. We show that integration with respect to xj
can have a smoothing effect: we prove that

(Pjf)(x) :=

∫ ∞

−∞
f(x1, . . . , xj−1, tj , xj+1, . . . , xd) ρ(tj) dtj

belongs to the Sobolev space Wr
D\{j},p,ρD\{j}

provided that a number of conditions

on ϕ are satisfied:

(i) ϕ ∈ Wr
d,p,ρd

∩ C∞(Rd).
(ii) Djϕ := ∂ϕ/∂xj is always positive or always negative.
(iii) Special conditions on ϕ hold, see (6) and (7) below

Here r ≥ 1, p ∈ [1,∞), ρ is a strictly positive univariate probability density function,

and ρd(x) :=
∏d
j=1 ρ(xj). Some discussion on Sobolev spaces can be found in [3];
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for more details see [2]. Note that if g ∈ Wr
d,p,ρd

then for any multi-index α =

(α1, . . . , αd) with |α| := α1 + · · ·+ αd ≤ r, the weak derivative

(Dαg)(x) := (Dα1
1 · · ·Dαd

d g)(x) :=
∂|α|g

∂xα1
1 · · · ∂xαd

d

(x)

satisfies ∫
Rd

|(Dαg)(x)|p ρd(x) dx < ∞.

For u ⊆ D, the space Wr
u,p,ρu is a subspace of Wr

d,p,ρd
containing functions that are

constant with respect to the components whose indices are outside of u, that is,
functions that depend only the variables xu := (xj)j∈u, and ρu(xu) :=

∏
j∈u ρ(xj).

The proof builds upon the original proof of Theorem 3.1, but it requires several
additional elements. For clarity we provide a complete proof here. The proof makes
use of the inheritance and implicit function theorems, see [3, Theorems 2.2 and 2.3].
Note that all occurrences of the closure of Uj in [3, Theorem 2.3], denoted there by

Uj , should be replaced by just the set Uj itself.

Theorem 1. Let r ≥ 1, p ∈ [1,∞), and let ρ ∈ C∞(R) be a strictly positive
probability density function. Let

f(x) = ϕ(x)+, where ϕ ∈ Wr
d,p,ρd

∩ C∞(Rd).

Let j ∈ D be fixed and suppose that

(Djϕ)(x) ̸= 0 for all x ∈ Rd.

Denoting y := xD\{j} so that x = (xj ,y), let

Uj := {y ∈ RD\{j} : ϕ(xj ,y) = 0 for some xj ∈ R},

U+
j := {y ∈ RD\{j} : ϕ(xj ,y) > 0 for all xj ∈ R},

U−
j := {y ∈ RD\{j} : ϕ(xj ,y) < 0 for all xj ∈ R}.

If Uj is not empty, then Uj is open, and there exists a unique function ψ ≡ ψj ∈
Cr(Uj) such that ϕ(xj ,y) = 0 if and only if xj = ψ(y) for y ∈ Uj. In this case we
assume that every function of the form

g(y) = β

∏a
i=1[(D

α(i)

ϕ)(ψ(y),y)]

[(Djϕ)(ψ(y),y)]b
ρ(c)(ψ(y)), y ∈ Uj ,

where β, a, b, c are integers and α(i) are multi-indices with the constraints

2 ≤ a ≤ 2r − 2, 1 ≤ b ≤ 2r − 3, 0 ≤ c ≤ r − 2, |α(i)| ≤ r − 1,

(5)

satisfies both

(6) g(y) → 0 as y approaches a boundary point of Uj lying in U+
j or U−

j ,

and

(7)

∫
Uj

|g(y)|p ρD\{j}(y) dy < ∞.

Then

Pjf ∈ Wr
D\{j},p,ρD\{j}

.
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Since ψ(y) → ±∞ as y approaches a boundary point of Uj lying in U−
j and U+

j ,

respectively, a sufficient condition for (6) to hold is that∏a
i=1[(D

α(i)

ϕ)(xj ,y)]

[(Djϕ)(xj ,y)]b
ρ(c)(xj) ≤ E(xj)

for some E(xj) independent of y, where E(xj) → 0 as xj → ±∞.(8)

Proof. The case r = 1 is easy to prove, see [3, Equation (3.2)]. We therefore assume
below that r ≥ 2.

Given that ϕ ∈ C∞(Rd), (Djϕ)(x) ̸= 0 for all x ∈ Rd, and that Uj is not empty,
it follows from the implicit function theorem [3, Theorem 2.3] that there exists a
unique function ψ ∈ Cr(Uj) for which
(9) ϕ(xj ,y) = 0 ⇐⇒ ψ(y) = xj for all y ∈ Uj .

This justifies the existence of the function ψ as stated in the theorem.
For the function f(x) = ϕ(xj ,y)+ we can write Pjf as

(10) (Pjf)(y) =

∫
xj∈R :ϕ(xj ,y)≥0

ϕ(xj ,y) ρ(xj) dxj .

Note that the condition (Djϕ)(x) ̸= 0, when combined with the continuity of
Djϕ, means that Djϕ is either everywhere positive or everywhere negative. For
definiteness we assume that

(Djϕ)(x) > 0 for all x ∈ Rd;
the other case is similar. It follows that, for fixed y, ϕ(xj ,y) is a strictly increasing
function of xj .

We now determine the limits of integration in (10). If y ∈ U+
j , then we integrate

xj from −∞ to ∞. On the other hand, if y ∈ U−
j , then the integral is 0. The

remaining scenario is that y ∈ Uj , in which case ϕ(xj ,y) changes sign once as
xj goes from −∞ to ∞, thus there exists a unique x∗j = ψ(y) ∈ R for which
ϕ(x∗j ,y) = 0; in this case we integrate xj from ψ(y) to ∞. Hence we can write (10)
as

(Pjf)(y) =



∫ ∞

−∞
ϕ(xj ,y) ρ(xj) dxj if y ∈ U+

j ,∫ ∞

ψ(y)

ϕ(xj ,y) ρ(xj) dxj if y ∈ Uj ,

0 if y ∈ U−
j .

Note that Pjf is continuous across the boundaries between Uj and U
+
j and between

Uj and U
−
j , since ψ(y) goes to −∞ as the value of y approaches a boundary point

of Uj lying in U+
j , while ψ(y) goes to +∞ as y approaches a boundary point of Uj

lying in U−
j .

Below we will use repeatedly a multivariate extension of a result from classical
1-variable differential calculus: that if a real-valued function of a single variable is
continuous in a neighborhood of c ∈ R and has continuous pointwise derivatives for
x > c and x < c separately, with the property that the derivatives as x → c from
above and below have a common finite limit, say λ, then (as a simple consequence
of the mean-value theorem) the function is differentiable at c, and its derivative at
c is λ (i.e., its derivative is continuous at c).
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Now we differentiate Pjf with respect to xk for any k ̸= j. We obtain from the
Leibniz rule in the classical context that for y ∈ Uj

(11) (DkPjf)(y) =

∫ ∞

ψ(y)

(Dkϕ)(xj ,y) ρ(xj) dxj − ϕ(ψ(y),y)·ρ(ψ(y))·(Dkψ)(y).

Note that all of the derivatives on the right-hand side of (11) are classical deriva-
tives. The second term on the right-hand side of (11) is zero, since it follows from (9)
that ϕ(ψ(y),y) = 0. On the other hand, the first term on the right-hand side of (11)
is continuous across the boundaries between Uj and U+

j and between Uj and U−
j ,

because for y ∈ interior(U+
j ) we have (DkPjf)(y) =

∫∞
−∞(Dkϕ)(xj ,y) ρ(xj) dxj ,

while for y ∈ interior(U−
j ) we have (DkPjf)(y) = 0. Thus we conclude that DkPjf

is continuous across the boundaries between Uj and U+
j and between Uj and U−

j ,

and therefore that Pjf ∈ C1(RD\{j}).
Differentiating again with respect to xℓ for any ℓ ̸= j (allowing the possibility

that ℓ = k), we obtain for y ∈ Uj

(DℓDkPjf)(y)

=

∫ ∞

ψ(y)

(DℓDkϕ)(xj ,y) ρ(xj) dxj − (Dkϕ)(ψ(y),y) · ρ(ψ(y)) · (Dℓψ)(y),(12)

and we see from [3, Equation (2.14)] that Dℓψ can be substituted by

(Dℓψ)(y) = − (Dℓϕ)(ψ(y),y)

(Djϕ)(ψ(y),y)
.

Note that, unlike the second term in (11), the second term in (12) does not vanish
in general. Hence we have (DℓDkPjf)(y) =

∫∞
−∞(DℓDkϕ)(xj ,y) ρ(xj) dxj for y ∈

interior(U+
j ), while (DℓDkPjf)(y) = 0 for y ∈ interior(U−

j ), and by (6) we have

(Dkϕ)(ψ(y),y) (Dℓϕ)(ψ(y),y)

(Djϕ)(ψ(y),y)
ρ(ψ(y)) → 0

as y ∈ Uj approaches a boundary point of Uj lying in U+
j or U−

j . Thus DℓDkPjf

exists on the boundaries between Uj , U
+
j and U−

j and is continuous, and hence

Pjf ∈ C2(RD\{j}).
In general, for every multi-index α = (α1, . . . , αd) with |α| ≤ r and αj = 0,

we claim that (DαPjf)(y) =
∫∞
−∞(Dαϕ)(xj ,y) ρ(xj) dxj if y ∈ interior(U+

j ), and

(DαPjf)(y) = 0 if y ∈ interior(U−
j ). On the other hand, for y ∈ Uj we claim that

(13) (DαPjf)(y) =

∫ ∞

ψ(y)

(Dαϕ)(xj ,y) ρ(xj) dxj +

M|α|∑
m=1

gα,m(y),

whereM|α| is a nonnegative integer, and each function gα,m is of the form (5), with

integers β, a, b, c and multi-indices α(i) satisfying

(14) 2 ≤ a ≤ 2|α| − 2, 1 ≤ b ≤ 2|α| − 3, 0 ≤ c ≤ |α| − 2, |α(i)| ≤ |α| − 1.

Moreover, DαPjf is continuous across the boundaries between Uj , U
+
j and U−

j ,

given that by (6) each gα,m(y) → 0 as y ∈ Uj approaches a boundary point
of Uj lying in U+

j or U−
j . Since α is arbitrarily, with |α| ≤ r, this yields that

Pjf ∈ Cr(RD\{j}).
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We will prove (13)–(14) by induction on |α|. The case |α| = 1 is shown in
(11); there we have M1 = 0. The case |α| = 2 is shown in (12); there we have
M2 = 1, and the function gα,1 is of the form (5), with a = 2, b = 1, c = 0, β = 1,

Dα(1)

= Dk, D
α(2)

= Dℓ, and |α(1)| = |α(2)| = 1.
To establish the inductive step we now differentiate DαPjf once more: for ℓ ̸= j

we have from (13)

(DℓD
αPjf)(y) =

∫ ∞

ψ(y)

(DℓD
αϕ)(xj ,y) ρ(xj) dxj

− (Dαϕ)(ψ(y),y) · ρ(ψ(y)) · (Dℓψ)(y) +

M|α|∑
m=1

(Dℓgα,m)(y).(15)

Clearly the first term in (15) has the desired form. The second term in (15) is of
the form (5), with a = 2, b = 1, c = 0, β = 1, |α(1)| = |α|, and |α(2)| = 1. For the
remaining terms in (15), we have from (5)

(Dℓg)(y) = β
Dℓ

(∏a
i=1[(D

α(i)

ϕ)(ψ(y),y)]
)

[(Djϕ)(ψ(y),y)]b
ρ(c)(ψ(y))

+ β

∏a
i=1[(D

α(i)

ϕ)(ψ(y),y)]

[(Djϕ)(ψ(y),y)]b
ρ(c+1)(ψ(y)) · (Dℓψ)(y)

− βb

∏a
i=1[(D

α(i)

ϕ)(ψ(y),y)]

[(Djϕ)(ψ(y),y)]b+1
ρ(c)(ψ(y))

·
[
(DℓDjϕ)(ψ(y),y) + (DjDjϕ)(ψ(y),y) · (Dℓψ)(y)

]
,

where

Dℓ

( a∏
i=1

[(Dα(i)

ϕ)(ψ(y),y)]

)

=

a∑
t=1

([
(DℓD

α(t)

ϕ)(ψ(y),y) + (DjD
α(t)

ϕ)(ψ(y),y) · (Dℓψ)(y)
]

·
a∏
i=1
i̸=t

(Dα(i)

ϕ)(ψ(y),y)

)
.

Thus we conclude that Dℓg is a sum of functions of the form (5), but with a
increased by at most 2, b increased by at most 2, c increased by at most 1, |β|
multiplied by a factor of at most b, and with each |α(i)| increased by at most 1.

Hence, DℓD
αPjf consists of the first term in (15), plus a sum of functions of

the form (5). This completes the induction proof for (13)–(14). In particular, the
bounds in (14) can be deduced from the induction step.

We are now ready to consider∫
RD\{j}

|(DαPjf)(y)|p ρD\{j}(y) dy

=

∫
U+

j

|(DαPjf)(y)|p ρD\{j}(y) dy +

∫
Uj

|(DαPjf)(y)|p ρD\{j}(y) dy,(16)
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where we have split the integral noting that Uj is open, and the disjoint sets U+
j

and U−
j are closed. Using the special form of DαPjf in (13), we have for y ∈ Uj

|(DαPjf)(y)|p =

∣∣∣∣∣∣
∫ ∞

ψ(y)

(Dαϕ)(xj ,y) ρ(xj) dxj +

M|α|∑
m=1

gα,m(y)

∣∣∣∣∣∣
p

≤

∣∣∣∣∣
∫ ∞

ψ(y)

(Dαϕ)(xj ,y) ρ(xj) dxj

∣∣∣∣∣+
M|α|∑
m=1

|gα,m(y)|

p

≤ (M|α| + 1)p−1

∣∣∣∣∣
∫ ∞

ψ(y)

(Dαϕ)(xj ,y) ρ(xj) dxj

∣∣∣∣∣
p

+

M|α|∑
m=1

|gα,m(y)|p


≤ (M|α| + 1)p−1

∫ ∞

ψ(y)

|(Dαϕ)(xj ,y)|p ρ(xj) dxj +
M|α|∑
m=1

|gα,m(y)|p
 ,

where in the second to last step we used a generalized mean inequality (see [1,
3.2.4]) ∑n

i=1 ai
n

≤
(∑n

i=1 a
p
i

n

)1/p

, ai ≥ 0, p ∈ [1,∞),

and in the last step we used Hölder’s inequality as in [3, Equation (2.11)]. Thus
using (16) we find∫

RD\{j}
|(DαPjf)(y)|p ρD\{j}(y) dy ≤

∫
Rd

|(Dαϕ)(x)|pρd(x) dx

+ (M|α| + 1)p−1

(∫
Rd

|(Dαϕ)(x)|pρd(x) dx+

M|α|∑
m=1

∫
Uj

|gα,m(y)|pρD\{j}(y) dy

)
,

which is finite, since ϕ ∈ Wr
d,p,ρd

and each integral involving gα,m is finite due to

the condition (7). This proves that Pjf ∈ Wr
D\{j},p,ρD\{j}

as claimed. �

In the following theorem, the property (Djϕ)(x) ̸= 0 for all x ∈ Rd and the
conditions (6) and (7) are assumed to hold for all j in a subset z ⊆ D. In the
best case z = D, we see that smoothing occurs for all ANOVA terms except for
the term with the highest order. The proof follows that of [3, Theorem 3.2], but
makes use of the new theorem above. It is based on the explicit formula fu =∑

v⊆u(−1)|u|−|v|PD\vf , see [3, Equation (2.3)].

Theorem 2. Let r ≥ 1, p ∈ [1,∞), and ρ ∈ C∞(R) be a strictly positive probability
density function. Let z be a non-empty subset of D, and let

f(x) = ϕ(x)+, with


ϕ ∈ Wr

d,p,ρd
∩ C∞(Rd),

(Djϕ)(x) ̸= 0 for all j ∈ z and all x ∈ Rd,
(6) and (7) hold for all j ∈ z.

Then f ∈ W1
d,p,ρd

∩ C(Rd), and the ANOVA terms of f satisfy

fu ∈

{
W1

u,p,ρu if z ⊆ u,

Wr
u,p,ρu if z ̸⊆ u,

for all u ⊆ D.
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In particular, if z = D then fD ∈ W1
d,p,ρd

and fu ∈ Wr
u,p,ρu for all u ( D.

4. Application of the new theorem to option pricing problems

The conditions (6) and (7) in their current form are not easy to check due to the
presence of the function ψj . However, sufficient conditions that are easier to check
can be obtained if (as in the case of the option pricing problem) we have precise
information about the weight function ρ.

We have already explained that (8) is a sufficient condition for (6). In the case
of the option pricing problem, ρ is the standard Gaussian density, whereas ϕ and
its derivatives (see (1)) have only exponential dependence, thus (8) certainly holds.
The condition (7) is weaker than the condition (3.4) in [3]. It was shown in [3,
Section 4] that the latter condition holds for the option pricing problem.

As outlined in §1, we mistakenly claimed [3, pages 396–397] that ϕ always changes
sign. From the fact that ϕ(xj ,xD\{j}) → +∞ as xj → +∞, it follows that the

set U−
j is empty for the Asian option pricing problem. On the other hand, if j is

such that the set {ℓ ∈ D : Aℓ,j = 0} is not empty, then Bj(xD\{j}) in (3) can take

all values between −K and +∞, from which it follows that the set U+
j will not

be empty. Hence the new Theorem 1 holds, and in turn Theorem 2 applies with
z = D for the standard and Brownian bridge constructions. The conclusion of our
original manuscript stands.
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