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MULTILEVEL QUADRATURE FOR ELLIPTIC PARAMETRIC

PARTIAL DIFFERENTIAL EQUATIONS IN CASE OF POLYGONAL

APPROXIMATIONS OF CURVED DOMAINS\ast 

MICHAEL GRIEBEL† , HELMUT HARBRECHT‡ , AND MICHAEL D. MULTERER§

Abstract. Multilevel quadrature methods for parametric operator equations such as the mul-
tilevel (quasi–) Monte Carlo method resemble a sparse tensor product approximation between the
spatial variable and the parameter. We employ this fact to reverse the multilevel quadrature method
by applying differences of quadrature rules to finite element discretizations of increasing resolu-
tion. Besides being algorithmically more efficient if the underlying quadrature rules are nested, this
way of performing the sparse tensor product approximation enables the easy use of nonnested and
even adaptively refined finite element meshes. We moreover provide a rigorous error and regular-
ity analysis addressing the variational crimes of using polygonal approximations of curved domains
and numerical quadrature of the bilinear form. Our results facilitate the construction of efficient
multilevel quadrature methods based on deterministic high order quadrature rules for the stochastic
parameter. Numerical results in three spatial dimensions are provided to illustrate the approach.

Key words. parametric partial differential equations, multilevel quadrature, variational crimes
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1. Introduction. The present article is concerned with the numerical solution
of elliptic parametric second order boundary value problems of the form

(1.1)  - div
\bigl( 
a(y)\nabla u(y)

\bigr) 
= f(y) in D, u(y) = 0 on \partial D, y \in Γ,

whereD \subset R
d denotes the spatial domain and Γ \subset R

m denotes the parameter domain.
Prominent representatives of such problems arise from recasting boundary value prob-
lems with random data, like random diffusion coefficients, random right-hand sides,
and even random domains. A high-dimensional parametric boundary value problem of
the form (1.1) is then derived by inserting the truncated Karhunen–Loève expansion
of the random data; see, e.g., [1, 2, 13, 27, 36]. Hence, the computation of quantities
of interest amounts to a high-dimensional Bochner integration problem. The latter
can be dealt with by quadrature methods. Since every quadrature method requires
the repeated evaluation of the integrand for different sample or quadrature points,
we have to compute the solution to (1.1) with respect to many different values of the
parameter y \in Γ.

An efficient approach to deal with this quadrature problem is the multilevel Monte
Carlo method (MLMC), which has been developed in [3, 17, 19, 30, 31]. As first ob-
served in [15, 25], this approach resembles the sparse tensor product approximation
between the physical space and the parameter space. Thus, the extension to the
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§Institute of Computational Science, Università della Svizzera italiana, 6900 Lugano, Switzerland
(michael.multerer@usi.ch).

684



MULTILEVEL QUADRATURE FOR ELLIPTIC PARAMETRIC PDEs 685

multilevel quasi–Monte Carlo (MLQMC) method and even more general multilevel
quadrature methods is obvious. In this article, we focus on such deterministic quad-
rature methods, which, in particular, require extra regularity of the solution in terms
of spaces of dominant mixed derivatives; cf. [11, 22, 25, 28, 34], for example. This
extra regularity is available for important classes of parametric problems; see [9, 10]
for the case of affine elliptic diffusion coefficients and [33] for the case of log-normally
distributed diffusion coefficients. For the sake of clarity in presentation, we shall focus
here on affine elliptic diffusion problems as they occur from the discretization of uni-
formly elliptic random diffusion coefficients. We put our emphasis on the analysis of
variational crimes, namely the effect of polygonal approximations of curved physical
domains and the numerical approximation of the bilinear form. In particular, we pro-
vide regularity results of the fully discrete solution to (1.1). If the Karhunen–Loève
expansion of the coefficient a(y) in this equation decays sufficiently fast, the obtained
results are even robust with respect to the parameter dimension m.

The considerations in this article are based on the following abstract framework:
Let

V
(i)
0 \subset V

(i)
1 \subset \cdot \cdot \cdot \subset V

(i)
j \subset \cdot \cdot \cdot \subset \scrH i, i = 1, 2,

denote two sequences of finite dimensional subspaces with increasing approximation
power in some linear spaces \scrH i. To approximate a given object of the tensor product
space \scrH 1 \otimes \scrH 2, it is canonical to consider the full tensor product spaces

Uj := V
(1)
j \otimes V

(2)
j .

However, since dimUj = dimV
(1)
j \cdot dimV

(2)
j , the approximation cost in Uj is often too

high. To reduce this cost, one considers the approximation in so-called sparse tensor
product spaces; see, e.g., [7]. For \ell \geq 0, one introduces the complement spaces

W
(i)
\ell +1 = V

(i)
\ell +1 \ominus V

(i)
\ell , i = 1, 2,

which give rise to the multilevel decompositions

(1.2) V
(i)
j =

j\bigoplus 

\ell =0

W
(i)
\ell , W

(i)
0 := V

(i)
0 , i = 1, 2.

Then, the sparse tensor product space is defined by

(1.3) \widehat Uj :=
\bigoplus 

\ell +\ell \prime \leq j

W
(1)
\ell \otimes W

(2)
\ell \prime .

Under the assumptions that the dimensions of
\bigl\{ 
V

(1)
\ell 

\bigr\} 
and

\bigl\{ 
V

(2)
\ell 

\bigr\} 
form geometric

series, the space \widehat Uj contains, up to possible logarithmic factors, only

\scrO 
\bigl( 
max

\bigl\{ 
dimV

(1)
j , dimV

(2)
j

\bigr\} \bigr) 

degrees of freedom (DoF). Nevertheless, \widehat Uj offers nearly the same approximation
power as Uj provided that the object to be approximated has some extra smoothness
by means of mixed regularity; see [20].

In view of (1.2), factoring out with respect to the first component, we rewrite
(1.3) according to

(1.4) \widehat Uj =

j\bigoplus 

\ell =0

W
(1)
\ell \otimes 

\biggl( j - \ell \bigoplus 

\ell \prime =0

W
(2)
\ell \prime 

\biggr) 
=

j\bigoplus 

\ell =0

W
(1)
\ell \otimes V

(2)
j - \ell .
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Fig. 1. Different representations of the sparse tensor product space.

This representation has already been proposed in [20]. Obviously, in complete analogy
there holds

(1.5) \widehat Uj =

j\bigoplus 

\ell \prime =0

\biggl( j - \ell \prime \bigoplus 

\ell =0

W
(1)
\ell 

\biggr) 
\otimes W

(2)
\ell \prime =

j\bigoplus 

\ell =0

V
(1)
j - \ell \otimes W

(2)
\ell .

We refer to Figure 1 for an illustration, where the left plot corresponds to the represen-
tation (1.4) and the right plot corresponds to the representation (1.5). The advantage
of the representation (1.4) is that we can give up the requirement that the spaces

\{ V
(2)
\ell \} are nested. Likewise, for the representation (1.5), the spaces \{ V

(1)
\ell \} need not

be nested any more.
In view of the parametric diffusion problem (1.1), we aim at computing

\int 

Γ

\scrF 
\bigl( 
u(y)

\bigr) 
\rho (y) dy,

where \rho is the density of some measure on Γ and \scrF denotes a functional or, as in
the case of moment computation, it may be defined as \scrF 

\bigl( 
u(y)

\bigr) 
= up(y) for p =

1, 2, . . . . In this context, \{ V
(1)
\ell \} corresponds to a sequence of finite element spaces

and \{ V
(2)
\ell \} refers to a sequence of quadrature rules. If we denote the finite element

solutions of (1.1) by u\ell (y) \in V
(1)
\ell and if we denote the sequence of quadrature rules

by Q\ell \prime : C(Γ) \rightarrow R, we thus arrive with respect to (1.4) at the decomposition

(1.6)

\int 

Γ

\scrF 
\bigl( 
u(y)

\bigr) 
\rho (y) dy \approx 

j\sum 

\ell =0

Qj - \ell ∆\scrF \ell 

\bigl( 
u(y)

\bigr) 
,

where ∆\scrF \ell 

\bigl( 
u(y)

\bigr) 
:= \scrF 

\bigl( 
u\ell (y)

\bigr) 
 - \scrF 

\bigl( 
u\ell  - 1(y)

\bigr) 
and \scrF 

\bigl( 
u - 1(y)

\bigr) 
:= 0; see [25]. On the

other hand, similarly to (1.5), we obtain the decomposition

(1.7)

\int 

Γ

\scrF 
\bigl( 
u(y)

\bigr) 
\rho (y) dy \approx 

j\sum 

\ell =0

∆Q\ell \scrF 
\bigl( 
uj - \ell (y)

\bigr) 
,

where ∆Q\ell := Q\ell  - Q\ell  - 1 and Q - 1 := 0. Both representations are equivalent but have
a different impact on the numerical implementation.

Originally, multilevel quadrature methods have been interpreted as variance re-
duction methods for the Monte Carlo quadrature, a view which was originally in-
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troduced for the approximation of parametric integrals; cf. [30, 31]. Consequently,
the representation (1.4), and thus the decomposition (1.6), has been used in previous
articles; see, for example, [17, 18] for stochastic ordinary differential equations and
[3, 25, 41, 42] for partial differential equations with random data. In this context,
usually a nested sequence of approximation spaces is presumed such that the comple-

ment spaces
\bigl\{ 
W

(1)
\ell 

\bigr\} 
are well defined. In the context of partial differential equations,

these complement spaces are given via the difference of Galerkin projections onto
subsequent finite element spaces. This circumstance can be avoided in the case of \scrF 
being a functional; cf. [23, 41]. In the context of the Monte Carlo method, there are
already results available, which allow for giving up this nestedness; see, e.g., [8, 41].
A more general result addressing the resulting error in the underlying bilinear form
can be found in [40].

The decomposition (1.6) is well suited if the spatial dimension is small, as is the
case for one-dimensional partial differential equations with random data or for stochas-
tic ordinary differential equations. Nevertheless, in two or three spatial dimensions,
the construction of nested approximation spaces might be impossible. In the article
at hand, we employ the decomposition (1.7). It allows more naturally for nonnested
finite element spaces which, in turn, induce different approximations of the underlying
domain. Particularly, we shall focus on the error-equilibrated version of the multilevel
quadrature (see [3]), rather than on the work-equilibrated one [18]. Moreover, using
nested quadrature formulas, a considerable speed-up is achieved in comparison to the
conventional multilevel quadrature, which is based on the representation (1.6).

The rest of the article is organized as follows. We start by introducing the under-
lying random model in section 2 and perform the parametric reformulation that results
in (1.1). Then, the next two sections are dedicated to the discretization, i.e., the quad-
rature rule for the parametric variable (section 3) and the finite element discretization
for the physical domain (section 4). The multilevel quadrature for the model problem
is discussed in section 5. In section 6, we present the error and regularity analysis
for the multilevel quadrature taking into account polygonal approximations of curved
domains. The key result in this section, namely Lemma 6.1, is robust with respect
to the parameter dimension m. Afterward, in section 7, we consider a fully discrete
approximation of the solution to (1.1) and take also quadrature errors in the bilinear
form into account. Again, the main result Theorem 7.2 is robust with respect to the
parameter dimension m. Finally, in section 8, we provide numerical results in three
spatial dimensions to validate our approach.

Throughout this article, in order to avoid the repeated use of generic but un-
specified constants, we mean by C \lesssim D that C can be bounded by a multiple of D,
independently of parameters which C and D may depend on. Obviously, C \gtrsim D is
defined as D \lesssim C, and C \sim D as C \lesssim D and C \gtrsim D.

2. Problem setting. Let (Ω,Σ,P) be a complete and separable probability
space with \sigma -field Σ \subset 2Ω and probability measure P. We intend to compute the
expectation

E[u] =

\int 

Ω

u(\omega ) dP(\omega ) \in H1
0 (D)

and the variance

V[u] =

\int 

Ω

\bigl\{ 
u(\omega ) - E[u]

\bigr\} 2
dP(\omega ) \in W 1,1

0 (D)
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of the random function u(\omega ) \in H1
0 (D) which solves the random diffusion problem

(2.1)  - div
\bigl( 
a(\omega )\nabla u(\omega )

\bigr) 
= f in D for almost every \omega \in Ω.

For the sake of simplicity, we assume that the random diffusion coefficient is given
by a finite Karhunen–Loève expansion

(2.2) a(x, \omega ) = E[a](x) +

m\sum 

k=1

\sqrt{} 
\lambda k\varphi k(x)\psi k(\omega )

with pairwise L2-orthonormal functions \varphi k \in L\infty (D) and stochastically independent
random variables \psi k(\omega ) \in [ - 1, 1]. Especially, it is assumed that the random variables
admit continuous density functions \rho k : [ - 1, 1] \rightarrow R with respect to the Lebesgue
measure.

In practice, one generally has to compute the expansion (2.2) from the given
covariance kernel

Cov[a](x,x\prime ) =

\int 

Ω

\bigl\{ 
a(x, \omega ) - E[a](x)

\bigr\} \bigl\{ 
a(x\prime , \omega ) - E[a](x\prime )

\bigr\} 
dP(\omega ).

If the expansion contains infinitely many terms, it has to be appropriately truncated,
which will induce an additional discretization error. For details, we refer the reader
to [16, 26, 35, 39].

The assumption that the random variables \{ \psi k(\omega )\} are independent implies that
the joint density function of the random variables is given by \rho (y) :=

\prod m
k=1 \rho k(yk).

Thus, we are able to reformulate the stochastic problem (2.1) as a parametric,
deterministic problem in L2

\rho (Γ). To this end, the probability space Ω is identified with
its image Γ := [ - 1, 1]m with respect to the measurable mapping

ψ : Ω \rightarrow Γ, \omega \mapsto \rightarrow ψ(\omega ) :=
\bigl( 
\psi 1(\omega ), . . . , \psi m(\omega )

\bigr) 
.

Hence, the random variables \psi k are substituted by coordinates yk \in [ - 1, 1].
We introduce the measure \rho (y) dy on Γ, which is defined by the product density

function \rho (y) :=
\prod m

k=1 \rho k(yk).
Next, in order to ensure H2-regularity of the model problem, let D \subset R

d, d = 2, 3,
be either a convex, polygonal domain or a C2-domain. We consider the parametric
diffusion problem

(2.3)
find u \in L2

\rho 

\bigl( 
Γ;H1

0 (D)
\bigr) 
such that

 - div
\bigl( 
a(y)\nabla u(y)

\bigr) 
= f in D for almost every y \in Γ,

with f \in L2(D) and a : D \times Γ \rightarrow R with

(2.4) a(x,y) = \varphi 0(x) +

m\sum 

k=1

\sqrt{} 
\lambda k\varphi k(x)yk, \gamma k :=

\sqrt{} 
\lambda k\| \varphi k\| W 1,\infty (D).

Note that u \in L2
\rho 

\bigl( 
Γ;H1

0 (D)
\bigr) 
guarantees finite second order moments of the solution.

By the Lax–Milgram theorem, the unique solvability of the parametric diffusion
problem (2.3) in L2

\rho 

\bigl( 
Γ;H1

0 (D)
\bigr) 
follows immediately if we impose the condition

(2.5) 0 < amin \leq a(y) \leq amax <\infty in D
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for all y \in Γ on the diffusion coefficient. Moreover, we obtain the stability estimate

\| u(y)\| H1(D) \leq 
1

amin
\| f\| H - 1(D) \lesssim 

1

amin
\| f\| L2(D) for almost every y \in Γ.

Hence, the solution to (2.3) is essentially bounded with respect to y \in Γ.
In, e.g., [4, 9, 10, 12, 43], it has been proven that the solution u of (2.3) is

analytic as mapping u : Γ \rightarrow H1
0 (D). Moreover, it has been shown in [9] that u is even

an analytic mapping u : Γ \rightarrow \scrW := H1
0 (D) \cap H2(D) given that the functions \{ \varphi k\} 

in (2.4) belong to W 1,\infty (D). This constitutes the necessary mixed regularity for a
sparse tensor product discretization; see, e.g., [28, 34]. A similar result for diffusion
problems with coefficients of the form exp

\bigl( 
a(x,y)

\bigr) 
has been shown in [33].

Since u is supposed to be in L2
\rho 

\bigl( 
Γ;H1

0 (D)
\bigr) 
, we can compute its expectation

(2.6) E[u] =

\int 

Γ

u(y)\rho (y) dy \in H1
0 (D)

and its variance

(2.7) V[u] = E[u2] - E[u]2 =

\int 

Γ

u2(y)\rho (y) dy  - E[u]2 \in W 1,1
0 (D).

We will focus in what follows on the efficient numerical computation of these possibly
high-dimensional integrals.

3. Quadrature in the parameter space. The expectation and the variance
of the solution u to (2.3) are given by the integrals (2.6) and (2.7). To compute these
integrals, we employ a sequence of quadrature formulas \{ Q\ell \} for the Bochner integral

Int : L1
\rho (Γ;\scrX ) \rightarrow \scrX , Int v =

\int 

Γ

v(y)\rho (y) dy,

where \scrX \subset L2(D) denotes some Banach space. The quadrature formula

(3.1) Q\ell : L
1
\rho (Γ;\scrX ) \rightarrow \scrX , (Q\ell v)(x) =

N\ell \sum 

i=1

\omega \ell ,iv(x, ξ\ell ,i)\rho (ξ\ell ,i)

is supposed to provide the error bound

(3.2) \| (Int - Q\ell )v\| \scrX \lesssim \varepsilon \ell \| v\| \scrH (Γ;\scrX )

uniformly in \ell \in N, where \scrH (Γ;\scrX ) \subset L2
\rho (Γ,\scrX ) is a suitable Bochner space. Note that

since the density \rho is fixed, it will be suppressed in the upcoming error estimates and
will, thus, be hidden in the constants.

The following particular examples of quadrature rules (3.1) are considered in our
numerical experiments:

\bullet The Monte Carlo method satisfies (3.2) only with respect to the root mean
square error. Namely, it holds that

\sqrt{} 
E
\bigl( 
\| (Int - Q\ell )v\| 2\scrX 

\bigr) 
\lesssim \varepsilon \ell \| v\| \scrH (Γ;\scrX )

with \varepsilon \ell = N
 - 1/2
\ell and \scrH (Γ;\scrX ) = L2

\rho (Γ;\scrX ).



690 M. GRIEBEL, H. HARBRECHT, AND M. D. MULTERER

\bullet The quasi–Monte Carlo method leads typically to \varepsilon \ell = N - 1
\ell (logN\ell )

m, where

it is sufficient to consider the Bochner space \scrH (Γ;\scrX ) = W 1,1
mix(Γ;\scrX ) of all

equivalence classes of functions v : Γ \rightarrow \scrX with finite norm

(3.3) \| v\| W 1,1
mix

(Γ;\scrX )
:=

\sum 

\| q\| \infty \leq 1

\int 

Γ

\bigm\| \bigm\| \bigm\| \bigm\| 
\partial \| q\| 1

\partial yq11 \partial y
q2
2 \cdot \cdot \cdot \partial yqmm

v(y)

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrX 

dy <\infty ;

see, e.g., [37]. Note that, in this case, the estimate requires that the densities
satisfy \rho k \in W 1,\infty ( - 1, 1). For the Halton sequence (cf. [24]), it can even be
shown that \varepsilon \ell = N \delta  - 1

\ell for arbitrary \delta > 0 given that the spatial functions
in (2.4) satisfy \gamma k \lesssim k - 3 - \varepsilon for arbitrary \varepsilon > 0. This is a straightforward
consequence from the results in [44]; see, e.g., [27].

\bullet Let the densities \rho k be in W r,\infty ( - 1, 1). If v : Γ \rightarrow \scrX has mixed regularity of
order r with respect to the parameter y, i.e.,

(3.4) \| v\| W r,\infty 
mix

(Γ;\scrX ) := max
\| α\| \infty \leq r

\bigm\| \bigm\| \partial α
y
v
\bigm\| \bigm\| 
L\infty (Γ;\scrX )

<\infty ,

then one can apply a sparse grid Clenshaw–Curtis quadrature rule. This
yields the convergence rate \varepsilon \ell = 2 - \ell r\ell m - 1, whereN\ell \sim 2\ell \ell m - 1 and\scrH (Γ;\scrX ) =
W r,\infty 

mix (Γ;\scrX ); see [38].1

For our purposes, we shall assume that the number N\ell of points of the quadrature
formula Q\ell is chosen such that the corresponding accuracy is

(3.5) \varepsilon \ell = 2 - \ell .

Then, for the respective difference quadrature ∆Q\ell := Q\ell  - Q\ell  - 1, we immediately
obtain by combining (3.2) and (3.5) the error bound

\| ∆Q\ell v\| \scrX = \| (Q\ell  - Q\ell  - 1)v\| \scrX \leq \| (Int - Q\ell )v\| \scrX + \| (Int - Q\ell  - 1)v\| \scrX 

\lesssim 2 - \ell \| v\| \scrH (Γ;\scrX ).

4. Finite element approximation in the spatial variable. In order to apply
the quadrature formula (3.1), we have to evaluate the solution u(y) \in H1

0 (D) of the
diffusion problem (2.3) in certain points y \in Γ. To this end, consider a not necessarily
nested sequence of shape regular and quasi-uniform triangulations or tetrahedraliza-
tions \{ \scrT \ell \} for \ell \geq 0 of the domain D, each with the mesh size h\ell \sim 2 - \ell . If the domain
is not polygonal, then we obtain a polygonal approximation D\ell of the domain D by
replacing curved edges or faces by planar ones.

In order to deal only with the fixed domain D and not with the different polygonal
approximations D\ell , we follow [5] and extend functions defined on D\ell by zero onto
D \setminus D\ell . Hence, given the triangulation or the tetrahedralization \{ \scrT \ell \} , we define the
spaces

\scrS \ell (D) := \{ v \in C(D) : v| T is a linear polynomial for all T \in \scrT \ell 

and v(x) = 0 for all nodes x \in \partial D\} 

of continuous, piecewise linear finite elements. Notice that it does hold that \scrS \ell (D) \subset 
H1(D) but in general \scrS \ell (D) \not \subset H1

0 (D).

1The Clenshaw–Curtis quadrature converges exponentially if the integrand v : Γ → X and the
density ρ are analytic.
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We shall further introduce the finite element solution u\ell (y) \in \scrS \ell (D) of (2.3) which
satisfies

(4.1) \scrB y(u\ell , v\ell ) :=

\int 

D

a(y)\nabla u\ell (y)\nabla v\ell dx =

\int 

D

fv\ell dx

for all v\ell \in \scrS \ell (D). If D \not = D\ell , the bilinear form \scrB y(\cdot , \cdot ) is also well defined for
functions from \scrS \ell (D) since \scrS \ell (D) \subset H1(D). Nevertheless, in order to maintain the
ellipticity of the bilinear form, we shall assume that the mesh size h0 is sufficiently
small to ensure that functions in \scrS \ell (D) are zero on a part of the boundary of D.

It is shown in, e.g., [5, 6] that the finite element solution u\ell (y) \in \scrS \ell (D) of (4.1)
admits the following approximation properties.

Lemma 4.1. Consider a convex, polygonal domain D or a domain with C2-smooth

boundary and let f \in L2(D). Then, the finite element solution u\ell (y) \in \scrS \ell (D) of the

diffusion problem (2.3) and respectively its square u
2
\ell (y) satisfy the error estimate

(4.2)
\bigm\| \bigm\| up(y) - u

p
\ell (y)

\bigm\| \bigm\| 
\scrX 

\lesssim h\ell \| f\| 
p
L2(D),

where \scrX = H1(D) for p = 1 and \scrX = W 1,1(D) for p = 2. The constants hidden in

(4.2) depend on amin and amax, but not on y \in Γ.

5. The multilevel quadrature method. Based on the framework introduced
in the previous sections, we now introduce the multilevel quadrature in a formal way.
To that end, let u \in \scrH (Γ;H2(D)), where the underlying Bochner space is determined
by the quadrature under consideration. For the sequence \{ u\ell (y)\} \ell of finite element
solutions, there obviously holds lim\ell \rightarrow \infty u\ell (y) = u(y) uniformly in y \in Γ. Thus, if \scrF 
is continuous, we obtain

(5.1) lim
\ell \rightarrow \infty 

\scrF 
\bigl( 
u\ell (y)

\bigr) 
= \scrF 

\bigl( 
u(y)

\bigr) 

also uniformly in y \in Γ. Moreover, we have for the sequence \{ Q\ell \} \ell of quadrature
rules and for a sufficiently smooth integrand that

(5.2) lim
\ell \rightarrow \infty 

Q\ell v =

\int 

Γ

v(y)\rho (y) dy.

The combination of the relations (5.1) and (5.2) leads to

\int 

Γ

\scrF 
\bigl( 
u(y)

\bigr) 
\rho (y) dy =

\infty \sum 

\ell =0

∆Q\ell \scrF 
\bigl( 
u(y)

\bigr) 
=

\infty \sum 

\ell =0

∆Q\ell 

\infty \sum 

\ell \prime =0

∆\scrF \ell \prime 
\bigl( 
u(y)

\bigr) 
.

Since ∆Q\ell is linear and continuous, we end up with

\int 

Γ

\scrF 
\bigl( 
u(y)

\bigr) 
\rho (y) dy =

\infty \sum 

\ell ,\ell \prime =0

∆Q\ell ∆\scrF \ell \prime 
\bigl( 
u(y)

\bigr) 
.

Truncating this sum in accordance with \ell +\ell \prime \leq j then yields the multilevel quadrature
representation (1.6) if we recombine the operators ∆Q\ell . Analogously, we obtain the
representation (1.7) if we recombine the operators ∆\scrF \ell . Note that the sequence of
the application of the operators ∆Q\ell and ∆\scrF \ell \prime is crucial here. Moreover, we have
repeatedly exploited the linearity of ∆Q\ell .
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Of course, the representations (1.6) and (1.7) are mathematically equivalent.
More precisely, if we set \scrF 

\bigl( 
u - 1(y)

\bigr) 
:= 0, there holds

j\sum 

\ell =0

Qj - \ell ∆\scrF \ell 

\bigl( 
u(y)

\bigr) 
=

j\sum 

\ell =0

∆Q\ell \scrF 
\bigl( 
uj - \ell (y)

\bigr) 
.

Thus, all available results for the representation (1.6) of the multilevel quadrature
(see, e.g., [25, 28] and the references therein) carry over to the representation (1.7).

Nonetheless, the multilevel quadrature based on representation (1.7) has substan-
tial advantages. On the one hand, it allows for an easy use of nonnested finite element
meshes and even for adaptively refined finite element meshes. A further property of
(1.7) is an obvious reduction of the cost if nested quadrature formulas are employed.

6. Error analysis. In what follows, we restrict ourselves for reasons of simplicity
to the situations \scrF (u) = u and \scrF (u) = u2 which yield the expectation and the second
moment of the solution to (2.3). This means that we consider

(6.1) Intup \approx 

j\sum 

\ell =0

∆Q\ell u
p
j - \ell =

j\sum 

\ell =0

Qj - \ell 

\bigl( 
u
p
\ell  - u

p
\ell  - 1

\bigr) 
for p = 1, 2.

We derive a general approximation result for the multilevel quadrature based on the
generic estimate

(6.2)
\bigm\| \bigm\| (Int - Q\ell )(u

p  - u
p
\ell \prime )
\bigm\| \bigm\| 
\scrX 

\lesssim 2 - (\ell +\ell \prime )\| f\| pL2(D) for p = 1, 2

with f being the right-hand side of (2.3) and h\ell \prime \sim 2 - \ell \prime . In particular, any quadrature
rule which satisfies this estimate gives rise to a multilevel quadrature method. In what
follows, we provide this estimate for MLQMC as well as for the multilevel Clenshaw–
Curtis quadrature (MLCC).

We remark that the derivation of the generic estimate (6.2) for the Monte Carlo
quadrature is straightforward under the condition that the integrand is square inte-
grable with respect to the parameter y; cf. [3, 25]. In this case, the generic estimate
can be derived similarly to Strang’s lemma; see [41]. Nevertheless, since the Monte
Carlo quadrature does not provide deterministic error estimates, we have to replace
the norm in \scrX by the L2

\rho (Γ;\scrX )-norm.
The situation becomes much more involved if parametric regularity has to be

taken into account. In the latter case, also bounds on the derivatives of the spatial
details have to be provided. The next lemma is a generalization of similar results
from [28, 34], which provide the smoothness of the Galerkin error with respect to the
parameter y \in Γ for the nonconforming case D \not = D\ell . In what follows, we denote by
N := \{ 0, 1, 2, . . .\} the set of natural numbers.

Lemma 6.1. For the error \delta \ell (y) := (u  - u\ell )(y) of the Galerkin projection, there

holds the estimate

(6.3)
\bigm\| \bigm\| \partial α

y
\delta \ell (y)

\bigm\| \bigm\| 
H1(D)

\leq Ch\ell | α| !c
| α| γα\| f\| L2(D) for all α \in N

m,

where γ := \{ \gamma k\} 
m
k=1; cf. (2.4). The constants C, c > 0 are dependent on amin and

amax but independent of the parameter dimension m.

Proof. By definition, there holds (cf. (4.1))

\scrB y(u\ell , v\ell ) =

\int 

D

a(y)\nabla u\ell (y)\nabla v\ell dx =

\int 

D

fv\ell dx for all v\ell \in \scrS \ell (D).
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On the other hand, integration by parts yields

\scrB y(u, v\ell ) =

\int 

D

a(y)\nabla u(y)\nabla v\ell dx =

\int 
fv\ell dx+

\int 

\partial D

a(y)
\partial u

\partial n
(y)v\ell d\sigma x

for all v\ell \in S\ell (D). Thus, we obtain the perturbed Galerkin orthogonality

(6.4) \scrB y

\bigl( 
u - u\ell , v\ell ) =

\int 

\partial D

a(y)
\partial u

\partial n
(y)v\ell d\sigma x for all v\ell \in S\ell (D).

Due to the uniform ellipticity of the bilinear form, we can also define the Galerkin
projection \scrP \ell (y) : H

1
0 (D) \rightarrow S\ell (D) via

\scrB y(u - \scrP \ell u, v\ell ) = 0 for all v\ell \in \scrS \ell (D).

It holds that

(6.5)
\| \partial α

y
(u - u\ell )\| H1(D) \leq \| \scrP \ell \partial 

α

y
(u - u\ell )\| H1(D) + \| (I  - \scrP \ell )\partial 

α

y
(u - u\ell )\| H1(D)

\leq \| \scrP \ell \partial 
α

y
(u - u\ell )\| H1(D) + \| (I  - \scrP \ell )\partial 

α

y
u\| H1(D),

since \partial α
y
u\ell \in S\ell (D) and hence \scrP \ell \partial 

α

y
u\ell = \partial α

y
u\ell .

In order to estimate the first term, we employ the perturbed Galerkin orthogo-
nality (6.4) and obtain

(6.6)

\scrB y

\bigl( 
\partial α
y
(u - u\ell ), v\ell 

\bigr) 
 - \partial α

y

\int 

\partial D

a(y)
\partial u

\partial n
(y)v\ell d\sigma x

=  - 
\sum 

\{ k:\alpha k \not =0\} 

\alpha k

\sqrt{} 
\lambda k

\int 

D

\varphi k\nabla \partial 
α - ek
y

(u - u\ell )(y)\nabla v\ell dx;

see, e.g., [9], where ek \in N
m satisfies ek,j = \delta k,j . The derivatives of the boundary

term satisfy

\partial α
y

\int 

\partial D

a(y)
\partial u

\partial n
(y)v\ell d\sigma x =

\sum 

α\prime \leq α

\biggl( 
α

α\prime 

\biggr) \int 

\partial D

\bigl[ 
\partial α

\prime 

y
a(y)

\bigr] \biggl[ 
\partial α - α

\prime 

y

\partial u

\partial n
(y)

\biggr] 
v\ell d\sigma x

=

\int 

\partial D

a(y)
\partial (\partial α

y
u)

\partial n
(y)v\ell d\sigma x +

\sum 

\{ k:\alpha k \not =0\} 

\alpha k

\sqrt{} 
\lambda k

\int 

\partial D

\varphi k

\partial (\partial α - ek
y

u)

\partial n
(y)v\ell d\sigma x.

Inserting this identity into (6.6) yields

(6.7)

\scrB y

\bigl( 
\partial α
y
(u - u\ell ), v\ell 

\bigr) 
 - 

\int 

\partial D

a(y)
\partial (\partial α

y
u)

\partial n
(y)v\ell d\sigma x

=  - 
\sum 

\{ k:\alpha k \not =0\} 

\alpha k

\sqrt{} 
\lambda k

\biggl[ \int 

D

\varphi k\nabla \partial 
α - ek
y

(u - u\ell )(y)\nabla v\ell dx

 - 

\int 

\partial D

\varphi k

\partial (\partial α - ek
y

u)

\partial n
(y)v\ell d\sigma x

\biggr] 
.

In order to bound the boundary integrals, we employ the following estimate, which
is valid for any v, w \in H1(D). It holds that

\bigm| \bigm| \bigm| \bigm| 
\int 

\partial D

a(y)
\partial v

\partial n
w d\sigma x

\bigm| \bigm| \bigm| \bigm| \leq amax

\bigm\| \bigm\| \bigm\| \bigm\| 
\partial v

\partial n
(y)

\bigm\| \bigm\| \bigm\| \bigm\| 
H - 1/2(\partial D)

\| w\| H1/2(\partial D)

\leq Cinvamax\| v\| H1(D)\| w\| H1/2(\partial D),
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where Cinv is the norm of the inverse Neumann trace operator. Next, we employ a
discrete version of the trace theorem provided by [5, Lemma III.1.6], which reads

(6.8) \| v\ell \| H1/2(\partial D) \leq ch\ell \| v\ell \| H1(D) for all v\ell \in \scrS \ell (D)

with some constant c > 0. From this, we infer
\bigm| \bigm| \bigm| \bigm| 
\int 

\partial D

a(y)
\partial (\partial α

y
u)

\partial n
(y)v\ell d\sigma x

\bigm| \bigm| \bigm| \bigm| \leq Ch\ell \| \partial 
α

y
u(y)\| H1(D)\| v\ell \| H1(D)

for all v\ell \in \scrS \ell (D) and some constant C > 0.
Inserting the latter estimate into (6.7) and choosing v\ell = \scrP \ell \partial 

α

y
(u - u\ell ) as a test

function, we arrive at

amin\| \scrP \ell \partial 
α

y
(u - u\ell )(y)\| 

2
H1(D) \leq Ch\ell \| \scrP \ell \partial 

α

y
u(y)\| H1(D)\| \scrP \ell \partial 

α

y
(u - u\ell )(y)\| H1(D)

+
\sum 

\{ k:\alpha k \not =0\} 

\alpha k\gamma k

\Bigl[ 
\| \partial α - ek

y
(u - u\ell )(y)\| H1(D)\| \scrP \ell \partial 

α

y
(u - u\ell )(y)\| H1(D)

+ Ch\ell \| \partial 
α - ek
y

u(y)\| H1(D)\| \scrP \ell \partial 
α

y
(u - u\ell )(y)\| H1(D)

\Bigr] 
.

Simplifying this expression yields

\| \scrP \ell \partial 
α

y
(u - u\ell )(y)\| H1(D) \leq Ch\ell \| \partial 

α

y
u(y)\| H1(D)

+ C
\sum 

\{ k:\alpha k \not =0\} 

\alpha k\gamma k

\Bigl[ 
\| \partial α - ek

y
(u - u\ell )(y)\| H1(D) + h\ell \| \partial 

α - ek
y

u(y)\| H1(D)

\Bigr] 

for some other constant C > 0, where we employed the stability of the Galerkin
projection in the first term. Next, in view of the estimate

\| \partial α
y
u(y)\| H1(D) \leq C| α| !c| α| γα\| f\| L2(D)

for some constants C, c > 0 (see [9]), we end up with

\| \scrP \ell \partial 
α

y
(u - u\ell )(y)\| H1(D)

\leq Ch\ell c
| α| | α| !γα\| f\| L2(D) + C

\sum 

\{ k:\alpha k \not =0\} 

\alpha k\gamma k\| \partial 
α - ek
y

(u - u\ell )(y)\| H1(D)

for some constants C, c > 0. Combining this with the initial estimate (6.5) gives then

\| \partial α
y
(u - u\ell )(y)\| H1(D) \leq C

\sum 

\{ k:\alpha k \not =0\} 

\alpha k\gamma k\| \partial 
α - ek
y

(u - u\ell )(y)\| H1(D)

+ Ch\ell c
| α| | α| !γα\| f\| L2(D) + \| (I  - \scrP \ell )\partial 

α

y
u\| H1(D)

\leq C
\sum 

\{ k:\alpha k \not =0\} 

\alpha k\gamma k\| \partial 
α - ek
y

(u - u\ell )(y)\| H1(D) + Ch\ell c
| α| | α| !γα\| f\| L2(D),

where we used \| (I  - \scrP \ell )\partial 
α

y
u\| H1(D) \leq Ch\ell c

| α| | α| !γα\| f\| L2(D) for some constants
C, c > 0, which follows from the approximation property of the finite element space
S\ell (D) and [34, Theorem 6]. The proof is now concluded similarly to the proof of [34,
Theorem 7].

With this lemma, it is easy to show the following result related to the second
moment; cf. [28].
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Lemma 6.2. The derivatives of the difference u2  - u
2
\ell satisfy the estimate

(6.9)
\bigm\| \bigm\| \partial α

y

\bigl( 
u2  - u

2
\ell 

\bigr) 
(y)
\bigm\| \bigm\| 
W 1,1(D)

\leq Ch\ell | α| !c
| α| γα\| f\| 2L2(D) for all α \in N

m

with constants C, c > 0 dependent on amin and amax.

With the aid of Lemmas 6.1 and 6.2 together with the results from [44], the generic
estimate for MLQMC with Halton points can be derived. The following lemma is, for
example, shown in [29, 40].

Lemma 6.3. Let u \in L2
\rho 

\bigl( 
Γ;H1

0 (D)
\bigr) 
be the solution to (2.3) and u\ell the associated

Galerkin projection on level \ell . Moreover, let \rho k \in W 1,\infty ( - 1, 1) for k = 1, . . . ,m.

Then, for the quasi–Monte Carlo quadrature based on Halton points, there holds

(6.10)
\bigm\| \bigm\| (Int - Q\ell )(u

p  - u
p
\ell \prime )
\bigm\| \bigm\| 
\scrX 

\lesssim 2 - (\ell +\ell \prime )\| f\| pL2(D) for p = 1, 2

with N\ell \sim 2\ell /(1 - \delta ) for arbitrary \delta > 0.

In what follows, we derive the generic estimate for the sparse grid quadrature
based on the nested Clenshaw–Curtis abscissae; cf. [14, 38]. These are given by the
extrema of the Chebyshev polynomials

\xi k = cos

\biggl( 
(k  - 1)\pi 

n - 1

\biggr) 
for k = 1, . . . , n,

where n = 2j - 1 + 1 if j > 1 and n = 1 with \xi 1 = 0 if j = 1.

Lemma 6.4. Let u \in L2
\rho 

\bigl( 
Γ;H1

0 (D)
\bigr) 
be the solution to (2.3) and let u\ell be the

associated Galerkin projection on level \ell . Moreover, let \rho k(yk) \in W r,\infty ( - 1, 1) for k =
1, . . . ,m. Then, for the sparse grid quadrature based on Clenshaw–Curtis abscissae,

there holds

(6.11)
\bigm\| \bigm\| (Int - Q\ell )(u

p  - u
p
\ell \prime )
\bigm\| \bigm\| 
\scrX 

\lesssim 2 - (\ell r+\ell \prime )\ell m - 1\| f\| pL2(D) for p = 1, 2

provided that N\ell \sim 2\ell \ell d - 1.

Proof. It is shown in [38] that the number N\ell of quadrature points of the sparse
tensor product quadrature with Clenshaw–Curtis abscissae is of the order \scrO (2\ell \ell d - 1).
In addition, we have for functions v : Γ \rightarrow R with mixed regularity the following error
bound: \bigm| \bigm| \bigm| \bigm| 

\int 

Γ

v(y) dy  - 

N\ell \sum 

i=1

wiv(ξi)

\bigm| \bigm| \bigm| \bigm| \lesssim 2 - \ell r\ell (m - 1) max
\| α\| \infty \leq r

\bigm\| \bigm\| \partial α
y
v
\bigm\| \bigm\| 
L\infty (Γ)

.

Hence, to prove the desired assertion, we have to provide estimates on the derivatives
\partial α
y

\bigl[ \bigl( 
up(y) - u

p
\ell \prime (y)

\bigr) 
\rho (y)

\bigr] 
. This can be accomplished by the Leibniz formula as in the

proof of the previous lemma:
\bigm\| \bigm\| \partial α

y

\bigl[ 
(up  - u

p
\ell \prime )(y)\rho (y)

\bigr] \bigm\| \bigm\| 
\scrX 

\leq 
\sum 

α\prime \leq α

\biggl( 
α

α\prime 

\biggr) \bigm\| \bigm\| \partial α - α
\prime 

y
(up  - u

p
\ell \prime )(y)

\bigm\| \bigm\| 
\scrX 

\bigm\| \bigm\| \partial α\prime 

y
\rho (y)

\bigm\| \bigm\| 
L\infty (Γ)

\lesssim 2 - \ell \prime 
\sum 

α\prime \leq α

\biggl( 
α

α\prime 

\biggr) 
| α - α\prime | !c| α - α

\prime | γα - α
\prime 

\| f\| pL2(D)ρ
α

\prime 

\lesssim 2 - \ell \prime (| α| + 1)!\| f\| pL2(D)c̃
| α| .
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Herein, we introduced again the quantity ρ :=
\bigl[ 
\| \rho 1\| W r,\infty ( - 1,1), . . . , \| \rho m\| W r,\infty ( - 1,1)

\bigr] 

and c̃ = maxk=1,...,m max\{ c\gamma k, \rho k\} . We set C(r) := max\| α\| \infty \leq r(| α| + 1)!c̃| α| and
obtain

\bigm\| \bigm\| (Int - Q\ell )(u
p  - u

p
\ell \prime )
\bigm\| \bigm\| 2
\scrX 

\lesssim 
\bigl( 
2 - \ell r\ell (m - 1)2 - \ell \prime C(r)\| f\| pL2(D)

\bigr) 2
.

Then, exploiting that the bound on the derivatives of the integrand is independent of
the parameter and taking square roots on both sides completes the proof.

Remark 6.5. As for the quasi–Monte Carlo quadrature, by slightly decreasing r
in the convergence result for the sparse tensor product quadrature, we may remove
the factor \ell m - 1 since \ell m - 1 \lesssim 2\ell \delta for arbitrary \delta > 0.

Employing the generic estimate (6.2) it is straightforward to derive the following
approximation result for the multilevel quadrature. We emphasize again that every
quadrature rule which satisfies (6.2) gives rise to a corresponding multilevel quadrature
method.

Theorem 6.6. Let \{ Q\ell \} be a sequence of quadrature rules that satisfy an estimate

of type (6.2), where u \in L2
\rho 

\bigl( 
Γ, H1

0 (D)
\bigr) 
is the solution to (2.3) that satisfies (4.2).

Then, the error of the multilevel estimator for the mean and the second moment

defined in (6.1) is bounded by

(6.12)

\bigm\| \bigm\| \bigm\| \bigm\| Intu
p  - 

j\sum 

\ell =0

∆Q\ell u
p
j - \ell 

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrX 

\leq c(m)2 - jj\| f\| pL2(D),

where \scrX = H1(D) if p = 1 and \scrX =W 1,1(D) if p = 2.

Proof. We shall apply the following multilevel splitting of the error:

(6.13)

\bigm\| \bigm\| \bigm\| \bigm\| Intu
p  - 

j\sum 

\ell =0

∆Q\ell u
p
j - \ell 

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrX 

=

\bigm\| \bigm\| \bigm\| \bigm\| Intu
p  - Qju

p +

j\sum 

\ell =0

∆Q\ell u
p  - 

j\sum 

\ell =0

∆Q\ell u
p
j - \ell 

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrX 

\leq 
\bigm\| \bigm\| Intup  - Qju

p
\bigm\| \bigm\| 
\scrX 
+

j\sum 

\ell =0

\bigm\| \bigm\| ∆Q\ell 

\bigl( 
up  - u

p
j - \ell 

\bigr) \bigm\| \bigm\| 
\scrX 
.

The first term just reflects the quadrature error and can be bounded with similar
arguments as in Lemmas 6.3 and 6.4 according to

\bigm\| \bigm\| Intup  - Qju
p
\bigm\| \bigm\| 
\scrX 
\leq c(m)2 - j\| f\| pL2(D).

The term inside the sum satisfies with (6.2) that

\bigm\| \bigm\| ∆Q\ell 

\bigl( 
up  - u

p
j - \ell 

\bigr) \bigm\| \bigm\| 
\scrX 

\leq 
\bigm\| \bigm\| (Int - Q\ell )

\bigl( 
up  - u

p
j - \ell 

\bigr) \bigm\| \bigm\| 
\scrX 
+
\bigm\| \bigm\| (Int - Q\ell  - 1)

\bigl( 
up  - u

p
j - \ell 

\bigr) \bigm\| \bigm\| 
\scrX 

\lesssim 2 - (\ell +j - \ell )\| f\| pL2(D) + 2 - (\ell  - 1+j - \ell )\| f\| pL2(D) \lesssim 2 - j\| f\| pL2(D).

Thus, we can estimate (6.13) as

\bigm\| \bigm\| \bigm\| \bigm\| Intu
p  - 

j\sum 

\ell =0

∆Q\ell u
p
j - \ell 

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrX 

\leq c(m)2 - j\| f\| pL2(D) + c\prime 
j\sum 

\ell =0

2 - j\| f\| pL2(D)

\leq c(m)2 - j(j + 2)\| f\| pL2(D)

for some constant c\prime which is independent of m. This completes the proof.
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∂D

∂D\ell 

T̃

Fig. 2. Curved element T̃ located at the boundary of the domain. The solid line indicates the
boundary of D, while the dashed line indicates the boundary of D\ell .

Remark 6.7. Note that the dependence onm only enters due to the error estimate
of the quadrature for the parametric integral. Hence, if the decay of the Karhunen–
Loève expansion allows for the use of a dimension-robust quadrature rule as, e.g.,
considered in [21, 44], then the dimension-dependence in the previous theorem can
completely be removed.

We further remark that we can achieve in our framework also nestedness for the
samples in the Monte Carlo method. This is due to the fact that independent samples
have to be used only for the estimators Q\ell for \ell = 0, . . . , j. But from the proof of the
previous theorem, we see that Q\ell does not have to be sampled independently from
Q\ell \prime for \ell \not = \ell \prime . Thus, we may employ the same underlying set of sample points on
each level.

7. Numerical approximation. The previous results guarantee that the consis-
tency error due to the nonconformity of the finite element space is of the correct order.
In the actual implementation, instead of considering the bilinear form introduced in
(4.1), we shall consider on level \ell \geq 0 the variational formulation

\int 

D\ell 

ã\ell (y)\nabla ũ\ell \nabla v\ell dx =

\int 

D\ell 

fv\ell dx for all v\ell \in \scrS \ell (D),

where ã\ell (x,y) is a suitable piecewise constant approximation of a(x,y) with respect
to the triangulation \scrT \ell on D\ell . In this section, we will provide a result that also takes
into account the consistency error due to numerical quadrature in the bilinear form.
In particular, we account for the quadrature error that is introduced by integration
with respect to D\ell instead of integration with respect to D.

The situation is sketched in Figure 2 for the two-dimensional case. For the given
triangle T at the domain’s boundary, the areas of the true domain D and its polygonal
approximation D\ell differ by the gray shaded area. According to [5], this area is small
relative to the size of the element. There holds

(7.1) | T̃ \cap (D\bigtriangleup D\ell )| \leq ch\ell | T̃ | for some constant c > 0,

where D\bigtriangleup D\ell := (D \setminus D\ell ) \cup (D\ell \setminus D) is the symmetric difference of sets. Moreover,
since we consider piecewise linear finite elements which are set to zero outside of D\ell ,
we have \int 

T̃

a(y)\nabla u\ell (y)\nabla v\ell dx = \nabla u\ell (y)| T\nabla v\ell | T

\int 

T̃\cap T

a(y) dx,

where T \in \scrT \ell is the polygonal approximation to T̃ . Hence, setting

a\ell (y)| T\cup T̃ :=
1

| T | 

\int 

T̃\cap T

a(y) dx
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yields

\int 

T̃

a(y)\nabla u\ell (y)\nabla v\ell dx =

\int 

T

a\ell (y)\nabla u\ell (y)\nabla v\ell dx for all T \in \scrT \ell , v\ell \in \scrS \ell (D)

and, therefore,

\int 

D

a(y)\nabla u\ell (y)\nabla v\ell dx =

\int 

D\ell 

a\ell (y)\nabla u\ell (y)\nabla v\ell dx for all v\ell \in \scrS \ell (D).

Nevertheless, for numerical computations, it is more convenient to assume that a(y) \in 
C0,1(D \cup D\ell ) for all \ell \geq 0 and the barycenter xc \in T is also contained in T̃ . Then,
to avoid integration with respect to the curved element T̃ , we employ the midpoint
rule, i.e., we consider the piecewise constant approximation ã\ell (y)| T\cup T̃ := a(xc,y) of
the diffusion coefficient. We have the following.

Lemma 7.1. There holds

\bigm\| \bigm\| \partial α
y
(a\ell  - ã\ell )(y)

\bigm\| \bigm\| 
L\infty (D)

\leq ch\ell γ
α\| a(y)\| W 1,\infty (D)

for some constant c > 0 which depends on (7.1).

Proof. By Taylor’s theorem, there holds

(7.2) \| a(y) - a(xc,y)\| L\infty (D) \leq ch\ell \| a(y)\| W 1,\infty (D).

Moreover, we note that a\ell as well as ã\ell differ on at most | \scrT \ell | elements, where the
difference is constant for each T \in \scrT \ell . Hence, we obtain

\bigm\| \bigm\| \partial α
y

\bigl( 
a\ell  - ã\ell 

\bigr) 
(y)
\bigm\| \bigm\| 
L\infty (D)

= max
T\in \scrT \ell 

1

| T | 

\bigm| \bigm| \bigm| \bigm| 
\int 

T̃\cap T

\partial α
y
a(y) dx - 

\int 

T

\partial α
y
a(xc,y) dx

\bigm| \bigm| \bigm| \bigm| 

= max
T\in \scrT \ell 

1

| T | 

\bigm| \bigm| \bigm| \bigm| 
\int 

T̃\cap T

\partial α
y

\bigl( 
a - a(xc)

\bigr) 
(y) dx - 

\int 

T\setminus T̃

\partial α
y
a(xc,y) dx

\bigm| \bigm| \bigm| \bigm| 

\leq max
T\in \scrT \ell 

1

| T | 

\biggl( \bigm| \bigm| \bigm| \bigm| 
\int 

T̃\cap T

\partial α
y

\bigl( 
a - a(xc)

\bigr) 
(y) dx

\bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| 
\int 

T\setminus T̃

\partial α
y
a(xc,y) dx

\bigm| \bigm| \bigm| \bigm| 
\biggr) 
.

Obviously, since a(y) as well as a(xc,y) are affine functions with respect to y, all
derivatives for | α| > 1 vanish. For | α| \leq 1, the first term is estimated by (7.2)
together with the fact that | T | = | T \cap T̃ | 

\bigl( 
1 + \scrO (h\ell )

\bigr) 
, while the second term can be

bounded by h\ell \gamma k\| a(y)\| W 1,\infty (D) if \alpha k = 1, due to (7.1). Consequently, we obtain

\bigm\| \bigm\| \partial α
y

\bigl( 
a\ell  - ã\ell 

\bigr) 
(y)
\bigm\| \bigm\| 
L\infty (D)

\leq 

\left\{ 
  
  

ch\ell \| a(y)\| W 1,\infty (D), | α| = 0,

ch\ell \gamma k\| a(y)\| W 1,\infty (D), \alpha k = 1,

0, | α| > 1,

for some constant c > 0. This completes the proof.

Having this lemma at our disposal, we can prove the main result of this section.

Theorem 7.2. Let u\ell \in \scrS \ell (D) be the solution to

\int 

D\ell 

a\ell (y)\nabla u\ell \nabla v\ell dx =

\int 

D\ell 

fv\ell dx for all v\ell \in \scrS \ell (D),
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while ũ\ell \in \scrS \ell (D) solves
\int 

D\ell 

ã\ell (y)\nabla ũ\ell \nabla v\ell dx =

\int 

D\ell 

fv\ell dx for all v\ell \in \scrS \ell (D).

Then, there holds

\| \partial α
y
(u\ell  - ũ\ell )(y)\| H1(D) \leq Ch\ell c

| α| | α| !γα\| a(y)\| W 1,\infty (D)\| ũ(y)\| H1(D)

for some constants C, c > 0, which are independent of the parameter dimension m.

Proof. There holds
\int 

D\ell 

a\ell (y)\nabla 
\bigl( 
u\ell  - ũ\ell 

\bigr) 
(y)\nabla v\ell dx =

\int 

D\ell 

(ã\ell  - a\ell )(y)\nabla ũ\ell (y)\nabla v\ell dx.

Differentiating this equation yields via the Leibniz formula
\int 

D\ell 

a\ell (y)\nabla \partial 
α

y

\bigl( 
u\ell  - ũ\ell 

\bigr) 
(y)\nabla v\ell dx

=  - 
\sum 

\{ k:\alpha k \not =0\} 

\alpha k

\int 

D\ell 

\partial eka\ell (y)\nabla \partial 
α - ek
y

\bigl( 
u\ell  - ũ\ell 

\bigr) 
(y)\nabla v\ell dx

+

\int 

D\ell 

(ã\ell  - a\ell )(y)\nabla \partial 
α

y
ũ\ell (y)\nabla v\ell dx

+
\sum 

\{ k:\alpha k \not =0\} 

\alpha k

\int 

D\ell 

\partial ek(ã\ell  - a\ell )(y)\nabla \partial 
α - ek
y

ũ\ell (y)\nabla v\ell dx.

Hence, choosing v\ell = \partial α
y
(u\ell  - ũ\ell 

\bigr) 
(y) results in

a\ell ,min\| \partial 
α

y
(u\ell  - ũ\ell 

\bigr) 
(y)\| H1(D) \leq 

\sum 

\{ k:\alpha k \not =0\} 

\alpha k\gamma k\| \partial 
α - ek
y

(u\ell  - ũ\ell )(y)\| H1(D)

+ ch\ell \| a(y)\| W 1,\infty (D)\| \partial 
α

y
ũ\ell (y)\| H1(D)

+
\sum 

\{ k:\alpha k \not =0\} 

\alpha kc\gamma kh\ell \| a(y)\| W 1,\infty (D)\| \partial 
α - ek
y

ũ\ell (y)\| H1(D),

where a\ell ,min > 0 is the constant of ellipticity associated to a\ell .
Next, we note that the standard bootstrapping argument can be employed to

obtain the estimate

\| \partial α
y
ũ(y)\| H1(D) \leq C| α| !c| α| γα\| ũ(y)\| H1(D)

for some constants C, c > 0; see, e.g., [9]. Therefore, we arrive at

a\ell ,min\| \partial 
α

y
(u\ell  - ũ\ell 

\bigr) 
(y)\| H1(D) \leq 

\sum 

\{ k:\alpha k \not =0\} 

\alpha k\gamma k\| \partial 
α - ek
y

(u\ell  - ũ\ell )(y)\| H1(D)

+ C| α| !h\ell c
| α| γα\| a(y)\| W 1,\infty (D)\| ũ(y)\| H1(D).

From the previous estimate, the claim is again obtained as in the proof of [34, Theorem
7].

The theorem directly yields to the fully discrete generic estimate
\bigm\| \bigm\| (Int - Q\ell )(u

p  - ũ
p
\ell \prime )
\bigm\| \bigm\| 
\scrX 

\lesssim 2 - (\ell +\ell \prime )\| f\| pL2(D) for p = 1, 2

by using (6.2) and the triangle inequality. Hence, Theorem 6.6 holds with the obvious
modifications also for ũpj - \ell instead of upj - \ell .
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Fig. 3. Tetrahedralizations of four different resolutions for the unit ball.

8. Numerical results. The numerical examples in this section are performed in
three spatial dimensions. For the finite element discretization, we use MATLAB and
the Partial Differential Equation Toolbox.2 In both examples, the error is measured by
interpolating the obtained solutions on a sufficiently fine grid and comparing it there
to a reference solution. We consider MLMC, MLQMC based on the Halton sequence,
and MLCC. Moreover, we set the density to \rho (y) = (1/2)m for our problems.

8.1. An analytical example. With our first example, we intend to validate the
proposed method. To this end, we consider a simple quadrature problem on the unit
ball D = \{ x \in R

3 : \| x\| 2 < 1\} . Figure 3 depicts different tetrahedralizations for this
geometry, which are in particular not nested. We aim at computing the expectation
of the solution u to the parametric diffusion equation (1.1) with right-hand side f \equiv 1
and random diffusion coefficient

a(y) =

\biggl( 6\prod 

i=1

3

5

\bigl( 
2 - y2i

\bigr) \biggr)  - 1

.

Since the diffusion coefficient is independent of the spatial variable, we can reformulate
the equation according to

 - ∆u(y) =

6\prod 

i=1

3

5

\bigl( 
2 - y2i

\bigr) 
in D, u(y) = 0 on \partial D, y \in Γ.

Thus, since the Bochner integral interchanges with closed operators (see, e.g., [32]),
we obtain for the expectation of u the equation

(8.1)  - ∆E[u(y)] = E

\biggl[ 6\prod 

i=1

3

5

\bigl( 
2 - y2i

\bigr) \biggr] 
= 1 in D, u(y) = 0 on \partial D, y \in Γ.

Obviously, this equation is solved by E[u](x) = (1 - \| x\| 2)
2/6.

In order to measure the error to the approximate solution, we interpolate the exact
solution to a mesh consisting of 12,047,801 finite elements (this is level j = 7). This
involves a mesh size of h7 = 0.0047. For the levels j = 0, . . . , 6, the mesh sizes and
corresponding DoF are given in Table 1. Moreover, we chose N0 = 10 for the Monte
Carlo quadrature and for the quasi–Monte Carlo quadrature and set N\ell = 10 \cdot 4\ell 

and N\ell = 10 \cdot 2\ell , respectively. For MLMC, in order to approximate the root mean
square error, we average five realizations of the related approximation error. For the

2Release 2015a.
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Table 1

Mesh sizes and DoF on the different levels for the unit ball.

j 0 1 2 3 4 5 6
hj 0.6 0.3 0.15 0.075 0.0375 0.0188 0.0094
dofj 27 244 1585 6042 29069 133376 551327
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Fig. 4. H1-errors of the mean for the different quadrature methods versus mesh width (left)
and versus work (right) on the unit ball.

Clenshaw–Curtis quadrature, we choose the sparse grid quadrature of level

(8.2) q =

\biggl\lfloor 
j  - \ell 

r

\biggr\rfloor 
+ q0,

on the spatial discretization level \ell , where j is the maximum level in the finite element
discretization, r is the smoothness parameter from Lemma, 6.4, and q0 \in N is an offset.
This results in approximately N\ell \approx q52q samples; cf. [38].

On the left-hand side of Figure 4, the error of MLQMC, MLMC, and MLCC for
the approximation of the mean is depicted with respect to the H1-norm. For MLCC,
the errors for r = 1, 2, 4 (cf. (8.2)) are shown. In order to achieve the correct linear
rate, we had to choose q0 = 2, 3, 4 correspondingly. All quadrature methods exhibit
the expected linear rate. The right-hand side of the same figure shows the error versus
work rate, which is expressed in terms of fine grid samples: In accordance with the
DoF denoted in Table 1, we scale each sample on a particular level \ell with the factor
DoF\ell /DoFj , i.e., we weight a fine grid sample by 1 and scale the coarse grid samples
accordingly. The work is then determined by summing up the total number of samples
per level times the related weight.

It can be seen that MLQMC achieves the best error versus work ratio. However,
the plot indicates that MLCC for r = 2, 4 will outperform MLMQC for higher levels.
MLMC provides only half the rate of MLQMC.

8.2. A more complex example. In our second example, the spatial domain is
given by a model of the Zarya module of the International Space Station, which was
the first module to be launched.3 Figure 5 shows different tetrahedralizations of this
geometry with decreasing mesh size. Note that the geometry can be embedded into
a cylinder with radius 0.52 and height 1.58.

3We thank Martin Siegel (Rheinbach, Germany), who kindly provided us with this model.



702 M. GRIEBEL, H. HARBRECHT, AND M. D. MULTERER

Fig. 5. Tetrahedralizations of four different resolutions for the Zarya geometry.

Fig. 6. Mean (left) and variance (right) of the model problem on the Zarya geometry.

Table 2

Mesh sizes and DoF on the different levels for the Zarya geometry.

j 0 1 2 3 4 5 6
hj 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078
dofj 174 333 1240 5846 30171 141029 617111

In this example, the parametric diffusion coefficient is given by

a(x,y) = 1 +
exp(\| x\| 22)

20

\biggl( 
sin(2\pi x1)y1 +

1

2
sin(2\pi x2)y2 +

1

4
sin(2\pi x3)y3

+
1

8
sin(4\pi x1) sin(4\pi x2)y4 +

1

16
sin(4\pi x1) sin(4\pi x3)y5

+
1

32
sin(4\pi x2) sin(4\pi x3)y6

\biggr) 

and f = 10. For x \in D and y \in Γ, the diffusion coefficient varies approximately
in the range [0.19, 1.81]. Figure 6 shows the mean (left) and the variance (right) of
the reference solution. It has been computed on a mesh with 13,069,396 tetrahedrons
resulting in a mesh size of h = 0.0039 by 10,000 quasi–Monte Carlo samples based on
the Halton sequence. For the levels j = 0, . . . , 6, the mesh sizes and corresponding
DoF are given in Table 2.

Figure 7 visualizes the approximation errors of the mean with respect to the
mesh width (left) and with respect to the work (right), respectively. For MLQMC
and MLCC, the number of quadrature points are chosen as in the previous example.
For MLCC, the choice q0 = 2 (cf. (8.2)) suffices for r = 1, 2, 4. Note that resulting
error versus mesh width curves coincide up to the resolution of the plot and are hence
represented by a single line. All quadrature methods show a similar convergence rate,
which is slightly worse than the optimal rate h. In this example, MLCC for r = 4
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Fig. 7. H1-errors of the mean for the different quadrature methods versus mesh width (left)
and versus work (right) on the Zarya geometry.

10 - 2 10 - 1

10 - 2

10 - 1

mesh width h

W
1
,1
-e
rr
or

MLQMC

MLCC

MLMC

Asymptotics h

101 102 103 104 105

10 - 2

10 - 1

work

W
1
,1
-e
rr
or

MLQMC

MLMC

MLCC(r = 1)

MLCC(r = 2)

MLCC(r = 4)

Fig. 8. W 1,1-errors of the second moment for the different quadrature methods versus mesh
width (left) and versus work (right) on the Zarya geometry.

provides the best error versus work rate, while MLQMC performs similarly to MLCC
for r = 2. Again, MLMC provides the worst error versus work rate.

Finally, Figure 8 shows the respective plots for the second moment, i.e., E[u2].
Here, the error slightly deteriorates, which might be caused by the interpolation pro-
cedure that is used to compute the error. In terms of error versus work, the results
are similar to the approximation of the mean; cf. Figure 7.

9. Conclusion. In the present article, we have provided a rigorous analysis of
the approximation of curved boundaries and of the numerical quadrature for the bi-
linear form in the context of multilevel quadrature methods. The obtained results
are robust with respect to the parameter dimension m. Our results imply that a
level-dependent polygonal approximation of curved domain boundaries is sufficient
for computing the finite element solution, while maintaining the overall accuracy of
the multilevel method. In addition, we have reversed the construction of the conven-
tional multilevel quadrature. This enables us to give up the nestedness of the spatial
approximation spaces. Hence, black-box finite element solvers can be directly applied
to compute the solution of the underlying boundary value problem. Moreover, the
cost can considerably be reduced by the application of nested quadrature formulas.
The theoretical findings have been confirmed by numerical results for the Clenshaw–
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Curtis quadrature and the quasi–Monte Carlo quadrature based on Halton points.
Of course, other nested quadrature formulas like the Gauss–Patterson quadrature
can be used as well. The application of quadrature formulas which are tailored to a
possible anisotropy of the integrand is also straightforward. If nonnested quadrature
formulas are applied, one arrives at a combination-technique-like representation of the
multilevel quadrature.
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