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Abstract

In this work, we establish a new truncation error estimate of the singular value decomposition (SVD) for a
class of Sobolev smooth bivariate functions κ ∈ L2(Ω, Hs(D)), s ≥ 0 and κ ∈ L2(Ω, Ḣs(D)) with D ⊂ Rd,
where Hs(D) := W s,2(D) and Ḣs(D) := {v ∈ L2(D) : (−∆)s/2v ∈ L2(D)} with −∆ being the negative
Laplacian on D coupled with specific boundary conditions. To be precise, we show the order O(M−s/d) for
the truncation error of the SVD series expansion after the M -th term. This is achieved by deriving the sharp
decay rateO(n−1− 2s

d ) for the square of the n-th largest singular value of the associated integral operator, which
improves on known results in the literature. We then use this error estimate to analyze an algorithm for solving
a class of elliptic PDEs with random coefficient in the multi-query context, which employs the Karhunen-Loève
approximation of the stochastic diffusion coefficient to truncate the model.
Keywords: eigenvalue decay, approximation of bivariate functions, Karhunen-Loève approximation, PDEs with
random coefficient

1 Introduction
The efficient and accurate approximation of bivariate functions with a certain Sobolev regularity is of central
importance in many diverse research areas, which range from functional analysis and machine learning to model
reduction. In functional analysis, it is closely related to the so called s-numbers1 of the kernel operator, especially
to its eigenvalues through Weyl’s theorem [31]. In machine learning, the decay rate of the eigenvalues or entropy
numbers of the covariance integral operator is crucial for estimating the approximation error [14]. Also for many
recent model-order reduction algorithms, the eigenvalue decay of an associated compact operator underpins their
efficiency in practical applications.

The SVD is a popular tool for high-dimensional problems which aims at obtaining effective low-dimensional
approximations. It was developed independently in different disciplines and is known under various names, e.g., as
proper orthogonal decomposition (POD), as Karhunen-Loève (KL) expansion, and as principal component analy-
sis (PCA). Its performance relies directly on the decay rate of the singular values of a bivariate kernel function. It
is also encountered in multiscale numerical methods for problems in heterogeneous media, e.g., within the parti-
tion of unity method [29] or within the generalized multiscale finite element method [9, 19, 27]. The convergence
rates of these modern numerical approximation methods again depend on the eigenvalue decay of an associated
compact operator. Moreover, in statistical inference, the singular value decay is often used to characterize the
smoothing property of the associated integral operator, which directly impacts the optimality of the regularized
regression estimator [14, 10].

In this article, we focus on the singular value decomposition (SVD) of a certain class of Sobolev smooth
bivariate functions. We specifically consider functions in L2(Ω, Hs(D)) with Hs(D) := W s,2(D), and we
consider functions in L2(Ω, Ḣs(D)) where Ḣs(D) := {v ∈ L2(D) : (−∆)s/2v ∈ L2(D)} with −∆ being the
negative Laplacian on D coupled with specific boundary conditions. Here, D ⊂ Rd is a bounded domain with a
regular boundary and Ω is a bounded (not necessarily finite-dimensional) domain with dimension d′. We denote
d∗ := min{d, d′}. Throughout this paper, we denote I := (−1, 1) ⊂ R and Id := (−1, 1)d.

*Institut für Numerische Simulation, Universität Bonn, Wegelerstraße 6, D-53115 Bonn, Germany; griebel@ins.uni-bonn.de
†Fraunhofer SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
‡Institut für Numerische Simulation, Universität Bonn, Wegelerstraße 6, D-53115 Bonn, Germany; li@ins.uni-bonn.de.
1s-numbers are a scalar sequence assigned to an operator characterizing its degree of approximability or compactness [31]. They include

approximation numbers, eigenvalues or Weyl numbers, among others.
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Table 1: State of the art of eigenvalue decay results and their corresponding truncation error estimates.

reference κ(y, x) λn
M -term truncation error

Condition Rate
[2] L2(Ω, Hs(D)) O(n−

s
d ) s > d O(M

1
2−

s
2d )

[31] L2(Ω, Hs(D)) O(n−
2s
d −

1
2 ) s > d

4 O(M
1
4−

s
d )

[22] Hs(Ω×D) O(n−
2s
d∗ ) s > d∗

2 O(M
1
2−

s
d∗ )

[3] L2(Ω, Hs(I)) - s > 0 O(M−s)

results of this article L2(Ω, Ḣs(D)) O(n−1− 2s
d ) s > 0 O(M−

s
d )

L2(Ω, Hs(D))

First, let us briefly review related results from functional analysis: For any given bivariate function κ(y, x) ∈
L2(Ω, Hs(D)), we define the associated covariance function R(x, x′) by

R(x, x′) =

ˆ
Ω

κ(y, x)κ(y, x′)dy ∈ Hs(D)×Hs(D).

Furthermore, let R denote the integral operator on L2(D) with associated kernel R(x, x′). Then, R is compact
and self-adjoint with range in Hs(D). Obviously, the singular values of κ(y, x) are equivalent to the square root
of the eigenvalues of R. It was already pointed out in [2, Theorem 13.6] that, for s > d/2, the n-th largest
eigenvalue of R is at least of the order O(n−

s
d ). Then, the rate of the M -term truncation error, i.e the truncation

error of the SVD series expansion after the M -th term, is at least of the order O(M
1
2−

s
2d ). A related result

can be found in e.g. [35]. From a functional analytic point of view, the approximability and compactness of an
operator can be characterized by a certain scalar sequence named s-scale, which is unique for the class of operators
acting on a Hilbert space [31, Section 2.11.9]. With nonincreasingly ordered eigenvalues {λn}∞n=1 ofR, we have
{λn}∞n=1 ∈ ` 2d

4s+d ,2
[31, Section 6.4.19] and [26, Section 3.c.5]. This means that the n-th largest eigenvalue of

R is at least of the order O(n−
2s
d −

1
2 ). Thus, the decay rate of the M -term truncation error is at least of the order

O(M
1
4−

s
d ) if s > d/4. As a matter of fact, this estimate is even optimal for the special class of integral operators

with associated kernels in Hs(D)×Hs(D).
In the last couple of years, the approximation of high-dimensional stochastic processes based on the KL

expansion has gained much popularity [3, 22, 35]. For example, for κ(y, x) ∈ Hs(Ω × D), a decay rate of
the order O(n−

2s
d∗ ) was established in [22] for the n-th largest eigenvalue of R using a minmax principle. This

results in a rate of the order O(M
1
2−

s
d∗ ) for the M -term truncation error if s > d∗/2. Furthermore, in [3], a

direct estimate of the error rate for the M -term truncation of the order O(M−
s
1 ) was given in the case D being a

one-dimensional interval. Moreover, as pointed out in that paper, this truncation estimate can be extended to the
higher dimension case as well, which would result in the optimal M -term truncation rate of O(M−

s
d ). There,

however, no decay rate of the eigenvalues was given. For the ease of comparison, we summarize these existing
results on the eigenvalue decay rate and on the M -term approximation error in Table 1. Moreover, in [36, 37],
the anisotropic Sobolev space SWR

q,α and the anisotropic Nikol’skii space NHR
q are considered, where R, q and

α are d-dimensional vectors. These spaces consist of periodic functions, which admit an integral representation
in form of a convolution of certain L2 functions with the Bernoulli kernels in each component. In this periodic
setting, which is different from ours, an asymptotic decay rate of also the order O(M−s/d) was shown for NHR

q ,

where R = [R1,R2] and R1 = (0, · · · , 0), R2 = (s, · · · , s). Since in this case, NH(0,··· ,0;s,··· ,s)
(2,··· ,2) is larger

than SW (0,··· ,0;s,··· ,s)
(2,··· ,2),α , the rate O(M−s/d) also holds for the corresponding anisotropic periodic Sobolev space

SW
(0,··· ,0;s,··· ,s)
(2,··· ,2),α . Consequently, an eigenvalue decay of O(n−2s/d−1) can be inferred, which is analogous to our

result, however only for the periodic situation and product domains, see [23, 18, 33] for more references on this
setting. We now deal with the non-periodic setting and general non-product Lipschitz domains Ω and D.

In this paper, we shall analyze the eigenvalues of the operator R for the cases κ(y, x) ∈ L2(Ω, Ḣs(D))

and κ(y, x) ∈ L2(Ω, Hs(D)). We establish a decay rate of O(n−1− 2s
d ) of the n-th largest eigenvalue. This

decay estimate is consistent with the numerical findings in [22], and, to the best of our knowledge, it is presently
the sharpest one. Such a result for the two different considered cases is obtained in two different ways: For
κ(y, x) ∈ L2(Ω, Ḣs(D)), our proof is based on an alternative representation of the minmax principle [20] and
a careful characterization of the operator R. For κ(y, x) ∈ L2(Ω, Hs(D)), our proof employs Stein’s extension
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theorem and an argument using the result from the first case in the special situation D = (−1, 1)d, cf. Proposition
3.1. One distinct feature of our approach is that it can directly give a truncation error estimate of the order
O(M−

s
d ) for bivariate functions with a rather low degree of Sobolev regularity in y-direction.

To illustrate the use of our new decay result, we shall provide a detailed error analysis of an algorithm for
solving elliptic PDEs involving high-dimensional stochastic diffusion coefficients κ(y, x) in a multi-query con-
text. This task arises in e.g., optimal control, inverse problems, Bayesian inversion and uncertainty quantification
(see the references in the surveys [11, 34]). In these algorithms, one usually truncates the stochastic diffusion
coefficient, i.e. one truncates its KL series expansion after the M -th term. This leads to an approximative model
with finite-dimensional noise that is amenable to practical computations. Our new truncation estimate in Theorem
3.3 then allows, under mild integrability conditions on the source term, to derive an improved error estimate of the
stochastic solution due to the KL truncation of the coefficient κ(y, x), cf. Theorem 4.2.

The remainder of this paper is organized as follows. In Section 2, we recall preliminaries on the SVD ap-
proximation of bivariate functions and basic facts about Sobolev spaces and Lorentz sequence spaces. Then, in
Section 3, we establish eigenvalue decay rates for a bivariate function κ(y, x) ∈ L2(Ω, Ḣs(D)) and κ(y, x) ∈
L2(Ω, Hs(D)). In Section 4, we discuss an algorithm for elliptic PDEs with random coefficient and give an error
analysis of it due to the KL truncation of the stochastic diffusion coefficient. Finally, we give a conclusion in
Section 5.

2 Preliminaries
Let us recall some facts on the approximation of bivariate functions. Throughout this paper, we suppose that
Ω is a bounded (not necessarily finite-dimensional) domain and D ⊂ Rd is equipped with a regular boundary.
Now, consider a bivariate function κ(y, x) ∈ L2(Ω × D) = L2(Ω) × L2(D). The associated integral operator
S : L2(D)→ L2(Ω) is defined by

(Sv)(y) =

ˆ
D

κ(y, x)v(x)dx, (2.1)

with its adjoint operator S∗ : L2(Ω)→ L2(D) defined by

(S∗v)(x) =

ˆ
Ω

κ(y, x)v(y)dy. (2.2)

Next, let
R : L2(D)→ L2(D), R = S∗S.

Then R is a nonnegative self-adjoint Hilbert-Schmidt operator with its kernel R ∈ L2(D × D) : D × D → R
given by2

R(x, x′) =

ˆ
Ω

κ(y, x)κ(y, x′)dy.

Hence, for any v ∈ L2(D), we have

Rv(x) =

ˆ
D

R(x, x′)v(x′)dx′ =

ˆ
D

ˆ
Ω

κ(y, x)κ(y, x′)v(x′)dydx′.

According to standard spectral theory for compact operators [42], the operator R has at most countably many
discrete eigenvalues, with zero being the only accumulation point, and each non-zero eigenvalue has only finite
multiplicity. Let {λn}∞n=1 be the sequence of eigenvalues (with multiplicity counted) associated to R, which are
ordered nonincreasingly, and let {φn}∞n=1 be the3 corresponding eigenfunctions. The eigenfunctions {φn}∞n=1

can be chosen to be orthonormal in L2(D). Furthermore, for any λn 6= 0, we define

ψn(y) =
1√
λn

ˆ
D

κ(y, x)φn(x)dx. (2.3)

2If the bivariate function κ(y, x) represents a stochastic process, R(x, x′) is often denoted as the covariance function.
3For multiplicity > 1, one can always select an orthonormal basis for the eigenspaces sinceR is self-adjoint.
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Then it is easy to verify that the sequence {ψn}∞n=1 is orthonormal in L2(Ω). Moreover, the sequence {λn}∞n=1

can be characterized by the so-called approximation numbers (cf. [31, Section 2.3.1]). They are defined by

λn = inf{‖R − L‖ : L ∈ F(L2(D)), rank(L) < n} (2.4)

where F(L2(D)) denotes the set of the finite rank operators on L2(D). This equivalency is frequently employed
to estimate eigenvalues by constructing finite rank approximation operators toR.

The singular value decomposition of the bivariate function κ(y, x) then refers to the expansion

κ(y, x) =

∞∑
n=1

√
λnφn(x)ψn(y),

where the series converges in L2(Ω × D). Moreover, for any M ∈ N, the M -term truncated SVD, denoted by
κM (y, x), is defined by

κM (y, x) =

M∑
n=1

√
λnφn(x)ψn(y). (2.5)

The associated M -term KL truncation error is then

‖κ(y, x)− κM (y, x)‖L2(Ω×D) =

∥∥∥∥∥∑
n>M

√
λnφn(x)ψn(y)

∥∥∥∥∥
L2(Ω×D)

. (2.6)

It is worth emphasizing the optimality of eigenfunctions {φn}∞n=1 in the sense that the mean-square error
resulting from a finite-rank approximation of κ(y, x) is minimized [21]. Thus, the eigenfunctions indeed minimize
the truncation error in the L2-sense, i.e.

min
{cn(x)}Mn=1⊂L

2(D)

{cn(x)}Mn=1 orthonormal

∥∥∥∥∥κ(y, x)−
M∑
n=1

(ˆ
D

κ(y, x)cn(x)dx

)
cn(x)

∥∥∥∥∥
L2(Ω×D)

=

√∑
n>M

λn. (2.7)

There are various articles on the convergence rate of the M -term approximation κM (y, x) to κ(y, x) as M →
∞ [3, 22, 35, 39]. It is well known [31] that, as smoother the kernel R(x, x′) is, as faster the decay of the
eigenvalues {λn}∞n=1 is, and thus as faster the decay of the KL truncation error is. Recently, for the heat equation,
an exponentially fast decay of the truncation error was shown by exploiting the special structure of the Grammian
matrix [3].

In Section 3 below, we will derive a KL truncation error estimate using a new decay rate estimate of the
eigenvalues {λn}∞n=1, which in turn directly implies the decay rate of the SVD approximation. Our result relies
essentially on the following regularity condition on the bivariate function κ(y, x):

Assumption 2.1 (Regularity of κ(y, x)). There exists some s ≥ 0 such that4 κ(y, x) ∈ L2(Ω, Hs(D)).

Under Assumption 2.1, by the definition of the kernel R(x, x′), we have R(x, x′) ∈ Hs(D)×Hs(D).
We conclude this section with some notation. Let two Banach spaces V1 and V2 be given. Then, B(V1, V2)

stands for the Banach space composed of all continuous linear operators from V1 to V2 and B(V1) stands for
B(V1, V1). The set of nonnegative integers is denoted by N. For any index α ∈ Nd, |α| is the sum of all
components. The letter M is reserved for the truncation number of the SVD modes. We write A . B if A ≤ cB
for some absolute constant c which depends only on the domain D, and we likewise write A & B. Finally, ‖ · ‖
denotes the Euclidean norm. Moreover, for any m ∈ N, 1 ≤ p ≤ ∞, we follow [1] and define the Sobolev space
Wm,p(D) by

Wm,p(D) = {u ∈ Lp(D) : Dαu ∈ Lp(D) for 0 ≤ |α| ≤ m}.
It is equipped with the norm

‖u‖Wm,p(D) =


( ∑

0≤|α|≤m

‖Dαu‖pLp(D)

) 1
p

, if 1 ≤ p <∞,

max
0≤|α|≤m

‖Dαu‖L∞(D) , if p =∞.

4Note here that the space L2(Ω, Hs(D)) is isomorphic to L2(Ω)×Hs(D).
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The space Wm,p
0 (D) is the closure of C∞0 (D) in Wm,p(D). Its dual space is W−m,q(D), with 1/p + 1/q = 1.

Also we use Hm(D) = Wm,p(D) for p = 2. The fractional order Sobolev space W s,p(D), s ≥ 0, s /∈ N, is
defined by means of interpolation [1]. Furthermore, we will need the space [40, Section 4.3.2]

H̃1/2(D) = {v : v ∈ H1/2(Rd), supp(v) ⊂ D̄}.

Finally, besides Sobolev spaces, we will resort to Lorentz sequence spaces `r,w. They are useful in the study of
s-scales [31], especially for the characterization of the growth of a nonnegative, nonincreasing sequence {an}∞n=1.
Here, a sequence {an}∞n=1 ∈ `r,w if {n 1

r−
1
w an}∞n=1 ∈ `w [31, Section 2.1.4] with `w being the classical sequence

space which consists of the w-power summable sequences. The following embedding properties hold:

Proposition 2.1. [31, Section 2.1.11]

1. `r0,w0
( `r1,w1

for 0 < r0 < r1 <∞ and arbitrary w0, w1 > 0,

2. `r,w0
( `r,w1

for arbitrary r > 0 and 0 < w0 < w1 ≤ ∞.

3 Eigenvalue decay and KL truncation error
In this section, we establish a sharp eigenvalue decay rate for the Hilbert-Schmidt operator R and discuss its use
in analyzing the KL truncation error. We shall consider the following two cases (a) κ(y, x) ∈ L2(Ω, Ḣs(D))
and (b) κ(y, x) ∈ L2(Ω, Hs(D)) separately. Note that L2(Ω, Ḣs(D)) ⊂ L2(Ω, Hs(D)). For case (a) we derive
{λn}∞n=1 ∈ ` d

2s+d ,1
, i.e., a decay rate of the order O(n−1− 2s

d ), using a rearrangement argument originating from
the minmax principle [20]. For case (b) we show the same decay rate by employing Stein’s extension theorem
and an argument based on the result for the first case in the special situation D = (−1, 1)d, cf. Proposition
3.1. It however involves a constant Cext(D, s) arising from the extension operator which is difficult to control.
Nevertheless,R belongs to the trace class in either case.

3.1 Case (a): κ(y, x) ∈ L2(Ω, Ḣs(D))

By definition, the associated operator R is self-adjoint and nonnegative. The classical Hilbert-Schmidt theorem
gives then the series expansion [42]

R(x, x′) =

∞∑
n=1

λnφn(x)φn(x′), (3.1)

with convergence in the L2(D ×D)-norm.
First, we show a smoothing property of the operatorR under Assumption 2.1.

Lemma 3.1. Let Assumption 2.1 hold. ThenR ∈ B(L2(D), Hs(D)).

Proof. Consider s ∈ N. For any v ∈ L2(D) and |α| ≤ s, by taking the αth derivative with respect to x, we have

∂α(Rv) =

ˆ
Ω

(

ˆ
D

κ(y, x′)v(x′)dx′)∂ακ(y, x)dy.

With Hölder’s inequality, this yields

‖∂α(Rv)‖2L2(D) ≤ ‖κ‖
2
L2(Ω×D) ‖∂

ακ‖2L2(Ω×D) ‖v‖
2
L2(D) .

Summing up all terms for |α| ≤ s leads to

‖Rv‖2Hs(D) =
∑
|α|≤s

‖∂α(Rv)‖2L2(D) ≤
∑
|α|≤s

‖κ‖2L2(Ω×D) ‖∂
ακ‖2L2(Ω×D) ‖v‖

2
L2(D)

= ‖κ‖2L2(Ω×D) ‖κ‖
2
L2(Ω,Hs(D)) ‖v‖

2
L2(D) .

Consequently,
‖R‖B(L2(D),Hs(D)) ≤ ‖κ‖L2(Ω×D) ‖κ‖L2(Ω,Hs(D)) .

This shows the assertion for s ∈ N. The general case follows from the Riesz-Thorin interpolation theorem.
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To study the eigenvalue decay of the operatorR, we need a few more auxiliary tools. Recall the floor function
b·c, defined by brc = max{k ∈ N : k ≤ r}, and the ceiling function d·e, defined by dre = min{k ∈ N : k ≥ r}
for any r ≥ 0.

Definition 3.1 (Trace condition). Given s ≥ 0, let D ⊂ Rd be a bounded Cbsc,1-domain. Let ∆ be the Laplacian
with respect to the spatial variable x (on the domain D) and let n be the unit outward normal to the boundary
∂D. We say v ∈ Hs(D) satisfies the trace condition, if one of the following statement holds.

(i) If s > 1
2 : ∆jv = 0 on ∂D for all 0 ≤ j ≤ b s2 −

1
4c. In the case that s2 −

1
4 = b s2 −

1
4c, we replace the

highest order condition with ∆
s
2−

1
4 v ∈ H̃ 1

2 (D);

(ii) If s > 3
2 : ∂

∂n∆jv = 0 on ∂D for all 0 ≤ j ≤ b s2 −
3
4c. In the case that s2 −

3
4 = b s2 −

3
4c, we replace the

highest order condition with ∂
∂n∆

s
2−

3
4 v ∈ H̃ 1

2 (D);

(iii) If s > 3
2 : ∂

∂n∆jv + h∆jv = 0 for some h ≥ 0 on ∂D for all 0 ≤ j ≤ b s2 −
3
4c. In the case that

s
2 −

3
4 = b s2 −

3
4c, we replace the highest order condition with ∂

∂n∆
s
2−

3
4 v + h∆

s
2−

3
4 v ∈ H̃ 1

2 (D).

Next, we introduce the space Ḣs(D) and discuss its properties. Let A = −∆ represent the negative Laplacian
on a subspace of H2(D) that satisfies Definition 3.1 (for s = 2, any bounded convex domain suffices). Then A is
nonnegative, invertible and self-adjoint. Furthermore, let {νj , ξj}∞j=1 be the eigenpairs of A with nondecreasingly
ordered eigenvalues. It is well known [13] that5

νj ≥ Cweyl(d)diam(D)−2j2/d

where Cweyl(d) denotes a positive constant depending on d only and diam(D) represents the diameter of D, and
it is clear that {ξj}∞j=1 forms an orthonormal basis in L2(D). With (·, ·) being the L2(D) inner product, each v ∈
L2(D) admits the expansion v =

∑∞
j=1(v, ξj)ξj . Next, for s ≥ 0, we define a Hilbert space Ḣs(D) ⊂ Hs(D)

by

Ḣs(D) =

v ∈ L2(D) :

∞∑
j=1

νsj · (v, ξj)2 <∞

 . (3.2)

This space is endowed with an inner product (·, ·)s defined by

(v, w)s =

∞∑
j=1

νsj (v, ξj)(w, ξj), for v, w ∈ Ḣs(D).

We denote by | · |s the induced norm. In view that νj = O(j2/d), the norm | · |s is stronger than the norm ‖·‖L2(D).
Assume that D ⊂ Rd is a Cbsc,1-bounded domain. Then the space Ḣs(D) can also be characterized by (see

[38, Lemma 3.1] and [40, Theorem 4.3.3])

Ḣs(D) = {v ∈ Hs(D) : v satisfies Definition 3.1}. (3.3)

Here, the boundary condition for the operator A is the same as that in (3.3) when s = 2.
This fractional-order space Ḣs(D) has many applications in the sparse representation of solutions to elliptic

operators (see e.g., [15]). It also shares a certain similarity to the native space associated with a positive Hilbert-
Schmidt kernel on L2(D), cf. [32]. In view of (3.2) and [16, Theorem 4], the orthonormal basis {ξj} (ONB) is
optimal in Ḣs(D). This has to be compared to [41, Theorem 4.22] where a sequence of optimal ONB, i.e., via
wavelets, are provided for a smaller space, namely Hs

0(D), with all traces vanishing.
For any s > 0, one can now define the fractional power operator T = As/2 on Ḣs(D) [8, 25] by

Tv =

∞∑
j=1

ν
s
2
j · (v, ξj) · ξj .

5More precisely, under a zero Dirichlet and Neumann boundary condition, there holds νj ≥
Cweyl(d)(j+1)

2
d

diam(D)2
and

Cweyl(d)j
2
d

diam(D)2
, respectively

(cf. [28, Theorem 5.3]).
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Equivalently, it can be written as a Dunford-Schwartz integral in the complex plane C. By construction, T is
nonnegative and self-adjoint and gives an isomorphism between Ḣs(D) and L2(D). It possesses the same eigen-
functions as A = −∆.

Let {µj}∞j=1 be the eigenvalues of T in nondecreasing order. Then the relations T = As/2 and νj ≥
Cweyl(d)diam(D)−2j2/d yield

µj ≥ Cweyl(d)
s
2 diam(D)−sjs/d. (3.4)

One readily verifies that T ∈ B(Ḣs(D), L2(D)) and that

‖Tv‖2L2(D) =

∞∑
j=1

νsj (v, ξj)
2 = |v|2s for all v ∈ Ḣs(D). (3.5)

Now we are ready to state our regularity assumption on κ(y, x).

Assumption 3.1 (Regularity of κ(y, x)). Let D ⊂ Rd be a Cbsc,1-bounded domain for some s ≥ 0 and let
κ(y, x) ∈ L2(Ω, Ḣs(D)).

Note here that, by Lemma 3.1, the eigenfunctions φn satisfy φn ∈ Hs(D), and there holds ‖φn‖Hs(D) =

O(λ−1
n ). Indeed, by definition, we can obtain

φn = λ−1
n Rφn.

Then after taking the ‖ · ‖Hs(D) norm on both sides, the desired result follows with Lemma 3.1 and the fact that
‖φn‖L2(D) = 1. Under Assumption 3.1, φn(x) satisfies the same trace condition as κ(y, ·). This property is of
critical importance in the proof later on.

In view of the characterization (3.3), Assumption 3.1 may seem restrictive. Nevertheless, it is natural when
s is small. Moreover, in the context of Proper Orthogonal Decomposition (POD) methods for parameterized
elliptic problems, the (bivariate) function κ(y, ·) ∈ H1

0 (D) represents the solution for each fixed y ∈ Ω, i.e. it
is the solution map from the parameter space Ω to the solution space H1

0 (D). This implies directly Definition
3.1. Coincidentally, such a trace condition is also needed to ensure the fast convergence of the modified Fourier
expansion method [24].

Now, let Assumption 3.1 hold. Then Tκ(y, x) ∈ L2(Ω×D) and the eigenfunctions of the operatorR satisfy
φn(x) ∈ Ḣs(D). Moreover,

‖Tκ‖2L2(Ω×D) =

ˆ
Ω

‖Tκ(y, ·)‖2L2(D) dy,

which is equivalent to ‖κ‖2L2(Ω,Ḣs(D)) by (3.5). Next we define

RT (x, x′) =

ˆ
Ω

Tκ(y, x′)Tκ(y, x)dy ∈ L2(D ×D),

and denote byRT : L2(D)→ L2(D) the Hilbert-Schmidt operator associated with the kernel functionRT (x, x′).
Obviously,RT is compact and self-adjoint on L2(D). Let

R1 = TRT, (3.6)

with its domain D(R1) = Ḣs(D). Then, its adjoint operator R∗1 is given by R∗1 = RT . In fact, for any
v ∈ Ḣs(D) and w ∈ L2(D), by Fubini’s theorem and the symmetry of T , we have

(R1v, w) = (TRTv,w) =

ˆ
Ω

(

ˆ
D

κ(y, x′)Tv(x′)dx′)(

ˆ
D

Tκ(y, x)w(x)dx)dy

=

ˆ
Ω

(

ˆ
D

Tκ(y, x′)v(x′)dx′)(

ˆ
D

Tκ(y, x)w(x)dx)dy = (v,RTw).

The following result shows the boundedness and the symmetry of the operatorR1 restricted to Ḣs(D).

Lemma 3.2. Let Assumption 3.1 hold. Then the following statements are valid:
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(i) R1 ∈ B(Ḣs(D), L2(D)).

(ii) RT | Ḣs(D) = R1. Hence,R1 is a symmetric operator withRT as its self-adjoint extension operator.

(iii) There holds the identity

‖Tκ‖2L2(Ω×D) =

∞∑
n=1

λn ‖Tφn‖2L2(D) . (3.7)

Proof. Since T is self-adjoint, we have for any v ∈ Ḣs(D)

‖R1v‖L2(D) =

∥∥∥∥ˆ
Ω

ˆ
D

κ(y, x′)Tv(x′)dx′Tκ(y, x)dy

∥∥∥∥
L2(D)

=

∥∥∥∥ˆ
Ω

ˆ
D

Tκ(y, x′)v(x′)dx′Tκ(y, x)dy

∥∥∥∥
L2(D)

≤ ‖v‖L2(D) ‖Tκ‖
2
L2(Ω×D) ≤ |v|s ‖Tκ‖

2
L2(Ω×D) ≤ |v|s ‖κ‖

2
L2(Ω,Ḣs(D)) .

Hence,R1 ∈ B(Ḣs(D), L2(D)), which shows assertion (i).
To show assertion (ii), we proceed as follows: For any g1 ∈ Ḣs(D) and g2 ∈ L2(D), by the definition ofR1,

cf. (3.6), and by Fubini’s theorem, we haveˆ
D

(R1g1)(x)g2(x)dx =

ˆ
Ω

(

ˆ
D

(Tκ)(y, x′)g1(x′)dx′)(

ˆ
D

(Tκ)(y, x)g2(x)dx)dy

=

ˆ
D

(

ˆ
D

RT (x′, x)g1(x′)dx′)g2(x)dx =

ˆ
D

(RT g1)(x)g2(x)dx.

Thus, there holds

R1 = RT | Ḣs(D) . (3.8)

Observe thatR1 = R∗1|Ḣs(D) and thatRT = R∗T . Hence,R1 is a symmetric operator withRT as its self-adjoint
extension [42, pp. 197].

Finally, we show (3.7). By the definition of the trace of an operator and an application of Parseval’s identity
together with the self-adjointness ofRT , we obtain

Tr(RT ) =

ˆ
D

RT (x, x)dx = ‖Tκ‖2L2(Ω×D) . (3.9)

Since {ξi}∞i=1 ⊂ Ḣs(D) is an orthonormal basis in L2(D) and since the trace is independent of the specific choice
of the orthonormal basis [42, pp. 281] and relation (3.8), we deduce

Tr(RT ) =
∞∑
i=1

(R1ξi, ξi) =
∞∑
i=1

(TRTξi, ξi) =
∞∑
i=1

(RTξi, T ξi)

=

∞∑
n=1

λn

∞∑
i=1

(φn, T ξi)
2 =

∞∑
n=1

λn

∞∑
i=1

(Tφn, ξi)
2

=

∞∑
n=1

λn ‖Tφn‖2L2(D) ,

where we have employed Parseval’s identity and relation (3.5) in the last two identities. Then (3.7) follows from
(3.9).

Note at this point thatR1 is not defined on the whole space L2(D) but only on a dense subspace Ḣs(D). Thus
its adjoint with respect to L2(D) is bounded on L2(D) while R1 itself is unbounded on L2(D). We, however,
considerR1 only on its restriction to Ḣs(D), which resolves this issue.

Now we are ready to derive the decay estimate of the eigenvalues of the operatorR.

Theorem 3.1. Let Assumption 3.1 hold. Then {λn}∞n=1 ∈ ` d
d+2s ,1

. In particular,

λn ≤ Cem(d, s)Cweyl(d)−sdiam(D)2s ‖κ‖2L2(Ω,Ḣs(D)) n
−1− 2s

d ,

where Cem(d, s) denotes the embedding constant for ` d
d+2s ,1

↪→ ` d
d+2s ,∞

.
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Proof. By Lemma 3.2 (iii), it holds
ˆ

Ω

‖Tκ(y, ·)‖2L2(D) dy =

∞∑
n=1

λn ‖Tφn‖2L2(D) .

Since κ(y, x) ∈ L2(Ω, Ḣs(D)), we have Tκ ∈ L2(Ω×D) and
∞∑
n=1

λn ‖Tφn‖2L2(D) = ‖κ‖2L2(Ω,Ḣs(D)) <∞. (3.10)

Next we apply a rearrangement trick which originates from the minmax principle [20, equation (11)] and obtain
∞∑
n=1

λn ‖Tφn‖2L2(D) = (λ1 − λ2) ‖Tφ1‖2L2(D) + (λ2 − λ3)
(
‖Tφ1‖2L2(D) + ‖Tφ2‖2L2(D)

)
+ (λ3 − λ4)

(
‖Tφ1‖2L2(D) + ‖Tφ2‖2L2(D) + ‖Tφ3‖2L2(D)

)
+ · · ·

≥ (λ1 − λ2)µ2
1 + (λ2 − λ3)(µ2

1 + µ2
2) + (λ3 − λ4)(µ2

1 + µ2
2 + µ2

3) + · · ·

=

∞∑
n=1

λnµ
2
n ≥

∞∑
n=1

λnCweyl(d)sdiam(D)−2sn
2s
d .

(3.11)

Here, the last inequality is due to (3.4). The third line follows from the fact that for any L2(D)-orthonormal
system {en}mn=1 ⊂ Ḣs(D) of m elements, the sum

∑m
n=1 ‖Ten‖

2
L2(D) achieves its minimum only if {en}mn=1

are the eigenfunctions corresponding to the first m smallest eigenvalues of the operator T , i.e.
m∑
n=1

‖Ten‖2L2(D) ≥
m∑
n=1

µ2
n.

Thus, by the definition of the Lorentz sequence space, it follows from (3.10) and (3.11) that

{λn}∞n=1 ∈ ` d
d+2s ,1

and ‖{λn}∞n=1‖` d
d+2s

,1
≤ Cweyl(d)−sdiam(D)2s ‖κ‖2L2(Ω,Ḣs(D)) .

Now Proposition 2.1 (ii) implies that ` d
d+2s ,1

( ` d
d+2s ,∞

and, as a consequence,

sup
n

{
n1+ 2s

d λn : n ∈ N
}

:= ‖{λn}∞n=1‖` d
d+2s

,∞
<∞.

Due to the embedding ` d
d+2s ,1

↪→ ` d
d+2s ,∞

, we obtain

‖{λn}∞n=1‖` d
d+2s

,∞
≤ Cem(d, s)‖{λn}∞n=1‖` d

d+2s
,1

with an embedding constant Cem(d, s). Then λn ≤ ‖{λn}∞n=1‖` d
d+2s

,∞
n−1− 2s

d , which gives the desired assertion.

Next we show the eigenvalue decay rate O(n−1− 2s
d ) for the case κ ∈ L2(Ω, Hs(Id)) via a similar argument.

Here, due to the special structure of the domain Id = (−1, 1)d, the boundary regularity is relaxed, and so is the
trace condition on the function κ(y, x), cf. Assumption 3.1. This result will later be needed in Section 3.2 as a
stepping stone to obtain the decay rate for the case of the general domain L2(Ω, Hs(D)).

Proposition 3.1. Let Assumption 2.1 hold and let D = Id. Then {λn}∞n=1 ∈ ` d
d+2s ,1

. In particular,

λn ≤ Cem(d, s)‖κ‖2L2(Ω,Hs(Id))n
−1− 2s

d .

Proof. The proof is analogous to that of Theorem 3.1, which essentially relies on Lemma 3.2. To this end, we
define Aj := −∂j((1 − x2

j )∂j), i.e. the one-dimensional singular Sturm-Liouville operator in the variable xj ,
1 ≤ j ≤ d. Its n-th smallest nonzero eigenvalue is n(n + 1) for n = 1, 2, · · · . Now, let T be a tensor product
of certain fractional powers of Aj , i.e., let T = Πd

j=1A
αj

j , with α = {αj}dj=1 ⊂ Rd+ and αj = s
2d for all

j = 1, · · · , d. One can readily check that T is a nonnegative and self-adjoint operator on Hs(Id) and its n-th
smallest nonzero eigenvalue is n

s
2d (n + 1)

s
2d for n = 1, 2, · · · . Now, we can define the operators RT and R1 as

previously (actually, in this case, we now haveRT = R1). Then, Lemma 3.2 and the desired assertion follow.
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Remark 3.1. A close inspection of the proof indicates that the regularity requirement κ ∈ L2(Ω, Hs(Id)) in
Proposition 3.1 can be relaxed. We now need just the existence of a multi-index α = {αj}dj=1 ⊂ Rd+ with
αj = s

2d for all j = 1, · · · , d such that, with associated operator T , there holds Tκ ∈ L2(Ω, L2(Id)).

3.2 Case (b): L2(Ω, Hs(D))

Now we provide a singular value decay rate for the general case (b), i.e., κ(y, x) ∈ L2(Ω, Hs(D)). Our proof
employs Stein’s extension theorem and Proposition 3.1.

To this end, we will introduce the definition of approximation numbers. Given two Banach spaces E and F ,
the n-th approximation number an(W ) of an operator W ∈ B(E,F ) is defined by

an(W ) : = inf{‖W − L‖ : L ∈ F(E,F ), rank(L) < n}, (3.12)

where F(E,F ) denotes the set of the finite rank operators.

Theorem 3.2. (Eigenvalue estimate for the general space L2(Ω, Hs(D)).) Assume that D satisfies the strong
local Lipschitz condition. Let κ(y, x) ∈ L2(Ω, Hs(D)). Then

λn ≤ diam(D)2sCem(d, s)Cext(D, s) ‖κ‖2L2(Ω,Hs(D)) n
−1− 2s

d ,

where Cext(D, s) is a constant depending only on D and s.

Proof. Let K ⊃ D be a d-dimensional cube with diam(K) = diam(D). Then, by the strong local Lipschitz
property of the domain D, Stein’s extension theorem implies the existence of a bounded linear operator E :
Hs(D)→ Hs(K) satisfying

Eφ = φ in D and ‖Eφ‖Hs(K) ≤
√
Cext(D, s) ‖φ‖Hs(D) for all φ ∈ Hs(D) (3.13)

with Cext(D, s) being the extension constant that depends on D and s only.
This extension operator E allows for defining a bivariate function κ̃(y, ·) ∈ Hs(K) for all y ∈ Ω, s.t.

κ̃(y, ·) = κ(y, ·) in D and ‖κ̃‖L2(Ω,Hs(K)) ≤
√
Cext(D, s) ‖κ‖L2(Ω,Hs(D)) . (3.14)

We will denote RK ∈ B(L2(K)) as the corresponding Hilbert-Schmidt operator with the covariance function of
κ̃ as its kernel. Its eigenvalues in a nonincreasing order are {λ̃n}∞n=1.

The scaling argument in the proof of Proposition 3.1 together with (3.14) then leads to

λ̃n ≤ diam(D)2sCem(d, s)Cext(D, s) ‖κ‖2L2(Ω,Hs(K)) n
−1− 2s

d . (3.15)

Given ε > 0, the equivalence of approximation numbers and eigenvalues in a Hilbert space [31, Section 2.11.15]
combined with (3.12) implies the existence of a self-adjoint operator LK ∈ B(L2(K)) with rank(LK) < n,
satisfying

‖RK − LK‖B(L2(K)) ≤ λ̃n + ε. (3.16)

Note that LK can be regarded as a rank< n operator on L2(D). To prove the desired result, we only need to show

‖R − LK‖B(L2(D)) ≤ ‖RK − LK‖B(L2(K)). (3.17)

Then an application of (3.12) together with (3.16) and (3.15) leads to the assertion, after letting ε→ 0.
To derive (3.17), we obtain by definition that

‖R − LK‖B(L2(D)) = sup
06=v∈L2(D)

((R− LK)v, v)

(v, v)
= sup

06=ṽ∈L2(K)
ṽ|K\D=0

((RK − LK)ṽ, ṽ)K
(ṽ, ṽ)K

≤ sup
06=ṽ∈L2(K)

((RK − LK)ṽ, ṽ)K
(ṽ, ṽ)K

= ‖RK − LK‖B(L2(K)).

Here, (·, ·)K is the inner product on L2(K). This proves (3.17), and thus completes the proof.
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Note that this proof of (3.16) is in spirit similar to the proof of [7, Theorem 3.1]. Furthermore, note that we
made the assumption of Cbsc,1-boundedness for the domain D of Ḣs(D) in Theorem 3.1 to guarantee the higher
regularity of that space. Now, for the more general case of Theorem 3.2 involving Hs(D), we do not need such
higher regularity on the domain any more but just assume D to satisfy the strong local Lipschitz condition.

The results in Theorems 3.1 and 3.2 essentially improve the known eigenvalue estimates in [35] and [22].
There, decay rates ofO(n−

s
d ) andO(n−

2s
d∗ ) were shown, respectively, but both under somewhat higher regularity

conditions on the bivariate function κ(y, x) and using a finite element approximation (and not an orthogonal basis).
Formally, our results are in the spirit of the estimate in [31, Section 6.4.31] and [26, Section 3.c.5], where it was
established that {λn}∞n=1 ∈ ` 2d

4s+d ,2
. Nevertheless, that result is slightly weaker than our {λn}∞n=1 ∈ ` d

d+2s ,1
from

Theorem 3.2 and Theorem 3.1, due to the strict inclusion ` d
d+2s ,1

( ` 2d
4s+d ,2

, cf. Proposition 2.1. Our higher decay
rate stems from the nonnegativity and the symmetry of the covariance function R(x, x′), which was not exploited
in the previous results ([31, Section 6.4.31] and [26, Section 3.c.5]).

3.3 Examples and KL truncation error estimates
Now, we provide two examples to illustrate the optimality of our estimate.

Example 3.1. For s = 0 we have κ(y, x) ∈ L2(Ω×D). Since

∞∑
n=1

λn = ‖κ‖2L2(Ω×D) <∞,

we immediately obtain {λn}∞n=1 ∈ `1, which is the best possible estimate for this type of operator. Theorem
3.1 also implies {λn}∞n=1 ∈ `1. But in contrast, we can have by [31, Section 6.2.15 or Section 6.4.31] only
{λn}∞n=1 ∈ `2 ) `1. Thus our estimate is clearly superior.

Example 3.2. The isotropic Matérn kernel is defined by

Gν(|x− y|) = σ2 21−ν

Γ(ν)

(√
2ν
|x− y|
ρ

)ν
Kν

(√
2ν
|x− y|
ρ

)
in D ×D,

where ν is the smoothing parameter, σ2 is the variance, ρ is a length scale parameter, Γ is the Gamma function, and
Kν denotes the modified Bessel function of the second kind. Consider the one-dimensional case with D = (0, 1),
σ = 1, ρ = 1 and take ν = 1/2 and 3/2, i.e.,

G 1
2
(|x− y|) = e−|x−y| ∈ H 3

2−δ(D ×D)

and
G 3

2
(|x− y|) = (1 +

√
3|x− y|)e−

√
3|x−y| ∈ H 7

2−δ(D ×D),

respectively, where δ ∈ (0, 1/2) is arbitrary. Such kernels are popular in machine learning [14]. The decay
rates of their singular values have been numerically computed in [22, Section 6.3]. The results therein show that
the square of the n-th largest singular value of G 1

2
(|x − y|) and G 3

2
(|x − y|) decays like O(n−4) and O(n−8),

respectively, which is in excellent agreement with the theoretical predictions of our Theorem 3.2. In addition, we
can infer that G 1

2
∈ L2(D, Ḣ

3
2−δ(D)). Thus, the same decay rate can also be deduced from our Theorem 3.1 in

that case.

Now we will consider the convergence rate of the KL truncation error (2.6). The following error estimate is
an immediate consequence of the Theorems 3.1 and 3.2.

Theorem 3.3. Let Assumption 2.1 hold. Then, for any 1 ≤M ∈ N, there holds∥∥∥∥∥κ(y, x)−
M∑
n=1

√
λnφn(x)ψn(y)

∥∥∥∥∥
L2(Ω×D)

≤ C(M + 1)−
s
d

with the constant

C := diam(D)sCem(d, s)
1
2Cext(D, s)

1
2 ‖κ‖L2(Ω,Hs(D))

√
d

2s
.
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Proof. Under the given assumptions, Theorem 3.2 can be applied to obtain {λn}∞n=1 ∈ ` d
2s+d ,1

and

λn ≤ diam(D)2sCem(d, s)Cext(D, s) ‖κ‖2L2(Ω,Hs(D)) n
−1− 2s

d . (3.18)

For any 1 ≤M ∈ N, the L2(D)-orthonormality of the sequence {φn(x)}∞n=1 then yields∥∥∥∥∥κ(y, x)−
M∑
n=1

√
λnφn(x)ψn(y)

∥∥∥∥∥
2

L2(Ω×D)

=

∞∑
n=M+1

λn.

In view of the eigenvalue estimate (3.18), we obtain immediately∥∥∥∥∥κ(y, x)−
M∑
n=1

√
λnφn(x)ψn(y)

∥∥∥∥∥
2

L2(Ω×D)

≤ diam(D)2sCem(d, s)Cext(D, s) ‖κ‖2L2(Ω,Hs(D))

∞∑
n=M+1

n−
2s
d −1

≤ diam(D)2sCem(d, s)Cext(D, s) ‖κ‖2L2(Ω,Hs(D))

d

2s
(M + 1)−

2s
d ,

which shows the desired assertion after taking the square root on both sides.

Note here that the error estimate of our Theorem 3.3 for the KL truncation of a bivariate function κ(y, x) ∈
L2(Ω, Hs(D)) for the case D = I is identical to that in [3, Proposition 3.1], which was derived for the special
situation κ(y, x) ∈ L2(Ω, Hs(I)) with I = (−1, 1) only. The authors of [3] however mention that their proof
can be generalized to the situation when D = Id := [−1, 1]d, which would result in a rate of O(M−s/d) for the
M -term truncation error.

Last we show the sharpness of Theorem 3.3.

Theorem 3.4. Let M > 0 be given. Then there exists a bivariate function g(y, x) ∈ Hs(Id × Id) satisfying
Assumption 3.1, such that

inf
{un}Mn=1⊂L

2(Id)

{vn}Mn=1⊂L
2(Id)

∥∥∥∥∥g(y, x)−
M∑
n=1

un(x)vn(y)

∥∥∥∥∥
L2(Id×Id)

&M−
s
d .

Proof. The proof follows as in [4], where g(y, x) ∈ Ḣs(Id)× Ḣs(Id) was constructed to show the lower bound
in the truncation estimate.

Note that Theorem 3.4 implies the sharpness of our eigenvalue decay estimates of Theorems 3.1 and 3.2 by a
simple contradiction argument.

4 Application to elliptic PDEs with random coefficient
In this section, we use the results of Section 3 to analyze a model order reduction algorithm for a class of elliptic
PDEs with random coefficient in the multi-query context. In the algorithm, we apply the Karhunen-Loève approx-
imation to the stochastic diffusion coefficient κ(y, x) to arrive at a truncated model with finite-dimensional noise.
We shall provide an error analysis below. Throughout this section, we assume that the conditions of Theorem 3.3
are satisfied.

Let D be an open bounded domain in Rd with a strong local Lipchitz boundary, and let (Ω,Σ,P) be a given
probability space. Consider the elliptic PDE with random coefficient

Lu(y, ·) = f, x ∈ D,
u(y, ·) = 0, x ∈ ∂D,

(4.1)

for a.e. y ∈ Ω, where the elliptic operator L is defined by

Lu(y, ·) = −∇ · (κ(y, x)∇u(y, x)),

12



and ∇ denotes taking the derivative with respect to the spatial variable x. We assume the diffusion coefficient
κ(y, x) to be κ(y, ·) ∈ L∞(D) almost surely and the force term f(x) to be f ∈ H−1(D). In model (4.1), the
dependence of the diffusion coefficient κ(y, x) on a stochastic variable y ∈ Ω reflects imprecise knowledge or
lack of information.

The extra-coordinate y poses significant computational challenges. One popular approach is the stochastic
Galerkin method [5]. There, one often approximates the stochastic diffusion coefficient κ(y, x) by a finite sum of
products of deterministic and stochastic orthogonal basis (with respect to a certain probability measure). This gives
a computationally more tractable finite-dimensional noise model. Then, the choice of the employed orthogonal
basis6 is crucial for the accurate and efficient approximation to κ(y, x).

In this article, we just consider the KL approximation κM (y, x) of the random field κ(y, x), cf. (2.5). First,
we specify the functional analytic setting. Let V = H1

0 (D) with the inner product 〈v1, v2〉 = (∇v1,∇v2) and
the induced norm |v|H1(D) =

√
〈v, v〉, and let H−1(D) be its dual space. Then, for any given y ∈ Ω, the weak

formulation of problem (4.1) is to find u(y, x) ∈ V such that
ˆ
D

κ(y, x)∇u(y, x) · ∇v(x)dx =

ˆ
D

f(x)v(x)dx ∀v ∈ V. (4.2)

To analyze its well-posedness, we make some conventional assumptions [17].

Assumption 4.1 (Uniform ellipticity assumption on κ). There exist some constants α and β, 0 < α < β such that

α ≤ κ(y, x) ≤ β, ∀(y, x) ∈ Ω×D.

Under Assumption 4.1, the weak formulation (4.2) is well-posed due to the Lax-Milgram theorem, and

|u(y, ·)|H1(D) ≤ α
−1‖f‖H−1(D) ∀y ∈ Ω. (4.3)

Thus L : V → H−1(D) is an invertible linear operator with inverse S = L−1 : H−1(D) → V that both depend
on the stochastic diffusion coefficient κ(y, x). Clearly, S is a self-adjoint operator for all y ∈ Ω.

To analyze the truncated model with the KL truncation κM (y, x), we further assume the following two condi-
tions on the L2(Ω)-orthonormal bases ψn(y) from (2.3), and on the truncated series κM (y, x).

Assumption 4.2. There exists some θ > 0 such that |ψn(y)| ≤ θ <∞, ∀ n ∈ N and y ∈ Ω.

Assumption 4.3 (Uniform ellipticity assumption on κM ). There exist some constants7 α and β, 0 < α < β such
that

α ≤ κM (y, x) ≤ β, ∀(y, x) ∈ Ω×D.

Note here that Assumption 4.2 allows to derive a KL truncation error in L2(D) which is uniform in y. Indeed,
under Assumption 4.2, and for ψn(y) as defined in (2.3), Theorem 3.3 implies

‖κ(y, ·)− κM (y, ·)‖2L2(D) =
∑
n>M

λn|ψn(y)|2 ≤ θ2
∑
n>M

λn . θ2 d

2s
(M + 1)−

2s
d ∀y ∈ Ω. (4.4)

Furthermore, Assumptions 4.2 and 4.3 together enable the control of the KL truncation error in Lp(D) which is
uniform in y. Indeed, for p ≥ 2 and for given y ∈ Ω, we obtain the bound

‖κ(y, ·)− κM (y, ·)‖Lp(D) ≤ ‖κ(y, ·)− κM (y, ·)‖
2
p

L2(D) ‖κ(y, ·)− κM (y, ·)‖
p−2
p

L∞(D)

. θ
2
p (
d

2s
)

1
p (M + 1)−

2s
dp β

p−2
p . (4.5)

This estimate will now be used to bound the error of the solution to problem (4.1) due to the KL truncation. After
substituting the KL approximation κM (y, x) of the diffusion coefficient κ(y, x) into problem (4.1), we arrive at a
truncated problem with finite-dimensional noise: For a.e. y ∈ Ω

LMuM (y, ·) = f, x ∈ D,
uM (y, ·) = 0, x ∈ ∂D,

(4.6)

6Note that instead of an expansion in the eigenbasis, there are other choices, like a polynomial chaos expansion [35, 12]. Moreover, there
is the expansion with respect to the hierarchical Faber basis or some wavelet type basis, i.e. to a local basis. In certain situation this allows to
further improve on the approximation rate of u, for details, see [12, 6].

7Here, for notational simplicity, we have assumed the same constants as in Assumption 4.1.
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where LM is the elliptic differential operator with the diffusion coefficient κM . The corresponding weak formu-
lation is then to find uM (y, x) ∈ V such thatˆ

D

κM (y, x)∇uM (y, x) · ∇v(x)dx =

ˆ
D

f(x)v(x)dx ∀v ∈ V, (4.7)

for any given y ∈ Ω. Under Assumption 4.3 on the KL truncation κM , we get the well-posedness of problem (4.7)
by the Lax-Milgram theorem. As before, we set

SM = L−1
M .

Then SM is a self-adjoint operator for all y ∈ Ω. Clearly, the solution uM (y, x) = SM (y)f corresponds to the
perturbed coefficient κM (y, x) (relative to the unperturbed coefficient κ(y, x)).

The next lemma quantifies the effect of the perturbation of the coefficient κ(y, x) on the solution u(y, x).

Lemma 4.1. Let Assumptions 4.1, 4.2 and 4.3 hold. Then, for given p1 ≥ 2 and 1
p1

+ 1
p2

= 1
2 , we have

|u(y, ·)− uM (y, ·)|H1(D) .
1

α
θ

2
p1 (

d

2s
)

1
p1 (M + 1)−

2s
dp1 β

p1−2
p1 ‖∇uM (y, ·)‖Lp2 (D) .

Proof. From the weak formulations for u(y, x) and uM (y, x), cf. (4.2) and (4.7), we obtain for any y ∈ Ωˆ
D

κ(y, x)∇(u(y, x)− uM (y, x)) · ∇v(x)dx (4.8)

=

ˆ
D

(κM (y, x)− κ(y, x))∇uM (y, x) · ∇v(x)dx ∀v ∈ V.

By setting v = u − uM ∈ V in the weak formulation (4.8), using Assumption 4.1 and the generalized Hölder
inequality, we have

α |u(y, ·)− uM (y, ·)|2H1(D) ≤
ˆ
D

κ(y, x)|∇(u(y, x)− uM (y, x))|2dx

=

ˆ
D

(κM (y, x)− κ(y, x))∇uM (y, x) · ∇(u(y, x)− uM (y, x))dx

≤ ‖κM (y, ·)− κ(y, ·)‖Lp1 (D) |u(y, ·)− uM (y, ·)|H1(D) ‖∇uM (y, ·)‖Lp2 (D) .

Consequently, by (4.5), we get

|u(y, ·)− uM (y, ·)|H1(D) .
1

α
θ

2
p1 (

d

2s
)

1
p1 (M + 1)−

2s
dp1 β

p1−2
p1 ‖∇uM (y, ·)‖Lp2 (D) .

The estimate in Lemma 4.1 depends on the bound ‖∇uM (y, ·)‖Lp2 (D). Using Meyers’ Theorem [30], this
term can be directly controlled by the force term f(x), provided that it possesses higher integrability.

Theorem 4.1 (Meyers’ theorem). There exist a number p2 > 2 and a positive constant C(α, β,D, p2) > 0,
which both depend only on α, β, D and p2, such that if f ∈W−1,p′2(D), with p2

−1 + p′2
−1

= 1, then the solution
uM (y, ·) ∈W 1,p2

0 (D) and satisfies

‖uM (y, ·)‖
W

1,p2
0 (D)

≤ C(α, β,D, p2) ‖f‖
W−1,p′2 (D)

.

The largest possible number p2 in Theorem 4.1 is called Meyer’s exponent and is denoted by P .

Assumption 4.4. f ∈W−1,p′2(D), for some 2 < p2 < P .

Finally, under Assumptions 4.1, 4.2, 4.3 and 4.4, and by combining the preceding results, we obtain the
following error estimate of the solution uM due to KL truncation:

Theorem 4.2. Let Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Then, for p1 =
2p′2

2−p′2
, we have

|u(y, ·)− uM (y, ·)|H1(D) . C(α, β,D, p2)
1

α
θ

2
p1 (

d

2s
)

1
p1 (M + 1)−

2s
dp1 β

p1−2
p1 ‖f‖

W−1,p′2 (D)
.

Theorem 4.2 provides an error estimate of SM to S in the operator norm. Indeed, we have

|(S − SM )f |H1(D) . C(α, β,D, p2)
1

α
θ

2
p1 (

d

2s
)

1
p1 (M + 1)−

2s
dp1 β

p1−2
p1 ‖f‖

W−1,p′2 (D)
.

This in particular implies the convergence in operator norm as M →∞.
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5 Concluding remarks
In this paper, we have derived a new estimate for the sigular value decay rate of order O(n−1/2− s

d ) for bivariate
functions in L2(Ω, Ḣs(D)) and L2(Ω, Hs(D)). This result improves on known results in the literature. Our new
estimate was established by analyzing the eigenvalue of the kernel operatorR using two different techniques, i.e.,
a rearrangement trick originating from the minmax principle, and Stein’s extension together with an operator theo-
retic argument, respectively. We demonstrated its usefulness in the analysis of an algorithm for solving stochastic
elliptic PDEs, which employs the Karhunen-Loève truncation of the stochastic diffusion coefficient and provided
an error estimate for the truncation approximation. Our improved decay rate and the resulting error estimate can
be applied to many other problems as well.

Note furthermore that our approach allows to also deal with negative values s of isotropic smoothness on D.
A simple consideration shows the validity of our result also for the case s ∈ (−d/2, 0). This may be helpful for
integral operators with weakly singular kernels, which have applications in, e.g., image and video processing.

Note finally that we have only analyzed the KL truncation error for approximating Sobolev smooth bivariate
functions at the continuous level. This is of course only the first step in the analysis of a numerical method which
is, after discretization, based on such a truncated series expansion. Any efficient overall numerical algorithm still
needs a proper sampling or discretization method to approximate the integrals on Ω (which is a challenging task
when it comes to high-dimensional problems), and a suitable discretization algorithm on D to approximate the
continuous eigenfunctions (which we here assumed to have at our disposal). Beyond the KL truncation error,
these two additional types of approximation errors surely need also be taken into account. The further balancing
of all these errors and their corresponding numerical costs will be future work.
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