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Abstract

In this paper, we present new upscaled HDG methods for Brinkman equations in the context of high-contrast
heterogeneous media. The a priori error estimates are derived in terms of both fine and coarse scale parameters
that depends on the high-contrast coefficient weakly. Due to the heterogeneousity of the problem, a huge global
system will be produced after the numerical discretization of HDG method. Thanks to the upscaled structure
of the proposed methods, we are able to reduce the huge global system onto the skeleton of the coarse mesh
only while still capturing important fine scale features of this problem. The finite element space over the coarse
mesh is irrelevant to the fine scale computation. This feature makes our proposed method very attractive. Several
numerical examples are presented to support our theoretical findings.

1 Introduction
In this paper, we present a projection-based analysis of an upscaled hybridizable discontinuous Galerkin (HDG)
method for Brinkman equations. The Brinkman model can be written as

∇p−∇ · (ν∇u) + κ−1u = f in Ω

∇ · u = 0 in Ω

u = g on ∂Ω

with Ω ∈ Rn being a bounded polygonal domain if n = 2 or a Lipschitz polyhedral domain if n = 3. Here, f and
g are given functions on Ω satisfying the compatible condition

´
∂Ω

g ·nds(x) = 0, p is the fluid pressure, u rep-
resents the velocity, ν is the viscosity and κ is a heterogeneous multiscale coefficient that models the permeability
of the porous medium. The coefficient κ−1 ∈ L∞(Ω) satisfies 0 < α ≤ κ−1 ≤ β for some positive constants
α, β. We assume that the variations of κ occur within a very fine scale and therefore a direct simulation of this
model is costly.

The Brinkman equation has wide applications in the mathematical modeling of flows in heterogeneous fields
due to its flexibility in changing between a slow flow region and a fast flow region through the Darcy drag term
κ−1u, for example, vuggy carbonate reservoirs, low porosity filtration devices and biomedical hydrodynamic
studies [28, 29]. When κ → ∞, this Darcy drag term can be ignored and we can obtain Stokes flow. On the
contrary, if κ → 0, one can retrieve Darcy flow. In comparison, the simple Darcy model is only capable of
describing slow flow problems [30].

The upscaled HDG methods were introduced and studied in [26, 27] for Darcy flows. Therein, the authors
rigorously analyze the methods and optimal orders of convergence are obtained for both pressure and the gradient
variables. One feature of the upscaled HDG framework is that the only globally coupled unknowns are the numer-
ical trace and the average of pressure on the coarse skeleton. In addition, with the help of the HDG stabilization
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technique, the choice of the coarse space for the numerical trace is independent of the fine scale computations.
Several choices based on different spectral decomposition have been studied and tested in [27] for Darcy flows in
porous media.

In this paper, we propose to develop the upscaled HDG framework for the more challenging Brinkman equa-
tions. In [25], the authors proposed a mixed multiscale FEM for the Brinkman equations. The partition of unity
functions are used in order to construct a stable pair of the scheme. A main drawback of this approach is that the
approximation of the pressure is relatively weak due to the fact only piecewise constant functions on the coarse
mesh are used to approximate the pressure. Yet it is not clear how to enrich the space for the pressure without
destroying the stability of the method. With the HDG approach, we can improve the approximation of the pressure
significantly. Roughly speaking, in our approach, piecewise constant functions are used on coarse mesh for the
average pressure within each coarse cell only. The pressure itself is approximated by fine scale polynomials via
local solvers.

The main contribution in this paper are three folds. Firstly, this proposed upscaled HDG method for Brinkman
flow is nontrivial compared to the previous work on the elliptic problems [26, 27] due to its complicity involving
the balance between the pressure space and the velocity space. Secondly, comparing with our previous work in
[25], we have better error estimates for both velocity and pressure in the sense that the resulting error estimate
depends on the L2 norm of κ−1 instead of L∞ norm as employed in the previous study for the velocity. In
addition, the pressure approximation is significantly improved. Indeed, in [25] the approximation for the pressure
is extremely weak because of the constraint of the discrete inf-sup condition. Thirdly, we have arrived at a general
error estimate that allows for using any conforming or nonconforming coarse edge space MH . This feature
makes the method much more robust due to the absence of the partition of unity functions, cf. [25]. Numerical
simulations are shown to verify our theoretical findings.

The remainder of this paper is organized as follows. The upscaled HDG methods are presented in Section 2
along with auxiliary notations. Its well-posedness is studied in Section 3. In Section 4, the upscaling structure
and local solvers of this upscaled HDG method are derived. The main error estimate and numerical results are
presented in Sections 5 and 6. Finally, we end our paper with a conclusion in Section 7.

2 Preliminary
We present in this section the main algorithm of our proposed upscaled HDG methods. To proceed, we start
writing the Brinkman equations as a system of first order equations

L−∇u = 0 in Ω (2.1a)

−∇ · νL+∇p+ κ−1u = f in Ω (2.1b)
∇ · u = 0 in Ω (2.1c)

u = g on ∂Ω (2.1d)ˆ
Ω

p = 0. (2.1e)

The two-scale finite element spaces are defined as below. Let TH denote a decomposition of the domain Ω into
non-overlapping shape-regular coarse elements with maximal mesh size H and coarse edges EH := ∪T∈TH

∂T .
In each coarse element T ∈ TH , let Th(T ) be a regular quasi-uniform fine triangulation of T with mesh-parameter
h and E0

h(T ) := ∪K∈Th(T )∂K\∂T its interior edges. Denote the fine scale mesh Th := ∪T∈TH
Th(T ) and fine

scale edges Eh := ∪K∈Th
∂K. Each fine element K ∈ Th is a shape regular triangle in 2D or tetrahedral in 3D.

We also define the internal fine-scale edges E0
h := {eh ∈ Eh|eh ∩ EH = ∅}. We assume that κ is piece wise

constant over the fine mesh Th.
The methods we consider seek an approximation to (L,u, p,u|Eh

) denoted by (Lh,uh, ph, ûh,H), which
belongs to the finite dimensional space Gh × V h × Ph ×Mh,H where

Gh = {G ∈ L2(Th) : G|K ∈ G(K) ∀ K ∈ Th} (2.2a)

V h = {v ∈ L2(Th) : v|K ∈ V (K) ∀ K ∈ Th} (2.2b)

Ph = {q ∈ L2(Th) : q|K ∈ P (K) ∀ K ∈ Th} (2.2c)

Mh,H =M0
h ⊕MH . (2.2d)
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Here, the spaces M0
h and MH are defined as

Mh := {µ ∈ L2(Eh) : µ|F ∈ Mh(Fh) ∀ F ∈ Eh} (2.2e)

M0
h :={µ ∈ Mh : µ|F = 0 ∀ F ∈ EH} (2.2f)

MH := {µ ∈ L2(EH) : µ|F ∈ MH(F ) ∀ F ∈ EH}. (2.2g)

To describe how the approximation is defined, we need to introduce some notation related to integrals on
the triangulation Th. Here, we write (N , Z)Th

:=
∑n

i,j=1(Ni,j , Zi,j)Th
, (η , ζ)Th

:=
∑n

i=1(ηi , ζi)Th
, and

(η , ζ)Th
:=

∑
K∈Th

(η, ζ)K , where (η, ζ)D denotes the integral of ηζ over D ⊂ Rn. Similarly, we write
⟨η , ζ⟩∂Th

:=
∑n

i=1⟨ηi , ζi⟩∂Th
and ⟨η , ζ⟩∂Th

:=
∑

K∈Th
⟨η , ζ⟩∂K , where ⟨η , ζ⟩D denotes the integral of

ηζ over D ⊂ Rn−1. On the coarse mesh TH , we also define ⟨η , ζ⟩∂TH
:=

∑n
i=1⟨ηi , ζi⟩∂TH

and ⟨η , ζ⟩∂TH
:=∑

K∈TH
⟨η , ζ⟩∂K . Similarly, we can define the integral over Th(T ) and ∂Th(T ). Furthermore, we write A . B

if A ≤ CB for some constant C independent of h, H and κ−1.
The Galerkin approximation solution (Lh,uh, ph, ûh,H) ∈ Gh × V h × Ph × Mh,H to (2.1) can now be

formulated as following

(Lh , G)Th
+ (uh , ∇ ·G)Th

− ⟨ûh,H , Gn⟩∂Th
= 0 (2.3a)

(νLh , ∇v)Th
− (ph , ∇ · v)Th

+ (κ−1uh , v)Th
− ⟨Ŝhn , v⟩∂Th

= (f , v)Th
(2.3b)

−(uh , ∇q)Th
+ ⟨ûh,H · n , q⟩∂Th

= 0 (2.3c)

⟨Ŝhn , µ⟩∂Th\∂Ω = 0 (2.3d)
(ph , 1)Th

= 0 (2.3e)

for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh,H where Ŝh denotes the numerical flux and

Ŝhn := Shn− τ(uh − ûh,H) := νLhn− phn− τ(uh − ûh,H) on Eh. (2.3f)

The flux is S := νL− I p with I being the identity matrix in Rn. To complete the system, the boundary condition
is imposed by

ûh,H |∂Ω = P ∂
Hg. (2.3g)

Here, P ∂
H is the L2-projection from L2(EH) onto MH .

To ensure well-posedness of the problem (2.3), we make the following assumption for the parameter τ :

Assumption 2.1. • On each fine element K ∈ Th and every face F ∈ ∂K ∪ Eh, we assume that τ |F ≥ 0.
Furthermore, there exists at least one face F ∗ ∈ ∂K such that τ |F∗ > 0.

• Any element K ∈ Th admits at most one face shared with the coarse skeleton EH . Then F ∗ := ∂K∩EH ̸= ∅,
with τ |F∗ > 0.

Note that, by taking particular choices of the local spaces G(K), V (K), P (K) and Mh,H(F ), together with
the linear local stabilization operator τ , different mixed and HDG methods are obtained.

3 Solvability of the method
This section is devoted to the well-posedness of the proposed upscaling method (2.3). Let the set of local spaces
G(K) × V (K) × P (K) × Mh(F ) be any admissible local spaces presented in [10]. On each fine element K,
there exists a projection Πh(L,u, p) = (ΠGL,Πvu,Πqp) fulfilling the following conditions:

(ΠGL,G)K = (L,G)K for all G ∈ G̃(K) ⊂ G(K) (3.1a)

(Πvu,v)K = (u,v)K for all v ∈ Ṽ (K) ⊂ V (K) (3.1b)
(Πqp, q)K = (p, q)K for all q ∈ P (K). (3.1c)
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For each F ∈ ∂K, there holds

⟨νΠGLn−Πqpn−τ(Πvu) , µ⟩F
= ⟨νLn− pn− τu , µ⟩F for all µ ∈ Mh(F ). (3.1d)

Furthermore, the local spaces satisfy

∇ ·G(K) ∪∇P (K) ⊂ V (K) ∇V (K) ⊂ G(K) IP (K) ⊂ G(K) (3.1e)
G(K)n|F ⊂ Mh(F ) V (K)|F ⊂ Mh(F ) P (K)n|F ⊂ Mh(F ). (3.1f)

Here, G̃(K) and Ṽ (K) are two auxiliary spaces to make the projection well-defined.
In addition, we define P ∂

h as the L2-projection from L2(Eh) onto Mh. PM denotes the L2-projection onto
the space Mh,H .

Finally, we have the following lifting result on the local spaces.

Lemma 3.1. On each K ∈ Th, for any µ ∈ Mh(F ), F ∈ ∂K, if µ|F∗ = 0, then there exists a function
G ∈ G(K) such that

(G,∇v)K = 0 for all v ∈ V (K)

Gn|F = µ|F for all F ∈ ∂K\F ∗.

This result was originally proved in [5] for a special case where K is simplex and all the local spaces consist
of polynomials of degree no more than k. We omit the proof in our general case since it is highly close to the
proof in [5].

We are now ready to prove the stability of the method.

Theorem 3.1. If the Assumption 2.1 is valid, then the system (2.3) admits the unique solution.

Proof. In view that the system (2.3) is square, It suffices to show that only zero solution exists given f = 0 and
g = 0.

Let (G,v, q,µ) := (Lh,uh, ph, ûh,H) in (2.3a)-(2.3d). By adding them up, we deduce

(Lh , Lh)Th
+ (κ−1uh , uh)Th

+ ⟨Ŝhn− Shn , ûh,H − uh⟩∂Th
= 0.

Owing to the definition of the numerical traces (2.3f),

(Lh , Lh)Th
+ (κ−1uh , uh)Th

+ ⟨τ(uh − ûh,H) , uh − ûh,H⟩∂Th
= 0.

This implies that

Lh = 0, uh = 0 and τ(uh − ûh,H) = 0, (3.2)

whereas a combination of Assumption 2.1 reveals

ûh,H = 0 on EH .

Consequently, (2.3b) becomes

∀v ∈ V h : −(ph , ∇ · v)Th
+ ⟨phn , v⟩∂Th

= 0.

An application of integration parts leads to

∀v ∈ V h : (∇ph , v)Th
= 0. (3.3)

(3.3) implies that ph is constant on each fine element T ∈ Th and finally (2.3d) and (3.2) show that ph = 0.
To complete, we need to show that ûh,H vanishes on E0

h. Taking into account that all the rest unknowns are
zero, (2.3a) becomes

⟨ûh,H , Gn⟩∂Th
= 0, for all G ∈ Gh.
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Given K ∈ Th and for all F ∈ ∂K, due to the inclusion property G(K)n|F ⊂ Mh(F ), the above equation
implies

⟨P ∂
hûh,H , Gn⟩∂K = 0, for all G ∈ G(K). (3.4)

By Assumption 2.1, τ is positive on at least one face F ∗ of K. This, together with the fact that τ ûh,H = 0

by (3.2), proves ûh,H = 0 on F ∗. Therefore, P ∂
hûh,H = 0 on F ∗. Then Lemma 3.1 verifies the existence of

G ∈ G(K), which satisfies Gn|F = P ∂
hûh,H for all F ∈ ∂K\F ∗. In combination with (3.4), we can deduce

P ∂
hûh,H = 0. Hence, ûh,H = 0 on E0

h considering P ∂
hûh,H |E0

h
= ûh,H . This ends the proof.

Remark 3.1. If the stabilization term disappears, i.e., τ ≡ 0, then the system can be well defined provided that
the local spaces G(K) × V (K) are Hdiv conforming mixed elements. Apart from it, the following assumption
between the fine and coarse spaces is valid:

∀F ∈ EH and µ ∈ MH(F ) : ∥µ∥F . ∥P ∂
hµ∥F .

This yields the mortar spaces for Brinkman equation, cf. [1].

4 Upscaling structure of the method
In this section, we present the upscaling structure of (2.3), which is a key to allow reducing the global computa-
tional cost. We follow the idea of hybridization technique for Stokes equation in [11]. To this end, we introduce
an additional Lagrange multiplier p̄H ∈ WH with

WH := {q ∈ L2
0(Ω) : q|T ∈ P0(T ), for all T ∈ TH}.

The new unknown p̄H approximates the average of the pressure over each coarse element.
Given (ûH , p̄H) ∈ MH ×WH , we can obtain (Lh,uh, ph, ûh,H) ∈ Gh×V h×Ph×Mh,H coarse element-

wise by solving the following local linear system

(Lh , G)Th(T ) + (uh , ∇ ·G)Th(T ) − ⟨ûh,H , Gn⟩∂Th(T ) = 0 (4.1a)

(Lh , ∇v)Th(T ) − (ph , ∇ · v)Th(T ) + (κ−1uh , v)Th(T ) − ⟨Ŝhn , v⟩∂Th(T )

(f , v)Th(T ) (4.1b)
−(uh , ∇q)Th(T ) + ⟨ûh,H · n , q − q̄⟩∂Th(T ) = 0 (4.1c)

⟨Ŝhn,µ⟩∂Th(T )\T = 0 (4.1d)
p̄h =p̄H (4.1e)

ûh,H |∂T =ûH (4.1f)

for all (G,v, q, µ̂) ∈ Gh × V h × Ph ×Mh,H and T ∈ TH with q̄ := 1
|T | (q, 1)T .

The existence and uniqueness of the solution to the above system is proved in [10]. In fact, due to the linearity
of the system, we can further split the system as

(Lh,uh,ph, ûh,H)|T = (Lh(ûH),uh(ûH), ph(ûH), ûh,H(ûH))

+ (Lh(p̄H),uh(p̄H), ph(p̄H), ûh,H(p̄H)) + (Lh(f),uh(f), ph(f), ûh,H(f)).

Here (Lh(ûH),uh(ûH), ph(ûH), ûh,H(ûH)) is the solution of system (4.1) by setting the data p̄H = 0, f = 0.
The other two are obtained in a similar way. Moreover, it is obvious that

(Lh(p̄H),uh(p̄H), ph(p̄H), ûh,H(p̄H)) = (O,0, p̄H ,0). (4.2)

To eliminate the local variables and formulate a linear system over the coarse mesh TH for the global variables
(ûH , p̄H) ∈ MH ×WH , we utilize the transmission equations and boundary conditions and obtain

⟨Ŝhn , µ⟩∂TH\∂Ω = 0 for all µ ∈ MH (4.3a)
⟨ûH · n , q̄⟩∂TH\∂Ω = 0 for all q̄ ∈ WH (4.3b)

ûH = PMg on ∂Ω (4.3c)
(p̄H , 1)Ω = 0. (4.3d)
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Take into account the equality (4.2), we deduce

∀µ ∈ MH : −⟨Ŝh(p̄H)n , µ⟩∂TH\∂Ω = ⟨p̄Hn , µ⟩∂TH\∂Ω.

Consequently, we can write the upscaled system as a saddle-point problem as: seeking (ûH , p̄H) ∈ MH ×WH

satisfying
aH(ûH ,µ) + bH(p̄H ,µ) = ℓH(µ) for all µ ∈ MH ,

bH(q̄, ûH) = 0 for all q̄ ∈ WH .
(4.4)

The associated bilinear forms aH(·, ·) on MH ×MH , bH(·, ·) on WH ×MH , and linear form ℓH(·) on MH are

aH(ν,µ) := ⟨Ŝh(ν)n , µ⟩∂TH\∂Ω bH(q̄,µ) := −⟨µ · n , q̄⟩∂TH\∂Ω

ℓH(µ) := −⟨Ŝh(f)n , µ⟩∂TH\∂Ω.

The main feature of this method is that we only need to solve the global system (4.4) on the coarse edges EH and
obtain (ûH , p̄H) ∈ MH × WH . The remaining unknowns can be revealed by solving the local system (4.1a)-
(4.1f) coarse element-wise. Namely, on each element T ∈ TH , given the boundary data of ûH |∂T and average
pressure p̄H |T , we can solve (4.1a)-(4.1f) on T and retrieve the local variables (Lh,uh, ph, ûh,H). In this manner,
we avoid solving the global system (2.3a) - (2.3e) via computation over the coarse system (4.4) on EH .

5 Error estimates
In this section, we present a general error estimate of the HDG method proposed in (2.3). For the sake of simplicity,
we assume that the permeability coefficient κ is piecewise constant on each fine element. Also, we only consider
2-dimensional case since there is no essential difference/difficulty to extend our analysis to 3-dimensional case.
We set all nonzero stabilization parameter τ = 1. In what follows, we use ∥ · ∥k,D, | · |k,D to denote the standard
norm and seminorm on any Sobolev space Hk(D), respectively. When k = 0, we omit the index k and simply
write ∥·∥D. For the sake of simplicity, we assume the fine scale triangulation Th is made of simplexes. In addition,
we specify the local spaces as follows:

Assumption 5.1. • Let k ∈ N. The local approximation spaces are

G(K) := [Pk(K)]n×n V (K) := [Pk(K)]n P (K) := Pk(K),

Mh(F ) := [Pk(F )]n G̃(K) := [Pk−1(K)]n×n Ṽ (K) := [Pk−1(K)]n.

• The coarse space MH contains the piecewise constant vectors. i.e.,

∀ F ∈ EH : P 0(F ) ⊂ MH(F ).

We also introduce a couple of notations for the analysis:

EL := ΠGL− Lh eu := Πvu− uh ep := Πqp− ph

êu := PMu− ûh,H ÊSn := Sn− Ŝhn = νLn− pn− Ŝhn.

Notice that by (3.1d) and the definition of P ∂
h we have

νΠGLn−Πqpn− τΠvu = P ∂
h(νLn− pn− τu) = P ∂

h(Sn− τu). (5.1)

Let

δL := L−ΠGL δu := u−Πvu δp := p−Πqp.

The projection errors δL, δu and δp follow from the standard approximation properties of the projections, c.f.
[10]. Furthermore, the approximation property of L2-projection yields that for P ∂

h. Assume that L, u and p have
piecewise regularity up to s ≥ 1 on Th and k = ⌈s⌉ − 1. Then it holds

∥δu∥K . hs(∥u∥s,K + ∥L∥s,K) ∥δL∥K . hs(∥u∥s,K + ∥L∥s,K)

∥δp∥K . hs∥p∥s,K ∥u− P ∂
hu∥F . hs− 1

2 ∥u∥s,K
∥(I − P ∂

h)(Ln− pn)∥F . hs− 1
2 (∥L∥s,K + ∥p∥s,K) (5.2)

for all K ∈ Th and F ∈ ∂K. We are ready to present our main error estimate results:
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Theorem 5.1 (Estimate for EL and eu). Assume that the exact solutions L, u and p have piecewise regularity up
to s ≥ 1 on Th. Let the nonzero stabilization parameter τ = 1 and k = ⌈s⌉ − 1, then there holds

∥L− Lh∥Th
+ ∥κ− 1

2 (u− uh∥Th

. (∥κ−1∥
1
2

Ω + h− 1
2 )∥κ−1∥

1
2

Ωh
s(∥u∥s,Th

+ ∥L∥s,Th
)

+ h− 1
2 (1 +H

1
2 ∥κ−1∥

1
2

Ω)∥u− P ∂
Hu∥∂TH

.

As for the pressure, the estimates depend on additional assumptions as:

1. if Assumption 5.2 holds. We have

∥p− ph∥Th
. (1 + ∥κ−1∥Ω)(h− 1

2 + ∥κ−1∥
1
2

Ω)∥κ
−1∥

1
2

Ωh
s(∥L∥s,Th

+ ∥u∥s,Th
)

+ (1 + ∥κ−1∥Ω)(1 +H
1
2 ∥κ−1∥

1
2

Ω)h
− 1

2 ∥u− P ∂
Hu∥∂TH .

2. If Assumption 5.3 holds, we can obtain

∥p− ph∥Th
.

(√H

h
(1 +H

1
2 ∥κ−1∥

1
2

Ω) + ∥κ−1∥Ω
)
(h− 1

2 + ∥κ−1∥
1
2

Ω)∥κ
−1∥

1
2

Ωh
s

× (∥L∥s,Th
+ ∥u∥s,Th

) +H
1
2hs− 1

2 ∥p∥s,Th

+ (∥κ−1∥Ω +

√
H

h
)(1 +H

1
2 ∥κ−1∥

1
2

Ω)h
−1∥u− P ∂

Hu∥∂TH .

To estimate the errors between the exact solution from (2.1) and the numerical approximation by (2.3), an
application of the projection properties (5.2) and the triangle inequality indicates that the estimates of EL, eu and
ep are sufficient. This is the aim of the following sections.

5.1 Some preliminary identities
First we establish the error equation for (2.3) that relates EL, eu, êu and ep to the known projection errors δL and
δu.

Lemma 5.1. The following identies are valid

(EL , G)Th
+ (eu , ∇ ·G)Th

− ⟨êu , Gn⟩∂Th
= −(δL , G)Th

(5.3a)

+ ⟨u− P ∂
Hu , Gn⟩∂TH

(νEL − Iep , ∇v)Th
+ (κ−1eu , v)Th

− ⟨ÊSn , v⟩∂Th
= −(κ−1δu , v)Th

(5.3b)

−(eu , ∇q)Th
+ ⟨êu , qn⟩∂Th

= −⟨u− P ∂
Hu , qn⟩∂TH

(5.3c)

⟨ÊSn , µ⟩∂Th\∂Ω = 0 (5.3d)
⟨êu , µ⟩∂Ω = 0 (5.3e)
(ep , 1)Th

= 0 (5.3f)

for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh,H . In addition, we have

ÊSn = νELn− epn− τ(eu − êu) + (I − P ∂
h)(νLn− pn) + τ(P ∂

hu− PMu). (5.4)

Proof. Taking into account that the exact solution satisfies the same equations (2.3) combined with the property
of the projections (3.1), we can equip the exact solution with the projection and obtain

(EL , G)Th
+ (eu , ∇ ·G)Th

− ⟨u− ûh,H , Gn⟩∂Th
= −(δL , G)Th

(5.5a)

(νEL − Iep , ∇v)Th
+ (κ−1eu , v)Th

− ⟨ÊSn , v⟩∂Th
= −(κ−1δu , v)Th

(5.5b)
−(eu , ∇q)Th

+ ⟨u− ûh,H , qn⟩∂Th
= 0 (5.5c)

⟨ÊSn , µ⟩∂Th\∂Ω = 0

⟨êu , µ⟩∂Ω = 0

(ep , 1)Th
= 0
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for all (G,v, q,µ) ∈ Gh × V h × Ph ×Mh,H .
The combination of PM |E0

h
= P ∂

h|E0
h

, (3.1f) and PM = P ∂
H on EH , yields

⟨u− ûh,H , Gn⟩∂Th
= ⟨êu , Gn⟩∂Th

+ ⟨u− PMu , Gn⟩∂Th

= ⟨êu , Gn⟩∂Th
+ ⟨u− PMu , Gn⟩∂TH

.

Consequently,

⟨u− ûh,H , Gn⟩∂Th
= ⟨êu , Gn⟩∂Th

+ ⟨u− P ∂
Hu , Gn⟩∂TH .

This reveals (5.3a) after inserting the above equation into (5.5a). In a similar manner, we can show that

⟨u− ûh,H , qn⟩∂Th
= ⟨êu , qn⟩∂Th

+ ⟨u− P ∂
Hu , qn⟩∂TH

.

Together with (5.5c), (5.3c) is derived.
To prove (5.4), by utilizing the identity (5.1) and the definition of the numerical trace (2.3f), we derive that

ÊSn = Sn− Ŝhn = νLn− pn− (νLhn− phn− τ(uh − ûh,H))

= νELn− epn+ τ(uh − ûh,H) + (I − P ∂
h)(νLn− pn)

+ P ∂
h(νLn− pn)− (νΠGLn−Πqpn)

= νELn− epn+ τ(uh − ûh,H) + (I − P ∂
h)(νLn− pn)

+ τ(P ∂
hu−Πvu).

Finally, the proof is completed by invoking the definition of eu and êu.

To arrive at the error estimate, we next provide an auxiliary equality.

Lemma 5.2. We have

(νEL ,EL)Th
+ (κ−1eu , eu)Th

+ ⟨τ(eu − êu) , eu − êu⟩∂Th

= −(νδL , EL)Th
− (κ−1δu , eu)Th

+ ⟨P ∂
hu− P ∂

Hu , τ(eu − êu)⟩∂TH

+ ⟨u− P ∂
Hu , ELn− epn⟩∂TH .

Proof. The combination of (5.3d) and (5.3e) implies

⟨êu , ÊSn⟩∂Th
= 0.

Adding up (5.3a) - (5.3c) by taking (G,v, q) := (EL,eu, ep), together with the above equation and some algebraic
manipulation, leads to

(νEL , EL)Th
+ (κ−1eu , eu)Th

+ ⟨ELn− epn− ÊSn , eu − êu⟩∂Th

= −(δL , EL)Th
− (κ−1eu , eu)Th

+ ⟨u− P ∂
Hu , νELn− epn⟩∂TH .

By (5.4), the last term on the left hand side can be manipulated as follows:

⟨ELn− epn− ÊSn , eu − êu⟩∂Th

= ⟨τ(eu − êu) , eu − êu⟩∂Th
− ⟨τ(P ∂

hu− PMu) , eu − êu⟩∂Th

− ⟨(I − P ∂
h)Sn , eu − êu⟩∂Th

.

The last term vanishes. Indeed,

⟨(I − P ∂
h)Sn , eu − êu⟩∂Th

= ⟨(I − P ∂
h)Sn , eu⟩∂Th

− ⟨(I − P ∂
h)Sn , êu⟩∂Th

.

Consequently, the first term of the above expression vanishes due to the fact that eu|∂Th
∈ Mh and the second

term vanishes because that êu is single valued on Eh and Sn = νLn− pn is continuous across all the interfaces,
so that

⟨(I − P ∂
h)Sn , êu⟩∂Th

= ⟨ (I − P ∂
h)Sn , êu⟩∂Ω = 0.

Finally, we complete the proof by utilizing PM = P ∂
h on E0

h.
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5.2 Estimate for ep

In this section we present an intermediate error estimate for ep in terms of other errors. To this end, we first apply
a local estimate on each subdomain T ∈ TH for ep− (ep)T , where (ep)T denotes the average of ep on T . Let (ep)
be the average function of ep over the coarse mesh TH , i.e., (ep)|T = (ep)T .

By virtue of [31, Corollary I.2.4], there exists w ∈ H1
0(T ) s.t.

∇ ·w = ep − (ep)T in T and ∥∇w∥T ≤ C−1
T ∥ep − (ep)T ∥T (5.6)

An immediate outcome of (5.6) is

sup
w∈H1

0(T )\{0}

(ep − (ep)T , ∇ ·w)T
∥∇w∥T

≥ CT ∥ep − (ep)T ∥T . (5.7)

Now our next step involves a bound for the left hand side of this inequality. To this end, we introduce a special
projection operator P τ : H1(K) → V (K) defined as the unique polynomial, satisfies

(P τw , v)K = (w , v)K for all v ∈ P k−1(K), (5.8a)
⟨P τw , µ⟩F∗ = ⟨w , µ⟩F∗ for all µ ∈ P k(F

∗). (5.8b)

Here F ∗ denotes the face defined in Assumption 2.1 where the parameter τ |F∗ > 0.
The approximation property of P τ plays an important role in our further error analysis, which is asserted

below.

Lemma 5.3 (Approximation properties of P τ ). For each K ∈ Th, we have

∥w − P τw∥K . h∥∇w∥K
∥w − P τw∥∂K . h

1
2 ∥∇w∥ωK

.

with ωK := ∪{K̃ ∈ Th : K̃ ∩K ̸= ∅}.

Proof. The first inequality was proved in [5] Proposition 2.1 (vii). For the second inequality, let Iw denote the
Clément interpolant of w (component-by-component) on K, we have

∥w − P τw∥∂K ≤ ∥w − Iw∥∂K + ∥Iw − P τw∥∂K
≤ C1h

1
2 ∥∇w∥ωK

+ C2h
− 1

2 ∥Iw − P τw∥K
. h

1
2 ∥∇w∥ωK .

Here, C1 and C2 are constant depending on the regularity parameter of Th only. In the last two steps we applied
approximation property of Clément interpolation, inverse inequality, the triangle inequality and the first inequality
in the lemma.

The following lemma provides a crucial identity to bound the error of the pressure.

Lemma 5.4. Let T ∈ TH and w ∈ H1
0(T ), there holds

(ep , ∇ ·w)T = (νEL , ∇w)Th(T ) + (κ−1eu , P τw)Th(T ) + (κ−1δu , P τw)Th(T )

− ⟨τ(eu − êu) , w − P τw⟩∂Th(T ).

Proof. A combination of the integration by parts and the property (5.8) indicate

(ep , ∇ ·w)Th(T ) = (ep , ∇ · P τw)Th(T ) + (ep , ∇ · (w − P τw))Th(T )

= (ep , ∇ · P τw)Th(T ) + ⟨epn , w − P τw⟩∂Th(T ).

By utilizing the error equation (5.3b) with v = P τw restricted over T , we arrive at

(ep , ∇ ·w)Th(T ) = (νEL , ∇P τw)Th(T ) + (κ−1eu , P τw)Th(T ) + (κ−1δu , P τw)Th(T )

+ ⟨epn , w − P τw⟩∂Th(T ) − ⟨ÊSn , P τw⟩∂Th(T )

= (νEL , ∇w)Th(T ) + (κ−1eu , P τw)Th(T ) + (κ−1δu , P τw)Th(T )

+ ⟨epn , w − P τw⟩∂Th(T ) − ⟨ÊSn , P τw⟩∂Th(T )

− (νEL , ∇(w − P τw))Th(T ).
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Then integrating by parts upon the last term and utilizing equality (5.8) lead to

(ep , ∇ ·w)Th(T ) = ((νEL , ∇w)Th(T ) + (κ−1eu , P τw)Th(T ) + (κ−1δu , P τw)Th(T )

+ ⟨epn , w − P τw⟩∂Th(T ) − ⟨ÊSn , P τw⟩∂Th(T )

− ⟨(νELn , w − P τw⟩∂Th(T ).

Considering (2.3d) and (2.3f), and that S is continuous across all interior face F ∈ E0
h, together with (3.1f) and

the fact that w = 0 on ∂T , we deduce that

⟨ÊSn , w⟩∂Th(T ) := ⟨Ŝhn− Sn , w⟩∂Th(T ) = ⟨Ŝhn− Sn , w⟩∂T = 0. (5.9)

After inserting this term into the previous expression, we arrive at

(ep , ∇ ·w)Th(T ) = (νEL , ∇w)Th(T ) + (κ−1eu , P τw)Th(T ) + (κ−1δu , P τw)Th(T )

− ⟨νELn− epn , w − P τw⟩∂Th(T ).

An application of the trace identity (5.4) and (5.9), yields

(ep , ∇ ·w)Th(T ) = (νEL , ∇w)Th(T ) + (κ−1eu , P τw)Th(T ) + (κ−1δu , P τw)Th(T )

− ⟨τ(eu − êu) , w − P τw⟩∂Th(T )

+ ⟨(I − P h
∂)Sn , w − P τw⟩∂Th(T )

+ ⟨τ(P h
∂u− PMu) , w − P τw⟩∂Th(T ).

To complete the proof, we will estimate the last two terms. The continuity of S across all interior faces F ∈ E0
h

shows the first term vanishes.

⟨(I − P h
∂)(νLn− pn) , w − P τw⟩∂Th(T )

=⟨(I − P h
∂)((νLn− pn) , w⟩∂Th(T ) − ⟨(I − P h

∂)((νLn− pn) , P τw⟩∂Th(T )

=⟨(I − P h
∂)((νLn− pn) , w⟩∂T = 0.

For the last term, notice that P h
∂u = PMu on ∂Th(T )\∂T , therefore, we have

⟨τ(P h
∂u− PMu) , w − P τw⟩∂Th(T ) = ⟨τ(P h

∂u− PMu) , w − P τw⟩∂T = 0.

The last step is due to the fact that w ∈ H1
0(T ), Assumption 2.1 and (5.8).

As a consequence of the inf-sup condition (5.7) and Lemma 5.4, we obtain the upper bound to pressure error
∥ep − (ep)T ∥T :

Lemma 5.5 (Estimate for ∥ep − (ep)T ∥T ). Given T ∈ TH , there holds

∥ep − (ep)T ∥Th(T ) . ∥EL∥Th(T ) +H
1
2 ∥κ−1∥

1
2

T ∥κ−1/2eu∥Th(T )

+ h
1
2 ∥τ 1

2 (eu − êu)∥∂Th(T ) + hs∥κ−1∥T (∥u∥s,Th(T ) + ∥L∥s,Th(T )).

Proof. We bound the terms on the right hand side of the identity in Lemma 5.4 individually. An application of the
Hölder’s inequality to the first term yields

(EL , ∇w)Th(T ) ≤ ∥EL∥Th(T )∥∇w∥T .

Take into account that κ−1 is piece wise constant over the fine mesh Th, we derive

(κ−1eu , P τw)Th(T ) = (κ−1eu , w)Th(T ) + (κ−1eu , P τw − P kw)Th(T ) := A+B (5.10)

with P k being the L2-projection onto P k(K) for K ∈ Th. The generalized Hölder’s inequality implies

A := (κ−1eu , w)Th(T ) ≤ ∥κ− 1
2 eu∥Th(T )∥κ−1∥

1
2

Th(T )∥w∥L4(T ). (5.11)
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By virtue of the Sobolev embedding, there exists a positive constant Cimb depending on T satisfying

∥w∥L4(T ) ≤ CimbH
1
2 ∥∇w∥T .

Inserting the above result into (5.11), we deduce

A . H
1
2 ∥κ−1∥

1
2

T ∥κ
− 1

2 eu∥Th(T )∥∇w∥T . (5.12)

With respect to B in (5.10), a combination of the generalized Hölder’s inequality and the inverse estimate [24,
Section 4.5] leads to

B := (κ−1eu , P τw − P kw)Th(T ) ≤ ∥κ− 1
2 eu∥Th(T )∥κ−1∥

1
2

T ∥P τw − P kw∥L4(Th(T ))

. h− 1
2 ∥κ−1∥

1
2

T ∥κ
− 1

2 eu∥Th(T )∥P τw − P kw∥Th(T )

Then the triangle inequality, together with the approximation property of P k and P τ , yields

B . h− 1
2 ∥κ−1∥

1
2

T ∥κ
− 1

2 eu∥Th(T )(∥w − P τw∥Th(T ) + ∥w − P kw∥Th(T ))

. h
1
2 ∥κ−1∥

1
2

T ∥κ− 1
2 eu∥Th(T ) ∥∇w∥T . (5.13)

A combination of the estimates (5.10), (5.12) and (5.13) indicates

(κ−1eu , P τw)Th(T ) . H
1
2 ∥κ−1∥

1
2

T ∥κ− 1
2 eu∥Th(T ) ∥∇w∥T .

In view that κ−1 is piecewise constant on Th, s > 1 and (5.2), analogously, we can derive the estimate for the
third term,

(κ−1δu , P τw)Th(T ) = (κ−1δu , P τw − P 0w)Th(T ) . ∥κ−1∥T ∥δu∥Th(T ) ∥∇w∥T
. hs∥κ−1∥T (∥u∥s,Th(T ) + ∥L∥s,Th(T )) · ∥∇w∥T .

An application of the Cauchy-Schwarz inequality to the last term leads to

⟨τ(eu − êu) , w − P τw⟩∂Th(T ) ≤ ∥τ(eu − êu)∥∂Th(T )∥w − P τw∥∂Th(T )

. h
1
2 ∥τ(eu − êu)∥∂Th(T )∥∇w∥T .

Finally, if we combine the estimates of the four terms, together with (5.7), then we obtain the estimate as shown
in the lemma.

To the end of estimating ep, two estimate on (ep) are presented under a stronger Assumption 5.2 and a weaker
Assumption 5.3, respectively.

Assumption 5.2. (a) There exists a coarse triangulation T̃H such that each face F ∈ EH is a face of an element
KH ∈ T̃H . Th is a refinement of T̃H .

(b) P 2(K) ⊂ V (K) ∀K ∈ Th, and P 2(F ) ⊂ MH(F ), ∀ F ∈ EH .

Assumption 5.3.

P 1(K) ⊂ V (K) ∀K ∈ Th, and P 1(F ) ⊂ MH(F ) ∀ F ∈ EH .

Theorem 5.2 (Estimate for (ep)). Assume that h ≪ H and τ = O(1).

1 If Assumption 5.2 holds. Then we can obtain

∥(ep)∥Th
. ∥EL∥Th

+ ∥ep − (ep)∥Th
+ ∥κ−1∥Ω

(
∥κ− 1

2 eu∥Th
+ hs− 1

2 ∥u∥s,Th

)
. (5.14)
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2 If the spaces V h and MH satisfy Assumption 5.3, then we have

∥(ep)∥Th
. H

1
2

(
h− 1

2 (∥ep − (ep)∥Th
+ ∥EL∥Th

) + ∥τ 1
2 (eu − êu)∥∂Th

)
(5.15)

+ ∥κ−1∥Ω
(
∥κ− 1

2 eu∥Th
+ hs− 1

2 ∥u∥s,Th

)
+H

1
2

(
hs− 1

2 (∥L∥s,Th
+ ∥p∥s,Th

) + ∥u− P ∂
Hu∥∂TH

)
.

Proof. Denote the classical P2 −P1 Taylor-Hood element on T̃H as V H ×QH ⊂ H1
0(Ω)×L2

0(Ω). By virtue of
[31, Corollary I.2.4], there exists w ∈ H1

0(Ω) s.t.

∇ ·w = (ep) in Ω and ∥∇w∥Ω ≤ C−1
T ∥ep∥Ω

We can define a Fortin projection Π1w ∈ V H On T̃H , cf. [4], satisfying

(∇ ·Π1w, q)Ω = (∇ ·w, q)Ω for all q ∈ QH (5.16a)
∥∇Π1w∥Ω ≤ C∥∇w∥Ω. (5.16b)

Assumptions 5.2 implies that Π1w ∈ V h and Π1w|EH
⊂ MH . After taking v := Π1w in error equation (5.3b),

we arrive at

(νEL − Iep , ∇Π1w)Th
+ (κ−1eu , Π1w)Th

− ⟨ÊSn , Π1w⟩∂Th
= −(κ−1δu , Π1w)Th

. (5.17)

By application of error equation (5.3e), this leads to

⟨ÊSn , Π1w⟩∂Th
= 0.

Owing to (5.16a), we can obtain

(νEL − Iep , ∇Π1w)Th
= (νEL − I(ep − (ep)) , ∇Π1w)Th

− ((ep) , ∇ ·Π1w)Th

= (νEL − I(ep − (ep)) , ∇Π1w)Th
− ∥(ep)∥2Ω.

Inserting the above two identities into (5.17) in combination with some algebriac rearrangement, yields

∥(ep)∥2 = (νEL − I(ep − (ep)) , ∇Π1w)Th
+ (κ−1eu , Π1w)Th

+ (κ−1δu , Π1w)Th
.

Finally, an application of the generalized Hölder’s inequality, Sobolev embedding H1
0 (Ω) ↪→ L4(Ω) and Lemma

5.5, shows

∥(ep)∥2 ≤ ∥∇Π1w∥Ω(ν∥EL∥Th
+ ∥ep − (ep)∥Th

)

+ (∥κ− 1
2 eu∥Th

+ ∥κ− 1
2 δu∥Th

)∥κ−1∥Ω∥Π1w∥L4(Ω)

. ∥∇Π1w∥Ω
(
∥EL∥Th

+ ∥ep − (ep)∥Th
+ ∥κ−1∥Ω(∥κ− 1

2 eu∥Th
+ h− 1

2 ∥δu∥Th
)
)

. ∥(ep)∥Ω
(
∥EL∥Th

+ ∥ep − (ep)∥Th
+ ∥κ−1∥Ω(∥κ− 1

2 eu∥Th
+ hs− 1

2 ∥u∥s,Th
)
)
.

Here, the last step is due to (5.16b) and the approximation property (5.2). This verifies (5.14).
Now we prove (5.15) with a weaker assumption (5.3) on the local spaces. In this case, the above argument

is no longer available due to the fact that Π1w does not exist if the local spaces only contain piecewise linear
polynomials. Instead, we take v = Πszw in (5.3b), where Πszw ∈ V h ∩ H1

0(Ω) denotes the Scott-Zhang
interpolation of w, cf. [21]. The following approximation properties hold

|w −Πszw|m,Ω . h1−m∥∇w∥Ω, for m = 0, 1, (5.18a)

|w −Πszw|∂Th
. h

1
2 ∥∇w∥Ω. (5.18b)

We start by the following identity

∥(ep)∥2Ω = ((ep) , ∇ ·w)Th
= ((ep) , ∇ ·Πszw)Th

+ ((ep) , ∇ · (w −Πszw))Th

= ((ep) , ∇ ·Πszw)Th
+ ⟨(ep) , (w −Πszw) · n⟩∂TH
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By taking v = Πszw in error equation (5.3b), we obtain

(νEL − Iep , ∇Πszw)Th
+ (κ−1eu , Πszw)Th

− ⟨ÊSn , Πszw⟩∂Th
= −(κ−1δu , Πszw)Th

.

As a consequence, we can rewrite this error equation as

∥(ep)∥2Ω = (νEL − I(ep − (ep)) , ∇Πszw)Th
+ (κ−1eu , Πszw)Th

− ⟨ÊSn , Πszw⟩∂Th

+ (κ−1δu , Πszw)Th
+ ⟨(ep) , (w −Πszw) · n⟩∂TH

:= T1 + · · ·+ T5. (5.19)

We will estimate T1 to T5 one by one. Analogous to the first case, we can bound T1, T2 and T4 by

T1 . ∥(ep)∥Ω(∥EL∥Th
+ ∥ep − (ep)∥Th

),

T2 + T4 . ∥(ep)∥Ω∥κ−1∥Ω
(
∥κ− 1

2 eu∥Th
+ κs− 1

2 ∥u∥s,Th

)
.

Invoking the Cauchy-Schwarz inequality, together with (5.18b) and an application of the inverse estimate, results
in

T5 ≤ ∥(ep)∥∂TH
∥(w −Πszw) · n∥∂TH

. H− 1
2h

1
2 ∥(ep)∥Ω∥∇w∥Ω

. H− 1
2h

1
2 ∥(ep)∥2Ω.

Utilizing (5.3d) and (5.4), T3 can be written as

T3 = ⟨ÊSn , PMw −Πszw⟩∂Th

= ⟨νELn− (ep − (ep))n , PMw −Πszw⟩∂Th
− ⟨τ(eu − êu) , PMw −Πszw⟩∂Th

+ ⟨(I − P ∂
h)(νLn− pn) + τ(P ∂

hu− PMu) , PMw −Πszw⟩∂Th

− ⟨(ep) , PMw −Πszw⟩∂Th

:= T31 + T32 + T33 + T34.

We will estimate the four terms in the last equality. In order to estimate T31 to T33, we first will first bound
∥PMw −Πszw∥∂Th

by

∥PMw −Πszw∥∂Th
≤ ∥w − PMw∥∂Th

+ ∥w −Πszw∥∂Th

≤ ∥w − P ∂
hw∥∂Th

+ ∥w − P ∂
Hw∥∂TH

+ ∥w −Πszw∥∂Th

. (H
1
2 + h

1
2 )∥w∥1,Ω . H

1
2 ∥(ep)∥Ω.

Next we can apply Cauchy-Schwarz inequality, inverse inequality and (5.2) on top of the above estimate to arrive
at

T31 . H
1
2h− 1

2 (∥EL∥Th
+ ∥ep − (ep)∥Th

)∥(ep)∥Ω,

T32 . H
1
2 ∥τ 1

2 (eu − êu)∥∂Th
∥(ep)∥Ω,

T33 . H
1
2

(
∥(I − P ∂

h)(νLn− pn)∥∂Th
+ ∥u− P ∂

hu∥∂Th
+ ∥u− P ∂

Hu∥∂TH

)
∥(ep)∥Ω

. H
1
2

(
hs− 1

2 (∥L∥s,Th
+ ∥u∥s,Th

+ ∥p∥s,Th
) + ∥u− P ∂

Hu∥∂TH

)
∥(ep)∥Ω.

Finally, noticing that (ep) is piecewise constant over TH , we have

T34 = −⟨(ep) , PMw −Πszw⟩∂TH = −⟨(ep) , P ∂
Hw −Πszw⟩∂TH

= −⟨(ep) , w −Πszw⟩∂TH
≤ ∥(ep)∥∂TH

∥w −Πszw∥∂TH

. H− 1
2h

1
2 ∥(ep)∥Ω∥w∥1,Ω

. H− 1
2h

1
2 ∥(ep)∥2Ω.

In view that if h ≪ H , the bounds for T5 and T34 can be absorbed by the left hand side of (5.19). The proof is
completed after combining the estimates from T1 to T5.
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5.3 Main error estimates
In this section, we are concerned with the main error estimate for the proposed upscaling HDG method (2.3) in
terms of two results. The first results shows the estimate of EL, eu and eu − êu. Whereas the second one is on
the pressure estimate.

Theorem 5.3 (Estimate for EL and eu). Assume that the exact solutions L, u and p have piecewise regularity up
to s ≥ 1 on Th. Let the nonzero stabilization parameter τ = 1 and k = ⌈s⌉ − 1, then there holds

∥EL∥Th
+ ∥κ− 1

2 eu∥Th
+ ∥τ 1

2 (eu − êu)∥∂Th

. (∥κ−1∥
1
2

Ω + h− 1
2 )∥κ−1∥

1
2

Ωh
s(∥u∥s,Th

+ ∥L∥s,Th
)

+ h− 1
2 (1 +H

1
2 ∥κ−1∥

1
2

Ω)∥u− P ∂
Hu∥∂TH .

Proof. By application of Lemma 5.2,

(νEL ,EL)Th
+ (κ−1eu , eu)Th

+ ⟨τ(eu − êu) , eu − êu⟩∂Th
(5.20)

= −(νδL , EL)Th
− (κ−1δu , eu)Th

+ ⟨P ∂
hu− P ∂

Hu , τ(eu − êu)⟩∂TH

+ ⟨u− P ∂
Hu , ELn− epn⟩∂TH

.

We will estimate the terms on the right hand side one by one.
By virtue of the Hölder’s inequality, the first term can be bounded by

−(νδL , EL)Th
≤ 1

4
(νEL , EL)Th

+ (νδL , δL)Th
. (5.21)

The generalized Hölder’s inequality and the inverse inequality lead to

−(κ−1δu , eu)Th
≤ Cinv2h

− 1
2 ∥κ−1∥

1
2

Ω∥δu∥Th
∥κ− 1

2 eu∥Th

with Cinv2 being a positive constant depending only on the shape regularity parameter of Th. An application of the
Young’s inequality yields

−(κ−1δu , eu)Th
≤ Cinv2h

−1∥κ−1∥Ω∥δu∥2Th
+

1

4
∥κ− 1

2 eu∥2Th
. (5.22)

By application of the Hölder’s inequality, the third term can be estimated by

⟨P ∂
hu− P ∂

Hu , τ(eu − êu)⟩∂TH

= ⟨P ∂
hu− u , τ(eu − êu)⟩∂TH

+ ⟨u− P ∂
Hu , τ(eu − êu)⟩∂TH

≤ (∥u− P ∂
hu∥∂Th

+ ∥u− P ∂
Hu∥∂TH

)∥τ1/2(eu − êu)∥∂Th
.

Then the projection property (5.2) and the Young’s inequality lead to

⟨P ∂
hu− P ∂

Hu , τ(eu − êu)⟩∂TH
(5.23)

≤ h2s−1∥u∥2Th
+ ∥u− P ∂

Hu∥∂TH
+

1

4
⟨τ(eu − êu) , eu − êu⟩∂Th

.

Now we estimate the last term in (5.20). By Assumption 5.1, MH contains piecewise constant. Then we can
write the last term in the Lemma 5.2 as

⟨u− P ∂
Hu , ELn− epn⟩∂TH

= ⟨u− P ∂
Hu , ELn⟩∂TH − ⟨u− P ∂

Hu , (ep − (ep)T )n⟩∂TH

. h−1/2∥u− P ∂
Hu∥∂TH

(∥EL∥Th
+ ∥ep − (ep)T ∥Th

).

An application of Lemma 5.5 and the Young’s inequality result in

⟨u− P ∂
Hu , ELn− epn⟩∂TH

≤ 1

4
(∥EL∥2Th

+ ∥κ− 1
2 eu∥2Th

) (5.24)

+ h−1(1 +H∥κ−1∥Ω)∥u− P ∂
Hu∥2∂TH

+ ∥κ−1∥2Ωh2s(∥u∥s,Th
+ ∥L∥s,Th

)
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Inserting the estimates above (5.21), (5.22), (5.23) and (5.24) into (5.20), by Cauchy-Schwarz inequality and
trace inequality, we get

∥EL∥2Th
+ ∥κ− 1

2 eu∥2Th
+ ∥τ 1

2 (eu − êu)∥2∂Th
. ∥δL∥2Th

+ h−1∥κ−1∥Ω∥δu∥2Th

+ ∥P ∂
hu− P ∂

Hu∥2∂TH
+ h−1(1 +H∥κ−1∥Ω)∥u− P ∂

Hu∥2∂TH

+ h2s−1∥u∥2Th
+ ∥κ−1∥2Ωh2s(∥u∥s,Th

+ ∥L∥s,Th
).

Finally, by the approximation property of the projections (5.2) with some algebraic manipulation, we can obtain
the estimate shown in the lemma. This completes the proof.

In combination with Lemma 5.5, Theorem 5.2 and Theorem 5.3, we can derive the pressure estimate.

Theorem 5.4 (Estimate for ep). Let the assumptions in Theorem 5.3 be fulfilled.

1. if Assumption 5.2 holds. We have

∥ep∥Th
. (1 + ∥κ−1∥Ω)(h− 1

2 + ∥κ−1∥
1
2

Ω)∥κ
−1∥

1
2

Ωh
s(∥L∥s,Th

+ ∥u∥s,Th
)

+ (1 + ∥κ−1∥Ω)(1 +H
1
2 ∥κ−1∥

1
2

Ω)h
− 1

2 ∥u− P ∂
Hu∥∂TH

.

2. If Assumption 5.3 holds, we can obtain

∥ep∥Th
.

(√H

h
(1 +H

1
2 ∥κ−1∥

1
2

Ω) + ∥κ−1∥Ω
)
(h− 1

2 + ∥κ−1∥
1
2

Ω)∥κ
−1∥

1
2

Ωh
s

× (∥L∥s,Th
+ ∥u∥s,Th

) +H
1
2hs− 1

2 ∥p∥s,Th

+ (∥κ−1∥Ω +

√
H

h
)(1 +H

1
2 ∥κ−1∥

1
2

Ω)h
−1∥u− P ∂

Hu∥∂TH .

Proof. An application of Theorem 5.3 and Lemma 5.5 leads to

∥ep − (ep)∥Th
. (1 +H

1
2 ∥κ−1∥1/2Ω )(h− 1

2 + ∥κ−1∥
1
2

Ω)∥κ
−1∥

1
2

Ωh
s (∥u∥s,Th

+ ∥L∥s,Th
)

+ (1 +H∥κ−1∥Ω)h− 1
2 ∥u− P ∂

Hu∥∂TH
.

An application of Theorem 5.2 shows the results.

Finally the main result Theorem 5.1 can be obtained by triangle inequality, Theorem 5.3 and Theorem 5.4 and
the approximation properties of the projections (5.2).

6 Numerical results
In our experiments, we take the domain Ω = [0, 1]× [0, 1], ν = 1, Re = 1

ν , λ = Re/2−
√

Re2/4 + 4π2 and the
source term f and boundary data g are

f =

(
ν(λ2 − (2π)2)eλx cos(2πy) + λe2λx

ν(2πλ− λ3/(2π))eλx sin(2πy)

)
g =

(
1− eλx cos(2πy)

λ/(2π)eλx sin(2πy)

)
.

Let TH be a regular quasi-uniform rectangular mesh over Ω with maximal mesh size H and let Th be a regular
quasi-uniform triangulation over each element T ∈ TH with maximal mesh size h. Take h =

√
2 × 2−7. Note

that the fine scale h can resolve the coefficient κ−1. The regularization parameter τ := 1. For K ∈ Th, Fh ∈ Eh
and FH ∈ EH , the local fine element spaces are

G(K) := P 4
1 (K) V (K) := P 2

1 (K) P (K) := P1(K)

Mh(Fh) := P 2
1 (Fh) MH(FH) := P 2

2 (FH).

Four numerical results are shown with coefficient κ−1 of different contrast values (i.e. maxκ−1

minκ−1 ), which are
depicted in Figure 1. Their contrast values are of orders 1e7, 1e5, 1e3 and 1e1, respectively. The coefficient κ−1

takes low values in the background, which represents the fast flow region.
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The relative errors of the gradient velocity (L), velocity (u) and pressure (p) are depicted in Table 6 for
H :=

√
22−2,

√
22−3,

√
22−4 and

√
22−5, respectively. Theorem 5.3 implies a convergent rate of 3/2 for this

example. One can observe from Table 6 that the convergent rate improves as the contrast in the coefficent κ−1

decreases. The convergent rate for coefficient in Figure 1(a) is slowest that equals 1.01, 1.32 and 1.88 for L, u
and p, respectively. The convergent rate in Figure 1(d) is the fastest with rate of 1.69, 1.42 and 1.83 for L, u and
p, respectively.
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(a) Permeability field 1
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(d) Permeability field 4

Figure 1: Permeability fields

Fig.1(a) Fig. 1(b)
H L u p L u p√
22−2 180.59 91.95 513.27 79.26 97.85 104.27√
22−3 70.91 78.27 73.61 50.51 45.33 27.13√
22−4 38.75 26.47 24.94 23.20 15.20 5.55√
22−5 17.39 12.61 5.43 11.08 5.66 2.24

Fig.1(c) Fig. 1(d)
H L u p L u p√
22−2 43.94 7.31 7.74 7.84 0.39 28.47√
22−3 33.10 3.41 4.67 1.77 0.05 5.55√
22−4 14.11 0.76 1.60 0.47 0.01 1.28√
22−5 5.32 0.16 0.52 0.17 0.007 0.44

Table 1: Convergence history in percentage (%)

7 Conclusion
In this paper, we have proposed new upscaled HDG methods for Brinkman equations with high contrast coeffi-
cient. The main goal is to solve Brinkman equations on the coarse mesh where the coefficient is not well resolved.
Nevertheless, the numerical solution can achieve a certain convergence rate measured by the coarse-scale mesh
size. To this end, on top of the classical HDG finite element space, an extra coarse-scale space over the skeleton
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of the fine mesh is designed. In application, this extra space is arbitrary and can be the reduced space or the
multiscale space. The convergence of this upscaled HDG method relies on the approximation property of this
extra space. Furthermore, the convergence is proved which depends weakly on the heterogeneous high-contrast
coefficient. Numerical results are shown to verify our theoretical findings. Future work related to this project is
to apply this framework to more complicated heterogeneous permeability field which might involve more scales
and difficult geometry. To this end, we may consider to use offline spectral decomposition to construct the coarse
space MH .
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