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Abstract We consider an incremental approximation method for solving variational problems
in infinite-dimensional separable Hilbert spaces, where in each step a randomly and indepen-
dently selected subproblem from an infinite collection of subproblems is solved. We show that
convergence rates for the expectation of the squared error can be guaranteed under weaker con-
ditions than previously established in [9].
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1 Introduction

The fast solution of quadratic minimization problems or, correspondingly, of large linear sys-
tems of equations is an important topic in many application areas of numerical simulation. To
this end, iterative algorithms play a major role. They can be formalized by means of subspace
correction methods for solving positive-definite variational problems in a Hilbert space V using
Hilbert space splittings, either in the so-called additive or the multiplicative variant, see [7, 15].
A Hilbert space splitting is given by a family of auxiliary Hilbert spaces Vω , ω ∈ Ω , together
with a family of bounded linear operators Rω : Vω → V , such that the span of the subspaces
RωVω ⊂ V is dense in V . The index set Ω can, in principle, be arbitrary. On each Vω , an ap-
propriate auxiliary positive-definite variational problem is defined (for short, we call this the
subproblem on Vω ). In applications, the operators Rω play the role of extension operators and
map subproblem solutions into V , while their duals are restriction operators mapping residuals
from V to Vω . Given such a Hilbert space splitting, in each iteration step a subset of subproblems
is solved using the current residual, and the current approximation is corrected (either collec-
tively or successively) by the obtained subproblem solutions in an update step. Examples of
the resulting algorithms are the well-known Jacobi and Gauss-Seidel and Kaczmarz algorithms
from linear algebra and their block-wise variants, but also domain decomposition methods or
multigrid and multilevel techniques from scientific computing.
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The most common way of creating a Hilbert space splitting of V is to choose an at most
countable number of closed subspaces Vi ⊂ V with index set Ω ⊂ N and their natural injec-
tion operators as Ri such that their algebraic sum is dense in V . This also explains the name
subspace correction methods for the associated algorithms. However, there are many situations
(e.g., outer approximation schemes such as finite-difference or nonconforming finite element
discretizations), where in order to formulate the iterative method one is naturally confronted
with Hilbert spaces Vω 6⊂ V or nontrivial choices for Rω . The auxiliary Hilbert spaces Vω can
be one-dimensional or, in a block type fashion, they can have arbitrary (finite) dimension as
well. This is an attractive feature to improve runtime efficiency on modern computer systems.
Moreover, by choosing and comparing different Hilbert space splittings for the same variational
problem on V , one can optimize the performance of iterative solvers. All this adds to the flex-
ibility of using Hilbert space splittings to design and analyze iterative methods for variational
problems. However, in this paper we focus on the convergence properties for subspace correc-
tion methods for an arbitrarily fixed Hilbert space splitting, and refer to Section 2 for details and
precise definitions.

For a (finite or infinite) set of subproblems at hand, the question arises in which order the
incremental updates should be made and what the convergence behavior of the resulting iterative
method will be. Most conventionally, the order is deterministic and a priorily fixed. This is
the case for basically all the classical methods, like Gauss-Seidel, domain decomposition or
multigrid methods. The order of traversal through the subproblems is prescribed by the method
itself. Examples are lexicographical or so-called red-black orderings for systems stemming from
finite element or finite difference discretizations and, additionally, level wise traversal orderings
in multigrid algorithms. Besides, for the multiplicative variant, where in each iteration step
only one subproblem is solved, greedy methods are popular. Here, the subproblem used in an
iteration step is identified according to an optimization criterion such that the actual error is
reduced as much as possible. This may substantially improve the convergence of the overall
algorithm. A detailed analysis of various greedy approximation methods in a Hilbert space with
one-dimensional Vω is given in the seminal book [12]. A simple example from linear algebra is
the so-called Gauss-Southwell approach, where the next update variable is that with the largest
residuum. Usually, in the case of finitely many subproblems, the determination of the optimal
next subproblem can be done exactly, but it involves additional costs. In the case of infinitely
many Vω , this is not possible any more, and heuristic choices are employed there in practical
methods.

Besides a deterministic or greedy pick, we may also choose the next subproblem in a random
fashion according to a probability distribution ρ defined on Ω , see [8] and the references cited
therein. The analysis of such stochastic iterations has been an active research topic in large-scale
convex optimization, see [6] for a recent survey, but also in the area of machine learning and
compressed sensing. Compared to the greedy approach, the cost for determining the next sub-
problem is dramatically reduced to the cost of sampling the underlying probability distribution
ρ . Moreover, the random pick is also feasible for infinite Ω , i.e., in the case of infinitely many
subproblems. But the question is now what the associated convergence rate (in expectation) will
be. For finitely many subspaces, the answer is very encouraging [8]: Both greedy and stochastic
iterations yield the same exponential rates of convergence, although with different constants,
and in the latter case almost surely and in expectation only.

In this article, we deal with the case of an infinite number of subspaces for which a first
comparison of greedy and stochastic subspace correction methods was carried out in [9] for
countable Hilbert space splittings with index set Ω = N. It was shown that the (much more
involved and costly) greedy method converges at an algebraic rate for solutions from a certain
class A1 while basically the same convergence rate can be achieved in expectation by a stochas-
tic subspace correction method on a class A

ρ
∞ ⊂ A1 depending on ρ . Details will be given in

the next sections.
The aim of this paper is to show that convergence rates for the expectation of the squared

error for can be guaranteed under weaker conditions than previously established in [9], namely
for Hilbert space splittings with arbitrary infinite index set Ω and for solutions from a class A2
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still depending on ρ , where A
ρ

∞ ⊂ A2 ⊂A1. This result reveals some connection to the theory of
approximation algorithms in reproducing kernel Hilbert spaces (RKHS), and may also allow for
a wider range of applications of incremental, multiplicative subspace correction methods with
randomly picked orderings which may have interesting applications in numerical linear algebra,
scientific computing, quadratic optimization, machine learning and compressed sensing.

The remainder of this paper is organized as follows: In Section 2 we give basic notation and
introduce our multiplicative subspace correction/approximation algorithm with random picking
in the case of a fixed Hilbert space splitting with an infinite (possibly uncountable) index set
Ω . Moreover, we give in Theorem 1 and Theorem 2 sharp bounds of its error and thus of its
convergence rate in expectation for the class A2. In Section 3 we discuss various examples of our
abstract theory. First, we consider the case of a countable index set Ω and discrete probability
measures ρ on it. Moreover, in Lemma 1 we also relate our new function class A2 to the classes
A

ρ
∞ and A1, previously used in [9]. Then, we consider the case of stochastic approximation

in reproducing kernel Hilbert spaces (RKHS) and show that our theory can be applied there as
well. Next, we study the case of general unit norm dictionaries and approximation with these,
and provide in Theorem 3 a version of our main results from Section 2 with simplified proof.
Finally, we deal with a collective approximation problem from [2] and show how our theory
applies. We conclude in Section 4 with some further remarks on our convergence results.

2 Details and Proofs

Throughout this paper, let V be a separable real Hilbert space. For a given continuous and
coercive Hermitian form a(·, ·) on V and a bounded linear functional F on V , we consider the
variational problem of finding the unique element u ∈V such that

a(u,v) = F(v) ∀v ∈V. (1)

Equivalently, (1) can be formulated as quadratic minimization problem in V or as linear operator
equation in the dual space of V . In the following, we use a(·, ·) as the scalar product on V , and
write ‖v‖= a(v,v)1/2. Formally, solving (1) is then the same as finding the Riesz representer of
F in V .

Our aim is to study a particular instance of an incremental subspace correction (or Schwarz
iterative) method for solving (1) based on Hilbert space splittings. Let Ω be a fixed index set
equipped with a probability measure ρ (compared to [9], we also allow for uncountable Ω ,
see below for an example). Consider a family {Vω}ω∈Ω of separable real Hilbert spaces, each
equipped with a scalar product aω(·, ·) and norm ‖vω‖ω := aω(vω ,vω)

1/2. In principle, the Vω

need not be subspaces of V , nor need the scalar products be related to each other. To relate V
and {Vω}, we introduce a family of uniformly bounded linear operators Rω : Vω → V , ω ∈ Ω ,
i.e., there is a positive constant Λ such that

‖Rω‖Vω→V = sup
‖vω‖ω=1

‖Rω vω‖ ≤Λ < ∞, ω ∈Ω . (2)

If Vω ⊂ V , one can use the natural injections as Rω in which case Λ = 1. Moreover, to avoid
trivial problems with approximating arbitrary elements in V , we assume here that V is the clo-
sure of span{RωVω : ω ∈Ω}, i.e., that any v ∈V can be approximated with arbitrary precision
by finite linear combinations of images Rω vω , vω ∈Vω . Finally, we introduce another family of
linear operators Tω : V →Vω by the solution of auxiliary variational problems in Vω :

aω(Tω v,vω) = a(v,Rω vω) ∀ vω ∈Vω , ω ∈Ω . (3)

It is easy to see that ‖Tω‖V→Vω
≤ Λ as well. Without loss of generality, we can assume that

Ker(Rω) = {0} for all ω (otherwise replace Vω by Vω 	ω Ker(Rω)).
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From now on, we fix the Hilbert space splitting for V given by {Vω ,Rω}, and consider an
algorithm of the form

u(m+1) = αmu(m)+ξmRωm r(m)
ωm , r(m)

ωm = Tωm(u−u(m)), m = 0,1, . . . , u(0) = 0, (4)

where {ωm} is a sequence of independent samples from Ω which are identically distributed
according to ρ . In other words, (4) represents a one-step iterative method, where, based on the
current iterate u(m), in each step a randomly chosen subproblem is solved.

Concerning the relaxation parameters αm and ξm, as in [1, 9] we have opted to set

αm = 1− (m+2)−1, m = 0,1, . . . , (5)

and to choose ξm such that the error

δ
2
m+1 := ‖u−u(m+1)‖2

is minimized. This gives the explicit formula

ξm = argminξ‖u−αmu(m)−ξ Rωm r(m)
ωm ‖

2 =
F(Rωm r(m)

ωm )−αma(u(m),Rωm r(m)
ωm )

a(Rωm r(m)
ωm ,Rωm r(m)

ωm )
. (6)

Since r(m)
ωm is defined via (1) and (3) by the variational problem

aω(r
(m)
ωm ,vωm) = a(u−u(m),Rωm vωm) = F(Rωm vωm)−a(u(m),Rωm vωm) ∀ vω ∈Vω , (7)

we see that (4) can be executed once u(m) and ωm are available. The above set of relaxation
parameters αm, ξm allows us to follow the proof strategy of [1,9], and to obtain optimal conver-
gence estimates for (4) on certain dense subspaces in V . Other choices for αm, ξm are possible,
however, for the most classical situation of an iteration (4) with constant values αm = 1 and
ξm = ξ only weaker convergence results are known.

To provide estimates for the expected squared error E(δ 2
m), we need the notion of Bochner

integrals [4]. Given any Bochner-measurable V -valued function φ : ω ∈ Ω → φω ∈ V , its
Bochner integral

Eρ(φ) :=
∫

Ω

φω dρω (8)

is well-defined with value in V if the scalar integral

Eρ(‖φ‖) :=
∫

Ω

‖φω‖dρω < ∞ (9)

exists. The Bochner integral is similarly well-defined if V is replaced by a separable Banach
space. In the case of a discrete probability measure on a countable index set Ω , measurability of
φ is not an issue, in other situations, it needs to be checked. For the following, we assume that
for any fixed e ∈V the function

ψ̃ : ω ∈Ω → ψ̃ω ∈ Rω(Vω)⊂V, ψ̃ω :=

{
Rω Tω e
‖Rω Tω e‖ , Rω Tω e 6= 0,
0, Rω Tω e = 0,

(10)

is Bochner-measurable.
Next, we introduce the class A2 ≡ A2,ρ ⊂V which will play a central role in the convergence

theory for (4). We say that u ∈ V belongs to A2 if there exists a Bochner-measurable function
φ : ω → Rω vω with vω ∈Vω for all ω ∈ Ω such that the scalar-valued function ω → ‖vω‖ω is
also measurable, and

u = Eρ(φ) =
∫

Ω

Rω vω dρω , Eρ(‖vω‖2
ω) =

∫
Ω

‖vω‖2
ω dρω < ∞, (11)
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Define a norm on A2 by
‖u‖A2 := inf Eρ(‖vω‖2

ω)
1/2, (12)

where the infimum is taken with respect to all admissible representations of u in (11). How this
class is related to the classes A γ

p introduced in [9] for discrete measures ρ on countable index
sets Ω and other classes used in similar context in the literature will be elaborated on in Section
3.

The central result of this note is the following:

Theorem 1 If (10) holds and if u belongs to the linear space A2 induced by the condition (11)
then, for the incremental approximation algorithm (4), we have

E(δ 2
m)≤

(Λ‖u‖A2 +‖u‖)2

m+1
, m = 0,1, . . . . (13)

Proof . We start with an analysis of the error reduction in one recursion step, i.e., with an
estimate of Eρ(δ

2
m+1|u(m)). Throughout the proof we use the notation

e(m) := u−u(m), ᾱm := 1−αm = (m+2)−1, w := αme(m)+ ᾱmu, ψ̃ω := ψ̃ω e(m),

see (10) for the definition of ψ̃ω e(m). Since ξm is given by (6) such that δ 2
m+1 = ‖u−u(m+1)‖2 is

minimized, and Rωm r(m)
ωm = Rωm Tωm e(m) is a multiple of ψ̃ωm , we thus obtain

δ
2
m+1 = min

ξ

‖αm(u−u(m))+ ᾱmu−ξ Rωm r(m)
ωm ‖

2

= min
θ
‖w−θψ̃ωm‖2 = ‖w‖2−a(w, ψ̃ωm)

2

= α
2
m(δ

2
m−a(e(m), ψ̃ωm)

2)+2αmᾱm(a(e(m),u)−a(e(m), ψ̃ωm)a(u, ψ̃ωm))

+ᾱ
2
m(‖u‖2−a(u, ψ̃ωm)

2).

The measurability assumption for ψ̃ω allows us to take expectations with respect to the choice
of ωm in the above error representation:

Eρ(δ
2
m+1|u(m)) = α2

m(δ
2
m−Eρ(a(e(m), ψ̃ω)

2))

+2αmᾱm(a(e(m),u)−Eρ(a(e(m), ψ̃ω)a(u, ψ̃ω)))+ ᾱ2
m(‖u‖2−Eρ(a(u, ψ̃ω)

2)).

(14)

Compared to the proof of Theorem 1 b) in [9], this is an exact formula rather than an upper
estimate for Eρ(δ

2
m+1|u(m)) which contains the additional term−α2

mEρ(a(e(m), ψ̃ω)
2). Together

with the following, more careful estimate of the second term in the right-hand side of (14) this
will make the difference.

By the definition of r(m)
ω = Tω e(m) via (3) we have

‖Rω r(m)
ω ‖

‖r(m)
ω ‖ω

a(e(m), ψ̃ω) = aω(r
(m)
ω ,

r(m)
ω

‖r(m)
ω ‖ω

)≥ aω(r
(m)
ω ,

vω

‖vω‖ω

) =
a(e(m),Rω vω)

‖vω‖ω

(15)

for any vω ∈Vω and ω ∈Ω . Together with (2) and (11), this implies

a(e(m),u) = Eρ(a(e(m),Rω vω))≤ΛEρ(‖vω‖ω a(e(m), ψ̃ω)).

Thus, we can apply the Cauchy-Schwarz inequality to the second term in the right-hand side of
(14):

2αmᾱm(a(e(m),u)−Eρ(a(e(m), ψ̃ω)a(u, ψ̃ω))

≤ 2αmᾱmEρ(a(e(m), ψ̃ω)(Λ‖vω‖ω −a(u, ψ̃ω)))

≤ 2αmᾱmEρ(a(e(m), ψ̃ω)
2)1/2Eρ((Λ‖vω‖ω −a(u, ψ̃ω))

2)1/2

≤ α
2
mEρ(a(e(m), ψ̃ω)

2)+ ᾱ
2
m(Λ

2Eρ(‖vω‖2
ω)−2ΛEρ(‖vω‖ω a(u, ψ̃ω))+Eρ(a(u, ψ̃ω)

2))

≤ α
2
mEρ(a(e(m), ψ̃ω)

2)+ ᾱ
2
m(Λ

2‖u‖2
A2
+2Λ‖u‖A2‖u‖+Eρ(a(u, ψ̃ω)

2)),
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where we have used that by (10)

|Eρ(‖vω‖ω a(u, ψ̃ω))| ≤ Eρ(‖vω‖ω)‖u‖ ≤ Eρ(‖vω‖2
ω)

1/2‖u‖= ‖u‖A2‖u‖.

After substitution into (14) some terms cancel, and we arrive at the estimate

Eρ(δ
2
m+1|u(m))≤ α

2
mδ

2
m + ᾱ

2
m(Λ‖u‖A2 +‖u‖)

2 (16)

for the expectation of the squared error δ 2
m+1 conditioned on u(m). Because of the independence

assumption, this gives the recursion for the expected error

E(δ 2
m+1)≤ α

2
mE(δ 2

m)+ ᾱ
2
m(Λ‖u‖A2 +‖u‖)

2, m = 0,1, . . . , (17)

with Eρ(δ
2
0 ) = ‖u‖2 since we set u(0) = 0.

The remaining steps are as in [9]. Due to the specific choice of αm, we can rewrite (17) as a
recursion

bm+1 ≤ αmbm + ᾱm(Λ‖u‖A2 +‖u‖)
2, m = 0,1, . . . , b0 = ‖u‖2,

for the new sequence bm := (m+ 1)E(δ 2
m). Since αm + ᾱm = 1 this implies bm ≤ (Λ‖u‖A2 +

‖u‖)2 uniformly in m which is equivalent to (13), and concludes the proof of Theorem 1. �

As in [9], the proof of Theorem 1 can be modified to yield an estimate valid for arbitrary
u ∈V . This results in the following:

Theorem 2 If the functions defined in (10) are Bochner-measurable then for arbitrary u ∈ V
the algorithm (4) satisfies

E(δ 2
m)

1/2 ≤ 2

(
‖u−h‖+

((Λ‖h‖A2 +‖h‖)2 +‖u‖2)1/2

(m+1)1/2

)
, m = 0,1, . . . , (18)

where h ∈ A2 is arbitrary. As a consequence, we have E(δ 2
m)→ 0 for arbitrary u ∈V .

Proof. To see (18), write

a(e(m),u)−a(e(m), ψ̃ωm)a(u, ψ̃ωm)≤ a(e(m),h)−a(e(m), ψ̃ωm)a(h, ψ̃ωm)+‖u−h‖‖e(m)‖,

and proceed as above for the first term in the right-hand side, using the assumption h ∈ A2.
Instead of (17), this yields

E(δ 2
m+1)≤ α

2
mE(δ 2

m)+2αmᾱmE(δm)‖u−h‖+ ᾱ
2
m((Λ‖h‖A2 +‖h‖)

2 +‖u‖2), (19)

m = 0,1, . . .. The rest of the argument leading to (18) is the same as in the proof of [9, Theorem
2]. Since span{RωVω : ω ∈Ω} ⊂ A2 is dense in V , the convergence in expectation for arbitrary
u ∈V follows from (18). �

The bounds in Theorem 1 and Theorem 2 carry over to the stochastic version of orthogonal
matching pursuit (OMP), where the recursion (4) is replaced by

u(m+1) = PWm u, r(m)
ωm = Tωm(u−u(m)), m = 0,1, . . . , u(0) = 0, (20)

with PWm denoting the orthogonal projection onto the subspace

Wm := span({Rω0 r(0)ω0 , . . . ,Rωm r(m)
ωm })

in V . This is because, for given u(k) and ωk, k = 0, . . . ,m, the error of the stochastic OMP
algorithm after the update step satisfies

‖u−u(m+1)‖= ‖u−PWm u‖ ≤ ‖u−αmu(m)−ξmRωm r(m)
ωm ‖
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for any choice of ξm. Consequently, the estimates for one step of (4) can be applied, and we ob-
tain the same recursions for the expectations of the squared error E(‖u−PWm u‖2) of stochastic
OMP as in (17) and (19) for our algorithm (4). Thus, the bounds in Theorem 1 and Theorem
2 hold for stochastic OMP as well. In practice, the stochastic OMP (20) is expected to con-
verge slightly faster than our algorithm (4), at the expense of a more costly evaluation of the
projections PWm u in each step.

Finally, note that the class A2 ⊂V delicately depends on the Hilbert space splitting given by
{Vω ,Rω} and the probability measure ρ . It can be made more explicit in some cases which we
outline in the next section.

3 Examples

3.1 Countable Ω and discrete measures

The most common situation in which our results can be made more explicit is the case of a
discrete measure ρ on a countable Ω . To allow for a direct comparison with the results in [9],
set without loss of generality Ω = N and denote ρi := ρ({i}) > 0. Then the measurability
assumptions for (10) and (11) are irrelevant. Thus, u∈ A2 is, according to (11), equivalent to the
existence of vi ∈Vi such that

u = ∑
i

ρiRivi, ∑
i

ρi‖vi‖2
i < ∞,

where ‖ · ‖i is the norm in Vi. Moreover,

‖u‖2
A2

= inf
u=∑i Rivi

∑
i

ρi‖vi‖2
i .

In [9], for any sequence γ := {γi > 0} and 0 < q ≤ ∞, classes A γ
q were introduced by the

requirement that u ∈A γ
q if there are wi ∈Vi such that

u = ∑
i

Riwi, ‖{γ−1
i ‖wi‖i}‖`q < ∞.

The (quasi-)norm on A γ
q is given by

‖u‖A γ
q
= inf

u=∑i Riwi
‖{γ−1

i ‖wi‖i}‖`q .

In particular, for the sequence γ = 1 given by γi = 1, we simply use the notation Aq = A 1
q .

Lemma 1 For any given {V,a} and {Vi,ai}i∈N and any discrete probability measure ρ on N,
the following continuous embbedings hold with norm ≤ 1:

A ρ
∞ ⊂ A2 = A

√
ρ

2 ⊂A1.

Proof. Since

‖u‖2
A
√

ρ

2
= inf

u=∑i Riwi
∑

i
ρ
−1
i ‖wi‖2

i = inf
u=∑i ρiRivi

∑
i

ρi‖vi‖2
i = ‖u‖2

A2
,

the equality A2 = A
√

ρ

2 is obvious. Take any u of the form u = ∑i Riwi. The inequalities

∑
i

ρ
−1
i ‖wi‖2

i ≤∑
i

ρi sup
i
(ρ−1

i ‖wi‖i)
2 = (sup

i
ρ
−1
i ‖wi‖i)

2

and

∑
i
‖wi‖i = ∑

i
ρ

1/2
i (ρ−1/2‖wi‖i)≤ (∑

i
ρi)

1/2(∑
i

ρ
−1
i ‖wi‖2

i )
1/2 = (∑

i
ρ
−1
i ‖wi‖2

i )
1/2
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imply the embeddings A
ρ

∞ ⊂A
√

ρ

2 and A
√

ρ

2 ⊂A1, respectively. �

In [9], the condition u ∈ A
ρ

∞ was shown to be sufficient for estimates essentially identical
with (17) and (19) to hold, therefore the present paper improves the results from [9] (and ex-
tends them to uncountable Ω ). On the other hand, as shown in [1, 9] the condition u ∈ A1 is
sufficient for proving convergence rates similar to (17) and (19) for the weak greedy version of
our algorithm (4), where the random choice of ωm is replaced by a residual-based search for a
ωm ∈Ω such that

‖r(m)
ωm ‖ωm ≥ β sup

ω∈Ω

‖r(m)
ω ‖ω . (21)

Here, β ∈ (0,1] is a fixed parameter. In other words, for the specific algorithm (4) the greedy
rule (21) of picking the ωm yields the same convergence bound on a larger class of u than any of
the stochastic search algorithms. The drawback of greedy algorithms is the cost of implementing
(21) which typically requires the computation of residuals r(m)

ω for many ω ∈Ω .

3.2 Stochastic approximation in RKHS

Another case where the above theory can be substantiated is the approximation of functions
in a reproducing kernel Hilbert space from randomly selected point evaluations. The standard
setting [3, 14] is as follows: Let Ω be a compact metric space, and let K : Ω ×Ω → R be a
continuous positive-definite kernel. This kernel defines a Hilbert space HK with scalar product
(·, ·)K whose elements are continuous functions f : Ω → R such that

(Kω , f )K = f (ω) ∀ f ∈ HK ∀ ω ∈Ω . (22)

Here, Kω ∈ HK is given by Kω(η) = K(ω,η), η ∈ Ω . Now, choose V = HK with the scalar
product a(·, ·) = (·, ·)K and consider the family of one-dimensional subspaces Vω ⊂ V spanned
by Kω , ω ∈ Ω . In particular, aω(·, ·) is the restriction of (·, ·)K to Vω , and Rω is the natural
injection (Λ = 1). With this, we compute

Rω Tω f = Tω f =
(Kω , f )K

(Kω ,Kω)K
Kω =

f (ω)

K(ω,ω)
Kω ,

where in the last step we have used the reproducing kernel property (22). Thus, our algorithm
(4) turns into an incremental approximation process, requiring in each step the evaluation of

e(m)(ωm) = f (ωm)−u(m)(ωm),

where ωm is chosen randomly and independently from Ω according to a certain probability
distribution ρ . This scenario is typical in learning theory [13], where the samples (ωm,ym) ∈
Ω ×R, which are drawn according to an (unknown) joint probability distribution ρ̃ on Ω ×R,
become incrementally available, and one tries to recover the regression function

f (ω) = Eρ̃(y|ω).

In the ”no-noise” case (Eρ̃((y− f (ω))2|ω) = 0 a.e. on Ω ), we would have ym = f (ωm) al-
most surely, while the ωm are independent samples drawn from Ω according to the marginal
distribution ρ = ρ̃ω .

To apply our theory, i.e., to obtain rates for the expectation of the squared error from (13) and
(18), we need to check (10) and have to examine the condition u ∈ A2 and the approximability
of u ∈ HK by elements from A2, respectively. The measurability assumptions for (10) and (11)
follow from the uniform continuity of the kernel which implies the uniform continuity of the
function ω→Kω , and the measurability of the function ω→ Rω vω = cω Kω for any measurable
scalar-valued function ω → cω . Thus, u ∈ A2 if

u(η) = (u,Kη)K = Eρ((cω Kω ,Kη)K) =
∫

Ω

cω K(ω,η)dρω ,
∫

Ω

c2
ω dρω < ∞,



Stochastic Subspace Correction in Hilbert space 9

i.e., if u is in the image of L2(dρ) under the action of the integral operator LK with kernel K
given by the formula

(LK f )(η) :=
∫

Ω

K(ω,η) f (ω)dρω .

It is well known that the operator LK is also well-defined on V =HK , that it is trace-class positive
semi-definite on HK , and that A2 = LK(L2(dρ)) = L1/2

K (HK). Thus, our result recovers rates for
the noiseless case analogous to those known in online learning with kernels for similar approx-
imation algorithms [5, 10, 11], where the spaces defined in terms of the spectral decomposition
of LK often serve as smoothness classes.

3.3 General unit norm dictionaries

As a third, slightly different but also slightly more general example, let us consider the case
when, for a given separable Hilbert space V = H with scalar product a(·, ·) = (·, ·), we choose a
Borel measure ρ concentrated on the unit sphere Ω = SH = {ω ∈H : ‖ω‖= 1} of H. Then, we
consider the algorithm (4) with the family Vω := span({ω}) of one-dimensional subspaces of
H (again, aω(·, ·) = (·, ·) on Vω , Rω are the natural injections, and Λ = 1 ). Since any function
of the form ω ∈ SH → vω = cω ω is Bochner-measurable if the scalar-valued function ω → cω

is measurable, we have u ∈ A2 iff

u =
∫

SH

cω ωdρ,
∫

SH

c2
ω dρω < ∞. (23)

In this case, the proof of (13) can be carried out directly, using the covariance operator L : H→H
given by

Lv = Eρ((v,ω)ω) =
∫

SH

(v,ω)ω dρω , v ∈ H. (24)

This operator is positive semi-definite and trace-class, i.e., there is a complete orthonormal
system of eigenfunctions ψk of L for the subspace

H̃ := H	Ker(L)

with associated eigenvalues µk > 0 satisfying ∑k µk = 1. The powers Ls, s > 0, are well defined
on H and act as isometries between H̃ and the Hilbert spaces

Hs
L = Ls(H) := {v = ∑

k
µ

s
kckψk : ‖v‖Hs

L
:= (∑

k
c2

k)
1/2 < ∞}.

The latter serve as smoothness spaces and, as we will see, u ∈ H1/2
L implies an analog of (13).

Indeed, since ω ∈ SH we have ψ̃ω =ω in (10) for any e. Taking into account (24) the counterpart
of (14) reads as follows:

Eρ(δ
2
m+1) = α

2
m(δ

2
m−Eρ((e(m),ω)2))

+2αmᾱm((e(m),u)−Eρ((e(m),ω)(u,ω)))+ ᾱ
2
m(‖u‖2−Eρ((u,ω)2))

= α
2
m(δ

2
m− (Le(m),e(m)))+2αmᾱm((e(m),u)− (Le(m),u))+ ᾱ

2
m(‖u‖2− (Lu,u)).

Assuming u ∈ H1/2
L , i.e., u = L1/2v for some v ∈ H̃ ⊂ H with ‖u‖

H1/2
L

= ‖v‖, we estimate the

second term in the right-hand side by

2αmᾱm((e(m),u)− (Le(m),u)) = 2αmᾱm(L1/2e(m),(L−1/2−L1/2)u)

≤ 2αmᾱm‖L1/2e(m)‖‖(L−1/2−L1/2)u‖
≤ α

2
m(Le(m),e(m))+ ᾱ

2
m(‖v‖2−2‖u‖2 +(Lu,u)).
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Substitution and cancellation of several terms yields the following analog of (16):

Eρ(δ
2
m+1)≤ α

2
mδ

2
m + ᾱ

2
m‖u‖2

H1/2
L

.

The rest is as in the above proof of Theorem 1. This results in the following estimate with
slightly improved constant.

Theorem 3 In the setting described in this subsection, the algorithm (4) converges in expecta-
tion for arbitrary u ∈ H1/2

L :

E(δ 2
m)≤

‖u‖2
H1/2

L

m+1
, m = 0,1, . . . . (25)

The analog of (18) is

E(δ 2
m)

1/2 ≤ 2(‖u−h‖+
(‖h‖2

H1/2
L

+‖u‖2)1/2

(m+1)1/2 ), m = 0,1, . . . , (26)

valid for any u ∈ H and h ∈ H1/2
L . Convergence in expectation E(δ 2

m)→ 0 holds for any u ∈ H̃.
Moreover, the classes A2 and H1/2

L coincide, with equality of norms ‖u‖A2 = ‖u‖
H1/2

L
for any

u ∈ H1/2
L .

Proof. The estimate (25) was already established, the modification leading to (26) is similar
to the one in the proof of Theorem 2: Since

(e(m),u)− (Le(m),u) = (e(m),h)− (Le(m),h)+(e(m),(I−L)(u−h))

≤ (e(m),h)− (Le(m),h)+‖e(m)‖‖u−h‖,

we can proceed for the first term as above, with u replaced by h ∈ A2, to arrive at

E(δ 2
m+1)≤ α

2
mE(δ 2

m)+2αmᾱmE(δm)‖u−h‖+ ᾱ
2
m(‖h‖2

A2
+‖u‖2).

The last term results from a rough estimate of the collection of all terms with forefactor ᾱ2
m

remaining after substitution, namely

‖h‖2
A2
−2‖h‖2 +(Lh,h)+‖u‖2− (Lu,u) = ‖h‖2

A2
+‖u‖2−‖h‖2− ((I−L)h,h)− (Lu,u)

≤ ‖h‖2
A2
+‖u‖2.

For the rest of the argument, we again refer to the proof of Theorem 2 b) in [9].
It remains to check that A2 = H1/2

L . For u ∈ A2 satisfying (23) we can write

‖u‖2
H1/2

L
=∑

k

(u,ψk)
2

µk
=∑

k

(∫
SH

cω(ω,µ
−1/2
k ψk)dρω

)2

=∑
k
(cω , fk,ω)

2
L2(dρ)≤‖cω‖2

L2(dρ) <∞.

The last step follows because the functions fk,ω := (ω,µ
−1/2
k ψk) form an orthonormal system

in L2(dρ):

( fk,ω , fl,ω)
2
L2(dρ) =

∫
SH

(ω,ψk))(ω,ψl)

µ
1/2
k µ

1/2
l

dρω =
(Lψk,ψl)

µ
1/2
k µ

1/2
l

= δkl .

Moreover, for similar reasons any u ∈ A2 must be orthogonal to Ker(L), i.e., belongs to H̃ and
is thus in the closure in H of the orthonormal system {ψk} of eigenfunctions of L. Indeed, if
v ∈ Ker(L) then we have (ω,v) = 0 almost everywhere on Ω since∫

SH

(ω,v)2 dρω = (Lv,v) = 0.
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This implies the desired orthogonality

(u,v) =
∫

SH

cω(ω,v)dρω = 0,

and shows u ∈ H1/2
L and ‖u‖

H1/2
L
≤ ‖u‖A2 for all u ∈ A2.

Now, take u ∈ H1/2
L , i.e.,

u = ∑
k

ckψk, ‖u‖2
H1/2

L
= ∑

k
µ
−1
k c2

k < ∞.

We will check that (23) holds with cω = ∑k µ
−1/2
k ck fk,ω , which immediately implies u ∈ A2

and the opposite inequality ‖u‖A2 ≤ ‖u‖H1/2
L

. This is done by verifying that the moments (u,ψl)

coincide for both representations of u: On the one hand, we have (u,ψl) = cl , on the other hand,
we have(∫

SH

cω ω dρω ,ψl

)
=
∫

SH

(
∑
k

µ
−1/2
k ck fk,ω

)
(ω,ψl)dρω =∑

k
(µl/µk)

1/2ck( fk,ω , fl,ω)L2(dρ) = cl

by the orthonormality of the system { fk,ω} in L2(dρ). �

3.4 Collective approximation

To demonstrate the versatility of the abstract scheme developed in Section 2, we consider a
problem raised in [2]: Given an n-dimensional subspace Vn of a Hilbert space H and a dic-
tionary D of unit norm elements in H (the condition D ⊂ SH is silently kept througout this
subsection), construct, by incrementally selecting dictionary elements w0,w1, . . ., subspaces
Wm = span{ω0, . . . ,ωm} which approximate Vn well, i.e., for which estimates for the approx-
imation quantities

σm = sup
v∈Vn:‖v‖=1

inf
w∈Wm

‖v−w‖H = sup
v∈Vn:‖v‖=1

‖v−PWm v‖H , m = 0,1, . . .

hold. The collective OMP algorithm proposed in [2] uses greedy selection of wm ∈ D based on
computations involving the ortho-projections PWm onto Wm which become more costly for larger
m. It comes with a convergence rate for the quantity

εm =

(
n

∑
i=1
‖φi−PWm φi‖2

H

)1/2

= ‖Φ−PWm Φ‖Hn , m = 0,1, . . . ,

where Φ = (φ1, . . . ,φn) is an arbitrarily fixed given orthonormal basis in Vn. Obviously, εm does
not depend on the choice of Φ , and is an upper bound for σm.

We apply our results and design algorithms avoiding the projections PWm while still guaran-
teeing similar convergence rates. To set the scene, let

V := Hn = {u = (u1, . . . ,un) : u1, . . . ,un ∈ H}

be equipped with the usual scalar product

a(u,v) :=
n

∑
i=1

(ui,vi), u,v ∈V.

We identify the index set Ω with the dictionary D, and consider the family

Vw := {vw = cw : c ∈ Rn}, w ∈ D,
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of n-dimensional subspaces of V . For Rw, w∈D, we take the natural injections, thus Λ = 1. The
problem in V we want to solve is u = Φ or, in variational form, to find u ∈V such that

a(u,v) = a(Φ ,v) ∀ v ∈V.

With this, we have
RwTwv = Twv = a(v,w)w,

where a(v,w) := ((v1,w), . . . ,(vn,w)) ∈ Rn.
Independently of the method of choosing wm ∈D = Ω (randomly or greedy), our algorithm

(4)

u(m+1) = αmu(m)+ξmr(m)
wm , r(m)

wm = Twm e(m) = (Φ−u(m),wm)wm, m = 0,1, . . . ,

when started with u(0) = 0, produces a sequence of u(m) whose components belong to Wm−1 if
m > 0. Thus, we have upper estimates

εm ≤ δm+1 := ‖Φ−u(m+1)‖, m = 0,1, . . . .

If we choose the wm, m= 0,1, . . ., randomly and independently according to a Borel measure
ρ with support on D ⊂ SH , then Theorems 1 and 2 are applicable, and they imply rates (in
expectation) for Φ ∈ A2 and general Φ in terms of its approximability by elements h ∈ A2.
Moreover, it is easy to see that the proof of Theorem 3 remains valid if the application of
the operators L and Ls, respectively, which are defined on H and depend on ρ , is extended
componentwise to V = Hn. This way, we obtain the estimate

σ
2
m ≤ ε

2
m ≤ E(δ 2

m+1)≤
‖Φ‖2

A2

m+1
, m = 0,1, . . . , (27)

if Φ ∈ A2 = (H1/2
L )n with norm in A2 defined as

‖v‖2
A2

=
n

∑
i=1
‖ui‖2

H1/2
L

.

The counterpart of (26) holds, too: If Φ ∈ Hn then for arbitrary Ψ ∈ A2 we have

σ
2
m ≤ ε

2
m ≤ E(δ 2

m+1)
1/2 ≤ 2(‖Φ−Ψ‖+

(‖Ψ‖2
A2
+‖Φ‖2)1/2

(m+1)1/2 ), m = 0,1, . . . . (28)

These estimates for the expected error decay of our randomized algorithm are qualitatively
the same as for the more expensive collective OMP algorithm with weak greedy selection of the
wm proposed in [2]. However, the class A2 is a strict subset of the class A1(D) appearing in the
convergence theory in [2], and depends on the choice for ρ .

The weak greedy version of our algorithm was already analyzed in [9] by generalizing
earlier results from [1]. For completeness, we repeat it here in the setting and notation of Section
2.

Define the class A1 as the set of all u ∈V for which a representation of the form

u = ∑
j

Rω j vω j , ∑
j
‖vω j‖ω j < ∞, ω

j ∈Ω , (29)

holds, and set
‖u‖A1 := inf

u=∑ j R
ω j v

ω j
∑

j
‖vω j‖ω j .

For countable Ω , A1 coincides with the class A1 defined before.
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Theorem 4 If u ∈ A1, the algorithm (4) with ωm chosen according to the weak greedy rule (21)
possesses the error bound

δ
2
m ≤

2((Λ/β )2‖u‖2
A1
+‖u‖2)

m+1
, m = 0,1, . . . . (30)

Proof. The proof is almost identical to that of Theorem 1. Indeed, using (21) in (15), we have

Λ

β
a(e(m), ψ̃ωm)≥

1
β

aωm(r
(m)
ωm ,

r(m)
ωm

‖r(m)
ωm ‖ωm

)≥ aω(r
(m)
ω ,

r(m)
ω

‖r(m)
ω ‖ω

)≥ a(e(m),Rω vω)

‖vω‖ω

,

for any ω ∈Ω (as before ψ̃ωm is defined in (10) with e = e(m)). Thus, representing u ∈ A1 as in
(29), we arrive at

a(e(m),u) = ∑
j
(a(e(m),Rω j vω j )≤

Λa(e(m), ψ̃ωm)

β
∑

j
‖vω j‖ω j ,

and, after taking the infimum over all such representations of u, we get

a(e(m),u)≤
Λ‖u‖A1

β
a(e(m), ψ̃ωm).

For the corresponding term of the error representation for δ 2
m+1, this yields

2αmᾱm(a(e(m),u)−a(e(m), ψ̃ωm)a(u, ψ̃ωm)

≤ 2αmᾱma(e(m), ψ̃ωm)((Λ/β )‖u‖A1 −a(u, ψ̃ωm))

≤ α
2
ma(e(m), ψ̃ωm)

2 + ᾱ
2
m((Λ/β )‖u‖A1 −a(u, ψ̃ωm))

2,

and after substitution and cancellation of terms we have

δ
2
m+1 ≤ α

2
mδ

2
m + ᾱ

2
m(((Λ/β )‖u‖A1 −a(u, ψ̃ωm))

2 +‖u‖2−a(u, ψ̃ωm)
2)

≤ α
2
mδ

2
m +2ᾱ

2
m((Λ/β )2‖u‖2

A1
+‖u‖2).

The rest is as before. �

4 Concluding remarks

We conclude with three further remarks.
Remark 1. In the generality considered here, the obtained convergence rates for the ex-

pectation of the squared error δ 2
m of the algorithm (4) for u ∈ A2 cannot be improved without

additional assumptions on ρ or u. To see this, consider the case of a discrete measure ρ con-
centrated on a complete orthonormal system {e j} ⊂ SH in a Hilbert space V = H with scalar
product a(·, ·) = (·, ·), and denote ρ j = ρ({e j}) > 0, j ∈ Ω = N. This is within the setting of
Section 3.3. Obviously, we have

Lv = ∑
j

ρ j(v,e j)e j, v ∈ H (ψ j = e j, µ j = ρ j, j ∈ N),

and Ker(L) = {0}. In other words, H̃ = H, and

Hs
L = {u = ∑

j
ρ

s
jc je j : ‖u‖2

Hs
L

:= ∑
j

c2
j < ∞}, s ∈ R.
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Following the reasoning in Remark 5 in [9], for any algorithm that produces the iterates u(m) as
linear combinations of at most m elements e j drawn randomly and independently according to
ρ , we then have the lower estimate

E(‖u−u(m)‖2)≥∑
j
(u,e j)

2(1−ρ j)
m.

We mention as a side note that this lower bound is achieved for the stochastic OMP method
(20). The condition u ∈ Hr

L is for r > 0 equivalent to (u,e j) = ρr
j (v,e j), j ∈Ω , for some v ∈ H.

Thus, the worst case behavior of the expected squared error of any such algorithm for recovering
u ∈ Hr

L is characterized by

εm,r := sup
06=u∈Hr

L

E(‖u−u(m)‖2)

‖u‖2
Hr

L

≥ sup
0 6=v∈H

∑ j(v,e j)
2ρ2r

j (1−ρ j)
m

∑ j(v,e j)2 = sup
j

ρ
2r
j (1−ρ j)

m.

Since the function f (t) = t2r(1− t)m takes its maximum for t ∈ [0,1] at t0 = (m+2r)−1, we see
that in general no rate better than O(m−2r) can be expected on the class Hr

L. If we take r = 1/2,
we see that Theorem 3 provides an optimal result, in the sense that the upper limit of m2rεm,r
for m→ ∞ is finite and strictly positive for any ρ .

However, with other assumptions on u or on the spectral properties of L (as it is custom in
learning with kernel methods [5, 10]), one may expect better results.

Remark 2. The choice for the parameters αm and ξm in the algorithm (4) is appropriate if the
evaluations in (4) and (6) (in particular, the functional evaluation F(u(m))) are exact. If one
attempts to analyze the same algorithm with, e.g., an independent additive noise term εm the
update formula (4) (in addition to independence, assume E(εm) = 0, and σ2 := E(‖εm‖2) =
const. > 0) then, in the formulas for δ 2

m+1 and subsequently in (17), an additional term σ2

appears in the right-hand side, i.e.,

E(δ 2
m+1)≤ α

2
mE(δ 2

m)+ ᾱ
2
m(Λ‖u‖A2 +‖u‖)

2 +σ
2, m = 0,1, . . . .

Now, the term σ2 renders any attempt of proving E(δ 2
m)→ 0 meaningless. At the m-th step of

the recursion, an additional term of the order (m+1)σ2/3 would appear in the final estimate for
E(δ 2

m) which is subdominant only for small σ2 and at the initial stages of the iteration. A crude
calculation shows that under these assumptions the best possible bound for the expectation of
the squared error is

E(δ 2
m)≈

σ

(Λ‖u‖A2 +‖u‖)
if m≈

Λ‖u‖A2 +‖u‖
σ

.

This says that, on average, the squared error δ 2
m cannot be approximated better than the standard

deviation of the additive noise εm relative to the size of u which is unsatisfactory. A possible
repair is to give up the minimization requirement for ξm, and to execute (4) with some suitably
chosen sequence ξm → 0. This is well understood for kernel methods in online learning, and
represents a significant difference between the noisy and noiseless case.

Remark 3. The right-hand sides in the estimates (18) and (26) in Theorem 2 and Theorem 3

have the form of a K-functional for the pairs (V,A2) and (H,H1/2
L ), respectively. This implies

that rates of the form
E(δ 2

m) = O(m−θ ), m→ ∞,

with exponent θ ∈ (0,1) hold for spaces obtained by real interpolation. E.g., in the setting of
Theorem 3, we obtain

E(δ 2
m)≤C(m+1)−2s‖u‖2

Hs
L
, m = 0,1, . . . , (31)
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valid for all u ∈ Hs
L and 0 < s < 1/2 with a certain fixed constant C. Indeed, u ∈ Hs

L can be
represented as

u = ∑
k

ckµ
s
kψk, ‖u‖2

Hs
L
= ∑

k
c2

k ,

and setting
h = ∑

k: µk≥(m+1)−1

ckµ
s
kψk,

we have

‖h‖2
H1/2

L
= ∑

k: µk≥(m+1)−1

c2
k µ

2s−1
k ≤ (m+1)1−2s‖u‖2

Hs
L
,

‖u−h‖2 = ∑
k: µk<(m+1)−1

c2
k µ

2s
k ≤ (m+1)−2s‖u‖2

Hs
L
,

‖u‖2 = ∑
k

c2
k µ

2s
k ≤ ‖u‖2

Hs
L
.

Thus, after substitution into (26), we get (31) with C = (2(1+
√

2))2 < 24.
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