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Abstract

We reconsider some estimates from the 1994 paper [6] concerning the hierarchical basis
preconditioner for sparse grid discretizations. The improvement is in three directions:
We consider arbitrary space dimensions d > 1, give bounds for generalized sparse grid
spaces with arbitrary monotone index set Λ, and show that the bounds are sharp up to
constants depending only on d, at least for a subclass of Λ containing full grid, standard
sparse grid spaces, and energy-norm optimized sparse grid spaces.
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1. Notation

We consider the hierarchical basis (HB) preconditioner for generalized sparse grid
discretizations for generic H1

0 (Id)-elliptic problems (Id is the d-dimensional unit cube)
which has been analyzed for d = 2, 3 in [6]. The underlying hierarchical basis is a finite
collection of dyadic blocks of the tensor-product Faber-Schauder system on Id (detailed
definitions will be given in the next section). The HB preconditioner considered in
this note is different from the HB preconditioners of Bank, Dupont, and Yserentant (see
[2, 10]) which correspond to isotropic multivariate versions of the Faber-Schauder system.
The HB preconditioner for sparse grid discretizations is not optimal, nor suboptimal
(better preconditioners have already been discussed in [6, 8] and more recently in [5]).
Nevertheless, due to the popularity of sparse grid methods we find it worthwhile to have
a complete understanding of its properties.

In this note, we consider generalized sparse grid spaces SΛ for arbitrary dimension
d > 1 generated by a monotone index set Λ ⊂ Nd which comes with a direct splitting

SΛ =
∑
β∈Λ

Sβ

where each Sβ is the span of nodal basis functions associated with the dyadic block of
the tensor-product Faber-Schauder system with index β ∈ Nd. Correspondingly, each
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vΛ ∈ SΛ has a unique decomposition

vΛ =
∑
β∈Λ

sβ, sβ ∈ Sβ.

The associated Galerkin discretization for a generic H1
0 (Id)-elliptic problem using the

finite section of the tensor-product Faber-Schauder system associated with SΛ leads,
after appropriate diagonal scaling, to a symmetric positive-definite algebraic system

AΛxΛ = bΛ,

with stiffness matrix AΛ, right-hand side bΛ, and solution vector xΛ representing the HB
coefficients of the Galerkin projection of the H1

0 -elliptic problem onto SΛ. We seek as
good as possible estimates of the spectral bounds λmax(AΛ) and λmin(AΛ), and, conse-
quently, of the spectral condition number

κSΛ,HB := κ(AΛ) =
λmax(AΛ)

λmin(AΛ)
.

This is equivalent to estimating the stability bounds of the direct space splitting

{SΛ; (·, ·)H1
0
} =

∑
β∈Λ

{Sβ; 22|β|∞(·, ·)L2}. (1)

This standard fact from additive Schwarz theory is explained in [6]. In particular,
estimating λmax(AΛ) (up to generic constants depending on the ellipticity constants and
d) is equivalent to finding the best constant CΛ in the inequality

‖
∑
β∈Λ

sβ‖2
H1

0
≤ CΛ

∑
β∈Λ

22|β|∞‖sβ‖2
L2
, (2)

valid for all sβ ∈ Sβ with β ∈ Λ. Upper and lower estimates for CΛ are obtained in
Section 3, they are matching up to constants depending on d but not on Λ.

Estimates for λmin(AΛ) require bounds for the best constant cΛ in the inequality

cΛ

∑
β∈Λ

22|β|∞‖sβ‖2
L2
≤ ‖

∑
β∈Λ

sβ‖2
H1

0
, sβ ∈ Sβ, (3)

opposite to (2), and will be given in Section 4. In the final section we summarize the
results and show that the resulting condition number estimates for HB preconditioners
are asymptotically sharp for certain families of SΛ with d > 1 arbitrarily fixed, including
the full grid spaces Vk and standard sparse grid spaces Sk if k →∞ .

2. Notation and auxiliary facts

2.1. Faber-Schauder functions

Denote by Tk the uniform dyadic partition of I = [0, 1] of step-size 2−k, k ∈ N. The
univariate Faber-Schauder system on the unit interval (obeying zero boundary condi-
tions) consists of dyadic shifts and dilates of the unit hat function φ(t) = (1 − |t|)+,
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t ∈ R, defined blockwise as follows: For k = 1, 2, ..., define the k-th dyadic block of the
Faber-Schauder system as the collection of 2k−1 hat functions

φ2k−1+i(t) := φ(2kt− (2i+ 1)), t ∈ [0, 1], i = 0, 1, . . . , 2k−1 − 1,

with non-overlapping support. These are the standard nodal basis functions of the linear
finite element space over Tk associated with the interior nodal points of Tk of the form
(2i + 1)2−k. The index set for this block is denoted Jk. The union of all blocks is the
univariate Faber-Schauder system (with zero boundary conditions).

The multivariate tensor-product Faber-Schauder system is defined as the collection
of the functions

φα(x) :=
d∏
i=1

φαi(xi), α = (α1, . . . , αd) ∈ Nd.

We organize it into blocks associated with the multi-index sets Jβ := Jβ1 × . . . × Jβd ,
where β ∈ Nd. The Faber-Schauder functions φα in the same block have non-overlapping
support, and are shifts of each other. Together with their tensor-product structure this
allows us to obtain explicit formulas for their L2 and H1

0 norms (for convenience, the
latter is defined as

‖u‖2
H1

0
:=

∫
Id
|∇u|2 dx, u ∈ H1

0 ).

More precisely,

‖φα‖2
L2

=
2d

3d
2−|β|1 , ‖φα‖2

H1
0

=
2d

3d−1
2−|β|1

d∑
i=1

22βi , α ∈ Jβ. (4)

We use the notation |β|1 :=
∑d

i=1 βi and |β|∞ = maxi=1,...,d βi.

2.2. Discretization spaces and decomposition norms

Let Sβ denote the finite-dimensional space spanned by all φα with α ∈ Jβ. Then

Vβ =
∑
β′≤β

Sβ′ , β ∈ Nd,

is a direct sum splitting of the anisotropic full-grid space Vβ of all d-linear finite element
functions over the anisotropic tensor-product partition Tβ := Tβ1 × . . .× Tβd (by β′ ≤ β
we mean that β′i ≤ βi for all i = 1, . . . , d). The full grid space Vk refers to the isotropic
case β = (k, . . . , k) needed in approximation schemes related to uniform grid refinement.

In addition to the subspace families {Sβ} and {Vβ}, we also need the family

Wβ := Vβ 	 (
∑
β′<β

Vβ′) = ⊗di=1(Vβi 	 Vβi−1)
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of L2 orthogonal subspaces which provides splittings of the various spaces of interest to
us (the convention is V0 = {0}). In particular,

L2(Id) = ⊕β∈NdWβ, Vβ = ⊕β′≤βWβ′ . (5)

The main focus is the investigation of the generalized sparse grid space

SΛ := span({Vβ : β ∈ Λ}) = span({Wβ : β ∈ Λ}) = span({Sβ : β ∈ Λ}), (6)

where Λ ⊂ Nd is a monotone set, i.e., β ∈ Λ implies β′ ∈ Λ for all β′ ≤ β. The standard
sparse grid spaces Sk correspond to the choice Λ = {β ∈ Nd : |β|1 ≤ k + d − 1}. Note
that the anisotropic full grid spaces Vβ are also special instances of the family of SΛ

spaces (take Λ = {β′ ∈ Nd : β′ ≤ β}).
Each vΛ ∈ SΛ can be non-uniquely decomposed as

vΛ =
∑
β∈Λ

vβ, vβ ∈ Vβ,

but also uniquely represented with respect to either the Sβ or Wβ subspaces of VΛ:

vΛ =
∑
β∈Λ

sβ =
∑
β∈Λ

wβ, sβ ∈ Sβ, wβ ∈ Wβ. (7)

Each of these representations of vΛ ∈ SΛ has its own merits. In particular, L2 orthogonal
representations (also called prewavelet (PW) representations) with respect to the Wβ

subspaces allow us to effectively express L2 and H1
0 norms. For any vΛ ∈ SΛ we have

the identity

‖vΛ‖2
L2

=
∑
β∈Λ

‖wβ‖2
L2
,

and the two-sided norm equivalence

cPW‖vΛ‖2
PW ≤ ‖vΛ‖2

H1
0
≤ CPW‖vΛ‖2

PW , ‖vΛ‖2
PW :=

∑
β∈Λ

22|β|∞‖wβ‖2
L2
, (8)

which holds with constants 0 < cPW ≤ CPW < ∞ depending on d, only. We also need
an inequality for arbitrary decompositions with respect to the isotropic full grid spaces
Vk, namely

‖
K∑
k=1

vk‖2
H1

0
≤ CBPX

K∑
k=1

22k‖vk‖2
L2
, vk ∈ Vk, (9)

which holds with a constant depending on d. It is related to the BPX preconditioner,
and can be obtained from (8). We refer to [8, 10] for more details on the inequalities (8)
and (9).

In the remainder of this paper, we will be interested in identifying the constants in
a similar two-sided estimate associated with the decomposition with respect to the Sβ
spaces, namely for comparing the H1

0 norm with the HB norm

‖vΛ‖2
HB :=

∑
β∈Λ

22|β|∞‖sβ‖2
L2
, (10)

instead of the PW norm in (8). As will be demonstrated in the next two sections, these
constants also depend on characteristics of Λ, and not only on d.
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2.3. Norms of some FE functions

We start with stating an immediate consequence of (4) and the non-overlapping
support property of the nodal basis functions spanning Sβ:

‖sβ‖2
L2

=
2d

3d
2−|β|1

∑
α∈Jβ

c2
α, sβ =

∑
α∈Jβ

cαφα ∈ Sβ. (11)

A similar equality holds for the H1
0 norm but we do not need it.

Next, we estimate the HB norm of the tensor-product hat function

ψβ(x) =
d∏
i=1

φ(2βix− 2βi−1), β ∈ Nd.

This is the nodal basis function in Vβ associated with the center of the cube Id (which is
not in the tensor-product Faber-Schauder system unless β = (1, . . . , 1)). Since it is the
tensor product of d univariate hat functions φ(2βix − 2βi−1) associated with the nodal
point 1/2, its HB decomposition is the tensor product of the univariate HB decomposi-
tions of the latter. It is easy to see that the univariate HB decompositions are implied
by the formula

φ(2mt− 2m−1) = φ20(t)−
m∑
l=2

1

2
(φ2l−1+2l−2−1(t) + φ2l−1+2l−2(t)), t ∈ [0, 1], m ∈ N,

by setting m = βi and t = xi, i = 1, . . . , d. Thus, if the multi-index β′ ≤ β has r
components β′i > 1 and d− r components β′i = 1 then the HB block sβ′ of ψβ is the sum
of 2r nodal basis functions with coefficient (−1/2)r. Thus, by (11)

‖sβ′‖2
L2

=
2d

3d
2−|β

′|12r(1/2)2r ≥ 3−d2−|β
′|1 , β′ ≤ β.

Here, and throughout the paper, we denote by c, C > 0 generic positive constants
depending only on d (which may be different in different places). Moreover, we use the
notation A ≈ B if cA ≤ B ≤ C A. Substitution into the expression for the HB norm
gives

‖ψβ‖2
HB =

∑
β′≤β

22|β′|∞‖sβ′‖2
L2
≥ c

∑
β′≤β

22|β′|∞−|β′|1 ≥ c2|β|∞ . (12)

The last inequality follows since among the indices β′ ≤ β there is at least one with
the property |β′|1 − (d − 1) = |β′|∞ = |β|∞. There is also a matching upper bound
‖ψβ‖2

HB ≤ C2|β|∞ but we do not need it in the sequel.
Finally, we consider a different construction (a kind of lacunary HB series represen-

tation) which we need in the next section. For the following estimates to hold the set Λ
can be arbitrary, i.e., not necessarily monotone. Let

s̄β =
∑
α∈Jβ

φα ∈ Sβ, β ∈ Nd,
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and set
s̄Λ =

∑
β∈Λ

s̄β ∈ SΛ.

The functions s̄β are tensor products of their univariate counterparts

s̄k(t) = 2k
∫ t

0

rk(ξ) dξ, t ∈ [0, 1], k = 1, 2, . . . ,

where rk(t) = sign(sin(2kπt)) denotes the univariate Rademacher functions. Below we
need that the shifted functions

s̃k(t) = s̄k(t)− 1/2, k = 1, 2, . . . ,

form an orthogonal system in L2([0, 1]) (and are orthogonal to constants as well), with
L2 norm given by

‖s̃k‖2
L2

= ‖s̄k‖2
L2
− ‖s̄k‖2

L1
+

1

4
=

1

3
− 1

2
+

1

4
=

1

12
.

Here we have used the case d = 1 of the identity

‖s̄β‖2
L2

=
2d

3d
2−|β|1

∑
α∈Jβ

1 =
2d

3d
2−|β|12|β|1−d = 3−d,

which is a consequence of (11). From the last equality, we compute the HB norm of sΛ

as
‖s̄Λ‖2

HB =
∑
β∈Λ

22|β|∞‖s̄β‖2
L2

= 3−d
∑
β∈Λ

22|β|∞ . (13)

For the L2 norm of s̄Λ we can obtain the lower bound

‖s̄Λ‖2
L2
≥ 4−d|Λ|2. (14)

Indeed, since

s̄β(x) =
d∏
i=1

(s̃βi(xi) +
1

2
),

using the orthogonality properties of the system {s̃k(t)} mentioned before, namely that∫ 1

0

(s̄k(t) +
1

2
)(s̄k′(t) +

1

2
) dt =

δkk′

12
+

1

4
≥ 1

4
,

we have

‖s̄Λ‖2
L2
≥

∑
β∈Λ

∑
β′∈Λ

d∏
i=1

∫ 1

0

(s̄βi(xi) +
1

2
)(s̄β′i(xi) +

1

2
) dxi

≥
∑
β∈Λ

∑
β′∈Λ

4−d = 4−d|Λ|2.
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3. Upper estimates: CΛ

We follow the approach adopted for d = 2 in [6]. Take an arbitrary vΛ ∈ SΛ, and
consider its unique decomposition (7) into HB blocks sβ ∈ Sβ. Define a partition of Λ
into non-overlapping index subsets

Λk := {β ∈ Λ : |β|∞ = k}, k = 1, . . . , kΛ, kΛ := max
β∈Λ
|β|∞, (15)

and gather the sβ into blocks associated with these Λk. Obviously,

vk :=
∑
β∈Λk

sβ ∈ Vk, k = 1, . . . , kΛ,

and according to (9)

‖vΛ‖2
H1

0
= ‖

kΛ∑
k=1

vk‖2
H1

0
≤ CBPX

∞∑
k=1

22k‖vk‖2
L2
.

If |Λk| denotes the number of indices in Λk then by the Cauchy-Schwarz inequality

‖vk‖2
L2

= ‖
∑
β∈Λk

sβ‖2
L2
≤ |Λk|

∑
β∈Λk

‖sβ‖2
L2
,

and, since k = |β|∞ for all β ∈ Λk, after substitution we see that the best constant in
(2) satisfies

CΛ ≤ CBPX · nΛ, nΛ := max
1≤k≤kΛ

|Λk|. (16)

A matching lower bound for the best possible CΛ in (2) is given by the following
example which shows that the appearance of nΛ is natural. Let k denote the index for
which |Λk| = nΛ, and consider the index subsets

Λk,i = {β ∈ Λk : βi = k}, i = 1, . . . , d.

Obviously, since ∪iΛk,i = Λk, the largest of these subsets has size at least nΛ/d. Without
loss of generality, we can assume that Λk,1 is this largest subset, therefore the monotone
index set

Λ′ := {β′ ∈ Nd−1 : (k, β′) ∈ Λk,1} ⊂ Nd−1

satisfies |Λ′| = |Λk,1| ≥ nΛ/d.
Consider now the function s̄Λk,1 ∈ SΛ defined at the end of Section 2. According to

(13), we have

‖s̄Λk,1‖2
HB = 3−d

∑
β∈Λk,1

22|β|∞ = 3−d22k|Λ′|.

A lower bound for the H1
0 norm of s̄Λk,1 is obtained as follows. Since

s̄Λk,1(x) = s̄k(x1)s̄Λ′(x
′),
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by the construction of Λk,1, we get∣∣∣∣ ∂∂x1

s̄Λk,1(x)

∣∣∣∣ = |s̄′k(x1)||s̄Λ′(x
′)| = 2k|s̄Λ′(x

′)|

where we adopted the notation x = (x1, x
′) with x′ ∈ Id−1. Thus,

‖s̄Λk,1‖2
H1

0
≥ ‖ ∂

∂x1

s̄Λk,1‖2
L2

= 22k‖s̄Λ′‖2
L2
.

Now we use (14) for s̄Λ′ . This gives

‖s̄Λk,1‖2
H1

0
≥ 4−d22k|Λ′|2.

Altogether we found that

CΛ ≥
‖s̄Λk,1‖2

H1
0

‖s̄Λk,1‖2
HB

≥ 3d

4d
|Λ′| ≥ 3d

d4d
nΛ. (17)

To summarize, according to (16) and (17) the best possible constant in (2) is proportional
to nΛ up to constants only depending on d.

4. Lower estimates: cΛ

To estimate the best constant cΛ in (3), we proceed again as in [6] but start with a
different decomposition of an arbitrary vΛ ∈ SΛ. Namely, for k = 1, . . . , kΛ, we define
the index subset Λk,0 ⊂ Λk by collecting into it all maximal multi-indices in Λk, i.e., all
β ∈ Λk such that β′ ≥ β and β′ ∈ Λk implies β′ = β (recall that Λk and kΛ are given by
(15) ). Consider the L2 orthogonal prewavelet representation

vΛ =
∑
β∈Λ

wβ =

kΛ∑
k=1

∑
β′∈Λk

w′β,

and partition, for each k = 1, . . . , kΛ, the index set Λk into subsets Λk,β corresponding
to the maximal indices β ∈ Λk,0 such that each β′ belongs to exactly one Λk,β, and
β′ ∈ Λk,β implies β′ ≤ β (this partitioning is always possible but not unique). This gives
a new decomposition

vΛ =

kΛ∑
k=1

∑
β∈Λk,0

vβ, vβ :=
∑

β′∈Λk,β

wβ′ , β ∈ Λk,0,

into vβ ∈ Vβ for which

‖vβ‖2
L2

=
∑

β′∈Λk,β

‖wβ′‖2
L2
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due to the L2 orthogonality of the wβ′ . Thus, according to (8) we obtain the following
lower bound for the H1

0 norm of vΛ:

‖vΛ‖2
H1

0
≥ cPW

kΛ∑
k=1

∑
β∈Λk,0

∑
β′∈Λk,β

‖wβ′‖2
L2

= cPW

kΛ∑
k=1

∑
β∈Λk,0

‖vβ‖2
L2
. (18)

We will next estimate the HB norms of the individual vβ with β ∈ Λk,0 by their L2

norms. For fixed but arbitrary β ∈ Λk,0, consider the HB decomposition

vβ =
∑
β′≤β

sβ′ .

Each sβ′ is a telescoping sum of at most 2d multi-linear spline interpolants Iβ′′vβ ∈ Vβ′′
of vβ with respect to the nodal point set Σβ′′ associated with tensor-product partition
Tβ′′ , where β′′ ≤ β′ and |β′ − β′′|∞ ≤ 1. Thus, the HB norm of vβ is bounded by

‖vβ‖2
HB =

∑
β′≤β

22|β′|∞‖sβ′‖2
L2
≤ 2d

∑
β′≤β

22|β′|∞
∑

β′′≤β′: |β′−β′′|∞≤1

‖Iβ′′vβ‖2
L2

≤ C
∑
β′≤β

22|β′|∞‖Iβ′vβ‖2
L2
≤ C

∑
β′≤β

22|β′|∞−|β′|1
∑
P∈Σβ′

|vβ(P )|2.

Here and in the following we use the L2-stability

c‖vβ‖2
L2
≤ 2−|β|1

∑
P∈Σβ

|vβ(P )|2 ≤ C‖vβ‖2
L2
, vβ ∈ Vβ, (19)

of the nodal basis in the full grid spaces Vβ (in the above, the lower L2 stability bound
in (19) was applied with vβ replaced by Iβ′vβ ∈ Vβ′). Since the nodal point sets Σβ form
a monotone family with respect to the multi-index order, i.e., β′ ≤ β implies Σβ′ ⊂ Σβ,
we have

‖vβ‖2
HB ≤ C

∑
P∈Σβ

|vβ(P )|2
∑
β′≤β

22|β′|∞−|β′|1 .

A straightforward calculation shows that

∑
β′≤β

22|β′|∞−|β′|1 ≤
d∑
i=1

∑
β′≤β: |β′|∞=βi

22|β′|∞−|β′|1 ≤ d

k∑
k1=1

2k1

∑
1≤k2,...,kd≤k1

2−k2−...−kd < d2k+1.

Thus,

‖vβ‖2
HB ≤ C2k

∑
P∈Σβ

|vβ(P )|2 ≤ C2k+|β|1‖vβ‖2
L2
, β ∈ Λk,0, (20)

for k = 1, . . . , kΛ, where we have used the upper L2 stability bound in (19).
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The combination of (18) and (20) leads to the bound

‖vΛ‖2
HB ≤ ‖

kΛ∑
k=1

∑
β∈Λk,0

2(|β|1−k)/22(k−|β|1)/2vβ‖2
HB

≤

 kΛ∑
k=1

2−k
∑
β∈Λk,0

2|β|1

 kΛ∑
k=1

2k
∑
β∈Λk,0

2−|β|1‖vβ‖2
HB


≤ CñΛ

kΛ∑
k=1

22k
∑
β∈Λk,0

‖vβ‖2
L2
≤ CñΛ‖vΛ‖2

H1
0
,

where

ñΛ :=

kΛ∑
k=1

∑
β∈Λk,0

2|β|1−|β|∞ . (21)

Thus, the best constant cΛ in (3) satisfies

c−1
Λ ≤ CñΛ, (22)

with ñΛ defined in (21).
The lower bound

c−1
Λ ≥ cñ′Λ, ñ′Λ := max

β∈Λ
2|β|1−|β|∞ (23)

is implied by considering the hat functions ψβ ∈ SΛ with β ∈ Λ. Indeed, (12) implies
for each of them

‖ψβ‖2
HB ≥ c2|β|∞ ,

while the same calculation that led to (4) gives

‖ψβ‖2
H1

0
≤ C22|β|∞−|β|1 .

Thus,

c−1
Λ ≥ max

β∈Λ

‖ψβ‖2
HB

‖ψβ‖2
H1

0

≥ cmax
β∈Λ

2|β|1−|β|∞

yields (23).
As we will see in the next section, for some important classes of generalized sparse

grid spaces including Vk and Sk, the two estimates (22) and (23) are of the same order
but in general they do not match. Since Λk,0 ⊂ Λk ⊂ Λ, we have

1 ≤ ñΛ

ñ′Λ
≤

kΛ∑
k=1

∑
β∈Λk,0

1 =

kΛ∑
k=1

|Λk,0| ≤ C

kΛ∑
k=1

kd−2 ≤ Ckd−1
Λ .

Here we have used that Λk is the union of d sets Λk,i each of which is essentially equivalent
to a certain monotone set Λ′ ⊂ Nd−1 with kΛ′ ≤ k. Therefore, the cardinality of the set
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Λk,0 of maximal indices in Λk cannot exceed d times the maximal cardinality of the set
of maximal indices of such Λ′ which is bounded by Ckd−2.

Thus, in the worst case upper and lower bounds for c−1
Λ may be off by a factor Ckd−1

Λ .
To see that such a gap is indeed possible, consider the index sets

Λ = {(2k, β′) : β′ ∈ Nd−1, |β′|1 < k + d− 1}, k = 1, 2, . . . ,

for which kΛ = 2k, and∑
β∈Λm,0

2|β|1−|β|∞ =
∑

(m,β′)∈Λm,0

2|β
′|1 = 2k|Λm,0| ≥ ckd−22k, m = k + 1, . . . , 2k.

This gives ñΛ ≥ ckd−12k and ñ′Λ = 2k. We currently do not know if the gap can be
reduced by constructing more sophisticated examples in order to improve the bound
(23).

5. Summary

To summarize, we have established bounds for HB preconditioning of H1
0 -elliptic

variational problems in generalized sparse grid spaces SΛ that are close to optimal for
large classes of monotone Λ, in particular, for Vk, Sk, and the energy-optimized sparse
grid spaces defined in [4], see also [3, 1].

Theorem 1 Let d > 1, and Λ ⊂ Nd be a monotone index set. The condition number
κSΛ,HB of the tensor-product HB preconditioner of a discretization of a symmetric H1

0 -
elliptic variational problem with the generalized sparse grid space SΛ satisfies the two-
sided estimate

c nΛñ
′
Λ ≤ κSΛ,HB ≤ C nΛñΛ,

where nΛ, ñΛ, ñ
′
Λ are defined in (16), (21), (23), respectively, and the constants c, C

depend solely on d.
For the standard sparse grid spaces Sk, the estimate turns into

κSk,HB ≈ kd−12k(d−1)/d, k →∞.

For the isotropic full grid spaces Vk, we have

κVk,HB ≈ kd−12k(d−1), k →∞.

More generally, for the energy-optimized sparse-grid spaces Sak := SΛk,a, −∞ < a < 1,
given by the index set

Λk,a := {β ∈ Nd : |β|1 − a|β|∞ ≤ (1− a)k + d− 1}, (24)

we have
κSak ,HB ≈ kd−12k(d−1)(1−a)/(d−a), k →∞, (25)

with constants that depend on d (and may depend on a).
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Before proving the asymptotic condition number behavior for the families Vk, Sk,
and Sak , let us mention that the result for κSk,HB improves our previous estimates for
d = 2 and d = 3 stated in [6] by a factor k and k3, respectively. It is interesting to note
that the condition number growth of the tensor-product HB preconditioner for Vk is
always worse compared to the isotropic HB preconditioner (papers by Yserentant [9, 10]
for d = 2, Ong [7] for d = 3, see [8] for arbitrary d > 3) by roughly an exponential factor
of 2k.

As to the energy-optimized sparse grid spaces Sak which are defined in [4, Section
4.1.2] as V T

J using different notation, it is obvious that Sk = S0
k , S

a
k becomes Vk if

a→ −∞, and Sak deteriorates for a = 1 into a sum of essentially univariate spline spaces

S1
k = Vk,1,...,1 + V1,k,...,1 + . . .+ V1,1,...,k.

Proof of Theorem 1. The condition number estimate for general Λ is an immediate
consequence of the results of Section 3 and 4. The gap between upper and lower bounds
is related to the quotient ñΛ/ñ

′
Λ which may grow as kd−1

Λ in the worst case.
The result for Vk is obvious since for the associated Λ we have kΛ = k, and the sets

Λr,0 consist of a single index (r, . . . , r), r = 1, . . . , k. Therefore,

ñ′Λ = 2k(d−1), ñΛ =
k∑
r=1

2r(d−1) ≤ C2k(d−1),

while nΛ = |Λk| ≈ kd−1.
To prove (25) for the generalized sparse grid spaces Sak (which includes Sk = S0

k as a
special case) we observe the following: As long as the integer r satisfies the inequality
dr−ar ≤ (1−a)k+d−1 or, equivalently, r ≤ r0 := b((1−a)k+d−1)/(d−a)c, we have
Vr ⊂ Sak by the definition (24) of the index set Λ = Λa

k. Thus, the sets Λr,0 of extremal
points in Λr consist of a single index (r, r, . . . , r) for r = 1, . . . , r0 and

r0∑
r=1

∑
β∈Λr,0

2|β|1−|β|∞ =

r0∑
r=1

2(d−1)r ≤ C2(d−1)r0 .

For the remaining r = r0 + 1, . . . , k (note that kΛ = k since

(1− a)|β|∞ + (d− 1) ≤ |β|1 − a|β|∞ ≤ k(1− a) + d− 1, β ∈ Λa
k,

and (k, 1, . . . , 1) ∈ Λa
k for any a < 1), we split Λr and thus Λr,0 into d (not necessarily

disjoint) sets Λi
r = {β ∈ Λr : βi = r}. Obviously, the maximal elements of Λi

r the set
of which is denoted Λi

r,0 belong to Λr,0, and, vice versa, each index in Λr,0 belongs to at
least one Λi

r,0. Since

∑
β∈Λr,0

2|β|1−|β|∞ ≤
d∑
i=1

∑
β∈Λir,0

2|β|1−|β|∞ = d
∑
β∈Λ1

r,0

2|β|1−|β|∞
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due to the invariance of Λa
k with respect to index permutations, we estimate the sum for

Λ1
r,0 = {(r, β′) : β′ ∈ Nd−1, |β′|∞ ≤ r, |β′|1 = b(1− a)(k − r) + d− 1c}.

This description of Λ1
r,0 holds because any β ∈ Λ1

r is of the form β = (r, β′) with |β′|∞ ≤ r
and satisfies

|β|1 − a|β|∞ = r(1− a) + |β′|1 ≤ (1− a)k + d− 1,

and therefore any maximal index β for Λ1
r must satisfy equality |β′|1 = b(1−a)(k− r) +

d− 1c. This implies that∑
β∈Λ1

r,0

2|β|1−|β|∞ =
∑
β∈Λ1

r,0

2|β
′|1 = 2b(1−a)(k−r)+d−1c|Λ1

r,0|.

Note that 2b(1−a)(k−r)+d−1c ≤ C2(1−a)(k−r0)+d−12−(1−a)(r−r0), where the upper bound de-
cays geometrically for any a < 1. Thus, if we prove that

|Λ1
r,0| ≤ C(r − r0)d−2, r = r0 + 1, . . . , k, (26)

then

k∑
r=r0+1

∑
β∈Λr,0

2|β|1−|β|∞ ≤ C2(1−a)(k−r0)+d−1

k∑
r=r0+1

(r − r0)d−22−(1−a)(r−r0) ≤ C2(d−1)r0 ,

where we have used that (d−1)r0 = (d−a)r0− (1−a)r0 ≈ (1−a)k+d−1− (1−a)r0 =
(1 − a)(k − r0) + d − 1 as k → ∞. Thus, upper and lower bound for c−1

Λak
are up to

constant factors matching since

ñΛak
≤ C2(d−1)r0 ≤ Cñ′Λak ≤ CñΛak

, k = 1, 2, . . . .

(recall that (r0, r0, . . . , r0) ∈ Λa
k and consequently ñ′Λak ≥ 2(d−1)r0). The result is

c−1
Λak
≈ 2(d−1)r0 ≤ C2(d−1)(1−a)k/(d−a), k = 1, 2, . . . . (27)

On the other hand, CΛak
≈ nΛak

≈ kd−1 (we leave this to the reader). Together this
implies (25).

It remains to show (26). For d = 2 this is obvious, since β′ ∈ N and fixing |β′|1
means to fix β′, i.e., in this case |Λ1

r,0| = 1 for all r = r0 + 1, . . . , k. For d > 2, we set
γi = r − β′i ≥ 0, i = 1, . . . , d− 1, and observe that

|Λ1
r,0| ≤ |{γ ∈ Zd−1

+ : |γ|1 = (d− 1)r − b(1− a)(k − r) + d− 1c}|
≤ C((d− 1)r − b(1− a)(k − r) + d− 1c)d−2.

This follows from |β′|∞ ≤ r and |γ|1 = (d− 1)r − |β′|1 for all β = (r, β′) ∈ Λ1
r,0. Since

(d− 1)r − b(1− a)(k − r) + d− 1c = (d− a)r − ((1− a)k + d− 1) + ε

= (d− a)(r − r0) + ε− ε′(d− a),
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where 0 ≤ ε, ε′ < 1, we have

|(d− 1)r − b(1− a)(k − r) + d− 1c| ≤ C(r − r0), r = r0 + 1, . . . , k,

with a constant C depending on d and a. This gives (26) and concludes the proof of
Theorem 1. 2

We mention that in [1, Section 3.2] a modification of Λ
1/5
k is used to define a so-called

energy-based sparse grid space, in order to optimize error bounds in the H1
0 norm, and

claim that the method used for (25) covers this example as well.
Finding the correct order of the HB condition numbers κVβ ,HB for arbitrary anisotropic

full grid spaces Vβ as β → ∞ is currently an open problem. By inspecting the subsets
Λk,0 for the index set Λ associated with Vβ reveals that here the gap between ñ′Λ and
ñΛ may be as large as kΛ = |β|∞ (but not larger), independently of d. Indeed, with-
out loss of generality, set β = (kΛ, β

′) with β′ ∈ Nd−1 satisfying |β′|∞ ≤ kΛ. Then
Λk,0 = {(k,min(β′, (k, . . . , k))}, k = 1, . . . , kΛ, where the minimum of the two index
vectors is taken componentwise. Thus,

ñ′Λ = max
k=1,...,kΛ

2|min(β′,(k,...,k))|1 = 2|β
′|1 ,

while

ñΛ =

kΛ∑
k=1

2|min(β′,(k,...,k))|1 ≤ kΛ2|β
′|1 .

In the last estimate, equality is attained for β′ = (1, . . . , 1). A direct inspection of this
extreme case of Vβ with β = (kΛ, 1, . . . , 1) shows that c−1

Λ ≈ 1 independently of kΛ and
d. In other words, in this case the lower bound (23) gives the correct behavior which
indicates that improvements in the proof of the upper bound (22) for c−1

Λ should be
possible.
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