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Kernel-based Reconstructions for Parametric
PDEs

Rüdiger Kempf, Holger Wendland and Christian Rieger

Abstract In uncertainty quantification, an unknown quantity has to be reconstructed
which depends typically on the solution of a partial differential equation. This
partial differential equation itself may depend on parameters, some of them may
be deterministic and some are random. To approximate the unknown quantity one
therefore has to solve the partial differential equation (usually numerically) for
several instances of the parameters and then reconstruct the quantity from these
simulations. As the number of parameters may be large, this becomes a high-
dimensional reconstruction problem.

We will address the topic of reconstructing such unknown quantities using kernel-
based reconstruction methods on sparse grids. First, we will introduce into the topic,
then explain the reconstruction process and finally provide new error estimates.

1 Introduction

Inmodern applied sciences dynamic processes are oftenmodeled by partial differential
equations, whereby coefficient functions, representing certain material parameters,
and forcing terms serve as input. Often, these are obtained by certain measurements
or experiments and therefore are prone to being either inaccurate or incomplete and
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2 Rüdiger Kempf, Holger Wendland and Christian Rieger

consequently introduce an uncertainty to the model. For a general overview on the
topic, see, for example, the recent books [8, 9, 10, 11].

To illustrate the general approach to such problems including randomness, we
follow [5, 2, 1] and hence restrict ourselves to a Dirichlet-Poisson problem where
the parametric diffusion coefficient is given by a function a : RNP × D → R. The
set RNP ⊂ R

NP serves as a finite dimensional parameter space and is, for the sake
of simplicity, the hyper-cube RNP := ×NP

j=1

(
−r j, r j

)
⊂ (−1, 1)NP . The number NP

determines the dimension of the parameter space and will be large but finite, i.e.
1 � NP < ∞, which is known in the literature as finite noise assumption.

The parametric partial differential equation is now given on a sufficiently regular
domain D ⊂ Rd and for G ∈ L2 (D) by

−∇ · (a(y, x)∇u(y, x)) = G(x) in RNP × D, (1)
u(y, x) = 0 in RNP × ∂D,

giving rise to a solution u : RNP × D → R. Obviously, the spatial derivatives are
only taken with respect to the spatial variable x.

Depending on the practical application, we are not interested in the solution u
directly but rather in a derived quantity of interest, which will be modeled by a linear
functional q acting on the solution space, i.e.

Q(y) := q (u(y, ·)) ∈ R, y ∈ RNP . (2)

Hence, Q : RNP → R is a function operating only on the parameter space. The
main task is now to reconstruct the map Q from sampled data {Q(yk )} at specific
parameter values yk ∈ YNS := {y1, . . . , yNS } ⊂ RNP , 1 ≤ k ≤ NS , where from now
on we denote the number of sampling points by NS ∈ N. To avoid any confusion, we
note here that NP and NS are uncorrelated.

By inserting the sampling points yk ∈ YNS into (1), solving the now deterministic
Poisson-Dirichlet problem and applying the functional q, we obtain the values
{Q(yk )}. Except for only very few cases, these steps cannot be done analytically
but only numerically. Hence, we introduce a finite dimensional finite element space
Vh ⊂ V = H1

0 (D), over which we solve

−∇ · (a(yk, x)∇uh (yk, x)) = G(x) in D, (3)
uh (yk, x) = 0 on ∂D,

weakly, yielding an approximation uh (yk, ·) ∈ Vh to the true solution u(yk, ·) ∈ V
and consequently perturbed samples

Qh (yk ) = q (uh (yk, ·)) ≈ Q(yk ) = q (u(yk, ·)) . (4)

Note, that we assume that we can compute q analytically. This assumption is made
for simplicity and has no impact on the error estimates in Section 5.

Choosing a standard finite element method (FEM) for solving (3) weakly, yields
well-known error estimates (see for example Brenner & Scott [3]) for the quantities
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εk := ‖uh (yk, ·) − u(yk, ·)‖V and ε := max
yk ∈YNS

εk . (5)

As mentioned above, we have to choose a discrete sampling set YNS in the
high-dimensional space RNP . This set should on the one hand be dense enough to
represent RNP well and to allow a good reproduction of Q, but on the other hand,
since we need to solve a partial differential equation for each element of YNS , has to
be sparse enough for our method to be applicable. Hence, a natural choice for our set
YNS is a sparse grid YNS := H (`, NP) of level ` in NP dimensions.

The final task is then to reconstruct the high-dimensional function Q from the
data {(yk,Q(yk ))} which carry an intrinsic error. Thus, we do not want to use
an interpolatory approach but rather a process from standard spline theory, called
smoothing splines or penalised least-squares, see for example [12] and the references
therein. The basic structure is a variational problem of the form

Q̃λ = arg min
s∈HK

NS∑
k=1
|Qh (yk ) − s(yk ) |2 + λ‖s‖2

HK
, (6)

where HK denotes a reproducing kernel Hilbert space (RKHS) of real-valued
functions with kernel K and where λ > 0 denotes a penalising parameter.

With this set-up we are able to base our error analysis on a new sampling inequality
developed by Wendland and Rieger [6]. The main contribution of this paper, after
choosing a specific RKHSHKc , is the error estimate




Q − Q̃λ



L∞ (RNP

)
≤ C

(
fNP,k (NS ) +

√
λgNP (NS )

)
‖Q‖HKc

+ C
(

1
√
λ

fNP,k (NS ) + gNP (NS )
)

NSht max
1≤k≤NS

|u(yk, ·) |H t+1 (D)

whereC > 0 is a constant, Q̃λ is given in (6),Q ∈ HKc is the function from (2) defined
by applying the functional q to the exact solution u of (1), h is the discretisation
parameter of the finite element mesh, t ≥ 1 and fNP,k and gNP are known functions
which have known asymptotic behaviour for NS → ∞. Furthermore, we derive
conditions for λ and h such that




Q − Q̃λ



L∞ (RNP

)
→ 0, NS → ∞,

with the order of fNP,k and by further sharpening the estimate we even get nearly
spectral convergence of the error.

Asmentioned above, the setup described above closely follows in particular Griebel
and Rieger [5]. However, there are two significant differences to their approach. On
the one hand, we use a sparse grid as the sampling set YNS ⊂ R

NP , instead of a
quasi-uniform data set as it is done in [5]. In the given, particular setting this is
of significance as we deal with a high-dimensional problem and choosing a sparse
grid helps to reduce the effect of the curse of dimensionality. On the other hand, we
use a penalised least-squares approach for reconstructing the function Q instead of
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a support vector machine with Vapnik’s loss function, as it has been done in [5].
However, the analysis carried out here for the penalised least-squares problem can
easily be replaced by a similar analysis for a support vector machine.

This paper is organised as follows. In Section 2 we will review the existence,
uniqueness and regularity of the solution of parametric partial differential equations of
type (1). In Section 3 we will briefly review the theory of reproducing kernel Hilbert
spaces (RKHSs), introduce the kernel and associated Hilbert space which we will
use throughout this paper and discuss the advantages of the penalised least-squares
reconstruction process. A justification for choosing sparse grids as our sampling
space YNS will be given in Section 4. Finally, in Section 5, we will state our main
result, the above mentioned error estimate on the reconstruction process, which will
be based upon a recently introduced sampling inequality for sparse grids.

We will use the following notation. We denote multi-indices by small, bold
Greek letters, e.g. ν ∈ Nd

0 , and set ν! =
∏d

j=1 νj! and να =
∏d

j=1 νj
αj for α ∈ Nd

0 .
Furthermore, we use the notation ‖ν‖1 = ν1 + · · · + νd for ν ∈ Nd

0 .
Additionally, we will use two kinds of Sobolev spaces over domains Ω ⊆ Rd of

the form Ω = Ω1 × · · · × Ωd with Ωj = (−1, 1) or Ωj = (−r j, r j ) ⊂ (−1, 1). On the
one hand we will employ the classical Sobolev space

W k,2
1 (Ω) :=

{
f ∈ L2(Ω) : Dα f ∈ L2(Ω), ‖α‖1 ≤ k

}

equipped with norm

‖ f ‖2
W k,2

1 (Ω)
:=

∑
‖α ‖1≤k



Dα f 

2
L2 (Ω) .

On the other hand, we will use the tensor product Sobolev space defined by

W k,2
∞ (Ω) :=

d⊗
j=1

W k,2(Ωj )

=
{

f ∈ L2(Ω) : Dα f ∈ L2(Ω), ‖α‖∞ ≤ k
}

together with the norm

‖ f ‖2
W k,2
∞ (Ω)

:=
∑
‖α ‖∞≤k



Dα f 

2
L2 (Ω) .

2 Parametric Partial Differential Equations

In this section, we will give an introduction to the theory of parametric partial
differential equations by looking at existence and uniqueness of the solutions of
the model problem (1). To this end, we need two domains. On the one hand we
require a high-dimensional parameter domain. In our case this will be the anisotropic
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hyper-cube

RNP :=
NP

×
j=1

(
−r j, r j

)
⊂ (−1, 1)NP , (7)

where 1 � NP < ∞.
On the other hand we need a spatial domain D ⊂ Rd , where usually d = 2, 3. We

will assume D to be a bounded, convex and polygonal domain. If G ∈ L2(D) then
the usual elliptic regularity theory holds for the weak formulation of (1), which is,
with the usual energy space V := H1

0 (D), given by∫
D

a(y, x)∇u(y, x) · ∇v(x) dx =
∫
D

G(x)v(x) dx, v ∈ V, y ∈ RNP . (8)

In this paper, we assume the coefficient function a to have the form

a(y, x) = a0(x) +
NP∑
k=1

φk (x)yk (9)

with given φk ∈ L∞(D), k ∈ N. In general, the sum in (9) will not be finite, so that
the restriction to the first NP terms introduces an additional error, which we will
ignore throughout this paper.

We now follow [4] and extend the usual Lax-Milgram theory to complex valued
coefficient functions ã : RNP × D → C. To this end, we introduce the so-called
uniform (complex) ellipticity assumptionwhich requires the existence of two constants
R ≥ r > 0 such that

0 < r ≤ R (ã(y, x)) ≤ |ã(y, x) | ≤ R x ∈ D, y ∈ RNP . (10)

Here, R(·) denotes the real part of a complex number. By rearranging, we see that
(10) is satisfied for the function a from (9) if the bounds

NP∑
k=1
|φk (x) | ≤

∞∑
k=1
|φk (x) | ≤ R (min (a0(x) − r, R − a0(x)))

hold. Here, we have used that y ∈ RNP ⊂ (−1, 1)NP . While this assumption already
leads to solutions u(y, x), which are analytic as functions of y, we need one additional
assumption to also bound the coefficients of a Taylor expansion of the function
y 7→ u(y, x). Following [4] again, we will call a sequence (ρk ) of positive numbers
δ-admissible for the sequence (φk ) if

∞∑
k=1

ρk |φk (x) | ≤ R (a0(x)) − δ, (11)

For δ ≤ r, one can even have ρk ≥ 1 for all k ∈ N, see [4]. With this, we have the
following result from [4, Theorem 1.2, Lemma 2.4].
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Proposition 1. Suppose that the uniform (complex) ellipticity assumption (10) holds
with parameters 0 < r ≤ R < ∞. Then, the solution of (8) has the form

u(y, ·) =
∑

ν∈NNP

uν (·)yν . (12)

for uν ∈ V, where convergence of the infinite series is understood with respect to the
‖ · ‖V-norm. Furthermore, if (ρk ) is a δ-admissible sequence, then

‖uν (y, ·)‖V ≤
‖G‖V∗
δ

NP∏
k=1

ρ−νk
k
, y ∈ RNP .

We now want to derive a parametric representation of the quantity of interest (2).
To this end, we introduce the notation R (λ) ∈ V for the Riesz representer of a linear
functional λ ∈ V∗. Then we have, by (12),

Q(y) = q (u(y, ·)) =
〈 ∑
ν∈NNP

uν (·)yν,R (q)
〉
V

=
∑

ν∈NNP

〈uν,R (q)〉V yν,

which shows that the function Q, under certain assumption on the functional q, is
also analytic. Later on, this representation of Q will guarantee that Q is indeed an
element of the reproducing kernel Hilbert space of our specific choice.

3 Reproducing Kernel Hilbert Spaces

The reproduction problem (6) is at first sight an optimisation problem over an infinite
dimensional function space. However, basic linear algebra shows that the solutionmust
be contained in the span of the Riesz representers of the point evaluation functionals
δyk . These Riesz representers become particularly simple if the underlying Hilbert
space HK is a Hilbert space with a reproducing kernel. The Hilbert space HK

is a reproducing kernel Hilbert space with kernel K : Ω × Ω → R if K satisfies
K (·, y) ∈ HK and f (y) = 〈 f , K (·, y)〉HK

for all y ∈ Ω and all f ∈ HK . Details on
such spaces can be found, for example, in [13].

3.1 Taylor Spaces and Power Series Kernels

In this paper, we are interested in a particular reproducing kernel Hilbert space,
which consists of analytic functions and which was introduced in [14] and further
investigated in [15]. The results below are taken from [5].

Let ν ∈ NNP

0 be a multi-index and (wν ) be a sequence of positive numbers such
that the summability condition

∑
ν∈N

NP
0

wν

ν!2 < ∞ holds. Under these assumptions, a
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power series kernel K : (−1, 1)NP × (−1, 1)NP → R, which is a kernel of the form

K (x, y) :=
∑

ν∈N
NP
0

wν

ν!2 x
ν yν, x, y ∈ (−1, 1)NP , (13)

is well-defined and analytic in each variable. The so-defined kernel K is the repro-
ducing kernel of the Hilbert spaceHK of functions

HK :=



f : (−1, 1)NP → R : f (x) =
∑

ν∈N
NP
0

fν xν with ‖ f ‖HK
< ∞



, (14)

where the norm is defined by the inner product

〈 f , g〉HK
:=

∑
ν∈N

NP
0

1
wν

Dν f (0)Dνg(0) =
∑

ν∈N
NP
0

ν!2

wν
fνgν, (15)

see [14]. The next two results are taken from [5] and illustrate the reason for using
such Taylor spacesHK in this context.

First, we consider the embedding constant of the embedding ofHK into either of
both Sobolev spaces, the classical isotropic space W k,2

1 and the tensor product space
W k,2
∞ , i.e. we investigate the norm of the injection

Ws (k) : HK ↪→ W k,2
s (RNP ), (16)

for s ∈ {1,∞}, which is given in the next lemma.

Lemma 1. Let RNP be defined by (7) Let s ∈ {1,∞}. Suppose that there is a constant
ĉ ∈ (0, 1) such that the weights wν satisfy wν ≤ ĉ ‖ν ‖1ν!2 for all ν ∈ NNP

0 . Then,
there is a constant C > 0 such that the norm of the embedding operator (16) can be
bounded by

‖Ws (k)‖ ≤ exp
(

C
2

k
)

k!.

The second result which we require from [5] states that the function Q which we
want to reconstruct indeed belongs to a Taylor spaceHK if the weights wν are chosen
appropriately.

Lemma 2. Suppose that the uniform (complex) ellipticity assumption (10) holds with
parameters 0 < r ≤ R < ∞. Furthermore, let (ρk )k be a δ-admissible sequence with
0 < δ < r and ρk > 1 for all k. Let c ∈ RNP have components cj with cj ∈ (ρ−1

j , 1),
1 ≤ j ≤ NP . Let K = Kc be defined by (13) with weights wν = cνν!2. Then we have
Q ∈ HKc .

The spaceHKc is a special case ofHK . With the given, specific weights, the inner
product becomes
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〈 f , g〉HKc
=

∑
ν∈N

NP
0

1
cνν!2 Dν f (0)Dνg(0) =

∑
ν∈N

NP
0

1
cν

fνgν .

Furthermore, it is easy to see that this specific choice of weights leads to an explicit,
analytic form of the reproducing kernel Kc given by

Kc (x, y) =
∑

ν∈N
NP
0

cν xν yν =
NP∏
k=1

1
1 − ck xk yk

. (17)

3.2 Penalised Least Squares

A typical application of reproducing kernel Hilbert spaces HK are reconstruction
processes of the form

min
s∈HK

*
,

N∑
k=1
| f (xk ) − s(xk ) |2 + λ‖s‖2

HK

+
-
, (18)

where the data {(xk, f (xk ))}1≤k≤N , f ∈ HK is given. The parameter λ > 0 serves
as a moderator between the fit to the data and the smoothness of the reconstruction
s̃λ. In the RKHS setting, we have, by the well-known representer theorem, that
the solution of the minimisation s̃λ lies in the finite-dimensional space spanned by
K (·, xk ), 1 ≤ k ≤ N , i.e. we have the representation

s̃λ =
N∑
k=0

αkK (·, xk ).

Furthermore, the coefficients α = (α1, . . . , αN )T can be computed by solving the
linear system

(K + λI ) α = f ,

where Ki j = K (xi, x j ), fi = f (xi) and I is the identity matrix. It is well-known that
this system has a positive definite system matrix and hence a unique solution. This
also means that the least-squares problem (18) has a unique solution. Hence, in our
situation, when employing the kernel K = Kc in (6), these general considerations give
us a unique approximation Q̃λ to Q derived from the noisy data Qh (yk ), 1 ≤ k ≤ NS .

4 Sparse Grids

In this section, we demonstrate how we construct the sparse grid H (`, d) of level `
and dimension d. Here, we follow mainly Wendland and Rieger [6].
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To obtain the d-dimensional grid, we start with univariate sets of Chebyshev
points. To do so we define a sequence of numbers (mi) by

m1 = 1,
mi = 2i−1 + 1, i > 1.

Then, we define the Chebyshev point sets X (i) to be

X (1) := Xm1 = {0},

X (i) := Xmi =

{
x (i)
j = − cos

(
π( j − 1)
mi − 1

)
: 1 ≤ j ≤ mi

}
, i > 1.

With these univariate point sets, we now define the sparse grid H̃ (`, d) of level ` and
dimension d, ` ≥ d, by

H̃ (`, d) =
⋃
i∈Nd

‖i ‖1=`

X (i1) × · · · × X (id ) . (19)

As mentioned in Section 1, we choose the sampling space YNS to be a sparse grid.
As, by construction, H̃ (`, NP) ⊂ [−1, 1]NP is not a subset of RNP , we simply scale
its points with a component-wise factor r j (1 − µ), 0 < µ � 1, 1 ≤ j ≤ NP and
receive the scaled sparse grid

H (`, NP) :=
{(

r1(1 − µ)x1, . . . , rNP (1 − µ)xNP

)
: x ∈ H̃ (`, NP)

}
. (20)

Now, we choose YNS := H (`, NP) ⊂ RNP , where ` is a degree of freedom. For
statements on the error of the reconstruction process we need to know the number of
sampling points NS . Unfortunately, the exact number is a priori unknown and there
exist only lower and upper bounds, provided in [6],

2`−2NP+1 ≤ NS ≤ 2`−NP+1 `NP−1

(NP − 1)!
.

Fortunately, as soon as we have created the sparse grid, we know exactly how many
points it contains. A selection is given in Table 1. Clearly, we can control the number
NS for a given dimension NP by choosing the level ` appropriately.

5 Error Estimates

We use this section to state the main results of this paper concerning error estimates
for the optimisation problem (6), whose definition we recall here. We use the
reproducing kernel Hilbert spaceHKc introduced in (14) with the power series kernel
Kc (x, y) =

∏NP

j=1
1

1−c j x j yj
of (17). Next, we define JQh,λ : HKc → R, where
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Table 1 Number of points NS of the grid H (`, d) for various space dimensions d and ` ≥ d.

` |d 2 3 4 5 6 7 8
2 1
3 5 1
4 13 7 1
5 29 25 9 1
6 65 69 41 11 1
7 145 177 137 61 13 1
8 321 441 401 241 85 15 1
9 705 1073 1105 801 389 113 17
10 1537 2561 2929 2433 1457 589 145
11 3329 6017 7537 6993 4865 2465 849
12 7169 13953 18945 19313 15121 9017 3937
13 15361 32001 46721 51713 44689 30241 15713
14 32769 72705 113409 135073 127105 95441 56737
15 69633 163841 271617 345665 350657 287745 190881

JQh,λ(s) :=
NP∑
k=1
|Qh (yk ) − s(yk ) |2 + λ‖s‖2

HKc
, s ∈ HKc ,

and set
Q̃λ := arg min

s∈HKc

JQh,λ(s).

The main objective is now to reconstruct the function Q : RNP → R from
perturbed samples Qh (yk ) = q(uh (yk, ·)), 1 ≤ k ≤ NS , where the yk ∈ H (`, NP)
and uh (yk, ·) ∈ Vh is a FEM approximation of the exact solution.

As the data we have are corrupted by numerical error, we cannot directly employ
the classic error estimates for penalised least-squares used in [6] since we cannot
assume the function Qh to be in the Hilbert spaceHKc . Nonetheless, we can assess
this error. To do so we use the quantity

εk = Qh (yk ) −Q(yk ) = q(uh (yk, ·)) − q(u(yk, ·)) = q (uh (yk, ·) − u(yk, ·)) .

Hence we have the estimate

|εk | ≤ ‖q‖V∗ ‖uh (yk, ·) − u(yk, ·)‖V

which means that |εk | is bounded by the numerical error, which occurs in the solution
of equation (3). This error enjoys well-known bounds depending on the smootheness
of the solution. For example, we have from Brenner & Scott [3] the following estimate.

Lemma 3. Let the finite element space be made up of elements up to order t with
mesh width h. Assume that u(yk, ·) ∈ Hs+1(D), for an 1 ≤ s ≤ t and all 1 ≤ k ≤ NP .
Then, there is a constant c > 0 such that

‖uh (yk, ·) − u(yk, ·)‖V ≤ chs |u(yk, ·) |H s+1 (D), 1 ≤ k ≤ NP . (21)
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Another tool we require is a sampling inequality, which allows us to bound the
L∞-norm of a function by a weighted sum of a full Sobolev norm and an `∞-norm
over the discrete sampling set. The particular inequality we use is a new approach
tailored for sparse grids. It gives the weights in terms of the number of sampling
points and not in terms of the mesh width of the discrete set as it is usually done in
sampling inequalities. This is of particular importance when working with sparse
grids and in higher dimensions. The version we use in this paper is a special case of
the one presented in [6].

Theorem 1. Let H̃ (`, NP), ` ≥ NP , be the sparse grid of (19) with NS points. Then,
for every function a ∈ W k,2

∞

(
(−1, 1)NP

)
, k ∈ N, we have

‖a‖L∞((−1,1)NP ) ≤ c
(

fNP,k (NS )‖a‖
W k,2
∞ ((−1,1)NP ) + gNP (NS )‖a‖

`∞
(
H̃ (`,NP )

) ) .
(22)

Here, the functions fNP,k and gNP have for NS → ∞ the asymptotic behaviour

fNP,k (NS ) = O
(
N
−k+ 1

2
S

log(NS )NP

(
k+ 5

2

)
−
(
k+ 1

2

) )
, (23)

gNP (NS ) = O
(
log(NS )NP

)
. (24)

In [6], the weight-functions fNP,k, gNP : N → R are given explicitly, but for our
purposes the asymptotic behaviour is sufficient. Obviously, the function fNP,k goes
to zero for NS → ∞ while the function gNP grows logarithmically.

As (22) holds for the unscaled sparse grid H̃ (`, NP) ⊂ [−1, 1]NP , we need to
modify it to fit into our framework, namely the scaled sparse grid H (`, NP) of (20).
We scale the occuring functions by a simple coordinate transform, i.e., we scale the
arguments by the same factors we used in the construction of H (`, NP) in Section 4.
In doing so, we arrive at

‖b‖L∞(RNP ) ≤ c̃
(

fNP,k (NS )‖b‖
W k,2
∞ (RNP ) + gNP (NS )‖b‖`∞ (H (`,NP ))

)
, (25)

where b ∈ W k,2
∞

(
RNP

)
, fNP,k and gNP are the functions of Theorem 1 and c̃ is a

modified constant, depending additionally on µ and r .
As we can embedHKc into W k,2

∞

(
RNP

)
, see Lemma 1, (25) above holds particu-

larly for functions b ∈ HKc .
With these tools we are now able to estimate the error Q − Q̃λ in the L∞-norm.

We mainly follow the ideas employed in [5] with appropriate modifications. We start
by deriving two estimates for Q̃λ. The first one is based upon the bound

���Qh (yk ) − Q̃λ(yk )���
2
≤

NS∑
i=1

���Qh (yi) − Q̃λ(yi)
���
2
+ λ




Q̃λ





2
HKc

= JQh,λ

(
Q̃λ

)
≤ JQh,λ(Q),
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where we introduced positive summands and used that Q̃λ is the minimiser of the
functional JQh,λ. This leads to

���Qh (yk ) − Q̃λ(yk )��� ≤
NS∑
i=1
|Qh (yi) −Q(yi) | +

√
λ ‖Q‖HKc

. (26)

Here, we used that for any a, b ≥ 0 the estimate (a + b)1/2 ≤ a1/2 + b1/2 holds.
Next, we can estimate the consistency error, i.e. the point-wise error at the sampling

nodes. We have by applying the triangle inequality

���Q(yk ) − Q̃λ(yk )��� ≤ |Q(yk ) −Qh (yk ) | + ���Qh (yk ) − Q̃λ(yk )��� ,

which, together with (26), leads to our first crucial estimate

���Q(yk ) − Q̃λ(yk )��� ≤ |Qh (yk ) −Q(yk ) | +
NS∑
i=1
|Qh (yi) −Q(yi) | +

√
λ ‖Q‖HKc

.

The second estimate on Q̃λ follows from

λ



Q̃λ





2
HKc

≤ JQh,λ

(
Q̃λ

)
≤ JQh,λ(Q) ≤

NS∑
k=1
|Qh (yk ) −Q(yk ) |2 + λ ‖Q‖2

HKc

and leads to




Q̃λ





2
HKc

≤
1
λ

NS∑
k=1
|Qh (yk ) −Q(yk ) |2 + ‖Q‖2

HKc
.

We collect these results in the following lemma.

Lemma 4. The reconstruction Q̃λ from (6) of the function Q satisfies the bounds

���Q(yk ) − Q̃λ(yk )��� ≤ |Qh (yk ) −Q(yk ) | +
NS∑
i=1
|Qh (yi) −Q(yi) | +

√
λ ‖Q‖HKc

,




Q̃λ





2
HKc

≤
1
λ

NS∑
i=1
|Qh (yi) −Q(yi) |2 + ‖Q‖2HKc

.

With these results we arrive at the following error estimate.

Theorem 2. Let H (`, NP) with ` ≥ NP be the scaled sparse grid from (20) with
NS points. Assume that Q ∈ HKc , whereHKc is as in (14) with K = Kc from (17)
satisfying the assumptions of Lemma 2. Then, there is a constant c > 0 such that for
Q̃λ = arg mins∈HKc

JQh,λ(s) the error estimate
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Q − Q̃λ



L∞ (RNP

)
≤ c

(
fNP,k (NS ) +

√
λgNP (NS )

)
‖Q‖HKc

+c
(

1
√
λ

fNP,k (NS ) + gNP (NS )
) NS∑

i=1
|Qh (yi) −Q(yi) |

holds, where fNP,k and gNP are from (23) and (24).

Proof. The modified sampling inequality (25) with b = Q − Q̃λ and Lemma 1 show




Q − Q̃λ



L∞(RNP ) ≤ c fNP,k (NS ) 


Q − Q̃λ




W k,2
∞ (RNP )

+ cgNP (NS ) 


Q − Q̃λ



`∞ (H (`,NP ))

≤ c fNP,k (NS ) 


Q − Q̃λ



HKc

+ cgNP (NS ) 


Q − Q̃λ



`∞ (H (`,NP ))

.

Next, Lemma 4 allows us to bound the terms 


Q − Q̃λ



`∞ (H (`,NP ))

and 


Q − Q̃λ



HKc

separately. We have




Q − Q̃λ



`∞ (H (`,NP ))

≤ max
k=1,...,NS

|Qh (yk ) −Q(yk ) | +
NS∑
i=1
|Qh (yi) −Q(yi) | +

√
λ ‖Q |HKc

≤ 2
NS∑
i=1
|Qh (yi) −Q(yi) | +

√
λ ‖Q‖HKc

and




Q − Q̃λ



HKc

≤ ‖Q‖HKc
+




Q̃λ



HKc

≤ 2 ‖Q‖HKc
+

1
√
λ

NS∑
i=1
|Qh (yi) −Q(yi) | .

Inserting these bounds into the above bound on 


Q − Q̃λ



L∞(RNP ) concludes the

proof. ut

Taking also the error bound (21) of the finite element approximation into account
yields the following corollary.

Corollary 1. Let the assumptions of Theorem 2 hold. Assume further that u(yk, ·) ∈
H t+1(D), t ∈ N , for every yk ∈ H (`, NP), 1 ≤ k ≤ NS . Then the error estimate




Q − Q̃λ



L∞(RNP ) ≤ c

(
fNP,k (NS ) +

√
λgNP (NS )

)
‖Q‖HKc

+ c
(

1
√
λ

fNP,k (NS ) + gNP (NS )
)

NSht max
1≤k≤NS

|u(yk, ·) |H t+1 (D)
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holds. The functions fNP,k and gNP are from (23) and (24).

Next, we want to discuss the convergence behaviour of the estimate above. As it
is, this result is problematic since for NS → ∞ the function gNP tends to infinity.
Hence, to achieve convergence, we have to couple the penalisation parameter λ and
the mesh width h of the finite element grid to the number of points NS in our sparse
grid appropriately.

We start with the first term on the right-hand side of the bound in Corollary 1 . Its
behaviour is determined by

fNP,k (NS ) +
√
λgNP (NS ),

To have this term to behave like fNP,k (NS ), which converges to zero for NS → ∞,
we must choose

√
λ sufficiently small . However, as we have a 1/

√
λ in the second

term of the bound of Corollary 1, we cannot choose it too small. Hence, we choose a
proportional constant cp > 0 and let

λ = cp

(
fNP,k (NS )
gNP (NS )

)2
. (27)

With this choice, the bound in Corollary 1 becomes




Q − Q̃λ



L∞(RNP )

≤ c
(

fNP,k (NS )‖Q‖HKc
+ gNP (NS )NSht max

1≤k≤NS

|u(yk, ·) |H t+1 (D)

)
.

Hence, in order to have convergence, we need to ensure that the factor
gNP (NS )NSht in the second summand also tends to zero. If we want to keep
the convergence order of size fNP,k (NS ) then we have to choose h to satisfy

h ≤
(

fNP,k (NS )
NSgNP (NS )

) 1
t

. (28)

We summarise these results in the next corollary.

Corollary 2. Under the assumptions of Corollary 1 and with the choices (27) for the
smoothing parameter and (28) for the finite element mesh size, the reconstruction
error satisfies

‖Q − Q̃λ‖L∞(RNP ) ≤ c fNP,k (NS ) = cN
−k+ 1

2
S

log(NS )NP

(
k+ 5

2

)
−
(
k+ 1

2

)

with a constant c = c(Q, u, k) depending only on Q, u and k.

Comparing this result to the one obtained in [5] and by experience from classical
RKHS results, see [13], one would, in light of the analycity of the kernel, expect
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spectral convergence of the reconstruction error, similar to [7]. And indeed, a more
thorough analysis of the occuring constants leads to the following result.

Corollary 3. Under the assumptions of Corollary 1 and with the choices (27) for the
smoothing parameter and (28) for the finite element mesh size, the reconstruction
error satisfies for sufficiently large NS the bound




Q − Q̃λ



L∞(RNP ) ≤ c1NS

2e−c2NS

(
‖Q‖HKc

+ max
1≤k≤NS

|u(yk, ·) |H t+1 (D)

)
,

where c1, c2 > 0 are constants.

Proof. Corollary 2, together with the embedding constant from Lemma 1, gives the
estimate




Q − Q̃λ



L∞(RNP )

≤ ck!e
C
2 k N

−k+ 1
2

S
log(NS )NP

(
k+ 5

2

)
−
(
k+ 1

2

) (
‖Q‖HKc

+ max
1≤k≤NS

|u(yk, ·) |H t+1 (D)

)
Using Stirling’s estimate k! ≤ ckk+ 1

2 e−k , k ≥ 1, and keeping in mind that the loga-
rithmic term log(NS ) grows slower than any root of NS , especially NS

1
NP (k+5/2)−(k+1/2) ,

we obtain




Q − Q̃λ



L∞(RNP )

≤ ckk+ 1
2 e−ke

C
2 k N

−k+ 1
2

S
NS

(
‖Q‖HKc

+ max
1≤k≤NS

|u(yk, ·) |H t+1 (D)

)
= c

(
k NS

3
) 1

2

(
e1−C

2
NS

k

)−k (
‖Q‖HKc

+ max
1≤k≤NS

|u(yk, ·) |H t+1 (D)

)
. (29)

Next, for sufficiently large NS , we choose k as k = NS

ν , where ν is a fixed constant
such that k ∈ N and e

C
2 −1 < ν ≤ NS holds. Inserting this particular choice of k into

(29) yields




Q − Q̃λ



L∞(RNP )

≤ cν−
1
2 NS

2
(
νe1−C

2

)− NS
ν

(
‖Q‖HKc

+ max
1≤k≤NS

|u(yk, ·) |H t+1 (D)

)
= cν−

1
2 NS

2
(
e

1
ν

(
1−C

2 +logν
) )−NS

(
‖Q‖HKc

+ max
1≤k≤NS

|u(yk, ·) |H t+1 (D)

)
= c1NS

2e−c2NS

(
‖Q‖HKc

+ max
1≤k≤NS

|u(yk, ·) |H t+1 (D)

)
,

with c1 = cν−
1
2 > 0 and c2 =

1
ν

(
1 − C

2 + log ν
)
> 0 for ν in the given range. ut
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6 Concluding Remarks and Future Work

We have recaptured the basics of the regularity theory of parametric elliptic partial
differential equations. One important result was that the solution, as a function of the
parameter, is analytic and hence so is the quantity of interest.

The analyticity of the function we wanted to reconstruct motivated the choice of
the specific reproducing kernel Hilbert space, a Taylor space, whose kernel is a power
series kernel and thus analytic itself. With these choices we employed a regularised
reconstruction process for approximating the smooth function from data which are
usually corrupted by a (numerical) error, which means that the data-giving function
is not an element of the approximation space.

To alleviate the curse of dimensionality we employed sparse grids, and a new type
of sampling inequality which is expressed in the number of points rather than the fill
distance of the sampling set.

Finally, we used the two degrees of freedom at our disposal, namely the FEM
mesh width and the penalty parameter of the reconstruction process, to derive an
overall error estimate.

Unfortunately, numerical verification of the derived error estimate is difficult due
to the lack of good examples and the high dimensionality of the parameter space.
Nonetheless, this will be pursued in the future.

Additionally, the kernel we used is globally supported which will lead to dense
system matrices which should be avoided in practical applications, especially if the
number of sampling points, i.e. the dimension of the matrix, becomes large. Switching
to compactly supported kernels is subject of ongoing research. However, due to the
high-dimensional nature of the underlying domain, a compactly supported kernel
might not “see” enough information unless various scales are employed.

References

1. I. Babuska, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial
differential equations with random input data, SIAM J. Numer. Anal. 45 (2007), 1005–1034.

2. I. Babuska, R. Tempone, and G. E. Zouraris,Galerkin finite element approximations of stochastic
elliptic partial differential equations, SIAM J. Numer. Anal. 42 (2004), 800–825.

3. S. Brenner and L.R. Scott, The mathematical theory of finite element methods, Texts in Applied
Mathematics, Springer New York, 2002.

4. Albert Cohen, Ronald DeVore, and Christoph Schwab, Analytic regularity and polynomial
approximation of parametric and stochastic elliptic pdes, Analysis and Applications 9 (2010),
no. 1, 11–47.

5. Michael Griebel and Christian Rieger, Reproducing kernel Hilbert spaces for parametric partial
differential equations, SIAM/ASA J. Uncertainty Quantification 5 (2017), 111–137.

6. Christian Rieger and Holger Wendland, Sampling inequalities for sparse grids, Numer. Math.
136 (2017), 439 – 466.

7. Christian Rieger and Barbara Zwicknagl, Sampling inequalities for infinitely smooth func-
tions, with applications to interpolation and machine learning, Advances in Computational
Mathematics 32 (2010), 103–129.



Kernel-based Reconstructions for Parametric PDEs 17

8. Ralph C. Smith, Uncertainty quantification, Computational Science & Engineering, vol. 12,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014, Theory,
implementation, and applications. MR 3155184

9. Christian Soize, Uncertainty quantification, Interdisciplinary Applied Mathematics, vol. 47,
Springer, Cham, 2017, An accelerated course with advanced applications in computational
engineering, With a foreword by Charbel Farhat. MR 3618803

10. T. J. Sullivan, Introduction to uncertainty quantification, Texts in Applied Mathematics, vol. 63,
Springer, Cham, 2015. MR 3364576

11. Luis Tenorio, An introduction to data analysis and uncertainty quantification for inverse prob-
lems, Mathematics in Industry (Philadelphia), Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2017. MR 3672154

12. G. Wahba, Spline models for observational data, CBMS-NSF, Regional Conference Series in
Applied Mathematics, Siam, Philadelphia, 1990.

13. Holger Wendland, Scattered data approximation, Cambridge University Press, 2004.
14. Barbara Zwicknagl, Power series kernels, Constructive Approximation 29 (2009), no. 1, 61–84.
15. Barbara Zwicknagl and Robert Schaback, Interpolation and approximation in taylor spaces, J.

Approx. Theory 171 (2013), 65–83.


