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Abstract. We derive sampling inequalities for discrete point sets which are of anisotropic tensor product
form. Such sampling inequalities can be used to prove convergence for arbitrary stable reconstruction

processes. As usual in the context of high-dimensional problems, our sampling inequalities are expressed in
terms of the number of data sites, i.e. the number of points in the sparse grid. To this end, new bounds

on specific monotone sets and on the number of points in an anisotropic sparse grid are derived. High

dimensional approximation; anistropic sparse grids; sampling inequalities; kernel-based reconstructions.

1. Introduction

In high dimensional approximation problems, the so-called curse of dimensionality is the main obstruction
to the simple upscaling of numerical algorithms which have proven to work well in low dimensions. In fact, if
there is no additional structure in a high-dimensional problem then basically no method can yield satisfactory
approximation qualities. In this paper, we focus on anisotropic smoothness as the main additional structure.
This basically means that the functions we consider do not possess equal numbers of weak derivatives in each
coordinate direction. Such problems naturally arise, for example, when dealing with simultaneous space-time
discretisations of parabolic problems, see for example [9, 10]. Other applications comprise the solution of
stochastic partial differential equations, see for example [17, 16].

We will focus on situations in which this anisotropy is known a priori, as it is the case in the above men-
tioned applications, and hence can be incorporated into all considerations. This is in contrast to applications
where the anisotropy is not known and hence dimension adaptive methods have to be developed. Such an a
priori knowledge is in particular important in this paper, since we are not designing any new algorithm but
focus on the deterministic a priori error analysis by means of sampling inequalities.

Such sampling inequalities have been introduced in [26] and successively been investigated in [1, 15] for
low-dimensional domains. In [20], first results for high-dimensional domains in the context of classical sparse
grids have been derived. It is the goal of this paper to generalise the results of [20] to the situation of
anisotropic and more general sparse grids.

The advantage of such sampling inequalities is that they provide means to easily derive error estimates for
every stable reconstruction method. This includes in particular kernel-based reconstructions as they are, for
example, popular in radial basis function approximation, see [25], or machine learning and support vector
machines, see [23]. Further details can also be found in the above mentioned papers.

2. The Problem: Sampling Inequalities for Anisotropic Sparse Grids

We will now describe the sampling inequalities that we will prove in this paper in more detail. To this
end, we first have to introduce some notation. As usual, let N := {1, 2, . . . } denote the natural numbers
and N0 := N ∪ {0}. We also use the notation Rd+ = {x = (x1, . . . , xd) ∈ Rd : xj > 0, 1 ≤ j ≤ d} and
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Rd≥0 = {x ∈ Rd : xj ≥ 0, 1 ≤ j ≤ d}. For x ∈ Rd we use ‖x‖1 :=
∑d
j=1 |xj |. For ν ∈ Nd0 we also use the

alternative notation |ν| := ‖ν‖1 and ν! :=
∏d
j=1 νj !. Furthermore, for ν,µ ∈ Nd0, we write ν ≤ µ if and only

if νj ≤ µj for 1 ≤ j ≤ d and (
ν

µ

)
:=

d∏
j=1

(
νj
µj

)
.

In the same way we refer to multivariate monomials and multivariate derivatives by xν and Dν , respectively.
Let Ω(j) ⊆ Rnj , 1 ≤ j ≤ d, be a bounded domain with a sufficiently smooth boundary. We are particularly

interested in the cases where Ω(j) = [−1, 1] ⊆ R is an interval or where nj is small, i.e. nj = 2, 3. Then, the
spatial domain we are interested in is simply the Cartesian product

Ω⊗ := Ω(1) × Ω(2) × · · · × Ω(d).

To describe the functions on Ω⊗ we are interested in, let β ∈ Nd0 and 1 ≤ p < ∞ be given. Then, we are
interested in estimates on functions from the anisotropic Sobolev space

Wβ
p (Ω⊗) = {f ∈ Lp(Ω⊗) : Dαf ∈ Lp(Ω⊗) for α ∈ Nd0 with α ≤ β},

equipped with the norm

‖f‖p
Wβ
p (Ω⊗)

:=
∑
α≤β

‖Dαf‖Lp(Ω⊗).

In several situations it will not be necessary to restrict ourselves to integer orders. In the case of p =∞ we
will consider the classical smoothness spaces of bounded functions

Cβb (Ω⊗) = {f ∈ Cb(Ω⊗) : Dαf ∈ Cb(Ω⊗) for α ∈ Nd0 with α ≤ β},
equipped with the standard maximum norms

‖f‖Wβ
∞(Ω⊗) = max

α≤β
sup
x∈Ω⊗

|Dαf(x)|.

Both spaces, Wβ
p (Ω⊗) and Cβb (Ω⊗), can be considered as tensor product spaces generated by the corre-

sponding univariate spaces, see for example [2, 5, 22]. We are particularly interested in giving estimates on

f ∈Wβ
p (Ω⊗) or Cβb (Ω) provided that f is only known at a discrete subset of Ω⊗. To make this possible, we

need to assume, in the first case, that βj ≥ nj/p for 1 ≤ j ≤ d such that the Sobolev embedding theorem
allows us to form point evaluations. Moreover, we have to describe the discrete point set on which f is
assumed to be known. Here, motivated by applications from anisotropic sparse grids, we use the following
construction. For each 1 ≤ j ≤ d let sequences of discrete, nested sets

∅ = Ξ
(j)
0 ⊆ Ξ

(j)
1 ⊆ Ξ

(j)
2 ⊆ · · · ⊆ Ω(j)

be given. With these univariate sets, we can create sequences of multivariate sets by simply forming the
Cartesian products

Ξ⊗λ = Ξ
(1)
λ1
× · · · × Ξ

(d)
λd
, λ ∈ Nd0.

The union of several of these multivariate point sets then form what we will call an anisotropic sparse grid.
To be more precise, following [16], we define for ω ∈ Rd+ and ` ∈ N the index sets

Iω(`, d) :=

ν ∈ Nd :

d∑
j=1

(νj − 1)ωj ≤ ` min
1≤j≤d

ωj

 ,(1)

Jω (`, d) := Iω (`, d) \ Iω
(
`−
‖ω‖1
ωmin

, d

)
,(2)

where the first one is a special case of a monotone index set. With this, we are able to define an anisotropic
sparse grid point set as

(3) Ξ⊗ω(`, d) :=
⋃

λ∈Jω(`,d)

Ξ⊗λ =
⋃

λ∈Jω(`,d)

Ξ
(1)
λ1
× · · · × Ξ

(d)
λd
.

With this notation at hand, we can present one of our main results which will follow from the theory we will
develop in this paper. The precise conditions of the following theorem will be given later, see Theorem 7.
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Nonetheless, the theorem already shows a typical connection between the smoothness vector β defining the
Sobolev space and the weight vector ω defining the anistropic sparse grid.

Theorem 1. Let β = ω ∈ Nd. Under certain assumptions on the grid points Ξ
(j)
k there is a constant C > 0

such that

‖f‖L∞(Ω⊗) ≤ C(logN)(2d−1)+(d−1)ωminN−ωmin‖f‖Wβ
∞(Ω⊗) + C(logN)d‖f‖`∞(Ξ⊗ω (`,d)), f ∈ Cβb (Ω⊗).

Here, ωmin = min1≤j≤d ωj and N denotes the number of points in the sparse grid Ξ⊗ω(`, d). Furthermore,
‖f‖`∞(Ξ) := maxx∈Ξ |f(x)| denotes the discrete `∞-norm.

The above theorem generalises the findings for isotropic sparse grids from [20]. The result shows that such
sampling inequalities also hold for the specific anisotropic sparse grids mentioned above. As usual in this
context, we assume that the weight vector ω is a given, fixed vector, which is, for example, determined by the
smoothness of the functions involved. Our results then concentrate on finding bounds for varying ` ∈ N. As
for ` tending to infinity, the corresponding anistropic sparse grids look more and more like isotropic sparse
grids, the sampling inequalities should reflect this, as it is the case in the above theorem. However, the
techniques developed in this paper will also allow us to derive more sophisticated sampling inequalities and
hence error estimates when the weight vector ω is changing. This will be the subject of a subsequent paper.

This paper is organised as follows. In the next section we describe and collect necessary results on
monotone sets, including new results or new proofs for specific integrals over simplices. This is required
for giving bounds on the computational cost, which means here particularly relating the number of points
in the sparse grid to the number of indices in the monotone index set. We employ the approach of [11]
and [16] when it comes to estimating the number of indices in the index set. However, in contrast to these
sources, we give new proofs based upon the Faà di Bruno formula for derivatives of concatenated multivariate
functions and the Hermite-Gnocci theorem and the Peano kernel representation for divided differences. This
new approach does not only allow us to derive the same bounds, it also allows us to derive explicit formulas
for several of the relevant integrals and sums, which are interesting on their own. Moreover, in contrast to
[11], we measure the computational cost not in terms of the number of indices in Iω(`, d) but in the actual
number of points in the sparse grid Ξω(`, d).

The fourth section is devoted to sampling inequalities. We start with collecting necessary results on quasi-
interpolation and Smolyak’s algorithm. We then give the generic idea of how to derive sampling inequalities
in rather general situations. Then, the main results of this paper are derived under certain assumptions on
the univariate data sets, the smoothness of the target function and the weight vector of the index set. Here,
we distinguish, as is common in this context, between oversampling and non-oversampling. In particular, we
will also give a general version of Theorem 1 and its proof and discuss several examples.

3. Estimates on the Cost

As mentioned above, we understand as cost the cardinality of the anisotropic grid Ξ⊗ω(`, d) from (3). It is
the goal of this section to give both lower and upper bounds on the cardinality of Ξ⊗ω(`, d). We will achieve
this in two steps, where the first one is finding bounds for the cardinality of the index sets, in particular of
Iω(`,D) from (1). To a certain extend this has already been done in [11, 16, 6]. However, as we employ
a different proof technique, we can, in many situation derive, even explicit representations instead of only
bounds.
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3.1. Bounds on the Cardinality of Index Sets.

3.1.1. Monotone Sets and Basic Properties. Monotone index sets play an important role when it comes to
describing anisotropic behaviour. Unfortunately, the notation varies throughout the different publications.
Hence, we will now collect all relevant notation and properties of monotone index sets. We will also describe
specific monotone index sets, which are defined by a hyper-plane and form anisotropic simplices.

For the definitions and basic facts, we mainly follow [6, Sec. 2.1] and [16, Eq. 2.7, Eq. 2.10, & p2425]),
when it comes to the specific index sets Iω(`, d) and Jω(`, d).

Definition 1. An index set Λ ⊆ Nd is called monotone if ν ∈ Λ and µ ∈ Nd with µ ≤ ν implies µ ∈ Λ.

For 1 ≤ j ≤ d we denote, as usual, the jth unit vector by ej ∈ Nd0, i.e. (ej)k = δjk. Then, Λ is obviously
a monotone set if and only if each ν ∈ Λ with νj ≥ 2 for any 1 ≤ j ≤ d satisfies ν − ej ∈ Λ.

As mentioned above, the set Iω(`,D) is a monotone set (or admissible in the sense of [7, Definition 2.4]).
To see this, let η ∈ Iω (`, d) with ηd ≥ 2 for a 1 ≤ j ≤ d. Then, η − ej satisfies

d∑
k=1

(η − ej − 1)kωk ≤
d∑
k=1

(ηk − 1)ωk ≤ `ωmin.

Hence, we also have η − ej ∈ Iω (`, d). In the rest of the paper, we will particularly be interested in
monotone index sets, which are related to anisotropic simplices. To this end, let ω ∈ Rd+ be a weight vector
and T ∈ (0,∞) a threshold. Following [11, Eq. 2.2, 2.3 & 2.4], we define

Eω(T ) :=

x ∈ Rd≥0 : ω · x =

d∑
j=1

ωjxj ≤ T

 ,

Dω(T ) :=

k ∈ Nd0 : ω · k =

d∑
j=1

ωjkj ≤ T

 = Eω(T ) ∩ Nd0,

[Dω] (T ) :=
⋃

k∈Dω(T )

d

×
j=1

[kj , kj + 1) =:
⋃

k∈Dω(T )

[k,k + 1) ,

where 1 = (1, . . . , 1)T ∈ Rd is the constant vector having all entries as 1. We remark that these sets satisfy
the following inclusions, see [11, Proof of Thm. 2.6],

(4) Eω(T ) ⊆ [Dω] (T ) ⊆ Eω (T + ‖ω‖1) .

As [Dω](T ) is composed of disjoint cubes of volume one, the number #Dω(T ) of elements in Dω(T ) is given
by

(5) #Dω(T ) = vol (Dω(T )) .

Finally, the set Dω(T ) is closely connected to our index set Iω(`, d) from (1) as we obviously have

(6) Iω(`, d) =
{
ν ∈ Nd : (ν − 1) · ω ≤ `ωmin

}
= Dω(`ωmin) + {1}.

We will also need the complements of these sets. Here, however, it is important to note the base set within
which the complements are formed. To be more precise, we have

Iω(`, d){ = Nd \ Iω(`, d), Dω(T ){ = Nd0 \ Dω(T ),

[Dω](T ){ = Rd≥0 \ [Dω](T ), Eω(T ){ = Rd≥0 \ Eω(T ).

Using different base sets has, of course, certain consequences. For example, we have on the one hand

Iω(`, d) = {λ ∈ Nd : λ · ω ≤ `ωmin + ‖ω‖1}
⊆ {λ ∈ Nd0 : λ · ω ≤ `ωmin + ‖ω‖1}
= Dω(`ωmin + ‖ω‖1),
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but we also have on the other hand

Iω(`, d){ = {λ ∈ Nd : λ · ω > `ωmin + ‖ω‖1}
⊆ {λ ∈ Nd0 : λ · ω > `ωmin + ‖ω‖1}(7)

= Dω(`ωmin + ‖ω‖1){.

3.1.2. Divided Differences and Integrals over Simplices. Next, we generalise the calculations from [11] in order
to have more general results with simpler proofs and in order to improve the readability of the manuscript.
Given a certain, continuous function f : R→ R, we are interested in evaluating sums of the form

(8) F (ω, T, d,γ) :=
∑

k∈Dω(T )

f (γ · k) .

As in [11], we are mainly interested in the case f = exp, but will derive a more general formula. Furthermore,

we are also interested in such sums if the sum is actually taken over the complement Dω(T ){ = Nd0 \ Dω(T )
of Dω(T ). For the proofs this will make no significant difference.

In order to evaluate sums of the form (8) we will employ a specific form of the Faá di Bruno formula,
which gives an intrinsic relation between such sums and certain multivariate integrals over the simplices
[Dω](T ). Then, we will use the Peano kernel representation of divided differences to further reduce these
integrals to univariate integrals which then can either be computed explicitly or bounded.

To introduce the Faá di Bruno formula, we need to recall the notion of a partition of a set.

Definition 2. Let M be a set. We call a family π(M) of subsets of M a partition if

• ∅ 6∈ π(M),
• the elements of π(M) are pairwise disjoint, i.e., A,B ∈ π(M) implies A ∩B = ∅,
• the union of all elements covers M , i.e.,

⋃
A∈π(M)A = M .

We denote the family of all partitions of a (finite) set M by Ppart(M).

For a partition π = π(M) we denote the number of sets in π by |π| and for A ∈ π we denote the number
of elements in A also by |A|. Moreover, if π is a partition of M = {1, . . . , d}, then any set A ∈ π represents
a multi-index α ∈ Nd0 by defining αj = 1 if j ∈ A and αj = 0 if j 6∈ A. With this, we introduce the notation

DAf := Dαf =
∂|A|f∏
j∈A ∂xj

.

With this notation, the multivariate chain rule or Faà di Bruno’s formula [13, Prop 1] for g ∈ Cd(Rd) and
f ∈ Cd(R) can be written as

(9)
∂d

∂x1 · · · ∂xd
(f ◦ g)(x) =

∑
π∈Ppart({1,...,d})

f (|π|)(g(x))
∏
A∈π

DAg(x).

This allows us to derive our first representation for specific sums of the form (8) which we state for sums

over Dω(T ) and sums over Dω(T ){, as well.

Theorem 2. Let ω ∈ Rd+ and T > 0. For g ∈ Cd(Rd) and f ∈ Cd(R) we have

(10)
∑

k∈Dω(T )

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+jf(g(k + e)) =

∫
[Dω ](T )

∑
π∈Ppart({1,...,d})

f (|π|)(g(x))
∏
A∈π

DAg(x)dx

and

(11)
∑

k∈Dω(T ){

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+jf(g (k + e)) =

∫
[Dω ](T ){

∑
π∈Ppart({1,...,d})

f (|π|)(g(x))
∏
A∈π

DAg(x)dx.
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Proof. We only prove (10) as (11) follows in the same fashion using [Dω](T ){ =
⋃

k∈Dω(T ){ [k,k + 1). To

prove (10), we use (9), which immediately yields∫
[Dω ](T )

∑
π∈Ppart({1,...,d})

f (|π|)(g(x))
∏
A∈π

DAg(x)dx =

∫
[Dω ](T )

∂d

∂x1 · · · ∂xd
(f ◦ g)(x)dx.

Now, we use the fact that [Dω](T ) =
⋃

k∈Dω(T )[k,k + 1) and that [k,k + 1) are disjoint and to conclude

∫
[D(ω)](T )

∂d

∂x1 · · · ∂xd
(f ◦ g)(x)dx =

∑
k∈Dω(T )

∫
[k,k+1)

∂d

∂x1 · · · ∂xd
(f ◦ g)(x)dx

=
∑

k∈Dω(T )

∫ k1+1

k1

· · ·
∫ kd+1

kd

∂d

∂x1 · · · ∂xd
(f ◦ g)(x)dx

=
∑

k∈Dω(T )

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+j(f ◦ g)(k + e).

Above, the last equation is easily seen by induction on d using the fundamental theorem of calculus. �

An immediate consequence of this result is the following one, which is essentially a generalisation of [11,
Lemma 2.1].

Corollary 1. Let ω ∈ Rd+ and T > 0. For f ∈ Cd(R) and γ ∈ Rd we have

∑
k∈Dω(T )

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+jf ((k + e) · γ) =

d∏
j=1

γj

∫
[Dω ](T )

f (d)(γ · x)dx.

Proof. We use g(x) := gγ(x) = γ · x in Theorem 2. For this specific g we observe that for all π ∈
Ppart({1, . . . , d}) with π 6= {{1}, . . . , {d}} =: π? we obviously have at least one A ∈ π with at least two
elements meaning particularly DAg(x) = 0 and hence∏

A∈π
DAgγ(x) = 0

For the remaining partitioning π? we obviously have

∏
A∈π?

DAgγ(x) =

d∏
j=1

∂

∂xj
gγ(x) =

d∏
j=1

γj .

Inserting this into (10) gives the stated result. �

As mentioned above, the result above is a generalisation of [11, Lemma 2.1]. The result itself (with Dω(T )

replaced by Dω(T ){) and c = −1 and γ = ω = a is as follows.

Corollary 2. Let ω ∈ Rd+ and T > 0. For c 6= 0 we have

(12) Gc(ω, T, d,γ) :=
∑

k∈Dω(T )

exp (cγ · k) = (−c)d
d∏
j=1

γj
(1− exp(cγj))

∫
[Dω ](T )

exp(cγ · x)dx.
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Proof. Setting f(x) = fc(x) = exp(cx) in Corollary 1 and using f
(d)
c (γ · x) = cdfc(γ · x) yields

cd
d∏
j=1

γj

∫
[Dω ](T )

fc(γ · x)dx =

d∏
j=1

γj

∫
[Dω ](T )

f (d)
c (γ · x)dx

=
∑

k∈Dω(T )

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+jfc ((k + e) · γ)

=
∑

k∈Dω(T )

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+jfc (k · γ) fc (e · γ)

=

 ∑
k∈Dω(T )

fc (k · γ)




d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+jfc (e · γ)



= (−1)dGc(ω, T, d,γ)


d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)j
d∏
i=1

fc(γiei)

 .

Next, for I = {1, . . . , d} and arbitrary x ∈ Rd we have the identity

(13)
∏
i∈I

(1 + xi) =
∑
J⊆I

∏
i∈J

xi =

d∑
j=0

∑
J⊆I
|J |=j

∏
i∈J

xi.

Setting xi = −fc(γiei) and noting that we have for each J ⊆ I exactly one vector e ∈ {0, 1}d with ei = 1
for i ∈ J and ei = 0 for i 6∈ J we see that fc(γiei) = fc(γi) if i ∈ J and fc(γiei) = 1 if i 6∈ J . Hence,

d∏
i=1

(1− fc(γiei)) =

d∑
j=0

∑
e∈{0,1}
|e|=j

(−1)j
d∏
i=1

fc(γiei).

This altogether gives

cd
d∏
j=1

γj

∫
[Dω ](T )

fc(γ · x)dx = (−1)dGc(ω, T, d,γ)

d∏
j=1

(1− fc(γj)) ,

and hence

Gc(ω, T, d,γ) = (−c)d
d∏
j=1

γj
(1− fc(γj))

∫
[Dω ](T )

fc(γ · x)dx.

�

As mentioned above, the previous result also holds with Dω(T ) replaced by Dω(T ){. However, later on,
we need a more general result for this situation, which we will provide now.

Corollary 3. For c < 0, ω,γ ∈ Rd+, ρ ∈ Nd and T > 0 let

(14) G{
c(ω, T, d,γ,ρ) :=

∑
k∈Dω(T ){

kρ exp (cγ · k) .

Then, provided that |c|γj > log(2)ρj, 1 ≤ j ≤ d, we have the upper bound

G{
c(ω, T, d,γ,ρ) ≤ |c|dC2

∫
W

xρ exp(cγ · x)

d∏
j=1

(
γj +

ρj
cxj

)
dx,

7



and the lower bound

G{
c(ω, T, d,γ,ρ) ≥ |c|dC1

∫
W

xρ exp(cγ · x)

d∏
j=1

(
γj +

ρj
cxj

)
dx,

where the constants C1, C2 > 0 are defined as

C1 :=

 d∏
j=1

(1− ecγj )

−1

and C2 :=

 d∏
j=1

(1− ecγj+log(2)ρj )

−1

,

and where

(15) W :=
⋃

k∈Dω(T ){∩Nd
[k,k + 1) ⊆ [Dω](T ){.

Proof. The assumptions c < 0 and γ ∈ Rd+ ensure that all sums and integrals are well defined. We will use

Theorem 2. However, we have to modify it accordingly. We first note that indices k ∈ Dω(T ){ which have

a zero component do not contribute to the sum G{
c(ω, T, d,γ,ρ). Hence, we have

G{
c(ω, T, d,γ,ρ) =

∑
k∈Dω(T ){∩Nd

kρ exp (cγ · k) .

For this reason we also have to alter the volume over which we integrate. Instead of using [Dω](T ){ we have
to use the set W defined above. Then, obviously, the proof of Theorem 2 yields

(16)
∑

k∈Dω(T ){∩Nd

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+jf(g(k + e)) =

∫
W

∑
π∈Ppart({1,...,d})

f (|π|)(g(x))
∏
A∈π

DAg(x)dx.

Next, it suffices to require only g ∈ Cd(Rd+) instead of g ∈ Cd(Rd) as we only use arguments with positive
components. Hence, we set again f(x) = fc(x) = exp(cx), x ∈ R, but this time g(x) := γ · x + c−1ρ · log(x)
in (16), where we use the notation log(x) := (log x1, . . . , log xd) for x ∈ Rd+.

For the right-hand side of (16), i.e. the integral, we note, as in the proof of Corollary 1, that the
only partition π of I = {1, . . . , d} that has non-vanishing derivatives DAg(x) with A ∈ π is given by
π? = {{1}, . . . , {d}} and for this partition we have

∏
A∈π?

DAg(x) =

d∏
j=1

∂

∂xj
g(x) =

d∏
j=1

(
γj +

ρj
cxj

)
.

Thus, with this g and with f = fc, the right-hand side of (16) gives∫
W

∑
π∈Ppart({1,...,d})

f (|π|)
c (g(x))

∏
A∈π

DAg(x)dx =

∫
W

f (|π?|)
c (g(x))

∏
A∈π?

DAg(x)dx

=

∫
W

cdfc(g(x))

d∏
j=1

(
γj +

ρj
cxj

)
dx =

∫
W

xρ exp(cγ · x)

d∏
j=1

(
cγj +

ρj
xj

)
dx,(17)

using fc(g(x)) = fc(γ · x + c−1ρ · log x) = xρ exp(cγ · x) in the last step.
For the left-hand side of (16), i.e. the sum, we use fc(g(k+e)) = exp(cγ ·k) exp(cγ ·e)(k+e)ρ and derive
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∑
k∈Dω(T ){∩Nd

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+jfc(g (k + e)) =
∑

k∈Dω(T ){∩Nd

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)d+j exp(cγ · k)ecγ·e(k + e)ρ

= (−1)d
∑

k∈Dω(T ){∩Nd
kρ exp(cγ · k)

d∑
j=0

∑
e∈{0,1}d
|e|=j

(−1)j
d∏
i=1

((
1 +

ei
ki

)ρi
ecγiei

)

= (−1)d
∑

k∈Dω(T ){∩Nd
kρ exp(cγ · k)

d∑
j=0

∑
e∈{0,1}d
|e|=j

d∏
i=1
ei=1

(
−
(

1 +
1

ki

)ρi
ecγi

)
.

(18)

At this point, we can again use (13), this time, with xi = −
(

1 + ei
ki

)ρi
ecγiei . This yields

d∑
j=0

∑
e∈{0,1}d
|e|=j

d∏
i=1
ei=1

(−1)

(
1 +

1

ki

)ρi
ecγi =

d∏
j=1

(
1−

(
1 +

1

kj

)ρj
ecγj

)
.

Inserting this into (18) and equating the result to (17), we end up with

(−1)d
∫
W

xρ exp(cγ · x)

d∏
j=1

(
cγj +

ρj
xj

)
dx =

∑
k∈Dω(T ){∩Nd

kρ exp(cγ · k)

d∏
j=1

(
1−

(
1 +

1

kj

)ρj
ecγj

)
.

Furthermore, we observe for kj , ρj ∈ N that

1− ecγj+log(2)ρj ≤ 1−
(

1 +
1

kj

)ρj
ecγj ≤ 1− ecγj , 1 ≤ j ≤ d,

and the lower bound is positive as long as |c|γj > log(2)ρj . which gives the stated bounds with the stated
constants. �

In the proof of the last corollary we have not only derived upper and lower bounds on the sumG{
c(ω, T, d,γ,ρ)

but have actually given an integral representation of the sum, which might be useful in other applications.
In any case we have represented sums of the form (8) as integrals over simplices. In many cases it is

possible to further simplify such integrals and to reduce these multivariate integrals to univariate integrals
by employing the Hermite-Gnocchi theorem for divided differences [γ0, · · · , γd](f) of a function f , which can
be found, for example, in [3, Thm. 4.2] and which gives for f ∈ Cd(R) the identities

[γ0, . . . , γd] (f) =

∫
E1(1)

f (d)

γ0 +

d∑
j=1

tj(γj − γ0)

 d(19)

=

∫ 1

0

∫ 1−t1

0

· · ·
∫ 1−

∑d−1
j=1 tj

0

f (d)

γ0 +

d∑
j=1

(γj − γ0)

 dtd · · · dt2dt1.(20)

This allows us to express specific multivariate integrals, namely those on the right-hand side of (20), as divided
differences. For divided differences there are, however, other explicit formulas available. For example, from
[14, Eq. (A.5)] we have the explicit representation

(21)
[
γα0+1

0 , . . . , γαK+1
K

]
(f) =

K∑
k=0

1

αk!
∂αkγk

f(γk)

K∏
j=0
j 6=k

(γk − γj)−(αj+1)

 .
9



Here, the term γ
αj+1
j in the divided difference means that γj appears αj + 1 times within the bracket. This

also leads to an explicit representation for the function fc(x) = exp(cx), see also [18, Eq. (14)] for the case
c = 1, which also follows directly from [3, Cor. 4.5]:

(22) [0, ε, 2ε, . . . , dε] (fc) =
1

d!

(
fc(ε)− 1

ε

)d
.

Another way of expressing divided differences uses the Peano-kernel representation. Defining the compactly
supported B-splines

M (s|0, γ1, . . . , γd) := d [0, γ1, . . . , γd] (· − s)d−1
+ ,

the Peano-kernel representation is given by

(23) [γ0, . . . , γd] (f) =
1

d!

∫
R
M (t |γ0, . . . , γd ) f (d)(t)dt,

see, for example, [8, Eq. 47 & 48]. Combining (23) and (19), where we also set γ0 = 0, gives the identity

(24)

∫
E1(1)

f (d)(γ · x)dx = [0, γ1, . . . , γd] (f) =
1

d!

∫
R
M (s|0, γ1, . . . , γd) f

(d)(s)ds

for integrals of ridge functions over simplices. This, however, can be used to establish the following result.

Proposition 1. Let ω ∈ Rd+, γ ∈ Rd≥0, c ∈ R and T > 0. Then,

(25)

∫
Eω(T )

exp (cγ · x) dx = T d

 d∏
j=1

ω−1
j

 1

d!

∫
R
M
(
s

∣∣∣∣0, γ1

ω1
, . . . ,

γd
ωd

)
exp(cTs)ds.

Proof. We use again the notation fc(x) = exp(cx). Then, a simple variable substitution yields∫
Eω(T )

fc (γ · x) dx =

∫
Eω(T )

exp

 d∑
j=1

cγjxj

 dx = T d

 d∏
j=1

ω−1
j

∫
E1(1)

exp

cT d∑
j=1

γj
ωj
xj

 dx

= T d

 d∏
j=1

ω−1
j

∫
E1(1)

fcT (β · x) dx

with βj :=
γj
ωj

for 1 ≤ j ≤ d. Now, we use (24) to derive∫
E1(1)

fcT (β · x) dx = (cT )−d
∫
E1(1)

f
(d)
cT (β · x)dx =

(cT )−d

d!

∫
R
M (s |0, β1, . . . , βd ) f

(d)
cT (s)ds

=
1

d!

∫
R
M (s |0, β1, . . . , βd ) fcT (s)ds.(26)

�

A special case of Proposition 1 is essentially [11, Prop 2.3], which we will rephrase as follows.

Corollary 4. Let ω ∈ Rd+, c ∈ R and T > 0. Then,

(27)

∫
Eω(T )

exp (cω · x) dx =

 d∏
j=1

ω−1
j

 1

(d− 1)!

∫ T

0

sd−1 exp(cs)ds.

Proof. We choose γ = ω in (25). Using the same notation for multiple entries as in (21), the involved Peano
kernel has the property

(28) M(s|0d+1−j , 1j) = d

(
d− 1

j − 1

)
sj−1(1− s)d−jχ[0,1](s).
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Using this for j = d in (25) yields

∫
Eω(T )

exp (cω · x) dx = T d

 d∏
j=1

ω−1
j

 1

d!

∫
R
M (s |0, 1, . . . , 1) exp(cTs)ds

= T d

 d∏
j=1

ω−1
j

 1

(d− 1)!

∫ 1

0

sd−1 exp(cTs)ds

=

 d∏
j=1

ω−1
j

 1

(d− 1)!

∫ T

0

sd−1 exp(cs)ds.

�

Another consequence is the following result, which was also proven in [11, Eq. 211] in a different way.

Corollary 5. For c < 0 and ω ∈ Rd+ and T > 0 we have

(29)
∑

k∈Dω(T ){

exp (cω · k) ≤ 1

(d− 1)!

d∏
j=1

1

(1− exp(cωj))

∫ ∞
−cT

td−1 exp(−t)dt.

Proof. Using the substitution t = −cs in the integral on the right-hand side of (27) yields

(30)

∫
Eω(T )

exp (cω · x) dx =

 d∏
j=1

1

(−c)ωj

 1

(d− 1)!

∫ −cT
0

td−1 exp(−t)dt.

Next, (12) with γ = ω gives

∑
k∈Nd0

exp (cω · k) = lim
T→∞

(−c)d
d∏
j=1

ωj
(1− exp(cωj))

∫
[Dω ](T )

exp(cω · x)dx

= (−c)d
d∏
j=1

ωj
(1− exp(cωj))

∫
Rd+

exp(cω · x)dx

=

d∏
j=1

1

(1− exp(cωj))
.

Hence, using (12) with γ = ω again and the above result shows

0 ≤
∑

k∈Dω(T ){

exp (cω · k) =
∑
k∈Nd0

exp (cω · k)−
∑

k∈Dω(T )

exp (cω · k)

=

d∏
j=1

1

(1− exp(cωj))
− (−c)d

d∏
j=1

ωj
(1− exp(cωj))

∫
[Dω ](T )

exp(cω · x)dx

=

d∏
j=1

1

(1− exp(cωj))

1−
∏
j=1

(−cωj)
∫

[Dω ](T )

exp(cω · x)dx

 .

Since 1− exp(cωj) > 0 for c < 0 and ωj > 0, we can conclude that the last term in brackets has to be non-
negative. Hence, we can further enlarge it using (4) and (30), as long as the result remains non-negative.
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Hence, we have∑
k∈Dω(T ){

exp (cω · k) ≤
d∏
j=1

1

(1− exp(cωj))

1−
∏
j=1

(−cωj)
∫
Eω(T )

exp(cω · x)dx


=

d∏
j=1

1

(1− exp(cωj))

(
1− 1

(d− 1)!

∫ −cT
0

td−1 exp(−t)dt

)
.

Next, we observe

1 =
Γ(d)

Γ(d)
=

1

(d− 1)!

∫ ∞
0

sd−1 exp(−s)ds

which allows us to conclude∑
k∈Dω(T ){

exp (cω · k) ≤ 1

(d− 1)!

d∏
j=1

1

(1− exp(cωj))

∫ ∞
−cT

td−1 exp(−t)dt.

�

Yet another immediate consequence is the following classical result for the volume of a simplex.

Corollary 6. Let ω ∈ Rd+ and T > 0. Then,

(31) vol (Eω(T )) =

 d∏
j=1

ω−1
j

 T d

d!
.

Proof. Take the limit c→ 0 on both sides of (27) and observe

lim
c→0

1

(d− 1)!

∫ T

0

td−1 exp(ct)dt =
1

(d− 1)!

∫ T

0

sd−1ds =
T d

d!
.

�

We also need integrals of the following form, where we integrate over the complement of Eω(T ) given by

Eω(T ){ = Rd≥0 \ Eω(T ) = {x ∈ Rd≥0 : ω ·x > T}. Estimates for such quantities can also be found in [24]. But
their estimates work in a different way. We point out that our approach seems to be more flexible and, in
principle, allows us, at least in certain special cases, even to derive equalities instead of only upper bounds.

Lemma 1. For c < 0, ρ ∈ Nd0, ω ∈ Rd+ and T ≥ 1 we have∫
Eω(T ){

xρ exp (cω · x) dx ≤ T d+|ρ| exp(cT )ω−(ρ+1)

∫
E1(1){

xρ exp (c (‖x‖1 − 1)) dx.

Proof. Again, the change of variables of the form xj = Tyj/ωj , 1 ≤ j ≤ d , yields∫
Eω(T ){

xρ exp (cω · x) dx = T d

 d∏
j=1

ω−1
j

∫
E1(1){

T |ρ|ω−ρyρ exp

cT d∑
j=1

yj

 dy

= T d+|ρ|ω−(ρ+1)

∫
E1(1){

xρ exp

cT d∑
j=1

xj

 dx

= T d+|ρ| exp(cT )ω−(ρ+1)

∫
E1(1){

xρ exp

cT
 d∑
j=1

xj − 1

 dx

≤ T d+|ρ| exp(cT )ω−(ρ+1)

∫
E1(1){

xρ exp

c
 d∑
j=1

xj − 1

 dx,

where the last step is valid for c < 0, T ≥ 1 and
∑d
j=1 xj − 1 > 0. This also guarantees the existence of the

last integral. Finally, as x ∈ Rd≥0, we have
∑d
j=1 xj = ‖x‖1, which gives the statement. �
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3.2. Bounds on the Cardinality of the Index Set. The considerations so far allow us to give upper and
lower bounds on the number of multi-indices contained in Dω(T ), see also [19, Eq. 5.14], [11, Lemma 2.8]
and [4].

Corollary 7. Let ω ∈ Rd+ and T > 0. Then,

(32)

 d∏
j=1

ω−1
j

 T d

d!
≤ #Dω(T ) ≤

 d∏
j=1

ω−1
j

 (T + ‖ω‖1)
d

d!

Proof. The inclusions given in (4) and the relation from (5) immediately yield vol (Eω(T )) ≤ #Dω(T ) =
vol ([Dω] (T )) ≤ vol (Eω(T + ‖ω‖1)) , which gives together with (31) the stated inequalities. �

Finally, we are now in the position to bound the number of indices in Iω(`, d). The following result can
also, albeit with a different proof, be found in [16, Remark 3.7]. It is a direct consequence of (32) and the
relation (6) between Dω(`ωmin) and Iω(`, d).

Proposition 2. For ` ∈ N and for ω ∈ Rd+ the number of indices in Iω(`, d) can be bounded by

(33)
(`ωmin)d

d!

d∏
j=1

ω−1
j ≤ #Iω(`, d) = #Dω(`ωmin) ≤

(`ωmin + ‖ω‖1)
d

d!

d∏
j=1

ω−1
j .

From this, we can also directly see that

(`ωmin)
d

(
1 + d

‖ω‖1
`ωmin

)
≤ (`ωmin + ‖ω‖1)

d
= (`ωmin)

d

(
1 +
‖ω‖1
`ωmin

)d
and hence for ` ≥ ‖ω‖1ωmin

that

(`ωmin)
d ≤ (`ωmin + ‖ω‖1)

d
= (`ωmin)

d
2d,

which has also been observed in [16, Remark 3.7].

3.3. Estimates on the Number of Grid Points. After estimating the number of indices in Iω(`, d), we
proceed now with the main task of bounding the number of points in our sparse grid (3), i.e. in

Ξ⊗ω(`, d) :=
⋃

λ∈Jω(`,d)

Ξ⊗λ =
⋃

λ∈Jω(`,d)

Ξ
(1)
λ1
× · · · × Ξ

(d)
λd
.

From this representation and the definition of Jω(`, d) we immediately have (see also [12, Eq. 24]) that

(34) #Ξ⊗ω(`, d) =
∑

λ∈Jω(`,d)

#Ξ⊗λ ≤
∑

λ∈Iω(`,d)

#Ξ⊗λ ≤
∑

λ∈Iω(`,d)

d∏
j=1

N (j)(λj),

if N (j)(λj) denotes the number of points in Ξ
(j)
λj

. To employ this bound further, we need to make some

assumptions on the asymptotic behaviour of the N (j)(λj).

3.3.1. Bounds in the Situation of Linear Oversampling. Here, we mainly follow [12]. Throughout this sub-

section, we will assume that ω ∈ Nd and that the number of points N (j)(λj) of Ξjλj is of the form

(35) N (j)(λj) = λj + bj ,

with a given number bj ∈ N0, i.e., we consider linear oversampling. A more general choice would be

N (j)(λj) = ajλj + bj with aj ∈ N. However, as we have

d∏
j=1

N (j)(λj) =

d∏
j=1

(ajλj + bj) =

 d∏
j=1

aj

 d∏
j=1

(
λj +

bj
aj

)
,

we can simply choose aj = 1 for all 1 ≤ j ≤ d without restriction. Then, we have

d∏
j=1

N (j)(λj) =

d∏
j=1

(λj + bj) =

d∏
j=1

exp (log (λj + bj)) ≤
d∏
j=1

exp (dlog (λj + bj)e) .
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Hence, if we define νj := dlog (λj + bj)e, 1 ≤ j ≤ d, then this implies

d∏
j=1

N (j)(λj) ≤
d∏
j=1

exp (νj) = exp(ν · 1).

Moreover, λ ∈ Dω(T )and ω ∈ Nd leads to

ν · 1
‖ω‖1

=

∑d
j=1 νj∑d
j=1 ωj

≤
∑d
j=1 (log (λj + bj) + 1)∑d

j=1 ωj
≤
∑d
j=1 ωj log (λj + bj)∑d

j=1 ωj
+ 1

≤ log

(∑d
j=1 ωj (λj + bj)∑d

j=1 ωj

)
+ 1 ≤ log

(
T +

∑d
j=1 ωjbj∑d

j=1 ωj

)
+ 1,

due to Jensen’s inequality for the concave function x 7→ log x. This means in particular that λ ∈ Dω(`ωmin)
implies ν ∈ D1(S) with

(36) S := ‖ω‖1
(

log

(
`ωmin + ω · b
‖ω‖1

)
+ 1

)
.

This gives us the bound

#Ξ⊗ω(`, d) ≤
∑

λ∈Iω(`,d)

d∏
j=1

N (j)(λj) ≤
∑

ν∈D1(S)

exp(ν · 1).

If we now apply (12) by setting ω there to 1 and with c = 1, γ = 1 and T = S then we find∑
ν∈D1(S)

exp(ν · 1) = (e− 1)
−d
∫

[D1](S)

exp(1 · x)dx ≤ (e− 1)
−d
∫
E1(S+‖ω‖1)

exp(1 · x)dx

=
1

(e− 1)d(d− 1)!

∫ S+‖ω‖1

0

sd−1 exp(s)ds,

using also (4) and Corollary 4. The integral on the right-hand side can further be bounded using the following
lemma.

Lemma 2. Let d ∈ N. For T ≥ 0 we have∫ T

0

exp(s)sd−1ds ≤ exp(T )T d−1,

and for T ≥ d we have

(37)

∫ ∞
T

sd−1 exp(−s)ds ≤ d exp(−T )T d−1.

Proof. The mean value theorem guarantees the existence of a ξ ∈ [0, T ] such that∫ T

0

exp(s)sd−1ds = ξd−1

∫ T

0

exp(s)ds = ξd−1[exp(T )− 1] ≤ T d−1 exp(T ),

which gives the bound for the first integral. The second bound was given in [11, Lemma 2.5]. �

The first result of this lemma hence yields

#Ξ⊗ω(`, d) ≤
∑

ν∈D1(S)

exp(ν · 1) ≤ 1

(e− 1)d(d− 1)!

∫ S+‖ω‖1

0

sd−1 exp(s)ds

≤ 1

(e− 1)d(d− 1)!
exp(S + ‖ω‖1)(S + ‖ω‖1)d−1.

Recalling the definition of S from (36), we have proven the following result.
14



Lemma 3. For ω ∈ Nd and under the Assumption (35) on the the number of points in the grids Ξ
(j)
λj

, the

number of points in the anisotropic tensor grid Ξ⊗ω(`, d) can be bounded by

#Ξ⊗ω(`, d) ≤ exp(2‖ω‖1)‖ω‖d−1
1

(e− 1)d(d− 1)!

[
log

(
`ωmin + ω · b
‖ω‖1

+ 2

)]d−1(
`ωmin + ω · b
‖ω‖1

)‖ω‖1
.

Another direct consequence of the above considerations is the following one, which simply follows by
setting bj = 0, 1 ≤ j ≤ d.

Corollary 8. Let Λ = Iω(`, d) with ω ∈ Nd and ` ∈ N. Then,

∑
λ∈Λ

λ1 =
∑
λ∈Λ

d∏
j=1

λj ≤ e2‖ω‖1‖ω‖d−1
1

(e− 1)d(d− 1)!

[
log

(
`ωmin

‖ω‖1
+ 2

)d−1(
`ωmin

‖ω‖1

)]‖ω‖1
= C(ω, d)`‖ω‖1 [log(`ωmin + ‖ω‖1)]

d−1
.

3.3.2. Bounds for Exponential Grids. We now want to bound the number of points in Ξ⊗ω(`, d) if the number

of points in the univariate grids Ξ
(j)
λj

grow exponentially. Hence, we now make the following assumption.

Assumption 3. There exist universal constants C1, C2 > 0 and for each 1 ≤ j ≤ d there is a constant

ηj > 0 such that the cardinality N (j)(k) of Ξ
(j)
k satisfies

(38) C12ηjk ≤ N (j)(k) ≤ C22ηjk

for all 1 ≤ j ≤ d and k ∈ N.

Proposition 3. Let ω,η ∈ Rd+ and let αj := ωj/ηj, 1 ≤ j ≤ d, and let αmin = minαj. Then, under
Assumption 3, the number of points in Ξ⊗ω(`,D) can be bounded from above by

#Ξ⊗ω(`, d) ≤ Cd2 log(2)d−1αmin

(d− 1)!

d∏
j=1

α−1
j

2ωj/αj − 1
22‖ω‖1/αmin(`ωmin + ‖ω‖1)d−12`ωmin/αmin

= C(ω,α)`d−12`ωmin/αmin .

Moreover, if 1 ≤ j? ≤ d is an index for which ωj? = minωj = ωmin holds, then the number of points can be
bounded from below by

#Ξ⊗ω(`, d) ≥ Cd1 2‖η‖1 2`ωmin/αj? .

Proof. We start with the upper bound. Using (34), (6) and Assumption 3, we can conclude that

#Ξ⊗ω(`, d) ≤
∑

λ∈Iω(`,d)

d∏
j=1

N (j)(λj) ≤ Cd2
∑

λ∈Iω(`,d)

d∏
j=1

2ηjλj

≤ Cd2
∑

λ∈Iω(`,d)

2η·λ = Cd2
∑

λ∈Dω(`ωmin)+{1}

2η·λ

= Cd2 2‖η‖1
∑

λ∈Dω(`ωmin)

2η·λ

= Cd2 2‖η‖1 log(2)d
d∏
j=1

ηj
2ηj − 1

∫
[Dω ](`ωmin)

2η·xdx

≤ Cd2 2‖η‖1 log(2)d
d∏
j=1

ηj
2ηj − 1

∫
Eω(`ωmin+‖ω‖1)

2η·xdx,(39)

where we have also used (12) with c = log(2) and γ replaced by η and [Dω](T ) ⊆ Eω(T + ‖ω‖1) from (4).
So far we have not yet employed the connections between ω and η given by ηj = ωj/αj . This yields

η · x =

d∑
j=1

ηjxj =

d∑
j=1

1

αj
ωjxj ≤

1

αmin
ω · x,
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which leads to

#Ξ⊗ω(`, d) ≤ Cd2 2‖ω‖1/αmin log(2)d
d∏
j=1

ωjα
−1
j

2ωj/αj − 1

∫
Eω(`ωmin+‖ω‖1)

2
1

αmin
ω·x

dx.

Next, we can use Corollary 4 with T = `ωmin + ‖ω‖1 and c = log(2)/αmin which gives∫
Eω(`ωmin+‖ω‖1)

2
1

αmin
ω·x

dx =
1

(d− 1)!

d∏
j=1

ω−1
j

∫ `ωmin+‖ω‖1

0

sd−1 exp(s log(2)/αmin)ds.

For the latter integral, we can use the upper bound of Lemma 2 in the form∫ T

0

sd−1 exp(cs)ds ≤ T d−1

c
exp(cT )

with T = `ωmin + ‖ω‖1 and c = log(2)/αmin to derive∫ `ωmin+‖ω‖1

0

sd−1 exp(s log(2)/αmin)ds ≤ (`ωmin + ‖ω‖1)d−1 αmin

log(2)
2(`ωmin+‖ω‖1)/αmin .

Inserting this back into the previous estimates gives the stated upper bound on #Ξ⊗ω(`, d).
For the lower bound on #Ξ⊗ω(`, d) we note that

ν? = 1 + `ej? = (1, . . . , 1, `+ 1, 1, . . . , 1)T ∈ Jω(`, d) = Iω(`, d) \ I
(
`− ‖ω‖1

ωmin
, d

)
,

since we have on the one hand (ν? − 1) · ω = `ωmin ≤ `ωmin implying ν? ∈ Iω(`, d) and on the other hand
(ν? − 1) · ω = `ωmin > `ωmin − ‖ω‖1 implying ν? 6∈ I(`− ‖ω‖1/ωmin, d). This gives the obvious bound

#Ξ⊗ω(`, d) = #
⋃

λ∈Jω(`,d)

Ξ⊗λ ≥ #Ξ⊗ν? =

d∏
j=1

N (j)(ν?j ) ≥ Cd1 2‖η‖1 2`ηj? ,

where we have used Assumption 3. The lower bound then follows from ηj = ωj/αj and the choice of j?. �

This shows in particular log2(#Ξ⊗ω(`, d)) ≥ log2(Cd1 2‖η‖1) + `ωmin/αj? or

` ≤ C(d,ω,α) log #Ξ⊗ω(`, d),

taking also the connection between η, α and ω into account.

4. Sampling Inequalities

After deriving bounds on the number of points in the anisotropic sparse grid Ξ⊗ω(D, `), we will now proceed
to state and prove sampling inequalities on Ξ⊗ω(D, `). These sampling inequalities are proven by employing a
Smolyak construction and by comparison to best approximation processes. Hence, we will start this section
by discussing univariate operators and then proceed to the Smolyak construction in a rather general way
before we will state and prove our sampling inequalities.

4.1. Univariate Quasi-interpolation Operators. In the following, we will consider univariate or multi-
variate spaces of low dimensions and associated quasi-interpolation operators.

As outlined in Section 2, we let Ω(j) ⊆ Rnj be a bounded domain with a sufficiently smooth boundary. For
two normed spaces Hβj (Ω(j)) ⊆ Hαj (Ω(j)), with Hβj (Ω(j)) ⊆ C(Ω(j)) we consider the embedding operators

ι(j) : Hβj (Ω(j))→ Hαj (Ω(j)).

Usually, Hβj (Ω(j)) will be a Sobolev space of order βj but, for the time being, it can also be a more general
space. Furthermore, for each j we consider a nested sequence of linear subspaces

∅ = Π
(j)
0 ⊆ Π

(j)
1 ⊆ · · · ⊆ Π

(j)
j ⊆ Π

(j)
j+1 ⊆ · · · ⊆ H

βj (Ω(j))
16



and denote the dimension of Π
(j)
k by M (j)(k) := dim Π

(j)
k , yielding a non-decreasing sequence M (j) : N0 →

N0. With these finite dimensional spaces come best approximation operators A(j)
k : Hαj (Ω(j)) → Π

(j)
k ⊆

Hαj (Ω(j)) defined by

f 7→ arg min
p∈Π

(j)
k

‖f − p‖Hαj (Ω(j)) .

For simplicity, we will denote the restriction of A(j)
k to the subspace Hβj (Ω(j)) again simply by A(j)

k . We will
assume that these restrictions provide good approximations to the embedding operator and that we have a
quantitative error bound of the form

(40)
∥∥∥ι(j) −A(j)

k

∥∥∥
Hβj (Ω(j))→Hαj (Ω(j))

≤ ρ(α; k), k ∈ N,

with limk→∞ ρ(α; k) = 0. This directly yields a density result of the form

(41) lim
k→∞

∥∥∥ι(j) −A(j)
k

∥∥∥
Hβj (Ω(j))→Hαj (Ω(j))

= 0,

i.e., we have that {Π(j)
k }k is dense in Hβj (Ω(j)) with respect to the Hαj (Ω(j))-norm. Furthermore, if we

additionally set A(j)
0 ≡ 0 then we can rewrite the approximation operators using the difference operators

∆k(A(j)) := A(j)
k −A

(j)
k−1 : Hβj (Ω(j))→ Hαj (Ω(j)) as

A(j)
J =

J∑
k=1

(
A(j)
k −A

(j)
k−1

)
=

J∑
k=1

∆k(A(j))

and observe that, with this notation, (41) yields

(42) ι(j) = lim
J→∞

A(j)
J =

∞∑
k=1

∆k(A(j)).

Next, for each j and each k ∈ N we fix a sequence N (j) : N0 → N0 and consider a family of discrete nested

sets of points Ξ
(j)
k =

{
ξ

(j)
1;k, . . . , ξ

(j)

N(j)(k);k

}
⊆ Ω(j) for k ∈ N with Ξ

(j)
k−1 ⊆ Ξ

(j)
k and Ξ

(j)
0 = ∅. Based on these

point sets, we consider quasi-interpolation operators (see also [16, Eq. 2.5])

Q(j)
k : C(Ω(j))→ C(Ω(j)), f 7→ Q(j)

k (f) =

N(j)(k)∑
n=1

f(ξ
(j)
n;k)φ

(j)
n;k,

where φ
(j)
n;k ∈ C(Ω(j)) for 1 ≤ n ≤ N (j)(k) and k ∈ N are given functions. Furthermore, we define Q(j)

0 ≡ 0.

Again, we will interpret Q
(j)
k as operators Q

(j)
k : Hαj (Ω(j)) → Hαj (Ω(j)). The corresponding difference

operators are again defined for k ∈ N as ∆k(Q(j)) := Q(j)
k −Q

(j)
k−1. The same telescoping sum argument as

above shows that we can recover the quasi-interpolation operators from the difference operators via

(43) Q(j)
J =

(
Q(j)
J −Q

(j)
J−1

)
+
(
Q(j)
J−1 −Q

(j)
J−2

)
+ · · ·+

(
Q(j)

1 −Q
(j)
0

)
=

J∑
k=1

∆k(Q(j)).

We assume that these quasi-interpolation operators Q(j)
k are also exact on the finite dimensional subspaces

Π
(j)
k ⊆ Hβj (Ω(j)) ⊆ C(Ω(j)), i.e. that they satisfy

(44) Q(j)
k (p)(x) =

N(j)(k)∑
n=1

p(ξ
(j)
n;k)φ

(j)
n;k(x), x ∈ Ω(j), p ∈ Π

(j)
k .

17



For a function f ∈ Hβj (Ω(j)) we have A(j)
k (ι(j)f) ∈ Π

(j)
k showing Q(j)

k (A(j)
k (ι(j)f)) = A(j)

k (ι(j)f) so that this
directly gives rise to an error estimate of the form∥∥∥(Id−Q(j)

k )(ι(j)f)
∥∥∥
Hαj (Ω(j))

≤
∥∥∥(Id−Q(j)

k )
[
ι(j)f −A(j)

k (ι(j)f) +A(j)
k (ι(j)f)

]∥∥∥
Hαj (Ω(j))

=
∥∥∥(Id−Q(j)

k )
[
ι(j)f −A(j)

k (ι(j)f)
]∥∥∥
Hαj (Ω(j))

≤
(

1 +
∥∥∥Q(j)

k

∥∥∥
Hαj (Ω(j))→Hαj (Ω(j))

)∥∥∥ι(j)f −A(j)
k (ι(j)f)

∥∥∥
Hαj (Ω(j))

≤
(

1 +
∥∥∥Q(j)

k

∥∥∥
Hαj (Ω(j))→Hαj (Ω(j))

)
ρ(α; k) ‖u‖Hβj (Ω(j)) ,

which is of particular interest as long as the Lebesgue constant
∥∥∥Q(j)

k

∥∥∥
Hαj (Ω(j))→Hαj (Ω(j))

remains bounded

or at least controlable as a function of k.

4.2. Tensor Products and Abstract Sampling Inequalities. After looking at essentially the univariate
case, we will now turn our attention to the multivariate case by employing tensor products and the Smolyak
construction. Based upon this, we will give a first abstract sampling inequality. Using the notation provided
in the last sub-section, we start by introducing tensor product spaces, see also [2] for more details,

Hβ(Ω⊗) :=

d⊗
j=1

Hβj (Ω(j)) ⊆ Hα(Ω⊗) :=

d⊗
j=1

Hαj (Ω(j)).

Based on a finite monotone set Λ ⊆ Nd, we can define Smolyak’s formula for a general sequence of operator

B = {B(j)
λj
}, where the indices satisfy 1 ≤ j ≤ d and λ ∈ Λ and where B(j)

λj
: Hαj (Ω(j))→ Hαj (Ω(j)), as

(45) S⊗Λ (B) ≡
∑
λ∈Λ

∆λ(B⊗) :=
∑
λ∈Λ

d⊗
j=1

∆λj (B(j)) : Hα(Ω⊗)→ Hα(Ω⊗).

As in the previous section, we will denote the restriction of S⊗Λ (B) to Hβ(Ω⊗) again simply by S⊗Λ (B).

Applying this to the family of operators A = {A(j)
k } from the last sub-section and using (42), we can

directly derive the identity

ι⊗ =
∑
λ∈Nd

∆λ(A⊗)

for the embedding operator ι⊗ : Hβ(Ω⊗)→ Hα(Ω⊗).

Furthermore, we have by (44) that the quasi-interpolation operators Q(j)
k are exact on Π

(j)
k . As the the

spaces {Π(j)
k }k are nested, we can derive from [7, Theorem 3.2] that the space Π⊗Λ on which Smolyak’s

construction is exact, i.e. on which we have

S⊗Λ (Q)(p) =
∑
λ∈Λ

∆λ(Q⊗)(p) =
∑
λ∈Λ

d⊗
j=1

∆λj (Q(j))(p) =
∑
λ∈Λ

d⊗
j=1

(
Q(j)
λj
−Q(j)

λj−1

)
(p) = p

for all p ∈ Π⊗Λ satisfies

(46)
⋃
λ∈Λ

d⊗
j=1

Π
(j)
λj
⊆ Π⊗Λ .

From the definition, we have

(47) ι⊗ − S⊗Λ (A) =
∑
λ∈Λ{

∆λ(A(⊗)) : Hβ(Ω⊗)→ Hα(Ω⊗).
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In order to derive explicit bounds, we can reduce this to the component case via

∥∥ι⊗ − S⊗Λ (A)
∥∥
Hβ(Ω⊗)→Hα(Ω⊗)

≤

∥∥∥∥∥∥
∑
λ∈Λ{

∆λ(A(⊗))

∥∥∥∥∥∥
Hβ(Ω⊗)→Hα(Ω⊗)

≤
∑
λ∈Λ{

∥∥∥∆λ(A(⊗))
∥∥∥
Hβ(Ω⊗)→Hα(Ω⊗)

≤
∑
λ∈Λ{

d∏
j=1

∥∥∥∆λj (A(j))
∥∥∥
Hβj (Ω(j))→Hαj (Ωj)

.

Compare also [6, Remark 2.3] for a result for polynomial interpolation and [21, Theorem 5.2] for numerical
quadrature. For f ∈ Hβ(Ω⊗) this gives, as in the univariate case, directly rise to an error estimate of the
form ∥∥(Id− S⊗Λ (Q))(ι⊗f)

∥∥
Hα(Ω⊗)

≤
∥∥(Id− S⊗Λ (Q))

[
ι⊗f − S⊗Λ (A)(ι⊗f) + S⊗Λ (A)(ι⊗f)

]∥∥
Hα(Ω⊗)

=
∥∥(Id− S⊗Λ (Q))

[
ι⊗f − S⊗Λ (A)(ι⊗f)

]∥∥
Hα(Ω⊗)

≤
(

1 +
∥∥S⊗Λ (Q)

∥∥
Hα(Ω⊗)→Hα(Ω⊗)

)∥∥ι⊗f − S⊗Λ (A)(ι⊗f)
∥∥
Hα(Ω⊗)

≤
(

1 +
∥∥S⊗Λ (Q)

∥∥
Hα(Ω⊗)→Hα(Ω⊗)

) ∑
λ∈Λ{

d∏
j=1

∥∥∥∆λj (A(j))
∥∥∥
Hβj (Ω(j))→Hαj (Ω(j))

‖f‖Hβ(Ω⊗).

This immediately allows us to conclude a general, abstract sampling inequality.

Proposition 4. Under the assumptions made throughout this section, we have for f ∈ Hβ(Ω⊗) the abstract
sampling inequality∥∥ι⊗f∥∥Hα(Ω⊗)

≤
(

1 +
∥∥S⊗Λ (Q)

∥∥
Hα(Ω⊗)→Hα(Ω⊗)

) ∑
λ∈Λ{

d∏
j=1

∥∥∥∆λj (A(j))
∥∥∥
Hβj (Ω(j))→Hαj (Ω(j))

‖f‖Hβ(Ω⊗)

+
∥∥S⊗Λ (Q)(ι⊗f

)
‖Hα(Ω⊗).

Proof. This simply follows from the considerations above and∥∥ι⊗f∥∥Hα(Ω⊗)
≤
∥∥ι⊗f − S⊗Λ (Q)(ι⊗f)

∥∥
Hα(Ω⊗)

+
∥∥S⊗Λ (Q)(ι⊗f)

∥∥
Hα(Ω⊗)

.

�

Note that the bound in Proposition 4 can further be bounded by employing∥∥S⊗Λ (Q)(ι⊗f
)
‖Hα(Ω⊗) ≤

∥∥S⊗Λ (Q)‖Hα(Ω⊗)→Hα(Ω⊗)‖ι⊗f
∥∥
Hα(Ω⊗)

.

However, as we will see in the next sub-section, there is a better estimate in specific situations.

4.3. Specific Sampling Inequalities. We will now apply the results of the last sub-section to derive
specific, more concrete sampling inequalities. To this end, we will make some additional assumptions and
specifications:

• The function spaces Hαj (Ω(j)) are given by Hαj (Ω(j)) = Cb(Ω
(j)) for 1 ≤ j ≤ d. The function

spaces Hβj (Ω(j)) can either be Hβj (Ω(j)) = C
βj
b (Ω(j)) or Hβj (Ω(j)) = Hβj (Ω(j)). Though, in

principle, other tensor product spaces are also possible. In the case of Sobolev spaces, the embedding
Hβj (Ω(j)) ⊆ L∞(Ω(j)) will be satisfied by the Sobolev embedding theorem, which we, from now on,
will implicity assume to hold.

• We will assume that the underlying monotone set Λ is of the form Λ = Iω(`, d) with ω ∈ Rd+ and
` ∈ N.
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• We will assume that the univariate grid {Ξ(j)
k }k are nested and their numbers of points N (j)(k)

satisfy Assumption 3, i.e. we have C12ηjk ≤ N (j)(k) ≤ C22ηjk. The latter is only required when
expressing the bounds in terms of the number of points rather than in the threshold `.

When employing Proposition 4, we need to find bounds on the three expressions

‖S⊗Λ (Q)‖L∞(Ω⊗)→L∞(Ω⊗), ‖S⊗Λ (Q)(ι⊗f)‖L∞(Ω⊗),(48) ∑
λ∈Λ{

∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

≤
∑
λ∈Λ{

d∏
j=1

∥∥∥∆λj (A(j))
∥∥∥
Hβj (Ω(j))→L∞(Ω(j))

.(49)

The second term in (48) can obviously be reduced to the first term. However, by the following observation

a more sophisticated bound is possible. As each operator Q(j)
λj

requires only the values at the points Ξ
(j)
λj

of

the function it is applied to, the operator S⊗Λ (Q), when applied to ι⊗f with f ∈ Hβ(Ω⊗), requires only the

values of f at the grid Ξ⊗ω(`, d), see also [16, Page 2419]. In particular, if two functions f and f̃ have the

same values at Ξ⊗ω(`, d) they satisfy S⊗Λ (Q)(ι⊗f) = S⊗Λ (Q)(ι⊗f̃). Hence, for a given f ∈ Hβ(Ω⊗) we may

choose f̃ ∈ Hβ(Ω⊗) with f |Ξ⊗ω(`, d) = f̃ |Ξ⊗ω(`, d) and ‖ι⊗f̃‖L∞(Ω⊗) = ‖f‖`∞(Ξ⊗ω (`,d)). This shows

‖S⊗Λ (Q)(ι⊗f)‖L∞(Ω⊗) = ‖S⊗Λ (Q)(ι⊗f̃)‖L∞(Ω⊗) ≤ ‖S⊗Λ (Q)‖L∞(Ω⊗)→L∞(Ω⊗)‖ι⊗f̃‖L∞(Ω⊗)

= ‖S⊗Λ (Q)‖L∞(Ω⊗)→L∞(Ω⊗)‖f‖`∞(Ξ⊗ω (`,d)),

so that we indeed only have to determine an upper bound on ‖S⊗Λ (Q)‖L∞(Ω⊗)→L∞(Ω⊗) and on the term in
(49). The general bound in Proposition 4 hence becomes∥∥ι⊗f∥∥

L∞(Ω⊗)
≤

(
1 +

∥∥S⊗Λ (Q)
∥∥
L∞(Ω⊗)→L∞(Ω⊗)

) ∑
λ∈Λ{

∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

‖f‖Hβ(Ω⊗)

+
∥∥S⊗Λ (Q)

∥∥
L∞(Ω⊗)→L∞(Ω⊗)

‖f‖`∞(Ξ⊗ω (`,d)).(50)

To achieve this, we need to make some more assumptions on the families of operators Q and A. Hence, from

now on, we will make the following assumptions on the quasi-interpolation operators Q(j)
k

Assumption 4. There exist a universal constant CL > 1 and a constant vector ρ ∈ Nd0 such that and that

the operators Q(j)
k are bounded by

(51)
∥∥∥Q(j)

k

∥∥∥
L∞(Ω(j))→L∞(Ω(j))

≤ CLkρj

for all k ∈ N0 and all 1 ≤ j ≤ d.

Next, we assume that the best approximation operators A(j)
k satisfy the following type of Jackson inequal-

ity.

Assumption 5. There exist a constant CA > 0 and constants vectors γ ∈ Rd+ and ν ∈ Nd0 such that

(52)
∥∥∥ι(j) −A(j)

k

∥∥∥
Hβj (Ω(j))→L∞(Ω(j))

≤ CA2−γjkkνj

for all k ∈ N0 and all 1 ≤ j ≤ d.

Obviously, the constant γj will depend on the smoothness βj of the Sobolev spaces Hβj (Ω(j)) but for
the time being we suppress this dependency. However, it is important to see the relation to the number

of points N (j)(k) if Assumption 3 is satisfied. In this situation, we have 2−k ≤ C
1/ηj
2 [N (j)(k)]−1/ηj and

k ≤ [log2N
(j)(k)− log2 C1]/ηj hence∥∥∥ι(j) −A(j)

k

∥∥∥
Hβj (Ω(j))→L∞(Ω(j))

≤ CA2−γjkkνj ≤ CAC
γj/ηj
2 [N (j)(k)]−γj/ηj

(
log2(N (j)(k))

ηj

)νj
,

≤ C[N (j)(k)]−γj/ηj logνj (N (j)(k)),(53)

with a constant C depending on η,γ,ν, so that the quotient αj := γj/ηj should reflect the smoothness βj
of the space.
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Assumption 5 particularly means that we also have∥∥∥ι(j) −A(j)
k

∥∥∥
Hβj (Ω(j))→L∞(Ω(j))

→ 0, k →∞.

Assumptions 3 and 4 allow us to bound the terms in (48). We will do this only in the two specific situations
ρ = ν = 0 and ρ = ν = 1 as they describe the most relevant cases. The first case is often a result
of oversampling, i.e. when we employ more points in our grids than necessary for reproducing the finite
dimensional approximation spaces. The second case corresponds often to non-oversampling where the number
of grid points and the dimension of the univariate subspaces coincide. Nonetheless, the techniques provided
in Section 3 would also allow us to deal with more general situations.

Lemma 4. Let Λ = Iω(`, d) with ω ∈ Rd+ and ` ∈ N. Assume that Assumption 4 is satisfied with ρ ∈ Nd0.

Then, ‖S⊗Λ (Q)‖L∞(Ω⊗)→L∞(Ω⊗) can be bounded as follows.

• If ρ = 0 then

(54)
∥∥S⊗Λ (Q)

∥∥
L∞(Ω⊗)→L∞(Ω⊗)

≤ (2CL)d
(`ωmin + ‖ω‖1)d

d!

d∏
j=1

ω−1
j .

• If ρ = 1 and ω ∈ Nd then there is a constant C = C(ω, d) such that

(55)
∥∥S⊗Λ (Q)

∥∥
L∞(Ω⊗)→L∞(Ω⊗)

≤ C(ω, d)`‖ω‖1 [log(`ωmin + ‖ω‖1)]
d−1

.

Proof. In both cases we can start with estimating

∥∥S⊗Λ (Q)
∥∥
L∞(Ω⊗)→L∞(Ω⊗)

=

∥∥∥∥∥∑
λ∈Λ

∆λ(Q⊗)

∥∥∥∥∥
L∞(Ω⊗)→L∞(Ω⊗)

=

∥∥∥∥∥∥
∑
λ∈Λ

d∏
j=1

(
Q(j)
λj
−Q(j)

λj−1

)∥∥∥∥∥∥
L∞(Ω⊗)→L∞(Ω⊗)

≤
∑
λ∈Λ

d∏
j=1

∥∥∥Q(j)
λj
−Q(j)

λj−1

∥∥∥
L∞(Ω(j))→L∞(Ω(j))

≤
∑
λ∈Λ

d∏
j=1

(
CL
[
λ
ρj
j + (λj − 1)ρj

])
≤ (2CL)d

∑
λ∈Λ

d∏
j=1

λ
ρj
j = (2CL)d

∑
λ∈Λ

λρ.

In the first case, i.e. if ρ = 0, we can conclude

∥∥S⊗Λ (Q)
∥∥
L∞(Ω⊗)→L∞(Ω⊗)

≤ (2CL)d#Λ ≤ (2CL)d
(`ωmin + ‖ω‖1)

d

d!

d∏
j=1

ω−1
j ,

where we have used (33). The case ρ = 1 follows directly from Corollary 8. �

Next, we need to bound the term in (49), i.e. the sum over the norms of ∆λ(A⊗). This can be done as
follows.

Lemma 5. Let Λ = Iω(`, d) with ω ∈ Rd+ and ` ∈ N. If Assumption 5 is satisfied with γ ∈ Rd+ and ν ∈ Nd0
then

(56)
∑
λ∈Λ{

∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

≤ CdA
d∏
j=1

[
1 + 2−γj

] ∑
λ∈Dω(`ωmin){

exp(− log(2)γ · λ)(λ+ 1)ν .
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Proof. We first bound the summands directly, using Assumption 5 as follows:∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

≤
d∏
j=1

∥∥∥∆λj (A(j))
∥∥∥
Hβj (Ω(j))→L∞(Ω(j))

=

d∏
j=1

∥∥∥A(j)
λj
−A(j)

λj−1

∥∥∥
Hβj (Ω(j))→L∞(Ω(j))

≤
d∏
j=1

[∥∥∥A(j)
λj
− ι(j)

∥∥∥
Hβj (Ω(j))→L∞(Ω(j))

+
∥∥∥A(j)

λj−1 − ι
(j)
∥∥∥
Hβj (Ω(j))→L∞(Ω(j))

]

≤
d∏
j=1

[
CA2−γjλjλ

νj
j + CA2−γj(λj−1)(λj − 1)νj

]

≤
d∏
j=1

[
CA(1 + 2−γj )2−γj(λj−1)λ

νj
j

]

= CdA

d∏
j=1

[
1 + 2−γj

] d∏
j=1

[
2−γj(λj−1)λ

νj
j

]
= CdA

d∏
j=1

[
1 + 2−γj

]
2−γ·(λ−1)λν .

Hence, we have∑
λ∈Λ{

∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

=
∑

λ∈(Dω(`ωmin)+{1}){

∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

≤ CdA

d∏
j=1

(1 + 2−γj )
∑

λ∈(Dω(`ωmin)+{1}){
2−γ·(λ−1)λν(57)

= CdA

d∏
j=1

[
1 + 2−γj

] ∑
λ∈Dω(`ωmin){

2−γ·λ(λ+ 1)ν

= CdA

d∏
j=1

[
1 + 2−γj

] ∑
λ∈Dω(`ωmin){

exp(− log(2)γ · λ)(λ+ 1)ν .

�

Note that we have γj > 0 and hence 1 + 2−γj ≤ 2 for all 1 ≤ j ≤ d so that we could bound the remaining
product by 2d.

Next, we need to bound the final sum in the statement of the last lemma. We will do this only in the
special case of a weight vector ω chosen as ω = γ, where γ is the vector γ = (γ1, . . . , γd)

T from Assumption
5. Moreover, we will discuss only the cases where ν from Assumption 5 satisfies either ν = 0 or ν ∈ Nd. We
start with the former.

Proposition 5. Let Λ = Iω(`, d) with ω ∈ Rd+ and ` ∈ N satisfying ` ≥ d/(ωmin log(2)). Let Assumption 5
with γ = ω and ν = 0 be satisfied. Then,

∑
λ∈Λ{

∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

≤ CdAd log(2)d−1

(d− 1)!

(
1 + 2−ωmin

1− 2−ωmin

)d
ωd−1

min `
d−12−`ωmin .
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Proof. We use Corollary 5, i.e. (29) with T = `ωmin and c = − log(2) and then the second statement of
Lemma 2, i.e. (37) with T = log(2)`ωmin ≥ d. This yields∑

λ∈Dω(`ωmin){

exp(− log(2)ω · λ) ≤ 1

(d− 1)!

d∏
j=1

1

(1− 2−ωj )

∫ ∞
log(2)`ωmin

sd−1 exp(−s)ds

≤ 1

(d− 1)!

d∏
j=1

1

(1− 2−ωj )
d2−`ωmin(log(2)`ωmin)d−1.

Inserting this into (56) and using the fact that

1 + 2−ωj

1− 2ωj
≤ 1 + 2−ωmin

1− 2−ωmin
, 1 ≤ j ≤ d,

gives the stated result after rearranging the terms. �

Next, we deal with the case ν ∈ Nd. Here, we have first of all the following result, which is, due to its
more general nature, not as sharp as the one in Proposition 5.

Proposition 6. Let Λ = Iω(`, d) with ` ∈ N and ω ∈ Rd+. Let Assumption 5 with ν ∈ Nd and γ = ω be
satisfied. If ωj > νj for 1 ≤ j ≤ d then there is a constant C = C(ω,ν) > 0 such that∑

λ∈Λ{

∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

≤ C`d+|ν|2−`ωmin .

Proof. We begin by directly bounding the sum in (57) using Corollary 3 with c = − log(2). Employing also

ω = γ and, by (7), Λ{ = Iω(`, d){ ⊆ Dω(T ){ with T = `ωmin + ‖ω‖1, we can conclude that

∑
λ∈Λ{

2−ω·(λ−1)λν ≤ 2‖ω‖1
∑

λ∈Dω(T ){

exp(− log(2)ω · λ)λν

≤ log(2)dC22‖ω‖1
∫
W

xν exp(− log(2)ω · x)

d∏
j=1

(
ωj +

νj
(− log(2))xj

)
dx

≤ log(2)dC22‖ω‖1
∫
W

xν exp(− log(2)ω · x)

d∏
j=1

(
ωj +

νj
log(2)xj

)
dx.

Here the set W from (15) contains particularly only cubes [k,k + 1) with k ∈ Nd, which means that any
x ∈ W satisfies x ≥ 1. This and our assumption ω ≥ ν allows us first to further bound the product under
the integral by

d∏
j=1

(
ωj +

νj
log(2)xj

)
≤

d∏
j=1

(
ωj +

νj
log(2)

)
≤ ω1

d∏
j=1

(
1 +

1

log(2)

)
≤ ω1 (1 + log(2))d

log(2)d
.

This, leads then to the bound∑
λ∈Λ{

2−ω·(λ−1)λν ≤ C2(1 + log(2))d2‖ω‖1ω1

∫
W

xν exp(− log(2)ω · x)dx.

As we have non-negative integrands, we can make use of W ⊆ [Dω](T ){ ⊆ Eω(T ){ and then use Lemma 1
to derive, with T = `ωmin + ‖ω‖1,∑

λ∈Λ{

2−ω·(λ−1)λν ≤ C2(1 + log(2))d2‖ω‖1ω1

∫
Eω(T ){

exp(− log(2)ω · x)xνdx

≤ C2(1 + log(2))d2‖ω‖1ω1T d+|ν|2−Tω−(ν+1)

∫
E1(1){

xν2−‖x‖1+1dx

= C(ν,ω)`d+|ν|2−`ωmin .

�
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At this point, we can give a first summary of our achievements. As mentioned above, we only consider
the two cases ρ = ν = 0 and ρ = ν = 1. Again, we start with the former.

Theorem 6. Let Λ = Iω(`, d) with ω ∈ Rd+ and ` ∈ N. Let Assumptions 4 and 5 with ρ = ν = 0 and γ = ω

be satisfied. Then there is a constant C = C(ω, d), such that for all f ∈ Hβ(Ω⊗) and all ` ≥ d/(ωmin log(2)),
we have

(58)
∥∥ι⊗f∥∥

L∞(Ω⊗)
≤ CCdLCdA`2d−12−`ωmin‖f‖Hβ(Ω⊗) + CCdL`

d‖f‖`∞(Ξ⊗ω (`,d)),

where CA and CL are the constants from (52) and (51), respectively.

Proof. We know from Proposition 5 that∑
λ∈Λ{

∥∥∆λ(A⊗)
∥∥
Hβ(Ω⊗)→L∞(Ω⊗)

≤ CdAC(ωmin, d)`d−12−`ωmin

and, using ω = γ, from Lemma 4 that∥∥S⊗Λ (Q)
∥∥
L∞(Ω⊗)→L∞(Ω⊗)

≤ CdLC(ω, d)`d.

The statement then easily follows from (50). �

Before dealing with the case ρ = ν = 1, we want to express the above result (58) using rather the number
of points N := #Ξ⊗ω(`, d) in our sparse grid Ξ⊗ω(`, d) than the parameter `. To this end, we assume now
that Assumption 3 holds and we recall that we expect a connection between the vectors γ and η of the form
αj := γj/ηj ≥ 1 for 1 ≤ j ≤ d, as this quotient will reflect the smoothness of βj of our Sobolev spaces, see
(53). As we also have γ = ω, we will make the assumption that ηj = ωj/αj for 1 ≤ j ≤ d. Hence, the
bounds from Proposition 3 can be used. We have in particular

(59) 2−`ωmin ≤ C`(d−1)αminN−αmin and ` ≤ C logN.

With this, we have the following final result in the situation of ρ = ν = 0.

Theorem 7. Let Λ = Iω(`, d) with ω ∈ Rd+ and ` ∈ N. Let Assumptions 3, 4 and 5 with ρ = ν = 0
and γ = ω be satisfied. Let αj := ωj/ηj for 1 ≤ j ≤ d and let αmin := minαj. Then there is a constant
C = C(ω, d,α), such that for all f ∈ Hβ(Ω⊗), β ∈ Nd, and all ` ≥ d/(ωmin log(2)), we have∥∥ι⊗f∥∥

L∞(Ω⊗)
≤ C(logN)2d−1+(d−1)αminN−αmin‖f‖Hβ(Ω⊗) + C(logN)d‖f‖`∞(Ξ⊗ω (`,d)).

In the same fashion, we can now establish a sampling inequality in the case of ρ = ν = 1. Here, we have
the following result.

Theorem 8. Let Λ = Iω(`, d) with ` ∈ N and ω ∈ Nd satisfying ωj ≥ 2 for 1 ≤ j ≤ d. Let Assumptions
3, 4 and 5 with ρ = ν = 1 and γ = ω be satisfied. Let αj = ωj/ηj, 1 ≤ j ≤ d. Then, there is a constant
C = C(ω, d) > 0 such that for all f ∈ Hβ(Ω⊗) we have

‖ι⊗f‖L∞(Ω⊗) ≤ C`‖ω‖1+2d log(`ωmin + ‖ω‖1)d−12−`ωmin‖f‖Hβ(Ω⊗)

+ C`‖ω‖1 log(`ωmin + ‖ω‖1)d−1‖f‖`∞(Ξ⊗ω (`,d))

≤ C(logN)‖ω‖1+2d+αmin(d−1)(log logN)d−1N−αmin‖f‖Hβ(Ω⊗)

+ C(logN)‖ω‖1(log logN)d−1‖f‖`∞(Ξ⊗ω (`,d)).

Proof. The first bound follows again from the general bound (50) using, this time, Proposition 6 and the
second part of Lemma 4. The second bound then follows again using (59), the relation between N and `. �

4.4. An Example. We end this section with an example, which is based on material provided in [20] and
which also explains why we are particularly interested in the cases ρ = ν = 0 and ρ = ν = 1. We let

Ω(j) = I = [−1, 1] for 1 ≤ j ≤ d and choose Hβ(Ω⊗) to be Hβ(Ω⊗) = Cβb (Ω⊗) with β ∈ Nd.
The univariate points are chosen to be the Chebyshev points defined by

Ξ
(j)
k ≡ Ξk =

{
ξ

(j)
n;k = − cos

(
π(n− 1)

mk+p − 1

)
, 1 ≤ n ≤ mk+p

}
,
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where p ∈ N0 is, if p > 0, an oversampling offset and mk+p = 2k+p−1 + 1 = N (j)(k) the number of points.
These sets are obviously nested. In the sense of Assumption 3 we have C1 = C1(p) = 2p−1, C2 = C2(p) = 2p

and, most importantly, ηj = 1, 1 ≤ j ≤ d.

We choose the finite dimensional spaces Π
(j)
k = πmk−1 as the univariate polynomials of degree at most

mk − 1 = 2k−1 + 1, k ∈ N. Then, we know from [20] that we have operators Q(j)
k satisfying

‖Q(j)
k ‖L∞(I)→L∞(I) ≤

{
1 + 5π

2p+1 =: CL(p) if p ≥ 1,
2
π log(mk − 1) + 1 ≤ Ck if p = 0.

This means that we have, in the sense of Assumption 4, for 1 ≤ j ≤ d,

ρj =

{
0 if p ≥ 1,

1 if p = 0.

Finally, also from [20], we have a best approximation operator A(j)
k : C

βj
b (I)→ Cb(I) which satisfies

‖ι(j) −A(j)
k ‖Wβj

∞ (I)→L∞(I)
≤

{
C2−βjk if p ≥ 1,

C2−βjkk if p = 0.

In the sense of Assumption 5 we have for 1 ≤ j ≤ d in both cases γj = βj and then νj = 0 if p ≥ 1 and
νj = 1 if p = 0.

Hence, we can apply Theorems 7 and 8 with γ = ω = β = α and η = 1 for all p ∈ N0 and the just
defined ρ and ν.
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