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INCREMENTAL KERNEL BASED APPROXIMATIONS FOR BAYESIAN INVERSE
PROBLEMS

CHRISTIAN RIEGER

ZUSAMMENFASSUNG. We provide an interpretation for the covariance of the predictive process
of Bayesian Gaussian process regression as reproducing kernel of a subset of the Cameron Martin
space of the prior. We demonstrate that this deterministic viewpoint enables us to relate particular
greedy methods using that subset kernel to instances of powerful low-rank matrix approximation
techniques such as adaptive cross approximation or pivoted Cholesky decomposition. In particular,
we can show convergence results for such algorithms which appear to be novel in the case of finitely
smooth kernels.

Moreover, we consider the inverse problem to reconstruct a parametrized diffusion coefficient
from point evaluations of the solution to a diffusion equation with that parametrized coefficient. To
this end, we present a Gaussian process regression based approach to approximate the observati-
on operator. The error estimates for this approximation methods are capable to take deterministic
model errors explicitly into account. Finally, we show how the findings about incremental low rank
approximations can be applied to these reconstruction problems.

1. INTRODUCTION

Gaussians process regression is an important tool to reconstruct a function from finitely many
data. The Gaussian process has many different interpretations. We outline connections between
Gaussian process regression and numerical approximation methods in reproducing kernel Hilbert
spaces (RKHS). Here, we especially focus on the deterministic interpretation of the predictive pro-
cess and its covariance. It turns out that the covariance of the predictive process is nothing but the
so-called power kernel from [10]. The power kernel construction naturally shows up in the adap-
tive cross approximation method, though this powerful method can be formulated in much more
generality, using e.g. non-symmetric kernels, see [1]. Algorithmically both methods can be related
to the variants of the Cholesky decomposition, see [6]. These findings allow very efficient low-rank
approximations of the covariance of the predictive process. In particular, the interpretation in terms
of reproducing kernel methods allows to derive an error analysis for the case of finitely smooth
covariance functions.
As an application, we apply the general framework of Gaussian process regression to an inver-
se problem. The inverse problem is to reconstruct a parametrized diffusion coefficient from point
evaluations of solutions to the stationary diffusion equation. Here, we follow [15], where a very
general theory to bound the reconstruction error for the diffusion coefficients is presented. The dif-
ference to the approach in [15] is that we do not assume to have arbitrarily precise solutions to the
differential equation. Of course, this is a constructed model problem. If we had all data available
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2 CHRISTIAN RIEGER

to compute the solution to the differential equation, there is no need to recover the diffusion coeffi-
cient. So our analysis might be directly applied if the solution to a differential equation is stored as
data but the information about the diffusion coefficients are lost. We, however, treat this numerical
model error as a prototype for more general types of model errors. Such a model error might be
the wrong differential equation to describe the physical processes accurately, or many more. We
are convinced that many of those model errors are deterministic in nature and hence, we present an
analysis for this case.
The necessity to include the discretization error of the solution to the differential equation is al-
so discussed in a statistical framework in [2]. We pursue a similar approach as we also employ a
kernel method to solve the differential equation. As already encountered in Section 2, those kernel
methods can be seen as Gaussian process regression. We, however, employ a deterministic a priori
error analysis as developed in [4]. To our mind, the deterministic error model is more realistic in
the context of model errors. To account for such a deterministic error, we employ techniques from
machine learning. Moreover, we can use techniques from low-rank matrix approximation methods
to distribute the points according to the covariance of the predictive distribution function in the
spirit of [5, 7]. We develop a new error analysis for the inverse reconstruction problem as outlined
above. Moreover, we discuss how techniques from adaptive cross approximation can be applied in
such problems especially in the design of new observation points.
The remainder of the manuscript is organized as follows: In Section 2, we recall basic facts from the
theory of Gaussian process regression and reproducing kernel Hilbert space methods. Moreover,
we present a new interpretation of the adaptive cross approximation in the setting of reproducing
kernel Hilbert space methods. In Section 3, we present the inverse problem to determine the pa-
rametrized diffusion coefficient from point evaluations of the stationary diffusion equation with
that coefficient. In Section 4, we present a numerical scheme to solve the differential equation and
present its error analysis. Finally, we present an error analysis for the inverse problem in Section 5.
We end with some concluding remarks in Section 6.

2. GAUSSIAN PROCESS REGRESSION AND ADAPTIVE CROSS APPROXIMATION

Here, we follow [13, Chapter 2.2]. Let X ⊂ Rd. We consider a Gaussian process

f ∼ ν0 = N (0, C) or in other notation f ∼ GP(0, κ).

Let ΞN = {ξ1, . . . , ξN} ⊂ X be a discrete set. The goal is to extract information about the function
f from finitely many point values. We get for the distribution

f |ΞN ∼ GP(0, SΞNS
?
ΞN

).

In order to formulate the problem more precisely, we need to specify the prior or the Gaussian
measure. We consider a symmetric positive definite kernel function κ : X × X → R. Then, there
is a uniquely defined Hilbert space Hκ(X) ⊂ {f : X → R} which is called reproducing kernel
Hilbert space (RKHS) and satisfies

κx := κ(·, x) ∈ Hκ(X) for all x ∈ X
f(x) = (f, κx)Hκ(X) for allf ∈ Hκ(X) and for all x ∈ X.
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The integral operator

Cκ : L2(X)→ L2(X), f 7→ Cκ(f) =

∫
X
κ(·, y)f(y)dy(1)

gives rise to a (centered) Gaussian measure ν0 = N (0, Cκ) on L2(X). Furthermore we have

Range(C
1
2
κ ) = Hκ(X) ⊂ L2(X),

i.e., the RKHS is the Cameron Martin space on ν0. This means that we choose ν0 as prior. We
consider the case that ν0(C(X)) = 1 which requires some regularity of the kernel κ : X× X→ R
and is in our setting usually related to Sobolev embeddings. We introduce the maps

SΞN : Hκ(X)→ RN , f 7→ (f(ξ1), . . . , f(ξN ))>

S?ΞN : RN → Hκ(X), c 7→
∑
ξj∈ΞN

cjκξj .

The notation is justified since we have

(d, SΞN f)`2(ΞN ) =
N∑
j=1

djf(ξj) =
(
f, S?ΞNd

)
Hκ(X)

for all f ∈ Hκ(X) and all d ∈ RN .

We use the notation

IΞN : Hκ(X)→ Hκ(X), f 7→ IΞN ;f (·) =
(
S?ΞN

(
SΞNS

?
ΞN

)−1
SΞN (f)

)
(·).

Moreover, we observe that

SΞNS
?
ΞN

= KΞN ,ΞN =

κ(ξ1, ξ1) . . . κ(ξ1, ξN )
...

. . .
...

κ(ξN , ξ1) . . . κ(ξN , ξN )

 ∈ RN×N

is a symmetric and positive definite matrix. We introduce the space

ker(SΞN ) = {f ∈ Hκ(X) : SΞN (f) = 0} ⊂ Hκ(X)

and note that its reproducing kernel is given by [10, Section 5]

κΞN : X× X→ R, (x, y) 7→
(

(Id−IΞN )(1) (Id−IΞN )(2) κ(·, ·)
)

(x, y),(2)

where the superscript denotes to which argument the function is applied. Following [10], we call
the kernel (2) the power kernel. The terminology is motivated by the identity

κΞN (x, x) = P 2
ΞN

(x) = dist2
H∗κ(X) (δx, {δξ : ξ ∈ ΞN}) ,(3)

where PΞN is usually called the power function. Then, we have the following representation

f(·)|SΞN (f) ∼ GP (IΞN ;f (·), κΞN (·, ·))

for the predictive process, see [13, Eq. (2.19)] or [15, Eq. (3.6)].
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2.1. Recursive interpolation. We assume that the data points are not given as a single set of points
but that they can be viewed as a data stream. We denote by

ΞN =
{
ξ1, . . . , ξN(`)

}
= ΞN−1 ∪ {ξN} and Ξ0 = ∅.

The first observation is that such a data stream fits the asymptotic nature of most error estimates
better than a single set of points. The perspective of incremental approximations can also be em-
ployed in a low-rank approximation of the kernel matrix. Following [10, Section 5], we have the
following recursion for the power kernel (2)

κΞ0,Ξ0(x, y) = κ(x, y) and

κΞN+1,ΞN+1
(x, y) = κΞN ,ΞN (x, y)−

κΞN ,ΞN (x, ξN+1)κΞN ,ΞN (ξN+1, y)

κΞN ,ΞN (ξN+1, ξN+1)
for all x, y ∈ X.(4)

Such a recursion appears also for the symmetric kernel case in the adaptive cross approximation,
c.f. [1, Eq 16]. Following [10, Section 5], we consider also the matrix version of that recursion. We
define the kernel matrix for the n-th power kernel defined in (4) with n ≤ N

Kn;ΞN ,ΞN =

κΞn,Ξn(ξ1, ξ1) . . . κΞn,Ξn(ξ1, ξN )
...

. . .
...

κΞn,Ξn(ξN , ξ1) . . . κΞn,Ξn(ξN , ξN )

 ∈ RN×N ,

evaluated at the point set ΞN . This is the matrixCj from [10, Eq. (5)]. As outlined there, this matrix
is the n-th iterate of the inline Cholesky decomposition

K0;ΞN ,ΞN = KΞN ,ΞN and

Kn;ΞN ,ΞN = Kn−1;ΞN ,ΞN −
1

Kn−1;ΞN ,ΞN (n, n)
Kn−1;ΞN ,ΞN (:, n)⊗Kn−1;ΞN ,ΞN (n, :),(5)

using the same MATLAB inspired notation as in [10, Eq. (6)]. Algorithmically, this relates to the
recursion of the adaptive cross approximation as in [1, Section 3.1] for symmetric kernels. The
iteration (5) yields a Cholesky decomposition of the kernel matrix, i.e.,

KΞN ,ΞN = KN ;ΞN ,ΞNK
>
N ;ΞN ,ΞN

.

As outlined in [12, Section 6], there is a relation between matrix factorizations and special bases,
for instance a Cholesky decomposition of the kernel matrix leads to a (·, ·)Hκ(X)-orthogonal basis.
In order to describe this, we define the vector-field

κΞN := S
(2)
ΞN
κ(·, ·) = (κ(·, ξ1), . . . , κ(·, ξN ))>

and construct a new Netwon–type basis as

(ψ1;ΞN , . . . , ψN ;ΞN ) = S
(2)
ΞN
κ(·, ·) ·

(
K>N ;ΞN ,ΞN

)−1
,(6)

where K>N ;ΞN ,ΞN
is by construction via the Cholesky decomposition an upper triangular matrix.

We have that

span {ψ1;ΞN , . . . , ψN ;ΞN } = span {κξ1 , . . . , κξN } =: VΞN .
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The basis ψj was already discussed in [11] with a different normalization. The main feature of this
basis is that ’old’ basis elements remain unchanged if a new point is added. This makes this new
basis especially favorable in sequential applications. A related basis change is also described in [1,
Lemma 4], with the choices ˆ̀

i = κξi and C = K>N ;ΞN ,ΞN
.

2.2. Low-rank approximation of kernel matrices. We consider a very fine discrete set of points
ΥN∞ ⊂ X with N∞ < ∞. In theory, it would be possible to build the matrix KΥN∞ ,ΥN∞ ∈
RN∞×N∞ but N∞ is assumed to be so large that direct inversion of this matrix should be avoided.
Low-rank approximation can provide reliable approximations to that matrix which are cheaper to
store and allow for faster matrix algorithms. To this end, we fix a precision εchol > 0 and try to find
a rank Nεchol and a matrixA ∈ RN∞×N∞ such that∥∥KΥN∞ ,ΥN∞ −A

∥∥ ≤ εchol

and Rank(A) ≤ Nεchol . We can use [12, Eq. (20)] to get

κ(x, y) = lim
hΞN,X→0

N∑
j=1

ψj;ΞN (x)ψj;ΞN (y),(7)

where the limit means that the point set ΞN needs to get dense in X which in turn necessarily
implies N →∞. Moreover, we have the identity (c.f. [12, p. 584])

κ(x, y)− κΞN ,ΞN (x, y) =
N∑
j=1

ψj;ΞN (x)ψj;ΞN (y).

The representation of the kernel (7) leads to

KΥN∞ ,ΥN∞ = lim
hΞN,X→0

N∑
j=1

SΥN∞ψj;ΞN ⊗ SΥN∞ψj;ΞN .(8)

Such a series expansion motivates a choice for the matrixA as

A = AΞN =

N∑
j=1

SΥN∞ψj;ΞN ⊗ SΥN∞ψj;ΞN .(9)

The important point which remains open is how to construct the point sets Ξn iteratively to achieve
a small εchol. Both [1] and [6] provide efficient algorithms to compute such a low rank approxima-
tion. As already mentioned in [6, Section 3], both approaches are similar if a total pivoting strategy
is used in [1]. We will present an other kernel-based derivation for such algorithms. In particular,
the kernel based approach also allows for an error analysis in the case of finitely smooth kernels.

Kernel-based power greedy method. For any discrete set Ξ ⊂ X, there is an error formula for
kernel-based interpolation

|(f − IΞ(f)) (x)| ≤ PΞ(x) ‖f‖Hκ(X) for all f ∈ Hκ(X),
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using the power function from (3), see [16]. The important feature of this error estimate is that the
power function does not depend on the specific function f . Hence, such a error estimate is universal
for the whole function spaceHκ(X). By definition, we observe

κΞ(ξ, ξ) = P 2
Ξ(ξ) = 0 for all ξ ∈ Ξ.

The power greedy methods is now defined as follows: Start with a point ξ1 ∈ X and set Ξ1 = {ξ1}.
Define iteratively

ξn+1 := arg max
x∈X

P 2
Ξn(x) and set Ξn+1 = Ξn ∪ {ξn+1}.(10)

The rationale behind this algorithm is to try to reduce the high values of the power function as
quickly as possible and hence to make the power function globally small. For the convergence
analysis we refer to [14] for the case of finitely smooth kernels and to [6] for infinitely smooth
kernels. As finitely smooth reproducing kernels, we will consider radial basis functions with a
specific decay of their Fourier transforms. Precisely, we consider translation-invariant kernels Φ
such that there is a φ satisfying

Φ : Rd × Rd → R, x 7→ Φ(x− y) = φ(‖x− y‖2),

where φ : R → R. The decay condition on the Fourier transform reads: there are constants 0 <
cφ, Cφ <∞ such that for bτc > d

2 it holds that

cΦ

(
1 + ‖ω‖22

)τ
≤ Φ̂(ω) ≤ CΦ

(
1 + ‖ω‖22

)τ
for all ω ∈ Rd.(11)

We assume also φ ∈ C2(R). This is for instance satisfied for certain Wendland kernels, see [16,
proof of Theorem 11.17]. For those kernels, it turns out that

HΦ(Rd) ∼= W τ
2 (Rd).

Moreover, we obtain [16, Corollary 10.48] that

HΦ(X) ∼= W τ
2 (X)

if X ⊂ Rd has a Lipschitz boundary and we use a suitable norm which is equivalent to the standard
norm on the Sobolev space. Furthermore, the covariance operator (1) behaves in the assumed way
[16, Lemma 10.27].

Convergence of P -greedy algorithm for finitely smooth kernels. The algorithm (10) is numerically
infeasible since the maximum over the whole set X is not computable. Following [14, Section 4],
we replace the set X by the finite set ΥN∞ = {υ1, . . . , υN∞}. The algorithm then reads

ξ1 := arg max
x∈ΥN∞

κ(x, x) and Ξ1 = {ξ1}

ξn+1 := arg max
x∈ΥN∞\Ξn

P 2
Ξn(x) and Ξn+1 = Ξn ∪ {ξn+1}.(12)

Then, we have by [14, Theorem 4.1]

‖PΞn‖`∞(ΥN∞ ) ≤ CPn
− τ
d

+ 1
2 .(13)
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This result is enough to get an error estimate for the low-rank matrix approximation, where the
error is measured in the Frobenius norm.

Theorem 2.1. Let Ξ ⊂ Rd satisfy an interior cone condition and let Φ : Rd × Rd → R be of the
form (11). Then, there is a constant cε > 0 such that for all sets Ξn created by the discrete power
greedy method (12), the matrixAΞn satisfies the estimate∥∥KΥN∞ ,ΥN∞ −AΞn

∥∥
F
≤ CPN∞n−

τ
d

+ 1
2 .

Proof. We observe using (8) and (9) that

KΥN∞ ,ΥN∞ −AΞN =

 κΞn,Ξn(υ1, υ1) . . . κΞn,Ξn(υ1, υN∞)
...

. . .
...

κΞn,Ξn(υN∞ , υ1) . . . κΞn,Ξn(υN∞ , υN∞)

 ∈ RN∞×N∞ .(14)

This error representation (14) implies an error bound

∥∥KΥN∞ ,ΥN∞ −AΞN

∥∥
F

=

N∞∑
i=1

N∞∑
j=1

κ2
Ξn,Ξn(υi, υj)

 1
2

≤ N∞ ‖PΞn‖`∞(ΥN∞ ) .

Now, (13) yields the claim. �

In order to derive kernel-based error estimates, we also have to study the distribution of the point
sets Ξn. In particular, we have to bound hΞn,X in terms of n. To this end, we will provide a new
proof for the corollary [14, Corollary 4.3] in order to make the dependence on the finite set ΥN∞

more explicitly. In particular, we need to make sure that the finite set of points ΥN∞ is fine enough
to yield

‖PΞn‖`∞(ΥN∞ ) ≤ ‖PΞn‖L∞(X) ≤ C ‖PΞn‖`∞(ΥN∞ )

for a suitable constant C > 0.

Theorem 2.2. Let X ⊂ Rd satisfy an interior cone condition and let Φ : Rd × Rd → R be of the
form (11). Let hΥN∞ ,X ≤ h0, where h0 will be defined in (17). Then, for every ε ∈ (0, 1) there is
a constant cε > 0 such that for all sets Ξn created by the discrete power greedy method (12), we
have that there is a constant θ = τ − d

2 > 0 such that

hΞn,X := sup
x∈X

min
ξ∈Ξn

‖x− ξ‖2 ≤ cεn
− θ
θ+ε

1
d for all .(15)

Proof. We mainly follow [14, Corollary 4.3]. Here, we have to use an approximation argument in
order to apply [9, Theorem 3.1]. Precisely, [9, Theorem 3.1] provides for every ε > 0 the existence
of a constant C(ε) such that

hΞn,X ≤ C(ε) ‖PΞn‖
1

τ− d2 +ε

L∞(X) .



8 CHRISTIAN RIEGER

In order to use (13), we have to estimate ‖PΞn‖L∞(X) in terms of ‖PΞn‖`∞(ΥN∞ ). From the condi-
tion (11), we have bτc > d

2 . Here, we use [16, Theorem 2.6], to get

‖PΞn‖L∞(X) ≤ CS
(
h

1− d
2d

ΥN∞ ,X
‖PΞn‖W 1

2d(X) + ‖PΞn‖`∞(ΥN∞ )

)
.(16)

We use [9, Lemma 4.2] to get

|∂kPΞn(x)| ≤ 2PΞn(x)

√
∂

(1)
k ∂

(2)
k κ(x, x) for all x ∈ X and 1 ≤ k ≤ d,

where the integrability follows from the assumed regularity of the kernel. Hence, we obtain

‖PΞn‖W 1
2d(X) ≤ C(κ, d,X) ‖PΞn‖L∞(X) .

This implies that if hΥN∞ ,X ≤ h0 with

h0 ≤ (2CSC(κ, d,X))−2(17)

we have by (16)

‖PΞn‖L∞(X) ≤ 2CS ‖PΞn‖`∞(ΥN∞ ) ≤ 2CSCPn
− τ
d

+ 1
2

where the last inequality is given by (13). Hence, we obtain

hΞn,X ≤ C(ε) ‖PΞn‖
1

τ− d2 +ε

L∞(X) ≤ C(ε)
(

2CSCPn
− τ
d

+ 1
2

) 1

τ− d2 +ε .

Manipulating the exponent yields(
−τ
d

+
1

2

)
1

τ − d
2 + ε

= −1

d

τ − d
2

τ − d
2 + ε

.

Setting now θ = τ − d
2 finishes the proof. �

The proof also shows the following corollary which is a stronger version of (13).

Corollary 2.3. Let X ⊂ Rd satisfy an interior cone condition and let Φ : Rd × Rd → R be of
the form (11). Let hΥN∞ ,X ≤ h0, where h0 is defined in (17). Then, for ever ε ∈ (0, 1) there is
a constant cε > 0 such that for all sets Ξn created by the discrete power greedy method (12), we
have that

‖PΞn‖L∞(X) ≤ cεn
− τ
d

+ 1
2

Summarizing, we get results on the distribution of the set of points created by the power greedy
method.
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3. INVERSE MODEL PROBLEM

Let D ⊂ Rd be an open bounded set with boundary ∂D. Let τ ∈ N with τ > d
2 + 2. We will

assume ∂D ∈ Cτ+2. Let φk ∈ Cτ+1(D̄) for 1 ≤ k ≤ K be given functions with ‖φk‖L∞(D) = 1
for all 1 ≤ k ≤ K. Let

A : IK := [−1, 1]K → Cτ+1(D̄), c = (c1, . . . , cd) 7→ A(c, x) = 1 +
K∑
k=1

ck
2K

φk.

We directly observe that

Amin =
1

2
≤ A(c, x) ≤ Amax =

3

2
for all c ∈ IK and all x ∈ D.(18)

We consider the second order elliptic boundary value problem for given g ∈W τ−2
2 (D) with

(19)

{
Lc(u) := −∇ · (A(c, x)Idd×d∇u(c, x)) = g(x) for all x ∈ D

u(c, x) = 0 for all x ∈ ∂D

and for fixed parameter c ∈ IK . We introduce the operator

LD;c : W τ
2 (D)→W τ−2

2 (D)×W τ− 1
2

2 (∂D), u 7→ (Lcu, γ0(u)) ,(20)

where γ0 is the usual trace map. Elliptic regularity theory [3, Sec. 6.3, Thm. 5] implies that LD;c

given as in (20) is continuously invertible, i.e., there is a map

L−1
D;c : W τ−2

2 (D)×W τ− 1
2

2 (∂D)→W τ
2 (D), (g, 0) 7→ u = L−1

D;c(g, 0),(21)

and we have

‖u‖W τ
2 (D) =

∥∥∥L−1
D;c(g, 0)

∥∥∥
W τ

2 (D)
≤ C(Amin, Amax) ‖g‖W τ−2

2 (D) ,

where we used to notation C(Amin, Amax) to denote that the constant depends on c only via the
upper and lower bounds in (18). The assumption on the smoothness ofD also ensures the existence
of a bounded extension operator

ED : W τ
2 (D)→W τ

2 (Rd)

such that

EDu|D = u and ‖EDu‖W τ
2 (Rd) ≤ ‖ED‖ ‖u‖W τ

2 (D) for all u ∈W τ
2 (D).

Following [15], we consider the mapping

G : IK →W τ
2 (D), c 7→ u = L−1

D;c(g, 0),

where u ∈W τ
2 (D) is a solution to (19). Furthermore, we introduce a sampling operator associated

with a discrete set XN := {x1, . . . , xN} ⊂ D ⊂ Rd as

SXN : W τ
2 (Rd)→ RN ,
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which is well-defined due to the condition τ > d
2 . The concatenation of the operators

G := SXN ◦ ED ◦G : IK → RN , c 7→ SXN (ED(u)) = SXN (ED ◦ L−1
D;c(g, 0))(22)

is called the observation operator in [15]. As in [15], we consider the associated inverse problem to
find c ∈ IK from data

ym = G(cm) + εm;L for 1 ≤ m ≤M,(23)

where εm;L denotes the numerical model error. Since we cannot evaluate the observation operator
for all parameters c ∈ IK . We define the set CM := {c1, . . . , cM} ⊂ IK . Hence, we have only the
finitely many values

SCM (Ĝ) =
(
Ĝ(c1), . . . , Ĝ(cM )

)>
∈ RN×M ,(24)

where Ĝ ≈ G is a suitable approximation to the observation operator, at hand to gain information
on the continuous observation operator G : IK → RN . The strategy of [15] is to assume a prior
measure µ0 such that c is distributed according to µ0. The information, we would like to infer about
the parameters is the posterior distribution µy which is the distribution of the conditioned random
variable c|y. Bayes’ theorem in this situation reads as follows, see[15, Proposition 2.1].

Proposition 3.1. Given that G : IK → RN is continuous and we have µ0(IK) = 1. Then the
distribution of the conditioned random variable c|y is absolutely continuous with respect to the
prior µ0 and hence the Radon-Nikodým derivative exists and is given as

dµy

dµ0
(c) =

1

Eµ0 [exp (−‖y − G(c)‖2)]
exp (−‖y − G(c)‖2)(25)

Following [15], we construct an approximation to the measure (25) by approximation to the
observation operator (22). We construct an approximation

GN,M ≈ G(26)

and use this to construct the posterior measure as
dµy

dµ0
(c) ≈ 1

Eµ0 [exp (−‖y − G(c)‖2)]
exp

(
−‖y − GN,M (c)‖2

)
(27)

The problem is that G(c) involves two approximation processes. The first approximation stems
from the use of only finitely many data CM and the second approximation process involves the
solution of the system of equations (19) for a fixed parameter.

4. APPROXIMATION OF THE FORWARD PROBLEM – NUMERICAL MODEL ERROR

The forward problem consists in solving the system of equations (19) for a given c ∈ IK . As
outlined in [2] there is an uncertainty on the solution u ∈W τ

2 (D) due to the fact that most numeri-
cal schemes use only a finite number of point-values of g for the reconstruction of u = L−1

D;c(g, 0).
We treat this uncertainty, in contrast to [2], as a deterministic (numerical) model error. We note as
already mentioned in the introduction that this numerical model error serves as prototype for more
general model errors.
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Following [4], we apply a symmetric kernel–based collocation approach. This collocation me-
thod is a special case of generalized kernel-based interpolation. In an abstract framework the gene-
ralized kernel-based interpolation can be described as follows. LetHκ(X) be an RKHS with kernel
κ. Consider a set of linear functionals

ΛN := {λ1, . . . , λN} ⊂ H?κ(X),

where we assume that dim span ΛN = N . Given a vector y ∈ RN , the generalized interpolation
problem can be formulated as an optimization problem to find

sy;ΛN := arg min
{
‖s‖Hκ(X) : λk(s) = yk for 1 ≤ k ≤ N

}
.(28)

The solution to this problem turns out to be contained in a finite dimensional space

sy;ΛN ∈ Vκ;ΛN = span
{
λ

(1)
j κ(·, ·) : λj ∈ ΛN

}
.

The coefficients can be computed by

sy;ΛN =
N∑
j=1

αjλ
(1)
j κ(·, ·), where

λ
(1)
1 λ

(2)
1 κ(·, ·) . . . λ

(1)
1 λ

(2)
N κ(·, ·)

...
. . .

...
λ

(1)
N λ

(2)
1 κ(·, ·) . . . λ

(1)
N λ

(2)
N κ(·, ·)


α1

...
αN

 =

 y1
...
yN

 .

In order to apply this to a kernel-based collocation method for the numerical solution to (19), we
consider a union of two collocation sets ZL = ZL1 ∪ ZL2 with ZL1 := {z1, . . . , zL1} ⊂ D and
ZL2 := {zL1+1, . . . , zL2} ⊂ ∂D. We define

ΛL := ΛL1 ∪ ΛL2 =
{
δzj ◦ Lc : zj ∈ ZL1

}
∪
{
δzj : zj ∈ ZL2

}
⊂W−τ2 (Rd).

The data vector is given by

y = (g(z1), . . . , g(zL1), 0, . . . , 0)> ∈ RL = RL1+L2 .(29)

Moreover, we assume that there are open sets Vk ⊂ Rd such that

∂D ⊂
n∂D⋃
k=1

Vk, Cτ+2 3 φk : B(0, 1)
'−→ Vk

and we denote by wk a subordinate partition of unity which allows to write for 1 ≤ p <∞

‖u‖pW τ
p (∂D) :=

n∂D∑
k=1

‖(u · wk) ◦ φk‖pW τ
p (B)

and the usual modifications for p =∞. The discretization parameters are defined for a discrete set
of point P = {p1, . . . , p#P } ⊂ A ⊂ Rd as in (15), i.e.,

hP,A := sup
a∈A

min
p∈P
‖a− p‖2 .

Hence, we can directly use this definition for hZL1
,D. For the points on the boundary, we define

hZL2
,∂D :=

n∂D
max
k=1

hφ−1
k (ZL2

∩Vk),B(0,1).
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Since the atlas is assumed to be fixed, the dependence on the particular atlas does not matter. Then,
we can use [4, Corollary 3.13].

Proposition 4.1. Let L−1
D;c(g, 0) ∈W τ

2 (D) be the solution to (19) and set L̂−1
D;cm;L(g, 0) := sy;ΛL

with the notation from (28). Then, there is a constant C > 0 such that∥∥∥L−1
D;cm

(g, 0))− L̂−1
D;cm;L(g, 0))

∥∥∥
L∞(D)

≤ C
(
h
τ−2− d

2
ZL1

,D + h
τ− 1+(d−1)

2
ZL2

,∂D

)
‖u‖W τ

2 (D)

≤ CC(Amin, Amax)

(
h
τ−2− d

2
ZL1

,D + h
τ− d

2
ZL2

,∂D

)
‖g‖W τ−2

2 (D)(30)

for all c ∈ IK .

So far, (30) is an error estimate for the numerical solution of a differential equation.

Corollary 4.2. We define a perturbed observation operator

Ĝ : IK → RN , c 7→ SXN (ED ◦ L̂−1
D;c(g, 0)).

Then, we obtain an error bound for the difference of the perturbed observation operator and its
unperturbed counterpart (22)∥∥∥Ĝ(c)− G(c)

∥∥∥
`∞(RN )

≤ εL := CC(Amin, Amax)

(
h
τ−2− d

2
ZL1

,D + h
τ− d

2
ZL2

,∂D

)
‖g‖W τ−2

2 (D)(31)

for all c ∈ IK .

Proof. We directly observe for εm,L given in (23)

‖εm;L‖`∞(XN ) :=
∥∥∥SXN ◦ ED (L−1

D;cm
(g, 0)− L̂−1

D;cm;L(g, 0))
)∥∥∥

`∞(XN )
≤ εL,

which is a uniform bound for cm ∈ CM ⊂ IK . �

5. ERROR ANALYSIS FOR THE INVERSE PROBLEM

Here, we mainly follow [15]. The main goal of Bayesian inverse problems is to reconstruct the
posterior distribution (25).

5.1. Reconstruction of observation operator. In this section, we consider the reconstruction of
the observation operator (22) G : IK → RN given polluted evaluations at the points CM ⊂ IK .
As a first step, we consider a fixed set of points and later study the incremental construction of the
points sets. We recall the structure of the data ym for 1 ≤ m ≤M

ym = G(cm) = SXN (L−1
D;cm

(g, 0))

= SXN (L̂−1
D;cm;L(g, 0)) + SXN (L̂−1

D;cm;L(g, 0)− L−1
D;cm

(g, 0))

=: ym + εm;L = ȳm,

where ȳm = SXN ◦ ED ◦ L̂
−1
D;cm;L(g, 0)) are the available observations which are polluted by the

numerical model error given in (31).
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Since G : IK → RN , we write

G(c) = (G1(c), . . . ,GN (c))>

and also

SCM (G) =

 y1;1 . . . y1:M
...

. . .
...

y1;N . . . yN ;M

 ≈ Ȳ =

 ȳ1;1 . . . ȳ1:M
...

. . .
...

ȳ1;N . . . ȳN ;M

 ∈ RN×M(32)

and treat each component separately. Since we have a (vector-valued) reconstruction problem for
G, we choose a regression approach instead of the interpolation approach of [15]. We assume that
for some bσc > d

2

G ∈W σ
2 (IK)

and again W σ
2 (Rd) is an RKHS with reproducing kernel

K(σ) : RK × RK → R

which satisfies the conditions of (11) with τ = σ and d = K. We consider the functional

Jȳ,α,n : W τ
2 (IK)→ R, Jȳ,α,n(s) :=

M∑
m=1

(s(cm)− ȳn;m)2 + αn ‖s‖2Wσ
2 (IK) .(33)

The usual representer’s theorem yields that an optimum exists and we define

s?n := arg min
s∈Wσ

2 (Rd)
Jȳ,α,n(s) ∈ span

{
K(σ)(·, c1), . . . ,K(σ)(·, cM )

}
.(34)

Let ŝ?n ∈ RM denote the coefficients of s?n, i.e.,

s?n =

M∑
m=1

ŝ?n;mK
(σ)(·, cm).

We consider the symmetric positive definite matrix

K
(σ)
CM ,CM

:=

K(σ)(c1, c1) . . . K(σ)(c1, cM )
...

. . .
...

K(σ)(cM , c1) . . . K(σ)(cM , cM )

 ∈ RM×M .

The coefficients can be obtained by solving the linear system(
K

(σ)
CM ,CM

+ αnIdM×M

)
ŝ?n = ȳn;1:M = Ȳ

>
e(N)
n ,(35)

where e(N)
n is the n-th unit vector in RN . Note at this point, that the optimization problem (34) can

be seen as a penalty methods for the optimization problem (28). For the error analysis, we follow
[16].
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Theorem 5.1. For the error between the observation operator (22) and the reconstructed obser-
vation operator using the data (32) we obtain for Gn;N,M = s?n defined in (34) the error estimate

‖Gn − Gn;N,M‖L2(IK) . h
K
2

CM ,IK

(√
MεL +

√
αn ‖Gn‖Wσ

2 (IK)

)
+ hσCM ,IK

(√
M
√
αn
εL + ‖Gn‖Wσ

2 (IK)

)
,

where Gn;N,M denotes the n-th component of GN,M . For quasi-uniform sets of points, the error
estimate reduces to

‖Gn − Gn;N,M‖L2(IK) .

(
1 + h

σ−K
2

CM ,IK
1
√
αn

)
εL +

(
h
K
2

CM ,IK
√
αn + hσCM ,IK

)
‖Gn‖Wσ

2 (IK) .

(36)

Proof. From the definition of the optimization functional (33), we can conclude that

M∑
m=1

(s?n(cm)− Gn(cm))2 =

M∑
m=1

(s?n(cm)− ŷn;m)2

≤ 2
M∑
m=1

(s?n(cm)− ȳn;m)2 + 2
M∑
m=1

∣∣∣εm;L · e(N)
n

∣∣∣2 ≤ 2Jȳ,α,n(s?n) + 2Mε2L

≤ 2Jȳ,α,n(Gn) + 2Mε2L ≤ 2αn ‖Gn‖Wσ
2 (IK) + 2Mε2L.(37)

Furthermore, we get

αn ‖s?n‖
2
Wσ

2 (IK) ≤ Jȳ,α,n(s?n) ≤ 2αn ‖Gn‖2Wσ
2 (IK) + 2Mε2L.(38)

Now, we can use [8, Theorem 3.5] to deduce that

‖s?n − Gn‖L2(IK) . h
K
2

CM ,IK

(
M∑
m=1

(s?n(cm)− Gn(cm))2

) 1
2

+ hτCM ,IK ‖s
?
n − Gn‖W τ

2 (IK)

. h
K
2

CM ,IK

(√
MεL +

√
αn ‖Gn‖W τ

2 (IK)

)
+ hτCM ,IK

(√
M
√
αn
εL + ‖Gn‖W τ

2 (IK)

)
,(39)

where we used (37) and (38) in the last step. If the set CM ⊂ IK is quasi-uniformly distributed in
the sense that there is a constant (uniform as M →∞)

qCM :=
1

2
min

c,d∈CM
c 6=d

‖c− d‖2 ≤ hCM ,IK ≤ CqCM ,

we get h
K
2

CM ,IK

√
M ∼ 1. Hence, for quasi-uniform sets, the error bound (39) reduces to using

s?n = Gn;N,M

‖Gn − Gn;N,M‖L2(IK) .

(
1 + h

σ−K
2

CM ,IK
1
√
αn

)
εL +

(
h
K
2

CM ,IK
√
αn + hσCM ,IK

)
‖Gn‖Wσ

2 (IK) .
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Hence, we obtain

‖Gn − Gn;N,M‖2L2(Ik;RN ) =
N∑
n=1

‖s?n − Gn‖L2(IK) ≤ h
σ
CM ,IK

‖G‖Wσ
2 (IK ;RN ) +NεL.

�

These estimates also motivate a choice for the regularization parameter.

Corollary 5.2. For the choice We choose

αn = α? = h
2(σ−K

2
)

CM ,IK
= h2σ−K

CM ,IK
,(40)

we obtain

‖Gn − Gn;N,M‖L2(IK) . h
σ
CM ,IK

‖Gn‖Wσ
2 (IK) + εL,

where εL denotes the numerical error as given in (31).

Now we will consider the situation where we construct the set of points CM in an incremental
way.

5.2. Error estimates for incrementally constructed point sets. Having the linear system (35) in
mind, we can not directly hope to get a low rank approximation of the matrix in that linear system.
We will also use the choice for the regularization parameter (40). We consider as fine set ΥN∞ ⊂ X
in the general setting of Section 2 a set CM ⊂ IK .

Lemma 5.3. Let hCM ,IK ≤ h0, where h0 is be defined in (17) with X = IK . Then, for allε ∈ (0, 1)
there is a constant cε > 0 such that for all sets Ξn created by the discrete power greedy method
(12) with the kernel K(σ) which satisfies (11), we have that there is a constant θ = σ− d

2 such that

hΞn,IK ≤ cεn
− θ
θ+ε

1
K .(41)

Proof. The proof follows directly from Theorem 2.2. �

We obtain also a result about low rank matrix approximation as

Corollary 5.4. There is a constant cε > 0 such that for all sets Ξn created by the discrete power
greedy method (12), the matrixAΞn as in (9) satisfies the estimate∥∥∥K(σ)

CM ,CM
+ αnIdM×M −AΞn

∥∥∥
F
≤ CPM

(
n−

σ
K

+ 1
2 + n−

θ
θ+ε

2σ−K
K

)
where αn is chosen according to (40). If σ ≥ 3K, we get∥∥∥K(σ)

CM ,CM
+ αnIdM×M −AΞn

∥∥∥
F
≤ CPMn−

σ
K

+ 1
2 .

Proof. We can use Theorem 2.1 to obtain∥∥∥K(σ)
CM ,CM

−AΞn

∥∥∥
F
≤ CP cεMn−

σ
K

+ 1
2 .

Now, we observe

‖αnIdM×M‖F ≤ αnM ≤Mh2σ−K
CM ,IK

≤ cεMn−
θ
θ+ε

2σ−K
K ,
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where we used (40) and (41). Hence the claim follows by the triangle inequality if we choose ε
small enough such that

θ

θ + ε
2
σ

K
− 1 ≥ σ

K
+

1

2
⇔
(

2θ

θ + ε
− 1

)
σ

K
≥ 3

2
.

�

Finally, we get error estimates for the reconstruction of the observation operator using the incre-
mentally constructed set of points.

Theorem 5.5. The error between the observation operator (22) and the reconstructed observation
operator using the data (32) we obtain for Gk;N,Ξn = s?k with the solution to the variational
problem (34) the error estimate

‖Gk − Gk;N,Ξn‖L2(IK) ≤ CεL + cε

(√
nn−

θ
θ+ε

2σ−K
2K + n−

θ
θ+ε

σ
K

)
‖Gn‖Wσ

2 (IK) ,(42)

where we use the choice (40) for the regularization parameter and the point set Ξn is constructed
by the discrete power greedy method (12)

Remark 5.6. If the point set Ξn is quasi-uniform, the estimate (42) looses one order of convergence
compared to an interpolation with a quasi-uniform set of points.

Proof. The proof follows by combing Corollary 5.2 with Lemma 5.3. �

5.3. Error estimate for the posterior approximation. The error for the posterior distribution
id measured in the Hellinger distance. Let νi, i = 1, 2 be two measures which are absolutely
continuous with respect to the prior measure ν0. Then the Hellinger distance between ν1 and ν2 is
given as

disthell(ν1, ν2) :=

(
1

2

∫
L2(IK)

(√
dν1

dν0
−
√
dν2

dν0

)
dν0

) 1
2

.

We define an approximate posterior by (27)

dνy

dν0
(c) ≈ 1

Eµ0 [exp (−‖y − G(c)‖2)]
exp

(
−‖y − GN,M (c)‖2

)
.

We can use [15, Theorem 4.2] to obtain

disthell(ν, ν
y) ≤ C ‖G − G:,M,n‖L2(IK) ,(43)

where the posterior is defined in (25). Hence, we obtain directly the following theorem

Theorem 5.7.

disthell(ν, ν
y) ≤ CεL + cε

(√
nn−

θ
θ+ε

2σ−K
2K + n−

θ
θ+ε

σ
K

)
‖Gn‖Wσ

2 (IK)(44)
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6. CONCLUSION

We re-interpreted the covariance of the predictive distribution as reproducing kernel. This in-
terpretation allowed to reformulate certain (simple instances) of techniques from low-rank matrix
approximation as simple greedy methods in reproducing kernel Hilbert spaces. In particular, this
allowed to use results from the kernel-based literature to derive error estimates for the adaptive
cross approximation or the pivoted Cholesky method as matrix approximation for finitely smooth
kernels. We applied the resulting iterative construction of sampling point sets to the inverse pro-
blem to reconstruct a parametrized diffusion coefficient by finitely many point evaluations of the
solution to the diffusion equation with that coefficient. We explicitly took the error in the solution
to the differential equation also into account.
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