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Abstract We present convergence results in expectation for stochastic subspace correction
schemes and their accelerated versions to solve symmetric positive-definite variational prob-
lems, and discuss their potential for achieving fault tolerance in an unreliable compute network.
We employ the standard overlapping domain decomposition algorithm for PDE discretizations
to discuss the latter aspect.
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1 Introduction

With the advent of petascale compute systems in the recent years and exascale computers to
arrive in the near future, there is tremendous parallel compute power available for huge parallel
simulations. While this technological development surely further empowers numerical simula-
tion as a third way of science besides theory and lab experiment, it also poses challenges: Huge
systems with hundreds of thousand or even millions of processor units will be more and more
prone to failures which can corrupt the results of parallel solvers or renders them obsolete at all.
It is predicted that large parallel applications may suffer from faults as frequently as once every
30 minutes on future exascale platforms [34]. Thus, for growing parallel computers there is the
need to develop not just scalable and fast parallel algorithms but to make them fault-tolerant
as well. Besides hard errors for which hardware mitigation techniques are under development,
there is the issue of soft errors, which are either software-based or algorithm-based. We refer to
[20,34,38] for further information and references.

In this paper, we focus on algorithm-based fault tolerance (ABFT) and discuss how to make
standard scalable and parallelizable algorithms such as domain decomposition methods in ap-
plications to partial differential equations (PDE) more fault tolerant. To this end, we consider
stochastic subspace correction algorithms and develop a general theoretical foundation for their
convergence rates under independence assumptions for the random failure of subproblem solves.
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The attractive feature of stochastic subspace correction schemes in this respect is the fact that
hard faults such as compute node failure or communication losses (as long as they are detectable)
can be modeled as a random process of selecting the set of acceptable subproblem solves in each
iteration step. This random process fits the independence assumption of our theory which thus
allows to obtain convergence rates in the presence of faults. We use a standard overlapping
domain decomposition (DD) method for a simple two-dimensional Poisson problem as proto-
typical example of scalable and asymptotically optimal subspace correction methods for solving
second-order elliptic PDE problems. Altogether, this shows that our convergence theory for par-
allel stochastic subspace correction methods indeed gives proven convergence rates also in the
faulty case and results in the design of fault-tolerant methods in this setting.

The remainder of this paper is organized as follows. In section 2, we present our theoreti-
cal findings on general stochastic subspace correction methods for elliptic PDEs. For randomly
chosen sets of subspaces in the iterative solution method, we prove a bound for the convergence
rate in expectation for both, a conventional one-step Schwarz-type method and its two-step
Nesterov-type counterpart. Then, in section 3, we consider the case of an overlapping domain
decomposition method with additional coarse grid problem as a special example of our theory
and discuss two types of compute systems this parallel algorithm might run on. First, we analyze
a simple master-slave network were copies of data are kept on a reliable master node and the
slave nodes are executing the parallel computation but are allowed to be faulty. Then, we deal
with a local communication architecture which avoids global storage and global communication
as much as possible and employs decentralized data storage. We give the corresponding bounds
for the error reduction per iteration step in the faulty setting where the failure arrival and the fail-
ure length times are modeled by Weibull distribution functions. Moreover, we provide estimates
for the parallel cost complexities of these methods. Finally we give some concluding remarks in
section 4. Details on a distributed implementation of the algorithm for the local communication
case are discussed in the appendix.

2 Theoretical results

Let V be a separable real Hilbert space with scalar product (·, ·)V . For a given continuous and
coercive Hermitian form a(·, ·) on V and a bounded linear functional F on V , we consider the
variational problem of finding the unique element u ∈V such that

a(u,v) = F(v) ∀v ∈V. (1)

Equivalently, (1) can be formulated as quadratic minimization problem in V (or as linear op-
erator equation in the dual space V ∗). In the following, we use the fact that a(·, ·) defines a
spectrally equivalent scalar product on V , equip V with it, and write ‖v‖ = a(v,v)1/2. In our
model application, this V will be a large FE subspace of H1

0 (Ω), the discretization space of a
diffusion problem

−∇x · (a(x)∇xu(x)) = f (x), u ∈ H1
0 (Ω), 0≤ c0 ≤ a(x)≤C0, x ∈Ω , (2)

where Ω is a (nice) domain in Rd for moderate dimension d. The associated variational problem
reads

a(u,v) :=
∫

Ω

a(x)∇xu(x) ·∇xv(x)dx = F(v) :=
∫

Ω

f (x)v(x)dx.

We consider Schwarz iterative methods (also called subspace correction methods) for solv-
ing (1). The underlying space splitting is given by a collection {Vi}i=0,1,...,n of n+ 1 separable
real Hilbert spaces, each equipped with a spectrally equivalent scalar product ai(·, ·) and norm
ai(vi,vi)

1/2, and bounded linear operators Ri : Vi→V such that

n

∑
i=0

RiVi =V,
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and Ker(Ri) = {0} for all i = 0,1, . . . ,n (otherwise replace Vi by Vi	i Ker(Ri)). This induces
another set of bounded linear operators Ti = R∗i : V →Vi, i = 0,1, . . . ,n, defined by the solution
of auxiliary variational problems in Vi:

ai(Tiv,vi) = a(v,Rivi) ∀ vi ∈Vi. (3)

In the m-th step of a Schwarz iterative method for solving (1), a certain finite set Im⊂{0,1, . . . ,n}
is chosen (deterministically, randomly, or in a greedy fashion), for each i∈ Im the corresponding
auxiliary problem (3) is solved with v = e(m)

u = u−u(m), and an update of the form

u(m+1) = u(m)+ ∑
i∈Im

ξm,iRiTie
(m)
u , m = 0,1, . . . , (4)

is performed. At start, we set w.l.o.g. u(0) = 0. Since

a(e(m)
u ,Rivi) = F(Rivi)−a(u(m),Rivi), vi ∈Vi,

the update step (4) can be performed without knowing u. The relaxation parameters ξm,i, i =
0,1, . . . ,n, can be chosen depending on u(m) (then a nonlinear iteration results), or indepen-
dent of u(m) (then we have a generally non-stationary but linear iterative scheme). The iteration
(4) subsumes different standard algorithms such as the multiplicative (or sequential) Schwarz
method where in each step a single subproblem (3) is solved (|Im|= 1), the additive (or parallel)
Schwarz method where all n subproblems are solved simultaneously (Im = {0,1, . . . ,n}), and
intermediate block-iterative schemes (1 < |Im| < n+ 1). Here and in the following, |I| denotes
the cardinality of a finite index set I. The recursion (4) basically represents a one-step iterative
method (only the current iterate u(m) needs to be available for the update step). Below we will
also consider an accelerated scheme by introducing a two-step Schwarz method in vector form
inspired by [25]. We refer to [26,39] for early work on Schwarz iterative methods.

In this paper, we focus on stochastic versions of the one-step method (4) and its two-step
counterpart, where the sets Im are chosen randomly. To be precise, we assume that

A Im is a uniformly at random chosen subset of size pm in {0,1, . . . ,n}, i.e., |Im| = pm and
P(i ∈ Im) = P(i′ ∈ Im) for all i, i′ ∈ {0,1, . . . ,n}.

B The choice of Im is independent for different m.

Below, we will consider expectations of squared error norms for iterations with any fixed but
arbitrary sequence {pm}. Here, the restriction to uniform index sampling in A is not essential,
see the remarks after Theorem 1. What is important for the proof technique is the independence
assumption B.

For such a random choice of Im, a convergence estimate for the expectation of the squared
error in terms of the stability constants of the space splitting has already been announced without
proof in [12] (see Theorem 3 in [27] for the argument). We formulate it in a slightly modified
setting including weights for convenience. Let 0 < λmin ≤ λmax < ∞ and positive weights ω =
{ωi > 0}i=0,1,...,n be such that it holds

λmin‖|v‖|2ω ≤ a(v,v)≤ λmax‖|v‖|2ω , v ∈V, (5)

where

‖|v‖|2ω := inf
vi ∈Vi, i = 0,1, . . . ,n

v = ∑
n
i=0 ωiRivi

n

∑
i=0

ωiai(vi,vi).

The norm equivalence (5) can also be written in terms of properties of the operators Ti, Ri, and
the additive Schwarz operator

P :=
n

∑
i=0

ωiRiTi : V →V
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associated with the space splitting as follows: It holds

λmina(v,v)≤ a(Pv,v) =
n

∑
i=0

ωiai(Tiv,Tiv), v ∈V, (6)

and

‖
n

∑
i=0

ωiRivi‖2 ≤ λmax

n

∑
i=0

ωiai(vi,vi), vi ∈Vi. (7)

It is well known that the stability condition (5) of the space splitting implies that P is positive-
definite with respect to a(·, ·), and satisfies

‖|v‖|2ω = a(P−1v,v), v ∈V, λminId≤ P≤ λmaxId. (8)

We now can state the following convergence result:

Theorem 1 Let the relaxation parameters in (4) be given by ξm,i := ξ ωi, i = 0,1, . . . ,n, where
0 < ξ < 2/λmax. Furthermore, let the random sets Im of size pm be selected in agreement with
A. Then in each step the algorithm (4) reduces the error in expectation according to

E(‖e(m+1)
u ‖2 |u(m))≤

(
1− λmaxξ (2−λmaxξ )pm

κ(n+1)

)
‖e(m)

u ‖2, m = 0,1, . . . , (9)

where κ := λmax/λmin is the condition number of the underlying space splitting.
If in addition B holds then the algorithm (4) converges in expectation for any u ∈V and

E(‖e(m)
u ‖2)≤

m−1

∏
s=0

(
1− λmaxξ (2−λmaxξ )ps

κ(n+1)

)
‖u‖2, m = 1,2, . . . . (10)

Proof. Obviously, (10) directly follows from (9) by the independence assumption B. Thus,
it suffices to consider a single step of the iteration, and to compute the expectation of the squared
error ‖e(m+1)

u ‖2 conditioned on an arbitrarily fixed u(m) (to keep the formulas short, in the proof
we simply write E(·) for conditional expectations E(· |u(m))). By (4) we have

E(‖e(m+1)
u ‖2) = E(‖e(m)

u ‖2−2ξ a(e(m)
u , ∑

i∈Im

ωiRiTie
(m)
u )+ξ

2‖∑
i∈Im

ωiRiTie
(m)
u ‖2)

= ‖e(m)
u ‖2−2ξE(a(e(m)

u , ∑
i∈Im

ωiRiTie
(m)
u ))+ξ

2E(‖∑
i∈Im

ωiRiTie
(m)
u ‖2).

For the second term, we have

E(a(e(m)
u , ∑

i∈Im

ωiRiTie
(m)
u )) = a(e(m)

u ,E(∑
i∈Im

ωiRiTie
(m)
u )) =

pm

n+1
a(e(m)

u ,Pe(m)
u ),

since by assumption A and the definition of P

E(∑
i∈Im

ωiRiTie
(m)
u ) =

pm

n+1

n

∑
i=0

ωiRiTie
(m)
u =

pm

n+1
Pe(m)

u .

This equality and (7) imply for the last term that

E(‖∑
i∈Im

ωiRiTie
(m)
u ‖2) ≤ λmaxE(∑

i∈Im

ωiai(Tie
(m)
u ,Tie

(m)
u ))

= λmaxa(e(m)
u ,E(∑

i∈Im

ωiRiTie
(m)
u )) =

λmax pm

n+1
a(e(m)

u ,Pe(m)
u ).

Substitution gives

E(‖e(m+1)
u ‖2)≤ ‖e(m)

u ‖2−ξ
pm

n+1
(2−λmaxξ )a(e(m)

u ,Pe(m)
u ),
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and the lower spectral bound in (8) finally yields

E(‖e(m+1)
u ‖2)≤ (1−λminξ

pm

n+1
(2−λmaxξ ))‖e(m)

u ‖2 = (1− λmaxξ (2−λmaxξ )pm

κ(n+1)
)‖e(m)

u ‖2.

This proves the statement of Theorem 1. �

The recent paper [13] contains similar results for infinite-dimensional V and countable split-
tings albeit with weaker non-geometric convergence rates in expectation under certain smooth-
ness assumptions on u.

An application of the iteration (4) with theoretical guarantees according to Theorem 1 re-
quires knowledge of suitable weights ωi, and an upper bound λ̄ for the stability constant λmax
in order to choose the value of ξ , whereas information about pm, the size of Im, is not cru-
cial, see the discussion below. Numerical experiments for model problems with different values
ξ ∈ (0,2/λmax) suggest that the iteration count is sensitive to the choice of ξ and that overrelax-
ation gives often better results. An alternative, especially in cases when no reliable information
on λmax is available, is to choose ξ = ξm depending on u(m) and d(m) = ∑i∈Im ωiRiTie(m) by the

steepest decent rule, i.e., to minimize ‖e(m+1)
u ‖ for given u(m) and d(m) by setting

ξm :=
a(e(m),d(m))

a(d(m),d(m))
. (11)

But note that, in an implementation of (4) with the steepest descent rule for the compute net-
works considered in the next section, the global scalar products needed for (11) represent a
bottleneck similar to the solution of the coarse subproblem in e.g. a DD method and the global
error computation. On the positive side, due to the minimization property of the steepest descent
rule and the method of proof for Theorem 1, the expectation of the squared error for (4) with the
non-stationary steepest decent rule ξ = ξm must satisfy the same upper bound as the best bound
with fixed ξ .

The weights ωi can be considered as scaling parameters that can be used to improve the
stability constants λmax, λmin, and thus the condition number κ of the space splitting. Note that
improving the estimate (9) in Theorem 1 by minimizing κ via the choice of optimal weights
ωi is obviously equivalent to optimizing the set of relaxation parameters {ξm,i = ξ ωi}. Similar
improvements can also be achieved, at least approximately, by adapting the probability distri-
bution for choosing the sets Im. Indeed, instead of A, assume that Im is a randomly chosen index
set of size pm ≤ n+1 such that P(i∈ Im) = pmqi > 0, where {qi}i=0,1,...,n is an arbitrary discrete
probability distribution with support {0,1, . . . ,n} (assumption A corresponds to the case of a
uniform distribution with qi = 1/(n+ 1)). Such a condition can, in general, be achieved only
approximately (or exactly if we allow for repetitions in Im). This changes a few lines in the proof
of Theorem 1, namely, we have

E(a(e(m)
u , ∑

i∈Im

ωiRiTie
(m)
u )) = pma(e(m)

u ,
n

∑
i=0

qiωiRiTie
(m)
u ) =

pm

n+1
a(e(m)

u , P̃e(m)
u ),

and, similarly,

E(‖∑
i∈Im

ωiRiTie
(m)
u ‖2)≤ λmax pma(e(m)

u ,
n

∑
i=0

qiωiRiTie
(m)
u ) = λmax pma(e(m)

u , P̃e(m)
u ),

where P̃ is the additive Schwarz operator for the space splitting with the same Vi and Ri but
with a different set of weights ω̃i := qiωi. With these changes and by choosing ξ = λ−1

max, the
reduction factor for the expectation of the squared error in (9) becomes

1− λ̃min pm

λmax
,
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where λ̃min is the lower spectral bound associated with P̃. Thus, varying qi > 0 under the nor-
malization condition

n

∑
i=0

qi = 1

may also result in improved bounds.
The discussion on applications of our convergence estimates to fault tolerance below will

focus on the situation when
1 << pm ≤ p≤ n+1,

where p stands for the number of processors available for subproblem solves in a compute
network, and pm is a sequence of random integers standing for the number of correctly working
processors. In such a case, the average reduction of the expectation of the squared error per
iteration step is approximately given by(

m−1

∏
s=0

(1− ps

(n+1)κ
)

)1/m

≈ 1− ∑
m−1
s=0 ps

(m(n+1)κ
≈ 1−

rp

κ
, rp := E(pm)/(n+1),

if we set ξ = 1/λmax and take sufficiently large m. The number rp can be interpreted as the
average rate of subproblem solves per iteration step (4), and our estimate of the average error
reduction per step suggests that the convergence speed of the recursion (4) is tied to it in a linear
fashion which is as good as one can hope for.

The deterioration of the convergence rate with the condition number κ of the associated
weighted space splitting is typical for one-step iterations such as (4). The convergence rate can
be improved to a dependence on only κ1/2 rather than on κ by using multi-step strategies. This
has recently attracted attention in the optimization literature, see e.g. [6,22,25,29]. Following
[23,25] we will consider the subsequent accelerated Schwarz method written in vector form, as
a one-step iteration for two sequences u(m) and v(m): With u(0) = v(0) = 0 at start, for m= 0,1, . . .
execute

u(m+1) = w(m)+ξm ∑
i∈Im

ωiRiTie
(m)
w , w(m) = αmv(m)+(1−αm)u(m), (12)

v(m+1) = βmv(m)+(1−βm)w(m)+ηm ∑
i∈Im

ωiRiTie
(m)
w , (13)

with parameter sequences αm,βm,ξm,ηm determined below. The random index set Im is chosen
according to rule A. Notation for errors is as usual:

e(m)
u := u−u(m), e(m)

v := u− v(m), e(m)
w := u−w(m) = αme(m)

v +(1−αm)e
(m)
u .

Note that, as for the iteration (4), in each step pm subproblems have to be solved but storage and
update work increase. Remedies are available, see [6,23] for discussions on implementation
issues. We have the following convergence result:

Theorem 2 Assume that we possess upper and lower bounds

0 < λ ≤ λmin ≤ λmax ≤ λ̄

for the stability constants of the space decomposition. Then, with ξm = λ̄−1, ηm = (λ̄λ )−1/2 and
sequences αm,βm ∈ (0,1) defined in (23), (24) below and under the assumption A, the vector
iteration (12-13) admits the recursive estimate

E(‖e(m+1)
u ‖2 +λ‖|e(m+1)

v ‖|2ω |u(m),v(m))≤
(

1− pm

(n+1)
√

κ̄

)
(‖e(m)

u ‖2 +λ‖|e(m)
v ‖|2ω),

(14)
m = 0,1, . . .. Here, κ̄ = λ̄/λ is an upper bound for the condition κ of the space splitting.
If in addition B holds then the algorithm (12-13) converges in expectation for any u ∈V , and

E(‖e(m)
u ‖2)≤ 2

m−1

∏
s=0

(
1− ps

(n+1)
√

κ̄

)
‖u‖2, m = 1,2, . . . . (15)
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Proof. The proof is a slightly simplified adaption of the proofs in [23,25] which takes into
account that we allow for redundant space splittings and variable block sizes pm in our iteration
method. In the proof of (14), we again shorten notation, and write E(·) instead of E(· |u(m),v(m)).

From (12) we compute with ξm = λ̄−1

‖e(m+1)
u ‖2 = ‖e(m)

w ‖2−2λ̄
−1a(e(m)

w , ∑
i∈Im

ωiRiTie
(m)
w )+ λ̄

−2‖∑
i∈Im

ωiRiTie
(m)
w ‖2.

When we take the conditional expectation with respect to Im and recall the definition and the
properties of the additive Schwarz operator P, we get due to A

E(a(e(m)
w , ∑

i∈Im

ωiRiTie
(m)
w )) =

pm

n+1
a(e(m)

w ,
n

∑
i=0

ωiRiTie
(m)
w ) =

pm

n+1
a(Pe(m)

w ,e(m)
w ),

and by (7) we obtain

E(‖∑
i∈Im

ωiRiTie
(m)
w ‖2) ≤ λmaxE(∑

i∈Im

ωiai(Tie
(m)
w ,Tie

(m)
w )) = λmaxa(E(∑

i∈Im

ωiRiTie
(m)
w ),e(m)

w )

=
λmax pm

n+1
a(Pe(m)

w ,e(m)
w )≤ λ̄ pm

n+1
a(Pe(m)

w ,e(m)
w ).

This gives

E(‖e(m+1)
u ‖2)≤ ‖e(m)

w ‖2− pm

(n+1)λ̄
a(Pe(m)

w ,e(m)
w ),

or after rearrangement

pm

n+1
a(Pe(m)

w ,e(m)
w )≤ λ̄ (‖e(m)

w ‖2−E(‖e(m+1)
u ‖2)). (16)

For the estimation of the error term ‖|e(m+1)
v ‖|2ω recall (8). We can now write

‖|e(m+1)
v ‖|2ω = ‖|βme(m)

v +(1−βm)e
(m)
w ‖|2ω

−2ηma(P−1(βme(m)
v +(1−βm)e

(m)
w ), ∑

i∈Im

ωiRiTie
(m)
w )+η

2
m‖|∑

i∈Im

ωiRiTie
(m)
w ‖|2ω .

After taking the expectation with respect to Im, each of the three terms in the right-hand side will
be estimated separately. For the first term (which does not depend on Im), we have by convexity
of the norm

‖|βme(m)
v +(1−βm)e

(m)
w ‖|2ω ≤ βm‖|e(m)

v ‖|2ω +(1−βm)‖|e(m)
w ‖|2ω .

Using the lower bound in (5) (or, equivalently, the upper bound for the spectrum of P−1 in (8)),
this yields

A1 := ‖|βme(m)
v +(1−βm)e

(m)
w ‖|2ω ≤ βm‖|e(m)

v ‖|2ω +(1−βm)λ
−1‖e(m)

w ‖2. (17)

For the second term, acting as before we get

A2 := E(a(P−1(βme(m)
v +(1−βm)e

(m)
w ), ∑

i∈Im

ωiRiTie
(m)
w ))

=
pm

n+1
a(P−1(βme(m)

v +(1−βm)e
(m)
w ),

n

∑
i=0

ωiRiTie
(m)
w )

=
pm

n+1
a(P−1(βme(m)

v +(1−βm)e
(m)
w ),Pe(m)

w ))

=
pm

n+1
(‖e(m)

w ‖2 +βma(e(m)
v − e(m)

w ,e(m)
w ).
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Here, to eliminate e(m)
v from the last term, we use the definition of w(m) in (12): Since

e(m)
v − e(m)

w =
1−αm

αm
(e(m)

w − e(m)
u ),

we obtain

a(e(m)
v − e(m)

w ,e(m)
w ) =

1−αm

αm
a(e(m)

w − e(m)
u ,e(m)

w )

=
1−αm

2αm
(‖e(m)

w − e(m)
u ‖2 +‖e(m)

w ‖2−‖e(m)
u ‖2)

≥ 1−αm

2αm
(‖e(m)

w ‖2−‖e(m)
u ‖2).

Thus,

A2 ≥
pm

n+1
((1+

βm(1−αm)

2αm
)‖e(m)

w ‖2− βm(1−αm)

2αm
‖e(m)

u ‖2). (18)

Finally, for the last term we first use the definition of the ‖| · ‖|ω norm which gives

‖|∑
i∈Im

ωiRiTie
(m)
w ‖|2ω ≤ ∑

i∈Im

ωiai(Tie
(m)
w ,Tie

(m)
w ) = a(∑

i∈Im

ωiRiTie
(m)
w ,e(m)

w ,

and then proceed as above to arrive at

A3 := E(‖|∑
i∈Im

ωiRiTie
(m)
w ‖|2ω)≤

pm

n+1
a(Pe(m)

w ,e(m)
w ).

It remains to use (16) which gives

A3 ≤ λ̄ (‖e(m)
w ‖2−E(‖e(m+1)

u ‖2)). (19)

Substitution of (17-19) and collecting all multiples of ‖e(m)
w ‖2 into one expression gives

E(‖|e(m+1)
v ‖|2ω) = A1−2ξmA2 +ξ

2
mA3

≤ βm‖|e(m)
v ‖|2ω +

pm

n+1
ηmβm(1−αm)

αm
‖e(m)

u ‖2− λ̄η
2
mE(‖e

(m+1)
u ‖2

+((1−βm)λ
−1−2ηm

pm

n+1
(1+

βm(1−αm)

2αm
)+ λ̄η

2
m)‖e

(m)
w ‖2.

Under the assumption that we will be able to choose the coefficient in front of ‖e(m)
w ‖2 equal to

zero (or negative), i.e., if

(1−βm)λ
−1−2ηm

pm

n+1
(1+

βm(1−αm)

2αm
)+ λ̄η

2
m ≤ 0, (20)

this turns into the inequality

E(‖|e(m+1)
v ‖|2ω)+ λ̄η

2
mE(‖e

(m+1)
u ‖2)≤ βm(‖|e(m)

v ‖|2ω +
pmηm(1−αm)

(n+1)αm
‖e(m)

u ‖2). (21)

To eventually arrive at (14) the remaining steps are to choose αm,βm ∈ (0,1) and ηm > 0 in
such a way that in addition to (20) the coefficients in front of E(‖e(m+1)

u ‖2) and ‖e(m)
u ‖2 in (21)

coincide, i.e.,

λ̄η
2
m =

pmηm(1−αm)

(n+1)αm
, (22)
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and that βm is as small as possible. This is done as follows: The parameter αm can always be
determined such that (22) holds while (22) can be used to eliminate αm from (20). Indeed, from
(22) we have

1−αm

αm
=

(n+1)λ̄
pm

ηm, (23)

and (20) turns into

(1−βm)λ
−1−ηm(2

pm

n+1
+βmλ̄ηm)+ λ̄η

2
m)

= (1−βm)(
1
λ
− 2pm

(n+1)(1−βm)
ηm + λ̄η

2
m)≤ 0.

This inequality has positive solutions ηm iff the polynomial

p(t) =
1
λ
− 2pm

(n+1)(1−βm)
t + λ̄ t2

has a positive real root, i.e., if its discriminant is non-negative. This implies the condition

p2
m

(n+1)2(1−βm)2 −
λ̄

λ
=

p2
m

(n+1)2(1−βm)2 − κ̄ ≥ 0.

The smallest possible βm and associated ηm > 0 for which this inequality may hold are thus
given by

βm = 1− pm

(n+1)κ̄1/2 , ηm = (λ̄λ )−1/2. (24)

Now, the coefficient in front of E(‖e(m+1)
u ‖2) and ‖e(m)

u ‖2 in (21) equals λ̄η2
m = λ

−1, and is
independent of m. Multiplying in (21) by λ gives (14).

Due to our assumptions and (5) we have

λ‖|e(m)
v ‖|2ω ≤ λmin‖|e

(m)
v ‖|2ω ≤ ‖e

(m)
v ‖2,

and e(0)v = e(0)u = u. Thus, together with the independence assumption B, the per step estimate
(14) implies the convergence in expectation for arbitrary u ∈ V and the bound (15) for the
(unconditional) expectation of the squared error ‖e(m)

u ‖2. This completes the proof of Theorem
2. �

That, in contrast to the recursion (4), the coefficient αm in the recursion formula (12) for
the accelerated scheme depends on the size pm of the random index set Im is not a problem
as long as Im is known before the subproblems needed for the update steps (12) and (13) are
solved. However, in the applications discussed in the next section this is not the case: The ap-
propriate set Im is known only after the required subproblem solves are executed. Consequently,
the coefficient αm which is needed to compute the residuals for the subproblems may not have
been chosen properly. Remedies are to work with safe lower bounds pm for pm (thus giving up
some accuracy in the upper bound (15) by replacing pm by pm), or to perform twice as many

subproblem solves, namely to compute RiTie
(m)
u and RiTie

(m)
v separately for each required i, and

to perform the linear combinations only after the exact Im, and thus αm, is known.
To summarize, the above convergence theory covers a stochastic version of Schwarz iter-

ative methods based on generic space splittings, where in each step a random subset of sub-
problem solves is used. On the one hand, this theory shows that randomized Schwarz iterative
methods are competitive with their deterministic counterparts. On the other hand, there are sit-
uations where randomness in the subproblem selection is naturally occurring, and not a matter
of choice in the numerical method. An important example is given by algorithm-based meth-
ods for achieving fault tolerance in large-scale distributed and parallel computing applications.
This will be dealt with in more detail in the remainder of this paper using overlapping domain
decomposition PDE solvers as an example.
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3 Potential for achieving fault tolerance

The occurrence of faults in the execution of large-scale computational tasks and their mitiga-
tion has become an issue in recent years due to cloud computing applications and the exascale
HPC development. The common assumption is that hard and soft faults may occur more of-
ten in future computing applications, that they are probabilistic in nature, and that strategies
to counteract them will become increasingly important. A wide range of approaches and pro-
posals for achieving fault tolerance with little overhead (often based on hypotheses on the fault
model applicable to future exascale computer architectures that are hard to validate at present)
are currently under consideration. They are commonly categorized as hardware-based (HBFT),
software-based (SBFT), and algorithm-based (ABFT). We refer to [20,34,38] for more infor-
mation and references.

We now concentrate on the ABFT aspect, and discuss the potential consequences of the
theoretical results from section 2 for making standard scalable and parallelizable algorithms
such as domain decomposition methods in PDE applications more fault tolerant. The attractive
feature of stochastic subspace correction schemes in this respect is the fact that hard faults
such as compute node failure or communication losses (as long as they are detectable) can be
modeled as a random process of selecting the index set Im of acceptable subproblem solves
in each iteration step (4). This random process often fits the independence assumption B that
is crucial in order to obtain the convergence rates in Theorem 1, similarly for the accelerated
version (12-13) and Theorem 2.

We use a standard overlapping domain decomposition (DD) method for the model PDE
problem (2) with a(x) = 1 in the following discussion since it represents one of the prototyp-
ical examples of scalable and asymptotically optimal subspace correction methods for solving
second-order elliptic PDE problems. The parallelization of overlapping DD solvers is (up to the
solution of the so-called coarse problem, see below) straightforward, even though most imple-
mentations are based on non-overlapping DD schemes which provide better data locality at the
expense of sometimes asymptotically non-optimal preconditioning behavior, compare [15,21,
32]. Many statements we make carry over, with minor modifications, to non-overlapping DD
methods and multigrid schemes for which DD-type implementations are used for their parallel
execution. More details on the DD method for (2) will be given in the next subsection 3.1.

Whether fault tolerance can be achieved without significant cpu-time penalty depends very
much on the compute architecture, and in particular on the relative speed difference between
compute and communication steps in distributed or parallel computer networks. To this end, we
will below discuss different scenarios to illustrate the application of our theoretical results.

In subsection 3.2 we consider a master-slave architecture (think of outsourcing of compute
effort to the cloud controlled by a reliable server with large and fast memory access) neglecting
all overhead due to communication between slave nodes and master node. Under the assump-
tion that each slave can execute one subproblem per cycle but can fail to return correct results
with a certain probability, we present a random assignment scheme for which convergence in
expectation can be guaranteed by our results of section 2 independently of the fault process.
Numerical experiments for a generic domain decomposition scheme for the Poisson problem in
two dimensions demonstrate the robustness of the convergence estimates which scale optimally
with respect to the number of correctly executed subproblem solves.

In subsection 3.3 we consider the practically more relevant situation of a distributed imple-
mentation on a network with predominantly local communication between unreliable compute
cores. We slightly modify the approach taken in [9], where a small amount of redundant stor-
age capacity in the compute nodes is employed for a recovery of information lost due to hard
faults, and apply the convergence theory of section 2. In particular, we show theoretically and
numerically that increasing the local redundancy improves the convergence behavior. We also
briefly mention a server-client compute model from [30] composed of a reliable (fault-resilient)
server network to which unreliable clients responsible for solving subproblems are attached, and
demonstrate similar results.
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Let us uive some comments on the growing body of ABFT-related work. Even though it
is currently not clear which faults will be the most dominant and threatening in future HPC
applications (in particular on exascale architectures), how to adequately model them, and which
fault tolerance techniques will eventually produce the most impact in practice, the need in further
research on fault tolerance techniques is undisputed. As to ABFT, core numerical linear algebra
algorithms have been analyzed to a certain extent, and more recently various attempts have been
made to address PDE solvers. We mention [1–4,8,19,30,31,35,36], and refer to these papers
for further references.

3.1 Example: Overlapping domain decomposition

We present a simple variant of the overlapping DD method, and refer to [37, Chapter 3] for more
details. Consider a conforming FE discretization space V ⊂ H1

0 (Ω) of dimension N = dim(V )
for the problem (2) on a quasi-uniform partition T of Ω into cells of diameter ≈ h. Suppose
that Ω = ∪n

i=1Ωi is covered by a finite number of n well-shaped subdomains Ωi of diameter
≈ h0 which locally overlap. It is silently assumed that h << h0. Under natural assumptions on
the alignment of the underlying FE partition T with the boundaries of Ω and the Ωi, and for
sufficient overlap of neighboring subdomains, a space splitting of the form

V =V0 +
n

∑
i=1

Vi, Vi :=V ∩H1
0 (Ωi), i = 1, . . . ,n, (25)

is well-conditioned, with λmax, λmin, and κ depending on the ellipticity constants c0,C0 of (2),
the shape regularity of the FE partition T and the Ωi, and the overlap parameter δ , but not on h
and h0. To this end, (25) must include a properly constructed so-called coarse grid space V0. For
i = 1, . . . ,n the operators Ri : Vi → V are the natural extension-by-zero operators (the operator
R0 is special, an example is provided below). The bilinear forms ai(·, ·) are inherited from a(·, ·)
by restriction, i.e., ai(vi,wi) = a(Rivi,Riwi), vi,wi ∈ Vi, i = 0,1, . . . ,n. Neglecting the coarse
problem associated with V0 would result in a dependency of the splitting condition number κ

on roughly a factor h−2
0 . Note that there are more sophisticated space splittings of DD type such

as the Bank-Holst paradigm [5], where the coarse problem is formally avoided by including a
copy of it into each of the subdomain problems with i = 1, . . . ,n, which we ignore here.

Within this framework, using the standard FE nodal basis in V for representing elements
of V and Vi ⊂ V , i = 1, . . . ,n, the matrix representations of the linear systems associated with
subproblems on Vi are given by smaller overlapping block-submatrices Ai of the sparse matrix
representation A of the variational problem (1) associated with (2). This implies that the amount
of data that needs to be communicated to enable a subproblem solve can be kept reasonable,
i.e., linear in the dimension Mi = dim(Vi) of Vi, i = 1, . . . ,n. If the partitioning is such that the
number of locally overlapping Ωi is small then communication is necessary only between a
few processing units associated with subproblem solves for neighboring Ωi. In what follows
the silent assumption is that subproblem solves for different Vi take approximately the same
time. Simplifying a bit, we therefore assume Mi ≈ M, i = 1, . . . ,n. Below, the constant M is
used to characterize the amount of storage and computational work per subproblem solve for
i = 1, . . . ,n. The coarse problem is typically generated by Galerkin discretization of (2) using
a low-order FE space V0 on a coarse partition T0 with cell size comparable to the size of the
subdomains Ωi. Since the coarse problem is in general treated differently, we do not specify
M0 = dim(V0). It is, however, clear that M0 will scale linearly in n.

To discuss this in more detail, we make a number of simplifying assumptions concerning
V and the Vi, i = 0,1, . . . ,n. Let the FE partition T underlying V be the refinement of a quasi-
uniform coarse partition T0 of element size ≈ h0. Furthermore, assume that the cells of T0 can
be organized into n disjoint groups of a few cells such that the union of the cells in each group
represents a subdomain Ω ′i in a non-overlapping partition of Ω which is simply-connected and
nicely shaped, and has only a small non-empty common boundary Γii′ with a small number of
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direct neighbors Ω ′i′ , i 6= i′. Moreover, the subdomains Ω ′i should be such that the Vi associated
with their extensions Ωi ⊃Ω ′i will have comparable dimensions Mi ≈M, i = 1, . . . ,n.

For the model situation of uniformly refined cube partitions of Ω = [0,1]d , choose some
integers n0 > 1, k > 1, and n1 = kn0, and let h0 = 1/n0 and h = 1/n1(= h0/k) denote the mesh-
widths of the cube partition T0 and T , respectively. Then we can choose the n = h−d

0 = nd
0 cubes

in T0 as subdomains Ω ′i which satisfy the above requirements: Each Ω ′i , i = 1, . . . ,n, has at most
3d − 1 direct neighbors (for d = 3 with face, edge, or vertex interfaces Γii′ containing ≈ k2,
≈ k, 1 nodal points of T , respectively), and contains ≈ kd nodal points from T , i.e., we have
Mi ≈M = kd . Figure 1 illustrates this construction for d = 2.

Ω′1  Ω′2  Ω′3  Ω′4  

Ω′8  Ω′6  Ω′7  Ω′5  

Ω′12  Ω′11  Ω′10  

Ω′13  

Ω′9  

Ω′14  Ω′16  Ω′15  

Ω10  

Ω6  

Ω1  

Ω15  

Fig. 1 Example of an overlapping domain partition for d = 2 with n = 16 subdomains Ωi, obtained from the
squares Ω ′i of the coarse partition T0 by adding one cell layer from the fine partition T . The parameters used for
the figure are n0 = 4, n1 = 24 (k = 6), and `= 1 (δ = 1/6). Only few of the domains Ωi are depicted, some overlap
regions Ωi ∩Ωi′ are highlighted.

This given, to achieve a mesh-independent condition number for the overall space splitting
(25), we can choose as V0 ⊂ V a suitable FE space on T0, e.g., a linear FE space on T0 will do
for a second-order elliptic problem such as (2). The FE spaces Vi = V ∩H1

0 (Ωi), i = 1, . . . ,n,
depend on the choice of the larger subdomains Ωi ⊃ Ω ′i . The traditional overlapping scheme
would form Ωi as the union of all cells from T in distance ≤ δh0 from Ω ′i , where the overlap
parameter δ is a fixed positive number from (0,1). Mild shape regularity assumptions on the
resulting Ωi will then guarantee robust condition number estimates of the form

κ ≤C(1+δ
−1),

see [37, Theorem 3.13]. Dropping the coarse grid problem, i.e., considering a space splitting
of V as in (25) but without V0, would lead to the worse bound κ ≤ Ch−2

0 (1+ δ−1). Note that
even though these estimates imply a deterioration of condition numbers proportional to δ−1 if
δ → 0, in practice good performance has already been observed when Ωi was obtained from Ω ′i
by adding only a few layers of cells from T around Ω ′i . This may result in significantly smaller
overlap regions Ωi∩Ωi′ and smaller dimensions Mi for the resulting Vi.

3.2 Master-slave network

We start with an idealized setting of a compute system consisting of a reliable server S0 called
master node with enough storage capacity to safely keep precomputed static arrays and master
copies of dynamic data arrays, and a fixed number p of unreliable compute nodes C j, j =
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1, . . . , p, called slave nodes. We assume that slave nodes communicate with the master node but
not with each other. During an iteration step, each slave node C j is supposed to receive data
and execution instructions to deal with a randomly assigned Vi subproblem solve, i = 0,1, . . . ,n,
and to return subproblem solutions to the master node. All other work, such as forming linear
combinations of vectors needed in (4) and (12-13), respectively, is performed by the master node
S0. Here, we allow for any value p ≤ n+ 1 which decouples the number of processors in the
compute system from the size of the domain splitting. Note that we treat the V0 subproblem in
the same way as all other Vi subproblems, i = 1, . . . ,n, i.e., also the V0 subproblem gets assigned
to one of the slave nodes.

S 0 

C 1 C 2 C 3 C 4 

C 13 C 14 C 15 C 16 

C 9 C 10 C 11 C 12 

C 5 C 6 C 7 C 8 

Fig. 2 Schematic view of the master-slave network. The compute nodes Ci communicate data directly to the
reliable server S0 but not to each other. The server S0 needs to possess storage capacity and compute power for
global data arrays.

Concerning the reason for and the nature of faults, we assume that faults are detectable and
represent unreturned or as wrong declared subproblem solves, i.e., we ignore soft errors such
as bit flips in floating point numbers even if they were detectable. Moreover, the occurrence
of a fault is unrelated to load balancing issues, i.e., slightly longer execution or communication
times for a particular subproblem solve do not increase the chance of declaring such a process as
faulty. If the accelerated version (12-13) of the stochastic subspace correction scheme governed
by Theorem 2 is applied, then the number fm of faulty subproblem solves in iteration step m
is assumed a random variable with expectation f and relatively small variance, independently
of m (this latter assumption is not needed for the iteration (4)). It does not matter if faults are
due to slave node crashes or communication failures, nor do we pose any restrictions on spatial
patterns (which and how many slaves fail) or temporal correlations of faults (distribution of
starting points and idle times of failing slave nodes).

Meaningful convergence results under such a weak fault model follow almost directly from
our results in section 2, as long as we can select, uniformly at random and independently of pre-
vious iteration steps, p subproblems out of the n+1 available ones at the start of each iteration
step, assign them in a one-to-one fashion to the p slave nodes, and send the necessary data and
instructions for processing the assigned subproblem solve to each of the p slave nodes. Indeed,
if the time available for a solve step is tuned such that there is no correlation between faults and
individual subproblem solves, then one can safely assume that the index set Im corresponding to
the pm = p− fm as non-faulty detected subproblem solutions received by the master node by the
end of the cycle is still a uniformly at random chosen subset of {0,1, . . . ,n} that is independent
of the index sets I0, . . . , Im−1 used in the updates of the previous iteration steps. It is important
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to realize that the latter independence property is the consequence of our scheme of randomly
assigning subproblems to slave nodes, and not an assumption on the fault model.

Thus, Theorem 1 applies, and yields according to (9) the estimate

E(‖e(m)
u ‖2)≤

m−1

∏
s=0

(
1− ps

κ(n+1)

)
‖u‖2, m = 1,2, . . . , (26)

for the expected squared error if we formally set ξ = λ−1
max. In practice, the value of ξ can be

determined by the steepest descent rule or from upper bounds λ̄ for λmax.
Similarly, Theorem 2 gives guarantees for the expected squared error decay if we have safe

a priori upper bounds f̄m ≥ fm for the number of faults and bounds λ ≤ λmin ≤ λmax ≤ λ̄ for the
spectrum of P. In this case the subproblem solves can be performed using parameters αm,βm
determined from (23), (24) with pm = p− fm replaced by pm = p− f̄m, and (14) implies

E(‖e(m)
u ‖2)≤ 2

m−1

∏
s=0

(
1−

ps√
κ̄(n+1)

)
‖u‖2, m = 1,2, . . . , (27)

where κ̄ = λ̄/λ ≥ κ , compare the derivation of (15).

We have conducted some preliminary numerical experiments using the example of the
model problem (2) with homogeneous diffusion coefficient a(x) = 1 and right-hand side f (x) =
1 for d = 2. The domain Ω is the unit square, equipped with a uniform coarse square partition
T0 of step-size h0 = 1/n0 in each direction, and a uniform fine square partition T of step-size
h = 1/n1, where n0 divides n1 (in other words, n1 = kn0 for some integer k). Both V and V0 are
given by bilinear finite element spaces on the respective square partitions. The stiffness matrix
A and right-hand side b are computed exactly. The subdomains Ωi, i = 1, . . . ,n, are obtained by
adding to each of the squares in T0 in each direction ` layers of square cells from the fine parti-
tion, i.e., the overlap parameter is δ = `h/h0 = `/k. Below, we report numerical results for the
values n0 = 20, n1 = 400, ` = 6 which gives k = 20, δ = 0.3, and results in a overlapping par-
tition of Ω with n = 400 subdomains Ωi. The associated DD space splitting (25) with weights
ωi = 1, i= 0,1, . . . ,n, is well-conditioned, with a value κ ≈ 6. All subproblems, including the V0
subproblem, have approximately the same dimension Mi ≈M = 400, i = 0,1, . . . ,n. Despite the
fact that the dimension N ≈ 160000 of the discretization space V is still moderate, our numerical
findings for this parameter set can be considered as sufficiently representative.

Iterations are always started from the zero vector, and terminated when a relative error re-
duction of ε0 = 10−6 is achieved. Here, errors are given by the error indicators ε computed as
explained at the end of the appendix. For simplicity, all subproblems are solved by a sparse
elimination method. In the numerical experiments with the one-step iteration (4), for the relax-
ation parameters ξm,i = ξmωi the value ξm was determined by the steepest descent rule (11).
As a matter of fact, and in agreement with the remarks after Theorem 1, iteration counts with
constant values ξm = ξ were typically higher, and are not reported here. For the accelerated
iteration, the constants ξm = λ̄−1 and ηm = (λλ̄ )−1/2 in (12-13) have been obtained after initial
tests with values λ̄ = 3.33 and λ = 0.9, such that iteration counts were near-optimal for the
standard deterministic iteration, where pm = n+1 and Im = {0,1, . . . ,n}. Note that λmax ≈ 5 for
our problem and thus this choice of λ̄ corresponds to overrelaxation.

In Figure 3 we show convergence results for the above described model problem for different
constant failure rates r f , where for simplicity the number of available compute nodes is set to
p= n+1. A constant failure rate r f ∈ [0,1] means that throughout the recursions we have chosen
for pm the constant value p∗ = b(1− r f )(n+ 1)c. Thus, in each step the fixed number f ∗ =
n+ 1− p∗ of compute nodes fails to return correct subproblem solutions. Then, in agreement
with our assumption of a random assignment of subproblems to compute nodes in each iteration
step, the index set Im was selected as a random subset of size p∗ from {0,1, . . . ,n}. For each
value r f we show plots of error indicators ε as function of m for one run only, i.e., one sequence
of index sets Im, and not the expectation E(‖e(m)‖) of the true error. Due to further experiments,
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this seems fully justified since error indicator curves for different runs were only marginally
different, and almost identical with those for the true error ‖e(m)‖. Moreover, testing of more
realistic fault scenarios, where the fm were generated by an independent sequence of random
integers uniformly distributed in a certain interval [ f ∗−∆ f , f ∗+∆ f ] yielding the same failure
rate r f but only in expectation, revealed that convergence behavior and iteration counts are very
robust to the variance of randomly created sequences fm and pm = n+ 1− fm, respectively, as
long as r f :=E( fm/(n+1)) was fixed. In other words, we consider Figure 3 as a fair illustration
of the convergence properties of our fault mitigation approach for an overlapping DD method
on a master-slave compute network as proposed in this subsection.
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Fig. 3 Convergence results for a model DD space splitting on the master-slave network with different constant
failure rates. Left: Results for the one-step method (4) with steepest descent choice (11) for ξm. Right: Results for
the accelerated method (12-13) with near-optimal parameters ξ and η .

Figure 3 (left) shows the decay of the error indicator ε for the one-step method (4) with ξm
determined by the steepest descent rule (11) for different constant failure rates r f ∈ [0,0.2]. The
case r f = 0 (bold line) corresponds to a non-faulty compute network, where all p = n+1 pro-
cessors return valid subproblem solutions (Im = {0,1, . . . ,n}). For our particular test problem,
the required relative error reduction of ε0 = 10−6 was reached after 23 iteration steps. When
the failure rate r f is increased, the number of iteration steps to termination slightly grows, see
Table 1, which is visible from the error curves as well. This is in agreement with Theorem 1
(and the comments following it) which predicts an upper bound for the expected error reduction
per iteration step of at least (1− (1− r f )/κ)1/2 since we have

E(‖e(m+1)‖2)≤ (1− p∗

(n+1)κ
)E(‖e(m)‖2) = (1−

1− r f

κ
)E(‖e(m)‖2), m = 0,1, . . . .

Recall that the error reduction per step for (4) with the steepest descent rule (11) is at least as
good as with any fixed choice ξm = ξ for the relaxation parameter.

Iteration counts for different r f
Method r f = 0 r f = 0.04 r f = 0.08 r f = 0.12 r f = 0.16 r f = 0.2

(4), steepest descent (11) 23 25 24 26 27 29
(4), ξm = 0.4 29 30 30 31 33 40
(12-13), ξm = 0.3, ηm = 0.58 21 22 24 24 27 27

Table 1 Iteration counts for reaching a relative error reduction of ε0 = 10−6 for the model test problem and the
iteration (4) with ξm determined by the steepest descent rule (11) and with near-optimal constant ξm = 0.4, and
the accelerated iteration (12-13) with near-optimal constant values ξm = 0.3 and ηm = 0.577.
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In Figure 3 (right), we show similar results for the accelerated method (12-13), see also
Table 1 for the recorded iteration counts to termination. The parameters ξ = 0.3 and η = 0.577
were determined by experiment, and are near-optimal in the sense that for them the iteration
count of the additive Schwarz method for the given problem and error reduction level ε0 is
close to minimal. Again, the graphs show that our method behaves according to theory. That the
iteration counts are almost the same as for (4) is at first glance unexpected but can be explained
as follows. On the one hand, for well-conditioned space splittings with κ < 10, such as the
overlapping DD space splittings for our test problem, one should not expect dramatic gains. On
the other hand, the accelerated method is run with constant, although near-optimal relaxation
parameters while the steepest descent rule for (4) results in a nonlinear iterative scheme which
is superior to any iteration (4) with constant ξm = ξ . If one compares the accelerated method
with any of the latter methods, the improvement by acceleration becomes more visible. This is
supported by the iteration counts to termination for (4) with constant ξm = ξ = 0.4 reported
in Table 1 (this value is near-optimal in the sense described above). Still, an application of
the accelerated scheme in the case of well-conditioned space splittings such as the overlapping
domain DD scheme for (2) is questionable, as the possible gains do not justify the additional
effort needed for parameter tuning and the iteration itself.

We want to stress that an implementation of the above random assignment scheme on a
master-slave compute network is only of academic interest as it neglects the massive commu-
nication overhead necessary before and after each compute cycle. Recall that the advantage of
the random assignment scheme is that it enforces almost automatically, under very mild re-
quirements for the fault model, the independence assumption for the random index sets Im of
subproblem solves actually used in each iteration step that is needed in the proofs of Theorem
1 and 2. The obtained convergence estimates (26) and (27) are in some sense the best possible
ones since they signal a loss of convergence speed compared to a fault-less environment which
is only proportional to the fault rate fm/p.

Parallelization gains for the accelerated method are also questionable since update steps
have to be executed on the master node to keep dynamic data correct (for a more detailed
estimate of the runtime of a parallel implementation of the DD method on this and other compute
networks discussed below we refer to subsection 3.4). In particular, the accelerated iteration (12-
13) needs additional global vector operations which seem prohibitive, especially if p << n+1,
i.e., if in each iteration step only a small percentage of the subproblems can be assigned to
the slave nodes. Remedies for this problem have been discussed in the literature for similar
problems, see [6,22].

In the next subsection, we will try to achieve a better compromise between communication
overhead and overall parallel efficiency on the one hand, and a matching of the theoretical
assumptions for our theory outlined in section 2 on the other hand. Needless to say that we will
not be able to achieve a fully optimal solution (in particular with regard to solving the coarse
grid problem and computing global quantities which represents a challenging bottleneck for
parallelization), and that further assumptions on the fault model may become necessary. The
major difference will be that we give up the random assignment scheme of subproblem solves
to compute nodes, and accept the common paradigm of distributed data storage and program
execution paired with maximally local communication that is typical for parallelization efforts
for DD and multigrid methods developed during the last 30 years.

3.3 Local communication network

Standard parallelization efforts for DD and multigrid algorithms under a no-fault assumption
avoid global storage and global communication steps as much as possible, compare, e.g., [5]. In
a typical parallel implementation, the assignment of subproblems to compute nodes is fixed, and
data storage is decentralized. When it now comes to compute node failures, one is additionally
confronted with the possibility of the loss of dynamic and static data arrays associated with one
or several subproblems. This is in contrast to what we have assumed for the previously discussed
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master-slave network, where safe copies of all data arrays were maintained at the master at the
expense of high communication cost. Consequently, one now needs to incorporate local redun-
dancy in data storage and/or restoration methods for missing data. Moreover, the localization
in time and space (i.e., with regard to the neighbor structure of the domain partition into sub-
domains of faulty compute nodes becomes an issue because it may contradict the randomness
and independence assumption A for the index sets Im corresponding to the correctly executed
subproblem solves in each iteration step.

In the literature, several proposals already exist using different settings. The majority of
papers ignores the loss of static data arrays associated with a subproblem, and concentrates on
restoring dynamic data arrays that change during the iteration. Most of the existing analysis
is on faults isolated in time and space. Often, the time to restart a failing compute node is
ignored. For example, [19] uses the concept of a so-called local superman unit (i.e., additional,
more powerful compute nodes) that can be setup in no time to replace a failed compute node,
and has enough compute power and speed to recover lost local solutions from scratch much
faster than normal compute nodes. Alternatively, [9] proposes the introduction of redundancy
in local storage such that when a compute node executing a given Vi subproblem fails, there
is a neighboring node that has all current data arrays for the i-th subproblem. Thus, recovery
does not need to start from scratch. Several strategies concerning which compute node performs
which recovery action during the time the failed compute node is not back are discussed in
[9] yielding different deterministic error decay guarantees. Both papers assume that faults are
spatially isolated, i.e., neighbors of a failing compute node that keep copies of its data arrays do
not fail at the same time.

S 0 

C 1 C 2 C 3 C 4 

C 5 

C 9 

C 16 

C 8 C 7 C 6 

C 15 C 14 C 13 

C 12 C 11 C 10 

Fig. 4 Schematic view of the local communication network. High load communication between the compute
nodes Ci is local while the communication between compute nodes Ci and the reliable server S0 concerns only
small data arrays. In contrast to the master-slave network, compute power and storage capacity of S0 and the
compute nodes Ci can be of the same order.

We incorporate these ideas in slightly modified form into our discussion of possible appli-
cations of the convergence results of section 2. Consider a network of (at least) n unreliable
compute nodes Ci, i = 1, . . . ,n, and a reliable server S0, i.e., we have p = n+ 1 for the num-
ber of available processors. The subproblems associated with the DD space splitting (25) will
be statically assigned such that data arrays for the Vi subproblem are stored at Ci, i = 1, . . . ,n.
Unless a failure occurs, the main task of Ci is then to solve the Vi subproblem in each iteration
step. Moreover, the bottleneck problem associated with V0 and other global quantities such as
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error estimators and scalar products is assigned to the reliable server S0 (to achieve reliability,
one can apply standard fault tolerance techniques such as node replication). In contrast to the
master-slave network considered in subsection 3.2, where S0 had basically a storage function
and performed the update steps but not the coarse problem solve, now S0 only needs to receive
from and communicate back to all other compute nodes small data arrays before and after each
compute cycle, respectively, to solve the V0 subproblem and to compute other global quanti-
ties (see the appendix for more details). Communication of larger data arrays between compute
nodes Ci (typically dynamic data arrays but possibly also static data arrays associated with a Ωi
in case of failure of the associated compute node Ci) is local, i.e., only compute nodes Ci and
Ci′ responsible for Vi and Vi′ subproblem solves with overlapping Ωi∩Ωi′ 6= /0 need to commu-
nicate. Moreover, since the number of neighbors is uniformly bounded by a certain constant

l̄ ≥ max
i=1,...,n

|{i′ : Ωi∩Ωi′}| (28)

(for the example of the DD space splitting induced by cube partition discussed in subsection
3.1, we have l̄ = 3d − 1), this communication can be implemented in parallel for all compute
nodes Ci in a finite number of sweeps proportional to l̄.

This is, up to the details of dealing with the coarse problem, the standard approach to paral-
lelizing DD and multigrid methods. We keep the option of adding additional compute nodes on
the fly to replace processors that fail over a period of many cycles or permanently, thus rejuve-
nating the whole system (this is analogous to the superman unit concept from [19]). If such an
additional compute node takes over a particular Vi solve, connections with all nodes responsible
for Vi′ solves with Ωi ∩Ωi′ 6= /0 need to be enabled in an update of the communication struc-
ture. We also borrow from [9] the idea of keeping, at each node, redundant copies of the data
arrays of a few neighboring compute nodes (as long as the copies come from direct neighbors
with Ωi∩Ωi′ 6= /0, this does not require significant changes in the communication structure). In
contrast to [9], where always two compute nodes are grouped in pairs and both keep the data
arrays of a pair of subproblem solves, we assume that each set of dynamic and static data arrays
assigned to C〉 has up-to-date copies in at least l ≥ 1 neighboring compute nodes Ci′ (l = 1
corresponds to the analysis in [9]). Although larger values l lead to a proportional increase of
storage and communication overhead at the compute nodes, they decrease at the same time the
chance of complete loss of data associated with a subproblem and also give some flexibility of
artificially enforcing the randomness and independence assumptions for the index sets Im that
are prerequisite for our convergence proofs.

We now describe our methodology of dealing with faults. We start with the assumption of
spatially and temporarily isolated faults, i.e., if after a given cycle the subproblem solve for
Vi is detected as faulty and its associated compute node is not available for a certain number
of cycles, then all neighboring compute nodes remain non-faulty during the whole time. That
a compute note will be unavailable for a very long time or permanently can be counteracted
by adding compute nodes to the network. In the update step following the fault detection, we
proceed as usual, however, no communication to the failing node is possible, and the redundant
dynamic data arrays for Vi, that are stored at neighboring compute nodes, are updated assuming
zero change coming from the failing node. In subsequent compute cycles, the ≥ l neighboring
compute nodes, that keep copies of the Vi data, change their role temporarily as follows: For
simplicity, select exactly l such neighboring nodes, and denote their indices by j1, j2, . . . , jl(6= i).
Choose, with equal probability 1/(l + 1), an index from {i, j1, . . . , jl}. If the chosen index is
i then each of the l selected compute nodes solves its originally assigned subproblem (as a
consequence, the Vi subproblem solve is not executed in this cycle). If the chosen index is js
for some s = 1, . . . , l, then the compute node C js assumes the role of the failing node, i.e., it
executes a Vi subproblem solve instead of its statically assigned Vjs subproblem solve. The other
l − 1 selected compute nodes compute their originally assigned subproblems. Consequently,
the Vjs subproblem is not executed in this cycle. If l = 1, to avoid repetition, this rule can be
modified as follows: The single selected neighboring compute node C j1 that keeps redundant Vi
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information will then alternately execute the Vi and its own Vj1 subproblem solve (this was the
proposal in [9]).

The proposed random assignment rule in the neighborhood of a failing node needs only
a certain amount of additional local communication, see the appendix for more details. We
proceed with it until the failing node is restarted or replaced by a new node. At this moment, all
information (static, dynamic, and redundant) that was previously owned by the Vi node needs
to be recollected from the neighbors. Compared to the existing local communication between
neighboring compute nodes, the communication overhead is now only in the static data.

The assumption of fault locality (in space and time) is often made in the literature for anal-
ysis purposes. Multiple faults at the same time are not an issue, as long as they remain spatially
disjoint (i.e., the neighborhoods of different failing nodes do not intersect), they are covered by
the convergence theory outlined below. It is clear that one can deal with neighbor pairs or even
larger local groups of failing compute nodes by designing similar repair rules. The occurrence
of large spatially correlated parts of the compute network is a situation that is beyond the scope
of ABFT methods with restrictions on the amount of global communication during the algo-
rithm execution. We will not further discuss this issue. As to the temporal distribution of faults,
some researchers [28] assume a Weibull distribution for the failure arrival times whereas little
is known about the length of failing. The Weibull distribution function is given by

FW (t;k,λ ) =
{

1− e−(λ t)k
, t ≥ 0,

0, t < 0,

and is characterized by two positive parameters, the scale parameter λ and the shape parameter
k. It generalizes the exponential distribution (k = 1). We will use the Weibull distribution in our
numerical simulations reported below.

We claim that minor modifications in the argument leading to Theorem 1 allow us to for-
mulate convergence results if the above strategy is followed, and the faults are spatially isolated
and occur uniformly at random and independently in the compute network. We argue again for
(4). At the iteration step from u(m) to u(m+1) the random set Im of correctly executed subproblem
solves is given by

Im = {0,1, . . . ,n}\{i1, . . . , i fm}, i1, . . . , i fm ∈ {1, . . . ,n},

where fm is the number of failing nodes during the cycle (these consist of newly detected faults,
and nodes that failed in previous cycles but are still under repair).

Unfortunately, the Im are not uniformly at random selected subsets of {0,1, . . . ,n}. To this
end, it is instructive to first look for a convergence estimate in the case of a single fault. Then
fm = 1 and Im = {0,1, . . . ,n}\{i∗m} for m = m0, . . . ,m1, where for m = m0 the Vi∗ subproblem
solve was detected as faulty, and after the step with m = m1 the failing compute node Ci∗m was
restarted. For m = m0 the index i∗m equals an integer i∗ uniformly at random selected from
{1, . . . ,n} (the index of the subproblem solve assigned to the faulty node), while for m = m0 +
1, . . . ,m1 the index i∗m is selected uniformly at random from the index set

J := {i∗, j1, . . . , jl} (29)

associated with the failing node. For all m 6∈ {m0, . . . ,m1}, we have Im = {0, . . . ,n}. It is not
hard to check that these Im are a sequence of independent index sets whenever 1≤m0 ≤m1 are
fixed (this follows from the fault model and our above random assignment rule of selecting an
index from J).

The iteration steps (4) with m < m0 and m > m1 are deterministic, and thus

‖e(m+1)
u ‖2 ≤ (1− 1

κ
)‖e(m)

u ‖2 (30)

if we set pm = n+1 and ξ = λ−1
max in Theorem 1 for these m. For m = m0, the failing node i∗ can

be considered chosen uniformly at random from {1, . . . ,n} (recall that the V0 subproblem solve
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is treated by a the reliable server S0 and is never faulty). Thus, Im0 = {0}∪ I′m0
where I′m0

is a
uniformly at random selected subset of {1, . . . ,n} of size n−1. Similarly, for m=m0+1, . . . ,m1
we have Im = ({0,1, . . . ,n}\J)∪ I′m0

, where now I′m0
⊂ J is an index set of size l, of uniformly

at random selected indices from J = {i∗, j1, . . . , jl} defined in (29). This situation is not directly
covered by Theorem 1. However, a small modification of its proof gives the following estimate
for the conditional expectation of the squared error in one recursion step (4) under slightly
different assumptions.

Corollary 1 Let the disjoint sets Is, s = 1, . . . ,S form a partition of {0,1, . . . ,n}, i.e.,

I1∪ . . .∪ IS = {0,1, . . . ,n}, Is∩ Is′ = /0, s 6= s′.

For fixed u(m), let u(m+1) be given by (4) with Im = I1
m ∪ . . .∪ IS

m, where the Is
m are uniformly at

random selected subsets of Is of size ps ≤ |Is| , s = 1, . . . ,S. Then setting

r̄p = max
s=1,...,S

ps

|Is|
, rp = min

s=1,...,S

ps

|Is|

and taking ξm = rp/(r̄pλmax) yields the estimate

E(‖e(m+1)
u ‖2|u(m))≤

(
1−

r2
p

r̄pκ

)
‖e(m)

u ‖2. (31)

Proof. Indeed, compared to the proof of Theorem 1 the only changes are in the evaluation
of

E(a(e(m)
u , ∑

i∈Im

ωiRiTie
(m)
u )|u(m)) =

S

∑
s=1

a(em
u ,E(∑

i∈Is
m

ωiRiTie
(m)
u ))

=
S

∑
s=1

ps

|Is|
a(e(m)

u , ∑
i∈Is

ωiRiTie
(m)
u )

≥ rpa(Pe(m)
u ,e(m)

u ),

and of

E(‖∑
i∈Im

ωiRiTie
(m)
u ‖2|u(m)) ≤ λmaxE(∑

i∈Im

ωiai(Tie
(m)
u ,Tie

(m)
u )|u(m))

= λmaxE(a(e
(m)
u , ∑

i∈Im

ωiRiTie
(m)
u )|u(m))

≤ λmaxr̄pa(Pe(m)
u ,e(m)

u ).

Substituting these upper and lower estimates into the corresponding expressions of the formula
for E(‖e(m+1)

u ‖2|u(m)), we get

E(‖e(m+1)
u ‖2|u(m)) = E(‖e(m)

u ‖2−2ξ a(e(m)
u , ∑

i∈Im

ωiRiTie
(m)
u )+ξ

2‖∑
i∈Im

ωiRiTie
(m)
u ‖2|u(m))

= ‖e(m)
u ‖2−2ξE(a(e(m)

u , ∑
i∈Im

ωiRiTie
(m)
u )|u(m))

+ξ
2E(‖∑

i∈Im

ωiRiTie
(m)
u ‖2|u(m))

≤ ‖e(m)
u ‖2−2ξ rpa(Pe(m)

u ,e(m)
u )+λmaxr̄pξ

2a(Pe(m)
u ,e(m)

u )

≤ (1−
λmaxξ (2rp−λmaxr̄pξ )

κ
)‖e(m)

u ‖2.

This bound is optimized for λmaxξ = rp/r̄p, and yields (31). �
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For S = 1 we recover the statement of Theorem 1 since then rp = r̄p = pm/(n+ 1). Note
that ps

|Is| can be interpreted as the rate of non-faulty compute nodes Ci with indices in Is, and that
rp and r̄p stand for the minimum and maximum of these rates.

For m = m0, we apply Corollary 1 with S = 2, I1 = {0}, p1 = 1, I2 = {1, . . . ,n}, p2 = n−1.
Then rp = (n−1)/n, r̄p = 1, and we obtain

E‖e(m0+1)
u ‖2|u(m0))≤

(
1− (n−1)2

n2κ

)
‖e(m0)

u ‖2, (32)

if we set ξm0 = (n− 1)/(nλmax). For the steps with m = m0 + 1, . . . ,m1 we set S = 2, I1 =
J = {i∗, j1, . . . , jl}, p1 = l, I2 = {0,1, . . . ,n}\J, p2 = |I2|, and with rp = l/(l +1), r̄p = 1, and
ξm = l/((l +1)λmax) in Corollary 1, this yields

E(‖e(m+1)
u ‖2|u(m))≤

(
1− l2

(l +1)2κ

)
‖e(m)

u ‖2, m = m0 +1, . . . ,m1. (33)

for the conditional expectation of ‖e(m+1)
u ‖2.

Using the independence of the index sets Im, according to (30), (32), (33) we get guaranteed
one-step reduction factors for the (unconditional) expectation of the squared error E(‖e(m)

u ‖2)
of

(1−1/κ), (1− ((n−1)/n)2/κ), (1− (l/(l +1))2/κ),

for the different types of iteration steps corresponding to m 6∈ {m0, . . . ,m1}, m = m0, and m =
m0 +1, . . . ,m1, respectively.

This analysis for a single fault carries over to multiple faults if they stay spatially separated.
Then, in order to apply Corollary 1, we set I1 = I1

m = {0}, p1 = 1, which reflects the presence of
the reliable server S0 in the compute network. Next, we introduce index sets Is, s = 2, . . . ,S−1,
of size |Is| = l + 1 with ps = l by identifying them with the neighborhoods J of the currently
failed Ci, i.e., we have S− 2 compute nodes still in fail state for which failure occurred in
some previous iteration step. Our assumption of spatial fault separation implies that these Is are
mutually disjoint. Finally, IS contains the remaining indices, and the random set IS\IS

m of size f ′m
corresponds to the newly failing Ci in the current iteration step. Consequently, fm = S−2+ f ′m.
The number of correctly working Ci with i ∈ IS is

pS = pm−1− (S−2)l = n− fm− (S−2)l = n− f ′m− (S−2)(l +1)

and |IS|= n− (S−2)(l +1). We thus find that

rp = min(
l

l +1
,

n− f ′m− (S−2)(l +1)
n− (S−2)(l +1)

), r̄p = 1, (34)

and the application of Corollary 1 provides the corresponding bound for the error reduction
in one iteration step. If the number S− 2 of failed nodes is moderate and there are almost no
newly failing nodes, this bound will be identical to (33) since then rp = l/(l+1). In the extreme
case of no failed nodes from previous iteration steps, e.g., when failing nodes can be restarted
immediately, we have S = 2, and p2 = pm−1 is the number of correctly working Ci, i= 1, . . . ,n.
In this situation, the error reduction factor in the bound will be (1− (pm− 1)2/(n2κ)) if the
appropriate ξm is used. All these bounds will also hold if ξm is selected according to the steepest
descent rule (11). Although the application of Corollary 1 only gives a crude upper bound for the
expected error decay per step, it shows that both, the storage redundancy characterized by the
integer l ≥ 1 and the failure rate fm/n of faulty Ci, may impact the actual convergence behavior.

The following numerical experiment highlights the influence of the amount of redundant
storage at the Ci characterized by the parameter l. For each i = 1, . . . ,n we define beforehand
a neighborhood of Ωi consisting of l neighbors, where l = 1,2, ...,8 is fixed (for d = 2 larger
values l > l̄ = 8 are prohibitive in practice as they would increase the communication cost con-
siderably). For each node Ci we repeatedly run an independent Weibull process (for simplicity
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with the same parameters k1, λ1 for each node) that indicates the begin of a failure, followed
by another Weibull process for the length of the failure, again independently and with the same
parameters k2, λ2 for each node. The parameters of these two processes will be tuned such that
in each compute cycle a small percentage of the nodes is failing (below we will use realizations
with about 10% and 1.5% average per cycle failure rate, respectively). To achieve this from the
start of the iteration, we will initialize the fault process accordingly (and will not start with all
nodes in good condition). During any cycle, for each of the nodes in failed state, the random
index pick from the associated index set J given in (29) is implemented, this gives the set Im for
this cycle. Since we cannot guarantee spatial separation of failing nodes in this scheme, there
might be conflicts which are ignored (this is, once a node is asked to switch to a failing node’s
subproblem solve it will do so and ignore later requests of other failing nodes). This is a worst
case scenario that can be implemented without additional communication overhead. Recall that
the coarse subproblem is solved in each iteration cycle by the reliable server S0.
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Fig. 5 Influence of the size l of subdomain neighbor groups J for fault scenarios generated by two different
Weibull processes with an average per cycle failure rate of about 10% on the convergence of the method (4) with
ξm chosen by the steepest descent rule (11). For comparison, the solid line shows the error behavior of the method
in a no-fault situation.

According to our theoretical estimate (33), we expect a certain deterioration of convergence
speed for small l, especially if the failure of a few nodes can last for many cycles. To study
this aspect, we took again the test problem from subsection 3.2, i.e., we set a(x) = f (x) = 1 in
(2) and use an overlapping DD space splitting with parameters n1 = 400, n0 = 20, ` = 6. We
employ the steepest descent rule (11) to determine ξm. In order to be able to watch the iteration
for more cycles and to check if the Weibull parameters used to simulate the fault process impact
the convergence behavior, we chose the smaller value ε0 = 10−8 as termination criterion. The
standard additive Schwarz method took 34 iterations to reach this relative error reduction.

Figures 5 and 6 show the results of runs with different fault processes. In all four cases, the
Weibull shape parameter for the time to the next failure of a compute node was set to k1 = 0.5
(such a value was also used in [28]) while for the length of the failure the value was set to
k2 = 1 (exponential distribution). The associated scale parameters were chosen as follows: For
the experiment in Figure 5 (left), we took λ1 = 18 for the time to the next failure (meaning that
on average a compute node fails after 36 cycles) and λ2 = 3 for the length of failure (meaning
that on average a node remains failing for 3 cycles only). These choices resulted in a realization
where in each compute cycle on average about 10.3% of the n = 400 compute nodes were
failing. For the experiment in Figure 5 (right) the corresponding values were λ1 = 38, λ2 = 7
resulting in a realization with an average per cycle failure rate of about 11.1%. In the latter case,
an individual node remains non-faulty on average for 76 cycles but when it fails it stays faulty
on average for 7 cycles. This is the situation in which we expect to see a more profound impact
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of the parameter l. We here deliberately considered relatively large average per cycle failure
rates to show that our approach is robust and behaves according to the theoretical predictions.

The results for different l = 1, . . . ,8 depicted in the graphs are in complete agreement with
our theory, in particular, they confirm the estimate (33) qualitatively: Larger values for the size
l of subdomain neighbor groups lead to better performance. This can also be seen from the
number of iterations for each of the failure scenarios given in Table 2: As expected, the influence
of l becomes more visible with the increase of λ2, i.e., with the number of cycles a failed
compute node remains in failing state. The more irregular convergence behavior in the graphs for
l = 1,2, especially for larger values of λ2, may have different reasons. On the one hand, it may
be due to a certain loss of spatial separability of faulty compute nodes. Our above mentioned
crude conflict resolution strategy may have resulted in neglecting certain subproblems for many
cycles. On the other hand, the graphs depict computable error indicators as explained in the
appendix, not the exact errors ‖e(m)‖, which may also result in a less smooth error decay.
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Fig. 6 Influence of the size l of subdomain neighbor groups J for fault scenarios generated by two different
Weibull processes with an average per cycle failure rate of about 1.5% on the convergence of the method (4) with
ξm chosen by the steepest descent rule (11). For comparison, the solid line shows the error behavior of the method
in a no-fault situation.

In Figure 6, we show test results for fault processes with smaller average per cycle failure
rates of about 1.5%. Such a failure rate is more realistic given the current predictions for failure
rates of processors in large parallel architectures. For Figure 6 (left) the Weibull parameters
were λ1 = 70, λ2 = 1, which means that, on average, individual compute nodes stay alive for
140 cycles but are restarted almost immediately after a failure. The parameters for Figure 6
(right) were λ1 = 600, λ2 = 20, which represents the other extreme: Relatively long failure
times of compute nodes after very long periods of correct functioning. The results again confirm
the predicted dependence of convergence rates on the parameter l characterizing the amount of
redundancy which increases with the parameter λ2 characterizing the average failure time of
compute nodes. Compared to Figure 5, we also see the impact of the average per cycle failure
rate r f : The smaller r f , the closer the performance gets to that of the additive Schwarz iteration
in a non-faulty compute network (at least, if l is large enough). This is also illustrated by the
iteration counts for the above four test cases recorded in Table 2.

To summarize, even under the assumption of a compute network with predominantly local
communication and distributed data storage, we can still get reasonable convergence rates if we
allow for redundant storage at the unreliable compute nodes with slightly larger values l than
proposed in [9], and treat the coarse problem at a reliable server. We refer to the appendix for
some hints on implementation details.

As a final remark, let us mention that similar considerations are possible for other com-
pute network architectures. For instance, in [30] a server-client architecture was used to achieve
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Iteration counts for different l
λ1 λ2 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8
18 3 60 48 43 43 42 42 40 41
38 7 > 100 59 52 43 44 47 43 42
70 1 39 36 38 37 37 37 37 37
600 20 91 46 42 43 38 38 39 37

Table 2 Iteration counts for reaching a relative error reduction of ε0 = 10−8 for the fault scenarios used for the
graphs in Figure 5 and 6. The corresponding Weibull scale parameters λ1, λ2 are shown in the table, the Weibull
shape parameters are k1 = 0.5, k2 = 1. The iteration with no faults needed 34 iteration steps to termination.

fault tolerance for an overlapping DD method for (2) in one and two dimensions without global
communication. To this end, the PDE problem is turned into a fixed-point formulation for the
system of local boundary-to-boundary maps for the restrictions of the solutions to the subdo-
main boundaries ∂Ωi and their neighbors ∂Ω j ∩Ωi. For those, approximations are generated
assuming a fault model, where faults are not lost subproblem solves but may be accidentally
missing data for the boundary-to-boundary maps. In essence, this represents a reformulation
of an overlapping DD splitting, similar to (25) but without a coarse space V0, whose conver-
gence properties will obviously deteriorate with the number of subproblems. The boundary-to-
boundary maps are executed on unreliable clients attached to a network of reliable servers. We
refer to [30,31] for details.

We use this server-client model of [30] to discuss one more potential application of our re-
sults in section 2. Think of a network of reliable servers S0,S1, . . . ,SL, and consider, besides
the coarse partition T0, another, still coarser overlapping partition of Ω into L << n domains
Ω̃ j, each of which is the union of about n/L subdomains Ωi (each Ωi belongs to exactly one
Ω̃ j). Each of the L servers S j, j = 1, . . . ,L, has enough compute power and memory to keep
safe copies of the distributed static and dynamic data arrays associated with the subdomains Ωi
forming Ω̃ j. This way each Vi subproblem, i = 1, . . . ,n, is owned by exactly one server. Each
of these L servers has clients with point-to-point communication to the server but not with each
other that will deal with solving the subproblems owned by the server (in other words, each
server with its clients represents a master-slave architecture, similar to subsection 3.2). We as-
sume that the number of clients per server is such that during a compute cycle each subproblem
owned by a server can be assigned to one of its clients, and that there is no correlation between
client failure and subproblem assignment. As in the case of the local communication network,
the server S0 is reserved for dealing with the V0 subproblem solve and global error compu-
tations. Communication between the servers is considered reliable, S0 needs to communicate
with all other S j while the servers S j, j = 1, . . . ,L, need to be linked with S0 and in addition
with those S j′ for which Ω̃ j∩Ω̃ j′ 6= /0. We call such S j and S j′ neighboring. Note again at this
point that the overall communication of necessary data between servers S j, j = 1, . . . ,L, can be
performed in parallel in ≈ ¯̀′ sweeps, where ¯̀′ denotes now an upper bound for the number of
neighboring servers of any given S j.

Under these assumptions, we can use the same strategy as in subsection 3.2 locally for
each server-client subgroup of the network. The only difference is that, in addition to feeding
the clients with randomly assigned static and dynamic data arrays for subproblem solves, each
server communicates dynamic data for solving the V0 problem and computing error estimators to
the server S0. This is a small difference compared to subsection 3.2, where we silently assumed
that all subproblem solves including the coarse subproblem are of the same run-time complexity
and therefore could be dealt with by the slave nodes, even though one could have delegated the
subproblem solve associated with V0 to the master node as well. Note that the point-to-point
communication between the servers S j, j = 1, . . . ,L, and the specialized server S0 involves
only arrays of small size proportional to the number of subdomains assigned to each server. We
refer to the appendix for some more details.
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3.4 Estimate of parallelization gains

We now give a rough calculation of the runtime per cycle for the three architectures discussed
in the previous subsections based on a simplified runtime model for the involved subproblem
solves, update, and communication steps. Note that a typical cycle consists of a communica-
tion step between reliable server(s) and compute nodes or between compute nodes, a parallel
subproblem solve step, followed by a reverse communication step and the update step.

For the subproblem solve step, we assume that one subproblem solve (provided that dynamic
and static data arrays associated with Ωi are made available) on one compute node takes CsMi
units of cpu-time, i.e., it scales linearly in the dimension Mi ≈ M of the Vi subproblem with
a constant Cs that depends on the solver, the required accuracy, and the cpu-speed, and may
be large. For PDE problems such as our model problem (2) such an assumption is realistic if
optimized multigrid methods are applicable to the subproblems. If suboptimal local solvers (e.g.,
direct solvers for sparse linear algebra problems) are used instead, this may not be true, in which
case some of the conclusions below will look more optimistic since it is essentially only the
solve step that can be fully parallelized. Similarly, the update step which consists of performing
linear combinations of vectors stored in distributed format for each Ωi, merging information
received from neighboring Ωi′ , and computing local contributions to error estimators takes CuM
units of cpu-time, where typically Cu << Cs can be assumed. These assumptions will also be
applied to the cpu-time of the coarse problem solve with Mi ≈M replaced by M0 ≈ n.

As to the communication steps, the cpu-time model is C0c +Ccs for a one-to-one commu-
nication of an array of size s between two compute nodes or servers, where C0c is the absolute
time for opening the connection, and Ccs is the transmission time for the actual data. Scheduling
of many connections from or to any given node is sequential. With these model assumptions at
hand, we will derive rough runtime estimates for the parallel DD algorithms on the three archi-
tectures. Recall that the size of the whole problem, i.e., the dimension of V , is N = dimV ≈ nM.
Given the theoretical option of solving the problem with the same cost model on a single, large
and reliable computer, we could achieve the solution of the problem in time (Cs +Cu)nM (this
does not include the precomputation of A and b and other static information).

We start with the master-slave network of subsection 3.2. Even though we assumed any
value p ≤ n+ 1 of available slaves, to be somewhat compatible with the other scenarios, we
look at the case p = n+1. In each cycle, we send in an one-to-all communication step static and
dynamic data arrays associated with all subproblems including the V0 subproblem in a random
assignment from the master to the n+ 1 slaves in total time (n+ 1)C0c +Cc(nM +M0), then
solve the subproblems in time Cs max(M,M0) at the slaves, and communicate the results back in
an all-to-one communication step to the master node, again in time (n+1)C0c +Cc(nM+M0),
whereas constants may be different. At the master, the distributed data representation needs to
be synchronized at cost Cu(nM +M0). Using the fact that M0 ≈ n, this results in a time budget
of approximately

T = 2(n+1)C0c +Ccn(M+1)+Cs max(M,n)+Cun(M+1) (35)

per cycle. In comparison, if the whole iteration step would have been performed by the mas-
ter node, we would obtain a time budget of (Cs +Cu)Mn. Thus, other than having freed the
master node from the serial solve step, there is no gain from outsourcing computational work
to the unreliable slaves unless Cs is much larger than the constants associated with update and
communication steps.

For the local communication network described in subsection 3.3, a possible implementation
is described in the appendix, we refer to it. The solve step 1 takes Cs max(M,M0), and the update
step 3 takes CuM units of time, respectively (the constant Cu adsorbs the slightly increased
amount of work of the neighbors of a failing node). In the communication steps 2 and 4, we
have a local part which costs approximately l̄(C0c +CcM) units of time, where l̄ is given by
(28), and we have the one-to-all and all-to-one communication of small amounts of data to the
specialized compute node responsible for the coarse subproblem. Since M0 ≈ n, the latter takes
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n(C0c +Cc) units of time in the worst case (again, constants may be different). Altogether, this
results in an overall time budget of

T = 2l̄(C0c +CcM)+2n(C0c +Cc)+Cs max(M,n)+CuM, (36)

per cycle. This estimate is linear in M and n, possibly with network- and cpu-dependent con-
stants for solve, update, and communication steps but may grow with the amount of local overlap
in the underlying domain partition {Ωi}. It also depends on the dimension-dependent constant
l̄. From the point of view of parallel efficiency, this is as good as one can expect if a coarse
subproblem is included.

We note that the possible gain of the approach in subsection 3.3 is visible only if Cs is large
compared to other constants, i.e., if the solve time in step 1 is dominating. Otherwise, we could
modify the algorithm outlined in the appendix as follows: In the case of a failing node Ci, any
of the l designated neighbors Ci′ with current copies of data arrays for the Vi subproblem solve
takes on the responsibility for solving the Vi subproblem in addition to its own subproblem. This
results in a solve time of roughly 2CsM in each cycle while leaving all other steps unchanged. If
the solve time is indeed dominating, this alternative ABFT approach would therefore double the
runtime while the expected slowdown due to the ABFT approach described in subsection 3.3
depends on the amount of local storage redundancy characterized by l, and becomes less visible
with larger values of l. The same tradeoff has been discussed for l = 1 in a similar situation in
[9].

Finally, for the server-client network mentioned at the end of subsection 3.3, the overall
time is intermediate to the previous two cases. The difference to the master-slave network of
subsection 3.2 is that the role of the master computer is now played by a reliable network con-
sisting of a special server S0, and of L servers S j, j = 1, . . . ,L, each of which keeps the data
related to about n/L subproblems. During a cycle, each server S j ( j 6= 0) acts as a small master
and feeds its ≈ n/L slaves, taking 2(n/L)(C0c +CcM) units of time for serial communication
to and from its clients, and CsM units of time for the parallel subproblem solve step. During
the subproblem solve step at the clients, the servers S j, j = 1, . . . ,L, can do the communication
with the special server S0 responsible for the coarse problem associated with V0, the computa-
tion of error indicators, and the maintenance of information about the number pm of correctly
functioning clients (this involves an all-to-one and one-to-all communication with S0 costing
2L(C0c +CcM0/L) units of time and a solve step of cost Cs max(M,M0)). If the communication
in the server network is sufficiently fast compared to the solve time at the clients, this time may
not matter. After the L servers have received data of the subproblem solves from all correctly
working clients (and coarse problem and global data from the special server S0), they inde-
pendently perform an update step costing Cu(nM +M0)/L units of time. This is followed by
a synchronization step between neighboring servers (this is the transmission of dynamic data
arrays such as xii′ associated with the overlap region of subdomains Ωi and Ωi′ owned by differ-
ent servers). For large L and again with M0 ≈ n, this cost is negligible compared to the already
accrued overall cost of

T = 2(n/L)(C0c +CcM)+2L(C0c +Ccn/L)+Cs max(M,n)+Cu(M+1)n/L, (37)

where we can safely assume that L << n. Compared to the budget (35) for the master-slave
network, we benefit by reducing communication and update time by roughly the factor L, i.e.,
the size of the server network. To come close to the estimate (36), one would need to assume
small values n/L. This situation is, however, not of practical interest because it implies the
presence of a large reliable server network with only few compute nodes attached to each of the
servers.

4 Concluding remarks and future work

In this article, we have considered an example for algorithm-based fault tolerance (ABFT),
namely how to make domain decomposition methods in PDE applications more fault tolerant.
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To this end, we considered stochastic subspace correction algorithms and developed a general
theoretical foundation for their convergence rates under weak randomness and independence as-
sumptions for failure of subproblem solves. As an application, we used a standard overlapping
domain decomposition method for a simple two-dimensional Poisson problem and showed that
our convergence theory for stochastic subspace correction methods indeed gives proven conver-
gence rates also in the faulty case and results in the design of fault-tolerant methods, e.g. for
local communication networks, with quasi-optimal parallel cost complexities.

So far, we employed our theory to a simple two-dimensional model problem only and not
to a large three-dimensional, time-dependent, nonlinear real-life simulation problem from e.g.
physics or engineering yet. This is future work. We also used in our experiments fault rates
up to 15 percent which is unrealistic and much too high. Nevertheless, this demonstrated the
robustness of our proven convergence bounds also in such a situation and it is clear that in more
practical situations, i.e., for smaller failure rates in the per-mil range, the resulting convergence
rates must be nearly as good as the ones in the non-faulty case.

Note at this point that our theory can be applied to other space splittings as well and will
then lead to associated convergence bounds and corresponding fault-tolerant parallel algorithms.
One example is the case of inexact subproblem solvers, another one are various multilevel and
multigrid solvers which might be analyzed as subspace correction methods in a similar way.
A further example may be the sparse grid discretization [7] and the so-called combination ap-
proach for higher-dimensional partial differential equations, e.g. in its original version [14] or in
its improved version as the so-called Opticom [17], see also the results in [11]. It involves a com-
bination of smaller, in general non-isotropic discretizations of the problem at hand which can
be treated completely independent of each other, each e.g. by a parallel DD method itself. This
way a second level of parallelization is introduced which altogether leads for high-dimensional
problems to a huge amount of decoupled subproblems. A main issue is again if a certain amount
of subproblem solvers is faulty. Then, our theory also gives results for fault-tolerant versions
of such algorithms in a straightforward way. An example for a real life application under study
involve the gyrokinetic equations for microturbulence to compute gyroradius-scale fluctuations
and the resulting transport coefficients in magnetized fusion/astrophysical plasma, see e.g. [16,
18] and the references cited therein.

Note at last that another promising area of application for our theoretical results on stochas-
tic subspace correction algorithms is machine learning and data analysis. In such applications,
there are many situations where randomness in the subproblem selection is just given by the
problem and the data under consideration. An example would be online learning algorithms for
solving classification or regression problems in a reproducing kernel Hilbert space setting which
again can be interpreted in the framework of Schwarz methods. There, the subproblems can be
associated with the samples in the training set which makes the incremental learning algorithm
automatically randomized. Also in such situations our theory can be applied in a straightforward
manner.
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5 Appendix: Distributed implementation

With the space splitting (25) fixed and an implementation on a local communication network as
described in subsection 3.3 in mind, we introduce the following notation for static and dynamic
data arrays used below. Denote by x the nodal basis vector of size N = dim(V ) representing an
arbitrary u ∈ V . For any given i, xi denotes the subvector of x of size Mi corresponding to the
nodal basis in Vi which is a subset of the nodal basis in V . The associated index set is denoted
as Ji. We also need the subvectors xii′ of xi of length Mii′ < Mi which correspond to the basis
functions in Vii′ := Vi ∩Vi′ (obviously, for each i only a small number of nontrivial xii′ need to
be considered). Note that, even though formally xii′ = xi′i, in the actual iteration the vectors xii′

and xi′i may differ temporarily. E.g., if xi is updated in a Vi subproblem solve at Ci then xii′

changes while the neighbors Ci′ may have different xi′i from the previous iteration or their own
subproblem solve step. The equality xii′ = xi′i is again guaranteed after the next communication
step and the update steps are performed. Obviously, x can always be reconstructed from its
distributed representations {xi}. The extension-by-zero maps xi ∈RMi → x= (xi,0)∈RN define
the operators Ri used for the space splitting (25), i = 1, . . . ,n. Below, we will use the same
notation for the operator Ri and its matrix representation. The restriction map RT

i : x ∈ RN →
xi ∈ RMi defines the adjoint to Ri, i = 1, . . . ,n. It is convenient to precompute some sparse
matrices and vectors. Let A be the nodal basis discretization matrix, and let b be the right-
hand side of the sparse linear system representing the FE discretization of (2) associated with
V . Then, for i = 1, . . . ,n, we introduce with Ai = RT

i ARi the overlapping diagonal blocks of A
of size Mi×Mi associated with Vi. Similarly, we have bi := RT

i b, while Aii′ = RT
i′ ARi are the

submatrices of size Mi′ ×Mi associated with the overlap regions Ωi∩Ωi′ . Furthermore, denote
by A0 and b0 the stiffness matrix and right-hand side of the nodal basis discretization associated
with V0, respectively. Due to our assumptions, their representation can be produced from A and b
by the formulas A0 = RT

0 AR0 and b = RT
0 b, where R0 : V0→V is the natural embedding operator

whose distributed matrix representation {R0i}i=1,...,n is given as follows: Let x0 denote the nodal
basis vector of an element u0 ∈ V0. Then, R0i is a submatrix of the N×M0 matrix R0 which
corresponds to mapping the subvector x0i of x0 associated with the nodal basis functions in V0
whose support intersects with Ωi to the subvector (R0x0)i of R0x0. Note that in the DD setting
the vectors x0i have relatively small and uniformly bounded size, independently of M and n,
while the size of x0 equals the dimension M0 of V0, and scales linearly with n. Finally, to run
the one-step recursion (4) and the accelerated method (12-13), a certain number of small arrays
containing parameters and auxiliary data are needed. By ξ we will denote a vector of length
n+1 whose entries contain the relaxation parameters ξi := ξ ωi, i = 0,1, . . . ,n, while e′ denotes
a vector for storing local error indicators associated with the subproblems.

Using this notation, we next give some implementation details for the iteration (4). The
changes for the implementation of the accelerated iteration (12-13) are briefly mentioned at the
end. We concentrate on the local communication computer network of subsection 3.3 which
seems most promising from the point of view of overall efficiency. In the following, we will
silently add vectors and perform matrix-vector products with different index sets by padding the
vectors with zeros to the correct dimensions.
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Let us first write the iteration in vector matrix notation as a sequence of single update steps
with one subproblem solve at a time. We denote by x and xnew the nodal basis vector of the iterate
u before and after the update, respectively. Similar notation is used for the residual r = b−Ax, its
coarse grid projection r0 = RT

0 r, and the distributed representations thereof. If the subproblem
has index i 6= 0 then

xnew = x+ξiRiA−1
i RT

i (b−Ax) = x+ξiA−1
i ri, ri = RT

i r,

and thus in distributed format

xnew,i′ = xi′ +ξiRii′di, Rii′ := RT
i′ Ri, di := A−1

i ri,

rnew,i′ = ri′ −ξiRT
i′ ARidi = ri′ −ξiAii′di,

where i′ = 1, . . . ,n (since x can be recovered from the xi with i = 1, . . . ,n, updates of x0 are not
needed). Recall that RT

i′ Ri just represents the restriction of xi to xii′ , that the submatrices Aii′ =
RT

i′ ARi of A are non-zero for only a few i′, and that the vector Ai0di has uniformly bounded size.
Thus, possibly except for the solution of the problem A jd j = r j, computation time and storage
for the relevant quantities xii′ := ξiRii′di and rii′ := ξiAii′di will remain roughly proportional to
Mi ≈M. Note that in case i′ = i the update is

rnew,i = ri−ξiAiidi = ri−ξiAiA−1
i ri = (1−ξi)ri,

which could be used to check the validity of returned results. In the implementation, the updates
for i′ = i (xnew,i and rnew,i), and i′ = 0 (rnew,0) will be performed during the solve step at the
compute node responsible for this subproblem. The update to xnew,i′ and rnew,i′ with i′ 6= i requires
communication with the neighboring compute nodes.

If i = 0 (i.e., the subproblem is associated with the coarse space V0, and is executed on the
reliable server S0) we have for i′ = 0

rnew,0 = r0−ξ0RT
0 AR0A−1

0 r0 = (1−ξ0)r0,

while for i′ = 1, . . . ,n the update formula is

xnew,i′ = xi′ +ξ0R0i′d0, R0i′ := RT
i′ R0, d0 := A−1

0 r0,

rnew,i′ = ri′ −ξ0RT
i′ AR0d0 = ri′ −ξ0A0i′d0.

Note that R0i′ = RT
i′0 and A0i′ = AT

i′0 need only the small subvector d0i′ associated with the few
nodal basis functions with support intersecting Ωi′ . I.e., once d0 = A−1

0 r0 is computed, each
evaluation of x0i′ := ξ0R0i′d0 and r0i′ := ξ0Aii′d0 is of complexity proportional to Mi′ ≈M, and
should be done at the compute node responsible for the subdomain Ωi′ after the associated data
d0i′ is received from S0.

We give now a more detailed description of one cycle for executing the recursion step (4) in
the case of a DD type space splitting as described in subsection 3.1. We assume that the compute
network consists of n compute nodes Ci and a reliable server S0. All global vectors and matrices
such as A, R0, b, x (placeholder for the nodal basis coefficients of the iterates), r = b− Ax
(the corresponding residual) are represented in distributed format, and stored redundantly at the
compute nodes Ci, together with the network neighbor structure. We assume that the compute
node Ci is responsible for Ωi, i = 1, . . . ,n, and stores copies of static and dynamic data arrays
associated with Ωi. The data associated with Ωi is also redundantly stored at l neighboring
compute nodes C j1 , . . . ,C jl (the index set J = { j1, . . . , jl} is fixed but obviously depends on i).
Among them we select one beforehand, call it partner of Ci, and denote it by C ∗i . If Ci fails, its
partner C ∗i will play a special role for organizing the local fault mitigation process described in
subsection 3.3. For simplicity, we assume that faults are spatially isolated.

The server S0 only needs A0 and network connectivity information to be able to receive
from and distribute to all other compute nodes small data arrays associated with the coarse prob-
lem solve. Our description of a cycle starts with the parallel solution of subproblems according
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to a given assignment of subproblems to compute nodes, and ends with a new assignment (or
with the decision to stop the iteration). The initial assignment is identical with the setup of the
compute network.

Recursion.

1 Solve step. For a Vi problem with i 6= 0 assigned to one of the compute nodes, this step
includes the computation of xnew,i and rnew,i according to the above formulas, and of the data
arrays xii′ := ξiRii′di and rii′ := ξiAii′di needed for updates at neighboring compute nodes.
For the V0 problem, this also includes the assembly of r0 = RT

0 r from its locally computed
parts, and the computation of the small arrays d0i′ , i′ = 1, . . . ,n, representing d0 = A−1

0 r0
locally. In both cases, the scalar product ei = rT

i di is computed. Moreover, at S0 the global
error indicator

ε =

(
n

∑
i=0

ei

)1/2

is computed from e0 and the values ei, i = 1, . . . ,n, available from the previous cycle (see
Step 4 below).

2 After-solve communication step. Each active node responsible for a Vi problem with i 6= 0
sets up communication with all its neighbors and to S0, and collects the relevant data xi′i,
ri′i (i′ 6= i,0), d0i for updating xi and ri, the error indicator ε and the scalars e′i, i = 1, . . . ,n,
needed for computing the global error indicator in the next cycle. In this step, a newly failing
compute node Ci has to be detected by all its neighbors, and the partner C ∗i of the failing
node will become known to all of them. The partner node is added to the neighborhoods
of all neighbors of the associated failed node and vice versa, to allow for direct partner-to-
neighbor communication in this and future cycles. The set of neighbors of a failing node
acts in a specific way guided by the associated partner node until the failing node has been
restarted. Small modifications of the data shipped from and to this local group of compute
nodes are clear from the explanations in the remaining steps.

3 Update step. Each active compute node updates the dynamic data arrays xi and ri assigned
to it by incorporating all information received from the neighbors and the contribution from
the coarse subproblem. For Ci that are not partners of a failing compute node, this is the
dynamic data for the Vi subproblem permanently assigned to the node under consideration.
The partner of any of the failing nodes will in addition update the data assigned to the
failing node. I.e., in the previous communication step any such partner must have collected
data from its own neighborhood and from the neighborhood of the failing node.

4 Pre-solve communication step. Each active node sets up communication links with its neigh-
borhood (in the case of the partner of a failing node this is the extended neighborhood
containing also all neighbors of the failing node), and sends the updated dynamic data for
synchronization. Thus, for partner nodes C ∗i of failing nodes Ci, the amount of data shipped
may be temporarily slightly larger.
Next, the (non-faulty) compute nodes find out if, in the next solve step, they need to solve
a subproblem different from the one permanently assigned to them. This may be the case if
their neighborhood currently contains a failing node Ci. Since the partner C ∗i of the failing
node will have such a compute node in its extended neighborhood, each C ∗i first checks
if the associated Ci is back to work. If yes, then Ci collects all relevant static and current
dynamic data for the Vi subproblem as well as redundantly stored information originally
assigned to it from the corresponding neighbors, and acts in the next cycle as normal com-
pute node until a new failure occurs. Also, C ∗i gives up its role as partner of a failed node,
and returns to normal mode. If no, then the partner C ∗i of the still failing node Ci selects
uniformly at random an integer s from {0,1, . . . , l}. If s 6= 0, then in the next solve step the
neighbor C js is charged with solving the Vi subproblem normally assigned to the failing
node Ci instead of its own. No further action is needed.
Finally, during this communication step, information about R0r is computed in a distributed
way, and communicated together with the scalars ei from Step 1 to S0.
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5 Continuation/Termination. The usual criteria for termination are based on the error indicator
ε , on the iteration count, or on the elapsed time, and are checked at the server S0. If none
of them is satisfied, then return to Step 1.

Remarks:

– Concerning the error indicator

ε
2 =

n

∑
i=0

ei,

we clarify its meaning as follows. Roughly speaking, ε2, when evaluated in Step 1 of a cycle
corresponding to the recursion step (4), is not the value of

ε
2
m+1 := λ̄

−1a(Pe(m+1),e(m+1)) =
n

∑
i=0

ξiai(Tie(m+1),Tie(m+1)),

which according to (8) relates to the squared energy norm error of u(m+1) since

(λmin/λ̄ )‖e(m+1)‖2 ≤ ε
2
m+1 ≤ (λmax/λ̄ )‖e(m+1)‖2).

However, we have

ε
2 = ξ0a0(T0e(m+1),T0e(m+1))+

n

∑
i=1

ξiai(Tie(m),Tie(m)),

which is almost identical with ε2
m. Thus, ε is a good error measure for the previous iterate

u(m) if κ ≈ κ̄ is moderate. Indeed, in matrix-vector notation we have

ξiai(Tie(m),Tie(m)) = ξi(A−1
i RT

i r)T Ai(A−1
i RT

i r) = ξirT
i A−1

i ri = rT
i di = e′i

for any i = 0,1, . . . ,n (recall that ε is computed in Step 1 at the special server S0 using the
value e0 from the current cycle but the values ei, i = 1, . . . ,n, from the previous cycle).

– The numerical experiments for the one-step method (4) reported in subsections 3.2 and 3.3
used the steepest descent rule (11). The computation of the required additional global scalar
products needs to be performed using additional communication with S0 during Step 2.

– When implementing the accelerated Schwarz iteration (12-13), only slight changes are re-
quired. For sure, we have to store, maintain, and communicate distributed data arrays for
two vectors x and y representing the u and v iterates, respectively, and for the residual vec-
tor associated with their linear combination z representing the w iterate, compare (12). The
corresponding computations can be subsumed in Steps 1 and 3, the data size in the commu-
nication steps is increased by a factor 3/2.
A new challenge is to provide an estimate for the number of active compute nodes pm which
enters the parameters αm,βm needed in Step 1 and 3. Unfortunately, the value of pm becomes
available only after Step 2, as it may have changed due to newly failing and recovered
compute nodes. Since the new fails are detected locally, counting them can only be done
at S0. This can be achieved during Step 2 by first sending a bit from each newly created
partner node through its connection to S0 where they are counted. The overall count of new
faults is returned to all active nodes together with the data for the coarse problem update and
ε , and subtracted from the previous count of active nodes available at each node. This value
is again corrected by adding the number of recovered compute nodes in Step 4 (to achieve
their count requires communication with the specialized compute node as discussed for Step
2). In other words, the correct value of pm is available only after the bulk of the computation
for the recursion step (4) is performed in Step 1 and 3 of the associated cycle. As mentioned
in section 2, there are several remedies such as performing linear combinations needed for
the u and v updates in an extra update step after Step 4 which requires extra work and
storage, especially in Step 1, by maintaining distributed vector representations separately
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for the residuals of the u and v iterates. A cheaper alternative is to determine the parameters
αm,βm from (23), (24) with pm replaced by the already available value for pm−1, or a lower
bound for the latter. According to our preliminary numerical experiments for the accelerated
method, having a correct value for pm may matter only if a significant part of the network is
failing.


