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Abstract

We show that the d-dimensional Haar system Hd on the unit cube Id is a Schauder basis
in the classical Besov space Bs

p,q,1(Id), 0 < p < 1, defined by first order differences in
the limiting case s = d(1/p − 1), if and only if 0 < q ≤ p. For d = 1 and p < q < ∞,
this settles the only open case in our 1979 paper [4], where the Schauder basis property
of H in Bs

p,q,1(I) for 0 < p < 1 was left undecided. We also consider the Schauder
basis property of Hd for the standard Besov spaces Bs

p,q(I
d) defined by Fourier-analytic

methods in the limiting cases s = d(1/p−1) and s = 1, complementing results by Triebel
[7].

Keywords: Haar system, Besov spaces, Schauder bases in quasi-Banach spaces, spline
approximation.
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1. Introduction

The classical univariate Haar system H := {hm}m∈N was one of the first examples of
a Schauder basis in some classical function spaces on the unit interval I := [0, 1]. In this
note, we deal with various Besov spaces Bs

p,q on the unit cube Id ⊂ Rd for the parameter
range

0 < p ≤ 1, 0 < q <∞, s > 0, (1)

and complement early results by Triebel [7] and this author [4] by settling the remaining
limiting cases, where the Schauder basis property of the multivariate Haar system Hd

was not known until now (for detailed definitions, we refer to the following sections).
There are many alternative definitions (Fourier-analytic, local means, atoms, ap-

proximations, differences, ...) that may lead to different Besov spaces for certain parts
of the parameter range (1), see, e.g., [8] for a brief introduction to function spaces of
Besov-Hardy-Sobolev spaces on Rd and on domains. We consider the by now standard
Besov spaces Bs

p,q(I
d) of distributions defined in terms of Littlewood-Paley type norms

(or equivalently, in terms of atomic decompositions or local means), and the classical
Besov spaces Bs

p,q,1(Id) of functions defined by first-order differences (or, equivalently,
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by best approximations with dyadic step functions). In the parameter range (1), these
two scales of Besov spaces coincide up to equivalent quasi-norms if and only if

d/(d+ 1) < p ≤ 1, 0 < q <∞, d(1/p− 1) < s < 1. (2)

In [7] it was proved that Hd forms a Schauder basis in Bs
p,q(I

d) in the parameter
range (2), see also [8, Section 1.7.2] and [9, Section 2.5.1], where additionally the un-
conditionality of the Haar basis was established. Moreover, it was also shown that the
Haar system cannot be a Schauder basis in Bs

p,q(I
d), 0 < p ≤ 1, 0 < q < ∞, if either

s < d(1/p− 1) or s > 1. Recently, there has been renewed interest in investigating low-
order spline wavelet systems such as the Haar and Faber-Schauder systems and their
multivariate counterparts as bases in Besov-Hardy-Sobolev spaces on Rd and Id. We
refer e.g. to [9, 10, 3] and the many references cited therein. However, for Bs

p,q(I
d) the

limiting cases s = d(1/p − 1) and s = 1, which were not settled in [7], are still open.
We also mention the recent paper [11] directly related to this note, where the authors
study necessary and sufficient conditions on the parameters p, q, s, τ for which the map
f → (f, χId)L2 =

∫
Id
f dx extends to a bounded linear functional on Besov-Morrey-

Campanato-type spaces Bs,τ
p,q (Rd).

As to Besov spaces defined by differences, in [4] it was shown that for 0 < p < 1
the univariate Haar system H is a Schauder basis in Bs

p,q,1(I) if 1/p− 1 < s < 1/p and
0 < q <∞. If 0 < s < 1/p− 1, then Bs

p,q,1(I) has a trivial dual space, and thus cannot
possess a Schauder basis. For s ≥ 1/p, 0 < q < ∞, the spaces Bs

p,q,1(I) degenerate to
containing only constant functions. In the only remaining limiting case s = 1/p− 1, the
proof in [4] established the Schauder basis property of the Haar system H in Bs

p,q,1(I)
also for 0 < q ≤ p while for the parameter range p < q <∞ the question was left open.

Our main goal in this paper is to settle the limiting cases for both scales of Besov
spaces. In Section 2 we will prove the following:

Theorem 1 Let d = 1, 2, . . ., and let p, q, s satisfy (1). The Haar system Hd (equipped
with any of its natural enumerations) is a Schauder basis in the Besov space Bs

p,q,1(Id)
if either

d(1/p− 1) < s < 1/p, (d− 1)/d < p ≤ 1, 0 < q <∞. (3)

or if
s = d(1/p− 1), (d− 1)/d < p < 1, 0 < q ≤ p. (4)

In all other cases, Hd cannot be a Schauder basis in Bs
p,q,1(Id). More precisely:

i) Let 0 < q <∞. If 0 < s < min(d(1/p− 1), 1/p) then Bs
p,q,1(Id) has a trivial dual,

while for s ≥ 1/p it degenerates to containing only constant functions.

ii) If s = d(1/p− 1), (d− 1)/d < p < 1, then we have two cases:
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a) If 1 < q <∞ then the coefficient functionals of the Haar expansion which are
uniquely defined on span(Hd) cannot be extended to bounded linear functionals

on B
d(1/p−1)
p,q,1 (Id).

b) If p < q ≤ 1 then the partial sum operators of the Haar expansion are not

uniformly bounded on B
d(1/p−1)
p,q,1 (Id).

For d = 1, the statement of Theorem 1 except for part ii) has been established in [4] using
characterizations of Bs

p,q,1(I) in terms of best approximations by dyadic step functions.
This approach carries over to the case d > 1. The assertions in part ii) are new, and
follow from modifying the univariate examples used in [4] (see the lemma on p. 535
there).

As will be clear from the proofs, the formulation of Theorem 1 carries over to the
Haar system on Rd and the Besov spaces Bs

p,q,1(Rd) without change. Similar results are

expected to hold for Besov spaces B
d(1/p−1)
p,q,r (Id) defined in terms of r-th order differences,

r > 1, and multivariate spline systems of higher order, such as the Franklin system. As
to assertion ii) a), we do not know whether B

d(1/p−1
p,q,1 )(Id) has a nontrivial dual for q > 1

at all.
In Section 3, we deal with the standard Besov spaces Bs

p,q(I
d) and use their char-

acterizations in terms of atomic decompositions and local means to prove the following
result.

Theorem 2 Let d = 1, 2, . . ., and let p, q, s satisfy (1), where additionally d(1/p− 1) ≤
s ≤ 1. The Haar system Hd is a Schauder basis in the Besov space Bs

p,q(I
d) if either (2)

or
s = d(1/p− 1), d/(d+ 1) < p < 1, 0 < q ≤ p. (5)

holds. In all other cases, Hd cannot be a Schauder basis in Bs
p,q(I

d). In particular,

i) If s = 1, d/(d + 1) ≤ p < 1, 0 < q < ∞, then the Haar expansion of the smooth
function f(x) = x1 + . . .+ xd does not converge to f in Bs

p,q(I
d)

ii) If s = d(1/p− 1), d/(d+ 1) ≤ p < 1, p < q <∞, we have again two cases.

a) If 1 < q <∞, then the coefficient functionals of the Haar expansion which are
uniquely defined on span(Hd) cannot be extended to bounded linear functionals

on B
d(1/p−1)
p,q (Id).

b) If p < q ≤ 1, then the partial sum operators of the Haar expansion are not

uniformly bounded on B
d(1/p−1)
p,q (Id).

Compared to [7] only the proof of the Schauder basis property for the parameter range
(5), the limiting case s = 1 in part i), and part ii) of Theorem 2 are new. The theorem
holds for the suitably enumerated Haar system on Rd and the spaces Bs

p,q(Rd) without
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changes in the formulation. The result of case a) in part (ii) is also covered by [11,
Corollary 2.7, (ii)].
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the preprint version of the paper [3] with me, and encouraged me to reconsider the open
problems in [4]. T. Ullrich also pointed out the counterexamples for part ii) in Theorem
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cal Simulation (INS) of the University of Bonn sponsored by the Hausdorff Center for
Mathematics and the Deutsche Forschungsgemeinschaft (DFG). I thank my colleagues
at the INS for the fruitful and friendly atmosphere, and the above named institutions
for their support.

2. Proof of Theorem 1

2.1. Definitions and preparations

Recall first the definition of the L2-normalized Haar functions. By χΩ we denote
the characteristic function of a Lebesgue measurable set Ω ⊂ Rd, and by ∆k,i = [(i −
1)2−k, i2−k), i = 1, . . . , 2k, the univariate dyadic intervals of length 2−k, k = 0, 1, . . ..
Then the univariate Haar system H = {hm}m∈N on I is given by h1 = χI , and

h2k−1+i = 2(k−1)/2(χ∆k,2i−1
− χ∆k,2i

), i = 1, . . . , 2k−1, k ∈ N.

As is well known, the Haar functions hm with m ≥ 2 can also be indexed by their sup-
ports, and identified with the appropriately scaled shifts and dilates of a single function,
the centered Haar wavelet

h0 := χ[−1/2,0] − χ[0,1/2]. (6)

Indeed,
h∆k−1,i

:= h2k−1+i = |∆k−1,i|−1/2h0(2k−1 · −i+ 1/2)

for i = 1, . . . , 2k−1, and k ∈ N. The above introduced enumeration of the Haar functions
hm is the natural ordering used in the literature, however, one can also define H as the
union of dyadic blocks

H = ∪∞k=0Hk, H0 = {h1}, Hk = {h∆k−1,i
: i = 1, . . . , 2k−1}, k ∈ N,

and allow for arbitrary orderings within each block Hk. Below, we will work with the
multivariate counterparts of the spaces

Sk = span({hm}2k

m=1) = span({χ∆k,i
}2k

i=1), k = 0, 1, . . . ,

of piecewise constant functions with respect to the uniform dyadic partition Tk = {∆k,i :
i = 1, . . . , 2k} of step-size 2−k on the unit interval I, which we call for short dyadic step
functions of level k.
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Consider now the isotropic multivariate Haar system Hd on the d-dimensional cube
Id, d > 1, which we define in a blockwise fashion as follows. Let the partition T dk be the
set of all dyadic cubes of side-length 2−k in Id. Each cube in T dk is the d-fold product of
univariate ∆k,i, i.e.,

T dk = {∆k,i := ∆k,i1 × . . .×∆k,id : i = (i1, . . . , id) ∈ {1, . . . , 2k}d}.

The set of all piecewise constant functions on T dk is denoted by Sdk . With each ∆k−1,i ∈
T dk−1, i ∈ {1, . . . , 2k−1}d, k ∈ N, we can associate a set Hd

k,i ⊂ Sdk of 2d − 1 multivariate
Haar functions with support ∆k−1,i, given by all possible tensor products

ψk,i1(x1) · ψk,i2(x2) · . . . · ψk,id(xd), ψk,i = h∆k−1,i
or 2(k−1)/2χ∆k−1,i

where at least one of the ψk,i equals h∆k−1,i
.

The blocks Hd
k that define the d-dimensional Haar system

Hd = ∪∞k=0H
d
k

are given as follows: The block Hd
0 is exceptional, and consists of the single constant

function χId . The block Hd
1 coincides with Hd

1,1 and consists of 2d − 1 Haar functions
(we use the notation 1 = (1, . . . , 1), 2 = (2, . . . , 2), etc.). For general k ≥ 2, the block

Hd
k := ∪∆k−1,i∈T dk−1

Hd
k,i

consists of (2d − 1)2(k−1)d Haar functions which we call Haar functions of level k. It is
obvious that

Sdk = span(∪kl=0H
d
l ),

and that Hd is a complete orthonormal system in L2(Id). Since each Haar function
in Hd has support on a d-dimensional cube, we call this system isotropic Haar system
(in contrast to the d-dimensional tensor-product Haar system, where the supports of
the Haar functions are d-dimensional dyadic rectangles). As mentioned before for the
univariate case, the ordering of the multivariate Haar functions within the blocks Hd

k

can be arbitrary. The statements of Theorems 1 and 2 hold for any enumeration of Hd

as long as the enumeration does not violate the natural ordering by level k.
The Besov spaces Bs

p,q,1(Id) considered in this section are defined for s > 0, 0 < p, q ≤
∞, as the set of all (equivalence classes of) Lebesgue measurable functions f : Id → R
for which the quasi-norm

‖f‖Bsp,q,1 := ‖f‖Lp(Id) + ‖t−s−1/qω(t, f)p‖Lq(I)

is finite. Here,
ω(t, f)p := sup

0<|y|≤t
‖∆yf‖Lp(Idy ), t > 0,

stands for the first-order Lp modulus of smoothness, where

∆yf(x) := f(x+ y)− f(x), x ∈ Idy := {z ∈ Id : z + y ∈ Id}, y ∈ Rd,
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denotes the first-order forward difference. Here and throughout the paper, we adopt
the following notational convention: If the domain is Id, we omit the domain in the
quasi-norm notation, e.g., we write ‖ · ‖Lp instead of ‖ · ‖Lp(Id). Also, by c, C we denote
generic positive constants that may change from line to line, and, unless stated otherwise,
depend on p, q, s only. The notation A ≈ B is used if cA ≤ B ≤ CA holds for two such
constants c, C.

For the case 0 < p < 1, 0 < q <∞ we are interested in, Bs
p,q,1(Id) is a quasi-Banach

space equipped with a γ-quasi-norm, where γ = min(p, q), meaning that ‖ · ‖Bsp,q,1 is
homogeneous and satisfies

‖f + g‖γBsp,q,1 ≤ ‖f‖
γ
Bsp,q,1

+ ‖g‖γBsp,q,1 .

Similarly, the Lp quasi-norm is a p-quasi-norm if 0 < p ≤ 1. All spaces introduced in
the sequel have γ-quasi-norms for some suitable γ ∈ (0, 1].

For the parameter region (1), the spaces are nontrivial only if s < 1/p. Indeed, if
f ∈ Bs

p,q,1(Id) for some s ≥ 1/p then using the properties of the first-order Lp modulus

of smoothness we have ω(t, f)p = o(t1/p), t → 0, which in turn implies ω(t, f)p = 0 for
all t > 0 and f(x) = ξ for some constant ξ ∈ R almost everywhere on Id. From now on,
we can therefore restrict ourselves to 0 < s < 1/p in (1).

In this section we will exclusively work with an equivalent quasi-norm based on
approximation techniques using piecewise constant approximation on dyadic partitions.
Let

Ek(f)p := inf
s∈Sdk
‖f − s‖Lp , k = 0, 1, . . . ,

denote the best approximations to f ∈ Lp(Id) with respect to Sk. From [5, Theorem 6]
for d = 1, and [1, Theorem 5.1] for d > 1 we have that

‖f‖As
p,q,1

:= ‖f‖Lp + (
∞∑
k=0

(2ksEk(f)p)
q)1/q (7)

provides an equivalent quasi-norm on Bs
p,q,1(Id) for all 0 < p < 1, 0 < q < ∞, 0 <

s < 1/p. This norm equivalence automatically implies that the set of all dyadic step
functions

Sd := span(Hd) = span({Sdk}∞k=0) (8)

is dense in Bs
p,q,1(Id) for all those parameter values. Note that in [1] the case 1 ≤ s < 1/p

is formally excluded in the formulations but the proofs in [1] extend to this parameter
range as well.

At the heart of the counterexamples used for the proof of Theorem 1 is the following
simple observation which we formulate as

Lemma 1 Let (Ω,A, µ) be a finite measure space, and f ∈ Lp(Ω) := Lp(Ω,A, µ), 0 <
p ≤ 1, be supported on Ω′ ∈ A, where µ(Ω′) ≤ 1

2
µ(Ω). Then

‖f‖Lp(Ω) = inf
ξ∈R
‖f − ξ‖Lp(Ω),

i.e., best approximation by constants in Lp(Ω) is achieved by setting ξ = 0.
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Proof. Indeed, under the above assumptions and by the inequality |a+ b|p ≤ |a|p + |b|p
we have

‖f − ξ‖pLp(Ω) =

∫
Ω′
|f(x)− ξ|p dµ(x) + µ(Ω\Ω′)|ξ|p ≥

∫
Ω′

(|f(x)− ξ|p + |ξ|p) dµ(x)

≥
∫

Ω′
|f(x)|p dµ(x) = ‖f‖pLp(Ω)

for any ξ ∈ R, with equality for ξ = 0. This gives the statement. 2

Note that the equivalence (up to constants depending on parameters but not on f)
between Lp quasi-norms and best approximations by constants holds also for p ≥ 1 and
under weaker assumptions on the support size of f (e.g., µ(Ω′)/µ(Ω) ≤ δ < 1 would
suffice). We will apply this lemma to our examples of dyadic step functions constructed
below, and to the Lebesgue measure on dyadic cubes in Id, where the step functions
are not constant. Extensions to higher degree polynomial and spline approximation are
possible as well (see the proof of the Lemma on p. 535 in [4] for d = 1).

If Hd is a Schauder basis in a quasi-Banach space X of functions or distributions
defined on Id then necessarily Sd = span(Hd) ⊂ X and any dyadic step function g ∈ Sd
has a unique Haar expansion given by

g(x) =
∑
h∈Hd

ch(g)h(x), ch(g) :=

∫
Id
gh dx. (9)

Since for g ∈ Sd only finitely many coefficients ch(g) do not vanish, the summation in
(9) is finite, and there are no convergence issues. Thus, for the Schauder basis property
of Hd in X to hold, the coefficient functionals ch(g) must be extendable to elements in
X ′, and the level k partial sum operators

(Pkg)(x) =
k∑
l=0

∑
h∈Hd

l

ch(g)h(x), k = 0, 1, . . . , (10)

must be extendable to uniformly bounded linear operators in X. When applied to
the case X = Bs

p,q,1(Id) considered in this section, this explains that the statements in
Theorem 1 i)-ii) imply the failure of the Schauder basis property of Hd in Bs

p,q,1(Id) for
the associated parameter ranges. The same is true for X = Bs

p,q(I
d) and Theorem 2

considered in Section 3.
For X = L1(Id), Pk extends to a bounded projection on L1(Id) with range Sdk , and

with constant values on the dyadic cubes in T dk explicitly given by averaging. This
comes in handy when computing Pkf for concrete functions f . Indeed, the constant
values taken by Pkf on dyadic intervals in T dk are given by

Pkf(x) = av∆(f), x ∈ ∆, ∆ ∈ T dk , f ∈ L1(Id), (11)

where the functionals

av∆(f) := 2kd
∫
Id
χ∆f dx = 2kd

∫
∆

f dx, ∆ ∈ T dk , k = 0, 1, . . . , (12)
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represent the average value of f on dyadic cubes (we will call them for short average
functionals). Note that coefficient functionals ch are finite linear combinations of average
functionals as defined in (12), vice versa. Finally, for X = L2(Id) ⊂ L1(Id) the level k
partial sum operator Pk realize the orthoprojection onto Sdk .

2.2. Proof of Theorem 1: Positive results

For d = 1, the cases in Theorem 1, where the Schauder basis property can be
established, are covered by [4]. The proof for d > 1 does not hold surprises, we give it
for completeness. By density of Sd = span(Hd) in the quasi-Banach space Bs

p,q,1(Id), it
is sufficient to establish the inequality

‖Pg‖As
p,q,1
≤ C‖g‖As

p,q,1
, g ∈ Sd, (13)

for any partial sum operator P of the Haar expansion (9), with a constant C independent
of g and P , for the parameters satisfying (3) or (4). According to our ordering convention
for Hd, any such partial sum operator P can be written, for some k = 0, 1, . . . and some
subset H̄d

k+1 ⊂ Hd
k+1, in the form

Pg = Pkg +
∑

h∈H̃d
k+1

ch(g)h ∈ Sdk+1. (14)

For H̄d
k+1 = ∅, we get P = Pk as partial case.

The first step for establishing (13) is the proof of the inequality

‖Pg‖pLp ≤ C2kd(p−1)
∑

∆∈T dk

‖g‖pL1(∆), (15)

with the explicit constant C = 2d. By (11) and (12), we have

‖Pkg‖pLp =
∑

∆∈T dk

2−kd
(

2kd
∫

∆

g dx

)p
≤ 2kd(p−1)

∑
∆∈T dk

‖g‖pL1(∆).

The remaining h ∈ H̄d
k+1 can be grouped by their supports (which are dyadic cubes

∆ ∈ T dk by construction), where each group may hold up to 2d − 1 Haar functions with
the same supp(h) = ∆ ∈ T dk . Individually, by the definition of the Haar coefficients
ch(g) and the scaling ‖h‖L∞(∆) = 2kd/2 of the Haar functions in Hd

k+1, we obtain for each
term associated with a Haar function in such a group the estimate

‖ch(g)h‖pLp = |ch(g)|p‖h‖pLp(∆) ≤ 2kdp/2‖g‖pL1(∆) · 2
−kd2kdp/2 = 2kd(p−1)‖g‖pL1(∆).

Thus, applying the p-quasi-norm triangle inequality for Lp(I
d) in the appropriate way,

we obtain (15).
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Now we apply the embedding theorem B
d(1/p−1)
p,p,1 (Id) ⊂ L1(Id), with the appropri-

ate coordinate transformation, to the terms ‖g‖pL1(∆) (the stronger, optimal embedding

B
d(1/p−1)
p,1,1 (Id) ⊂ L1(Id) is covered by [1, Theorem 7.1]). This gives

‖g‖pL1(∆) ≤ C2kd(1−p)(‖g‖pLp(∆) +
∞∑
l=0

2ld(1−p)Ek+l(g)pp,∆)

for each ∆ ∈ T dk , where

Ek+l(g)p,∆ := inf
s∈Sdk+l

‖g − s‖Lp(∆), l = 0, 1, . . . ,

denotes the local best Lp approximation by dyadic step functions restricted to cubes ∆
from T dk . Since

‖g‖pLp =
∑

∆∈T dk

‖g‖pLp(∆), Ek+l(g)pp =
∑

∆∈T dk

Ek+l(g)pp,∆, l = 0, 1, . . . ,

after substitution into (15), we arrive at the estimate

‖Pg‖pLp ≤ C(‖g‖pLp + 2kd(p−1)

∞∑
l=k

2ld(1−p)El(g)pp) (16)

for the Lp quasi-norm of any partial sum Pg.
With the auxiliary estimate (16) at hand, we turn now to the estimate of the Besov

quasi-norm of g − Pg. Since Pg ∈ Sdk+1, we have

El(g − Pg)p = El(g)p, l > k,

while for l ≤ k the trivial bound

El(g − Pg)p ≤ ‖g − Pg‖Lp(Id)

will suffice. This gives

‖g − Pg‖As
p,q,1

= ‖p− Pg‖Lp + (
∞∑
l=0

(2lsEl(g − Pg)p)
q)1/q

≤ C

(
2ks‖g − Pg‖Lp + (

∞∑
l=k+1

(2lsEl(g)p)
q)1/q

)
, (17)

uniformly for all P and g ∈ Sd.
To deal with the term ‖g − Pg‖Lp , we introduce the element sk ∈ Sdk of best Lp

approximation, i.e.,
‖g − sk‖Lp = Ek(g)p,
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and estimate with (16) and Psk = Pksk = sk as follows:

‖g − Pg‖pLp ≤ ‖g − sk‖pLp + ‖P (g − sk)‖pLp

≤ ‖g − sk‖pLp + C(‖g − sk‖pLp(Id)
+ 2kd(p−1)

∞∑
l=k+1

2ld(1−p)El(g − sk)pp)

≤ C2kd(p−1)

∞∑
l=k

2ld(1−p)El(g)pp. (18)

Thus, since s = d(1/p− 1), (d− 1)/d < p < 1, and q/p ≤ 1 according to (4), for the
first term in the right-hand side of (17) we get

2kd(1/p−1)‖g−Pg‖Lp ≤ C

( ∞∑
l=k

2ld(1−p)El(g)pp

)q/p
1/q

≤ C

(
∞∑
l=k

(2ld(1/p−1)El(f)p)
q

)1/q

,

where the inequality

∞∑
l=0

al ≤ (
∞∑
l=0

aγl )
1/γ, al ≥ 0, 0 < γ ≤ 1, (19)

has been used with γ = q/p, al = 2ld(1−p)El(g)pp for l ≥ k, and al = 0 for l < k. After
substitution into (43) we arrive at

‖g − Pg‖
A
d(1/p−1)
p,q,1

≤ C

(
∞∑
l=k

(2lsEl(g)p)
q

)1/q

≤ C‖g‖
A
d(1/p−1)
p,q,1

(20)

for all g ∈ Sd if the parameters satisfy (4). Since the quasi-norm in As
p,q,1(Id) is a

min(p, q)-quasi-norm, (20) is equivalent with (13). This proves the Schauder basis prop-
erty for Hd in Bs

p,q,1(Id) for the parameters satisfying (4).
For the parameter range (3), i.e., when d(1/p − 1) < s < 1/p, (d − 1)/d < p ≤ 1,

0 < q <∞, we can apply the Hardy-type inequality

(
∞∑
l=k

apl )
1/p ≤ Cε,q/p2

−kε(
∞∑
l=k

(2lεal)
q))1/q, ε > 0, k = 0, 1, . . . ,

valid for non-negative sequences {al} and all 0 < p, q < ∞. Setting ε = s − d(1/p − 1)
and al = 2ld(1/p−1)El(f)p, from (18) we obtain

2ks‖g − Pg‖Lp ≤ C2k(s−d(1/p−1))(
∞∑
l=k

2ld(1−p)El(g)pp)
1/p ≤ C(

∞∑
l=k

2ldsEl(g)qp)
1/q.

It remains to substitute this into (17) and proceed as above for the parameter range (4).
This concludes the proof of the Schauder basis property for all parameters satisfying (3)
or (4).
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2.3. Proof of Theorem 1: Negative results

We first deal with part i), and follow the proof given in [4] for d = 1. The case
s ≥ 1/p has been discussed before. Let 0 < s < d(1/p− 1), 0 < p < 1, 0 < q <∞, and
assume that F is a bounded linear functional on Bs

p,q,1(Id). For any dyadic cube ∆ ∈ T dk
of side-length 2−k we have by Lemma 1

‖χ∆‖Lp = El(χ∆)p = 2−kd/p, l = 0, . . . , k − 1, El(χ∆)p = 0, l = k, k + 1, . . . ,

and consequently

‖χ∆‖As
p,q,1

= 2−kd/p(1 + (
k−1∑
l=0

2lsq)1/q ≤ C2k(s−d/p), ∆ ∈ T dk , k = 0, 1, . . . .

By linearity and boundedness of F this implies

|F (χ∆)| = |
∑

∆′∈T dl : ∆′⊂∆

F (χ∆′ | ≤
∑

∆′∈T dl : ∆′⊂∆

|F (χ∆′ |

≤ C
∑

∆′∈T dl : ∆′⊂∆

‖χ∆′‖As
p,q,1
≤ C2(l−k)d2l(s−d/p) = C2−kd2l(s−d(1/p−1)), l > k,

for any given ∆ ∈ T dk . Here C also depends on F . If we let l→∞, we obtain F (χ∆) = 0
for all dyadic cubes, and by linearity F (g) = 0 for all g ∈ Sd = span(Hd). Since the
dyadic step functions are dense in Bs

p,q,1(Id), this shows F = 0, i.e., the dual of Bs
p,q,1(Id)

is trivial.
The counterexamples proving the statement in part ii) of Theorem 1 are new even

for d = 1 (actually, subcase b) disproves our conjecture concerning the parameter range
p < q ≤ 1 made in [4]). Consider first a), i.e., assume that s = d(1/p− 1), (d− 1)/d <
p < 1, and 1 < q <∞. Proving that the coefficient functionals in (9) cannot be extended

boundedly from Sd to B
d(1/p−1)
p,q,1 (Id) is the same as proving this for the average functionals

av∆ defined in (12) for arbitrary dyadic cubes and g ∈ Sd ⊂ L1(Id). Since for the above

parameter range the Besov space B
d(1/p−1)
p,q,1 (Id) is not embedded into L1(Id), see [4, 5, 1]

for the corresponding embedding theorems, we see the problem.
We provide the argument for the average functional avId associated with the dyadic

cube ∆ = Id ∈ T d0 , by showing that there is a sequence gk ∈ Sd of dyadic step functions

which is uniformly bounded in B
d(1/p−1)
p,q,1 (Id), and such that

avId(gk) =

∫
Id
gk dx→∞, k →∞. (21)

By dilating and shifting these gk to fit their supports into an arbitrarily given dyadic
cube ∆, similar examples can be obtained for all average functionals in (12). Since we do
not attempt to show quantitative lower bounds for the divergence in (21), the following
construction suffices for d > 1, the modification for d = 1 is stated below. Set

gk =
k∑
j=1

ajχ∆j,2
, aj = 2jdj−1, j ∈ N. (22)

11



This is a dyadic step function which takes positive values aj on a sequence of non-
overlapping dyadic cubes ∆j,2, j = 1, . . . , k, located along the main diagonal of Id, and
is otherwise zero. Thus,∫

Id
gk dx =

k∑
j=1

2−jdaj =
k∑
j=1

j−1 ≥ c log(k + 1),

and (21) is established.
For d > 1 these gk also satisfy the assumptions of Lemma 1 with respect to any

dyadic cube ∆, where gk is not constant (if gk is constant on a dyadic cube, its best Lp
approximation by constants on this cube is obviously zero). This allows us to compute
the best approximations of gk exactly:

El(gk)p = ‖
k∑

j=l+1

ajχ∆j,2
‖Lp = (

k∑
j=l+1

apj2
−jd)1/p

{
≤ C2−ld(1/p−1)(l + 1)−1, l = 0, . . . , k − 1
= 0, l = k, k + 1, . . .

Substituted into the expression for the A
d(1/p−1)
p,q,1 quasi-norm, this gives

‖gk‖q
A
d(1/p−1)
p,q,1

≤ C(
k−1∑
l=0

(l + 1)−q)1/q, k = 1, 2, . . . ,

which shows the uniform boundedness of the sequence gk in A
d(1/p−1)
p,q,1 since q > 1 in case

a). Here, we have silently used that ‖gk‖Lp = E0(gk)p by Lemma 1. For d = 1, to enable
the application of Lemma 1 also in this case, a modified definition of the gk, e.g.,

gk =
k∑
j=1

aj+1χ∆j+1,3
,

will do, the details are left to the reader. Note that the above sequences gk converge
to a limit function f ∈ B

d(1/p−1)
p,q,1 (Id) which does not belong to L1(Id), for d = 1 similar

examples were used in [4].
In case b), i.e., when s = d(1/p − 1), (d − 1)/d < p < 1, p < q ≤ 1, the coefficient

functionals in (9) and the dyadic averaging functionals (12) can be extended to bounded

linear functionals on B
d(1/p−1)
p,q,1 (Id). Thus, the level k partial sum operators Pk defined in

(10) can be extended to bounded operators acting in B
d(1/p−1)
p,q,1 (Id). However, they are

not uniformly bounded as will be shown by a different type of examples. Fix k = 1, 2, . . .,
and consider the 2(k−1)d dyadic cubes ∆k,i in T dk for which all entries of i are odd. Select
dyadic subcubes ∆̃k+j of shrinking side-length 2−k−j, j = 1, 2, . . . , 2(k−1)d, one in each of
them. Then we define

gk =
2(k−1)d∑
j=1

bk,jχ∆̃k
, bk,j = 2(k+j)dj−1/p, j = 1, . . . , 2(k−1)d.

12



will do. The construction of this gk is such that Lemma 1 is again applicable, locally
on each dyadic cube where gk is not constant. This allows us to compute the best
approximations El(gk)p as follows: For l = 0, . . . , k, we have

El(gk)
p
p = ‖gk‖pLp =

2(k−1)d∑
j=1

2−(j+k)dbpk,j ≤ C2−kd(1−p) = C2−ksp.

For l = k + 1, . . . , k + 2(k−1)d − 1, we get similarly

El(gk)
p
p =

2(k−1)d∑
j=1+l−k

2−(k+j)dbpk,j ≤ C2−ld(1−p)(l− k)−p = C2−ksp · 2−(l−k)sp(l− k)−p(l− k)−1,

while El(gk)
p
p = 0 for l ≥ k+ 2(k−1)d. Thus, with these formulas for the best approxima-

tions El(gk)p and the substitution j = l − k for l > k, one arrives at

‖gk‖Ad(1/p−1)
p,q,1

≤ C2−ks

1 + (
k∑
l=0

2lsq + 2ksq
2(k−1)d−1∑

j=1

2jsq · 2−jsqj−q/p)1/q


≤ C(1 + (

∞∑
j=1

j−q/p)1/q) ≤ C <∞, k = 1, 2, . . . ,

since q > p.
On the other hand, by (11) the level k partial sum Pkgk of gk is constant on dyadic

cubes in T dk , and equals 2kd · 2−(k+j)dbk,j = 2kdj−1/p on the cube ∆k,i containing ∆̃k+j,
j = 1, . . . , 2(k−1)d, and vanishes on all cubes ∆k,i for which at least one entry in i is even.
The latter property ensures that Lemma 1 is also applicable to Pkgk, and gives

El(Pkgk)
p
p = ‖Pkgk‖pLp =

2(k−1)d∑
j=1

2−kd · 2kdpj−1 = 2−ksp
2(k−1)d∑
j=1

j−1 ≥ c2−kspk

for l = 0, 1, . . . , k − 1. Consequently,

‖gk‖Ad(1/p−1)
p,q,1

≥ c2−ksk1/p(
k−1∑
l=0

2lsq)1/q ≥ ck1/p,

which shows that the partial sum operators Pk are not uniformly bounded on B
d(1/p−1)
p,q,1 (Id)

for (d− 1)/d < p < q. This concludes the proof of Theorem 1.

We have not made any attempt to obtain the exact growth of norms of partial sum
operators in part b) of Theorem 1. For s = d(1/p− 1) and (d− 1)/d < p < q ≤ 1, the
above considerations give the lower bound

‖Pk‖Bd(1/p−1)
p,q,1 →B

d(1/p−1)
p,q,1

≥ ck1/p, j = 1, 2, . . . ,
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which is certainly not optimal. If one takes bk,j = 2(k+j)dj−α with α = 1/q+ ε and small
enough ε > 0 in the above definition of gk then the better estimate

‖Pk‖Bd(1/p−1)
p,q,1 →B

d(1/p−1)
p,q,1

≥ c2k(1/q−1/p−ε), k = 1, 2, . . . ,

results, where c > 0 depends also on ε.

On a final note: In the literature (with the exception of [4, 5]), for 0 < p < 1 the Besov
spaces Bs

p,q,r(I
d) defined as subspaces of Lp(I

d) using r-th order moduli of smoothness
are only considered for the values 0 < s < r (see, e.g., [1, 8]). The reason is two-fold:
It is known that for r ≤ s < r + 1/p− 1, 0 < q < ∞, the spaces Bs

p,q,r(I
d) are strange:

With the exception of polynomials of degree < r, smooth functions from Cr(Id) cannot
belong to Bs

p,q,r(I
d), while Cr−2-smooth dyadic splines of degree r− 1 are dense in these

spaces. This is counter-intuitive, and makes their usefulness in applications doubtful.
Moreover, the spaces Bs

p,q(I
d) defined by the Fourier-analytic approach that dominate

the scene coincide with Bs
p,q,r(I

d) (in the sense of having equivalent quasi-norms) only
in the range d(1/p − 1) < s < r. In other words, our new results on the properties of
the Haar system Hd in Besov spaces Bs

p,q,1(Id) for the limiting case s = d(1/p − 1) do
not automatically answer the same question for the scale Bs

p,q(I
d). The latter will be

considered in the next section.

3. Proof of Theorem 2

3.1. Definitions and preparations

The role of the Haar system as Schauder basis in the Besov spaces Bs
p,q(I

d) with
0 < p ≤ 1, 0 < q < ∞, s ∈ R, defined in Fourier-analytic terms has been examined
by Triebel [7] (see also [8, Theorem 1.58]) who settled all but the limiting cases s =
d(1/p − 1), d/(d + 1) < p ≤ 1, 0 < q < ∞, and s = 1, d/(d + 1) ≤ p ≤ 1, 0 < q < ∞.
Theorem 2 gives now answers in the limiting cases as well.

The definition of Bs
p,q(I

d) is reduced by restriction to the definition of Bs
p,q(Rd):

Bs
p,q(I

d) = {f = f̃ |Id : f̃ ∈ Bs
p,q(Rd)}, ‖f‖Bsp,q = inf

f̃ : f=f̃ |
Id

‖f̃‖Bsp,q(Rd). (23)

The definition of Bs
p,q(Rd) will be given in terms of atoms, for the equivalent definition in

Fourier-analytic terms and a short review of the various definitions for spaces on Rd and
on domains we refer to [8, Chapter 1]. Since we are only interested in the limiting cases
of low smoothness s = d(1/p−1) < 1 and s = 1 in (1), some simplifications are possible.
Let us go to the details. For the parameter range d(1/p − 1) ≤ s ≤ 1 of interest, take
any σ > s (note that for s < 1 it is always possible to take s < σ ≤ 1), and consider the
set of all Hölder class functions a ∈ Cσ(Rd) with support in a fixed cube of side-length
C0 > 1 centered at the origin, and with Cσ(Rd) norm bounded by C0. Denote this set
for short by CσC0

. Functions of the form

aj,i(x) = a(2jx− i), a ∈ CσC0
, i ∈ Zd, (24)
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are called atoms of level 0 if j = 0, and atoms of level j = 1, 2, . . . if additionally∫
Rd
aj,i dx =

∫
Rd
aj,i dx = 0, j ∈ N.

This latter additional condition is necessary for the following statement only if s =
d(1/p− 1), the case we are most interested in.

Lemma 2 Let d(1/p− 1) ≤ s < σ, d/(d+ 1) < p < 1, 0 < q <∞, and c0 > 1 be fixed.
Then f̃ ∈ Bs

p,q(Rd) if and only if

f̃(x) =
∞∑
j=0

∑
i∈Zd

cj,iaj,i(x) (25)

(unconditional convergence in S ′(Rd)) for some atoms aj,i specified by (24) and with
coefficients such that

∞∑
j=0

2j(s−d/p)q

(∑
i∈Zd
|cj,i|p

)q/p

<∞.

Moreover,

‖f̃‖+
Bsp,q(Rd)

:= inf

(
∞∑
j=0

2j(s−d/p)q(
∑
i∈Zd
|cj,i|p)q/p

)1/q

≈ ‖f‖Bsp,q(Rd), (26)

where the infimum is taken with respect to all possible representations (25), is an equiv-
alent quasi-norm on Bs

p,q(Rd). The constants in the norm equivalence depend on σ,C0,
and p, q, s.

This statement is covered by [8, Corollary 1.23 (i)], where references to the history
of atomic characterizations of function spaces can be found. Note that our atoms corre-
spond to the 1σ-atoms (j = 0) and (s, p)σ,1-atoms (j = 1, 2, . . .) of Definition 1.21 in [8]
but are scaled differently. Instead, the necessary scaling has been incorporated in the
definition of the atomic quasi-norm (26). Below, we will apply this lemma with values
σ > 1, and appropriately fixed C0, to obtain upper bounds for (atomic) Besov norms.

In some cases, especially for obtaining lower bounds for Bs
p,q(Rd) quasi-norms, it is

more convenient to use characterizations in terms of local means

κ(t, f̃)(x) = (κt ∗ f̃)(x) :=

∫
Rd
κt(x− y)f̃(y) dy, κt(x) := t−dκ(t−1x), t > 0, (27)

where the kernel κ ∈ C∞(Rd) has support in the cube [−1/2, 1/2]d, and satisfies

κ∨(ξ) 6= 0, 0 < |ξ| < ε, (Dακ∨)(0) = 0 if |α| ≤ s, (28)

for some ε > 0. Here, κ∨ denotes the Fourier transform of κ. For s < 1, the moment
condition in (28) reduces to requiring∫

Rd
κ(x) dx = 0,
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while for s = 1 we additionally need also orthogonality to linear polynomials:∫
Rd
xiκ(x) dx = 0, i = 1, . . . , d.

We also fix another kernel κ0 ∈ C∞(Rd) with support in the cube [−1/2, 1/2]d which,
instead of (28), satisfies

κ∨0 (0) =

∫
Rd
κ0(x) dx > 0.

By applying [8, Theorem 1.10], we have the following characterization in the range
of parameters of interest to us.

Lemma 3 Let 0 < s ≤ 1, 0 < p ≤ 1, 0 < q < ∞, and let the kernels κ, κ0 satisfy the
above conditions. Then

‖f̃‖∗Bsp,q(Rd) :=

(
‖κ0(1, f̃)‖q

Lp(Rd)
+
∞∑
j=1

2jsq‖κ(2−j, f̃)‖q
Lp(Rd)

)1/q

≈ ‖f̃‖Bsp,q(Rd).

The constants in the norm equivalence depend on κ, κ0, and p, q, s.

We conclude this subsection by a technical result which shows how to reduce esti-
mates for partial sum operators P associated with the Haar expansion (9) of functions
on Id to estimates for similar operators acting on functions defined on Rd. To this end,
to any P given by (14) we associate its extension

(P̃ f̃)(x) = (P̃kf̃)(x) +
∑

h∈H̄d
k+1

ch(f)h =

{
(P (f̃ |Id))(x), x ∈ Id,
av∆(f̃), x ∈ ∆ 6⊂ Id,

(29)

for f̃ ∈ L1,loc(Rd), where ∆ runs through all dyadic cubes ∆ of side-length 2−k in Rd\Id.
In other words, we define P̃ outside Id by P̃k, the natural extension of the level k partial
sum operator Pk to functions on Rd. Other extensions are possible, this one simplifies
some considerations below. In particular, P̃ f̃ has the following properties which we use
throughout the rest of this subsection. First of all, it is piecewise constant on dyadic
cubes ∆ ∈ T̃ dk outside Id and ∆ ∈ T dk+1 inside Id. Here, and in the following, T̃ dk denotes

the collection of all dyadic cubes of side-length 2−k in Rd (thus, T dk = T̃ dk ∩Id). Moreover,
in analogy to (11), we have

P̃kf̃(x) = av∆(f̃); x ∈ ∆ ∈ T̃ dk , (30)

while by the definition of the Haar functions for each h ∈ Hd
k+1 we have

|ch(f̃)h| =

∣∣∣∣∣∣
∑

∆∗∈T dk+1: ∆∗⊂supp(h)

αh,∆∗av∆∗(f̃)

∣∣∣∣∣∣ ,
∑

∆∗∈T dk+1: ∆∗⊂supp(h)

αh,∆∗ = 0. (31)
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Because of shift-invariance, depending on the type of Haar function h and the location of
the cube ∆∗ relative to the cube supp(h) containing it, there appear only finitely many
different coefficient sets {αh,∆∗} in (31). Consequently, the restriction of the difference

|(P̃ − P̃k)f̃ | ≤
∑

h∈H̄d
k+1

|ch(f̃)h|

to any ∆∗ ∈ T dk+1 can be bounded by the sum of differences |av∆′(f̃) − av∆”(f̃)| of
averages with respect to neighboring dyadic cubes ∆′,∆′′ ∈ T dk+1 belonging to the same
dyadic cube of side-length 2k as ∆∗. This will be used in subsection 3.3 .

From now on, the notation f̃ ∈ Y is reserved for functions in Bs
p,q(Rd) such that

f̃ ∈ S ′(Rd) is represneted by an atomic decomposition (25) satisfying

cj,i = 0 if supp(aj,i) ⊂ Rd\Id. (32)

For a given f belonging to a Besov space Bs
p,q(I

d) for which Lemma 2 holds, we write

f̃ ∈ Yf if f̃ ∈ Y and f̃ |Id = f . Then, by the definition of atomic quasi-norms we have

‖f‖Bsp,q ≥ c inf
f̃ : f=f̃ |

Id

‖f̃‖+
Bsp,q(Rd)

= c inf
f̃∈Yf∩Bsp,q(Rd)

‖f̃‖+
Bsp,q(Rd)

. (33)

Lemma 4 Assume that the parameters p, q, s are such that Lemma 2 and 3 hold. Then
the operator P defined in (14) satisfies

‖Pf‖Bsp,q ≤ C‖f‖Bsp,q , f ∈ Bs
p,q(I

d), (34)

with a constant independent of P , if its extension P̃ defined in (29) satisfies

‖P̃ f̃‖∗Bsp,q(Rd) ≤ C‖f̃‖+
Bsp,q(Rd)

, f̃ ∈ Y ∩Bs
p,q(Rd), (35)

with a constant independent of P .

Proof. This follows by the locality properties of partial sum operators. By (35),
P̃ f̃ ∈ Bs

p,q(Rd) is meaningfully defined for f̃ ∈ Yf∩Bs
p,q(Rd). Since f̃ |Id = f , by definition

of P̃ we also have
P̃ f̃ |Id = Pf.

Thus, P̃ f̃ is an extension of Pf , and by the definition of the Bs
p,q quasi-norm, by Lemma

3, and by (35) we get

‖Pf‖Bsp,q ≤ ‖P̃ f̃‖Bsp,q(Rd) ≤ C‖P̃ f̃‖∗Bsp,q(Rd) ≤ C‖f̃‖+
Bsp,q(Rd)

.

It remains to take the infimum with respect to f̃ ∈ Yf ∩ Bs
p,q(Rd), and to apply (33).

Lemma 4 is proved. 2
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3.2. The limiting case s = 1

We first deal with the case s = 1, d/(d+ 1) ≤ p ≤ 1, 0 < q <∞, and show that for
f(x) = x1 + . . .+ xd we have

‖f − Pkf‖B1
p,q
≥ c > 0, k = 0, 1, . . . , (36)

for some positive constant c. Since f 6∈ span(Hd), we have f − Pkf 6= 0, and it suffices
to consider large enough k.

To obtain the lower bounds needed for (36), we compute lower estimates for the Lp
quasi-norm of κ(2−(k+1), G̃k)(x) for any extension G̃k of f−Pkf with a kernel κ as defined
in subsection 3.1 for s = 1 (in particular, κ is orthogonal to linear polynomials (28)).
To this end, we observe that inside Id the difference G̃k(x) = (f −Pkf)(x) coincides a.e.
with the restriction to Id of a suitably dilated and scaled single integer-shift invariant
function f0(x) given by

f0(x+ i) = f(x)− d/2, x ∈ (0, 1]d, i ∈ Z.

Indeed, we have
(f − Pkf)(x) = 2−kf0(2kx), x ∈ Id,

which can be checked from the formula

(f − Pkf)(x) = f(x)− av∆(f) = f(x)− f(x∆) = 2−kf(2k(x− x∆)), x ∈ ∆,

where ∆ is an arbitrary cube in T dk , and x∆ denotes the center of ∆.
Using the invariance of f −Pkf with respect to shifts of the form 2−kj inside Id, and

the fact that κ2−(k+1)
has support in a cube of side-length 2−(k+1) centered at the origin,

we see that

κ(2−(k+1), G̃k)(x) = 2−kκ(2−(k+1), f0(2k·))(x) = 2−kκ(1/2, f0)(2kx)

holds for all x ∈ [2−(k+1), 1− 2−(k+1)]d. Thus, for k > 1 we obtain

‖κ(2−(k+1), G̃k)‖Lp(Rd) ≥ 2−k‖κ(1/2, f0)(2k·)‖Lp([2−(k+1),1−2−(k+1)]d)

≥ 2−k((2k − 2)/2k)d/p‖κ(1/2, f0)‖Lp ≥ c2−k,

for some constant c > 0 depending on the kernel and p. By Lemma 3 we conclude that

‖f − Pkf‖B1
p,q
≥ c2k+1 inf

G̃k

‖κ(2−(k+1), G̃k)‖Lp(Rd) ≥ c, k > 1,

which proves (36).

We finish the consideration for s = 1 with a remark concerning the special case
p = d/(d + 1). In the proof of (36) we have not made explicit use of the restriction
d/(d+ 1) ≤ p ≤ 1. That (36) contradicts the Schauder basis property of Hd in B1

p,q(I
d)

as claimed in Theorem 2 is clear if d/(d + 1) < p ≤ 1 since for this parameter range
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B1
p,q(I

d), 0 < q <∞, is continuously embedded into L1(Id) which ensures that the Pk are
the right candidate to be considered for partial sum operators. Moreover, the embedding
also implies together with (36) that the set Sd = span(Hd) of dyadic step functions
cannot be dense in B1

p,q(I
d), thus extending the similar statement for 1 < s < 1/p

proved in [7] to the case s = 1.
For p = d/(d + 1), we have d(1/p − 1) = 1 = s, and the continuous embedding

B1
d/(d+1),q(I

d) ⊂ L1(Id) holds only if q ≤ 1. For q > 1, we cannot automatically exclude

the possibility that there are Haar series other than (9) representing the above f in
B1
d/(d+1),q(I

d). Nor do we know for sure if Sd is dense in B1
d/(d+1),q(I

d). However, even in

this special case Hd cannot be a Schauder basis since case a) in part ii) of Theorem 2
applies (for the proof, see the next subsection).

We finally note that an example similar to f(x) = x1 + . . . + xd has been used in
[3, Section 4] for showing lower bounds for Bs

p,q(Rd) quasi-norm of the level k partial

sum operators P̃k if max(d(1/p − 1), 1) < s < 1/p. This implies that the Haar system
on Rd is not a basic sequence in Bs

p,q(Rd) for this parameter range, and strengthens the
result of Triebel [7]. As far as we know, the uniform boundedness of the partial sum
operators P̃k on B1

p,q(Rd) has not been settled. This question is also open for B1
p,q(I

d),
as we only showed that f − Pkf does not converge to zero in the B1

p,q(I
d) quasi-norm

for some f ∈ B1
p,q(I

d) but did not provide upper bounds for s = 1).

3.3. The limiting case s = d(1/p− 1)

3.3.1. Counterexamples for p < q <∞
Throughout this subsection, we fix s = d(1/p−1), d/(d+1) ≤ p < 1, and p < q <∞.

In particular, this implies s ≤ 1 (with equality for p = d/(d+ 1)).
We start with the statement in case b) in part ii) of Theorem 2. The corresponding

counterexamples have been suggested to me by T. Ullrich. They are similar to the
counterexamples for Theorem 1 but are now defined by linear combinations of special
atoms. For the latter, we fix a function a(x) =

∏d
i=1 φ(xi), where φ(x) ∈ C∞(R) is

a univariate odd function, supported in [−1, 1], positive for x ∈ (0, 1), and such that
‖a‖Cσ = 1 for some σ > 1. Obviously, if we define the functions aj,i, i ∈ Zd for j ≥ 1 as
in (24) from this a, then, with C0 suitably fixed, they represent atoms of level j ≥ 1, and
we can apply Lemma 2 for any s ≤ 1 to estimate Bs

p,q(Rd) quasi-norms of their linear
combinations.

Consider the family of functions

gk(x) =

nk∑
j=1

j−1/p2(k+j)dak+j,ik,j(x), nk = (2k−2 − 1)d, k = 3, 4, . . . ,

where the multi-indices ik,j, j = 1, . . . , nk, are chosen such that the support centers
xk,j := xk+j,ik,j of the atoms ak+j,ik,j(x) are different, and coincide with the nk interior
vertices of T dk−2. Note that nk ≈ 2kd as k → ∞, and that gk(x) is a finite linear
combination of atoms with different scale parameters whose supports are well-separated.
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By (23) and Lemma 2 we have gk(x) ∈ B
d(1/p−1)
p,q (Id), p < q < ∞, with uniformly

bounded quasi-norm for all k ≥ 3 since

‖gk‖q
B
d(1/p−1)
p,q

≤ ‖gk‖q
B
d(1/p−1)
p,q (Rd)

≤ C(‖gk‖+

B
d(1/p−1)
p,q (Rd)

)q

≤ C

nk∑
j=1

2(k+j)(d(1/p−1)−d/p)(j−1/p2(k+j)d)q

= C

nk∑
j=1

j−q/p ≤ C

nk∑
j=1

j−q/p <∞.

For convenience, we use the same notation gk for the extension by zero of gk to Rd.
On the other hand, since the centers xk,j of the atoms ak+j,ik,j are located at the inte-

rior vertices of T dk−2 and have supports in cubes of side-length 2−(k+j−1), their supports
are well-separated. Moreover, they have the same symmetry properties with respect to
their centers as the function

hd0(x) := h0(x1) · . . . · h0(xd)

has with respect to the origin. Here, h0 is the univariate centralized Haar wavelet defined
in (6). Therefore, the Haar projection Pkgk onto Sdk can easily be computed in explicit
form:

(Pkgk)(x) =

nk∑
j=1

bk,jj
−1/p2(k+j)dhd0(2k(x− xk,j), k = 3, 4, . . . ,

where bk,j is the average value of ak+j,ik,j over the cube in T dk whose lowest vertex coincides
with xk,j. This average value can easily be computed as

bk,j = 2kd
∫

[0,2−k]d
a(2k+jy) dy = 2kd2−(k+j)db0 = b02−jd, j = 1, . . . , nk,

where b0 = (
∫ 1

0
φ(x) dx)d > 0 is a fixed constant. Thus, the formula for Pkgk simplifies

to

(Pkgk)(x) = b02kd
nk∑
j=1

j−1/phd0(2k(x− xk,j)), k = 3, 4, . . . . (37)

In order to get a lower bound for the B
d(1/p−1)
p,q quasi-norm of Pkgk, we next compute

a lower bound for its local mean κ(2−k, Pkgk)(x), where the kernel κ has the properties
required for Lemma 3 to hold. E.g., we could set κ = a(2·) with the above function a
because s < 1 and the dilation factor 2 ensures that supp(κ) ⊂ [−1/2, 1/2]d. Since the
support cubes (denoted by Ik,j) of the terms hd0(2k(x− xk,j)) in the representation (37)
have side-length 2−k+1 and are centered at xk,j ∈ T dk−2, they are still well-separated, and
we have

κ(2−k, Pkgk)(x) = 2(k−1)dj−1/p(κ2−k ∗ hd0(2k(· − xk,j)))(x)

= 2(k−1)dj−1/p2kd(κ(2j·) ∗ hd0(2k(·))(x− xk,j)
= 2(k−1)dj−1/p(κ ∗ hd0)(2k(x− xk,j), x ∈ Ik,j,
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where we have used (24). Since the cubes Ik,j are also well-separated from the boundary
of Id, this lower bound holds for any extension G̃k ∈ S ′(Rd) of Pkgk. Thus, since the
C∞ function κ ∗ hd0 is non-vanishing in a neighborhood of the origin by construction, we
obtain

‖κ(2−k, G̃k)‖pLp(Rd)
≥ c2(k−1)dp

nk∑
j=1

j−12−kd ≥ c2kd(p−1) log(nk) ≥ c2kd(p−1)k.

By definition of Besov quasi-norms on domains and by Lemma 2 we arrive at

‖Pkgk‖Bd(1/p−1)
p,q

≥ c inf
G̃k

‖G̃k‖∗Bd(1/p−1)
p,q (Rd)

≥ c2kd(1/p−1)‖κ(2−k, Gk)‖Lp(Rd) ≥ ck1/p.

This shows that for p < q ≤ 1 the partial sum operators Pk, which are well-defined
on the set of dyadic step-functions Sd and extend by continuity to B

d(1/p−1)
p,q (Id) due

to the continuous embedding B
d(1/p−1)
p,q (Id) ⊂ L1(Id), cannot be uniformly bounded on

B
d(1/p−1)
p,q (Id). This contradicts the Schauder basis property for s = d(1/p−1), p < q ≤ 1,

and finishes the argument for case b).
For case a) of part ii) of Theorem 2, we provide examples analogous to (22) in

subsection 2.3 which show that the average functionals av∆ defined by (12) on the
set of dyadic step functions Sd cannot be extended to bounded linear functionals on
B
d(1/p−1)
p,q (Id) if q > 1. For simplicity, consider ∆ = Id, and define gk = g̃k|Id by the

atomic decomposition

g̃k =
k∑
j=1

bjaj,0, bj = 2jdj−1

This is, up to different coefficient notation and the replacement of characteristic functions
χ∆j,2

by atoms aj,0 defined in (24) with the above function a, the same construction as
in (22). Obviously, by construction

avId(gk) =
k∑
j=1

bjavId(a(2j·)) =
k∑
j=1

bj2
−jdb0 = b0

k∑
j=1

j−1 ≥ c log(k)→∞

as k →∞, while

‖gk‖q
B
d(1/p−1)
p,q

≤ ‖gk‖q
B
d(1/p−1)
p,q (Rd)

≤ C(‖gk‖+

B
d(1/p−1)
p,q (Rd)

)q

≤ C

k∑
j=1

(2j(d(1/p−1)−d/p)j−12jd)q = C

nk∑
j=1

j−q ≤ C <∞,

since 1 < q <∞.

3.3.2. Proof of the Schauder basis property for 0 < q ≤ p

We now turn to case a) in part ii) of Theorem 2, where d/(d+ 1) < p < 1, 0 < q ≤ p,
and 0 < s = d(1/p−1) < 1 can be assumed. Since for this parameter range the set of all
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dyadic step functions is dense in Bs
p,q(I

d), it suffices to prove the uniform boundedness
of the partial sum operators

P̃ = P̃k +
∑

h∈H̄d
k+1

ch(·)h

using Lemma 4, i.e., to establish (35) for all f̃ ∈ Y ∩ Bd(1/p−1)
p,q (Rd). We proceed in

several steps.

Step 1. Using the properties of P̃ f̃ , and in particular (30) and (31), we show that

∞∑
j=k

2jd(1/p−1)q‖κ(2−j, P̃ f̃)‖q
Lp(Rd)

≤ Csqk+1, (38)

where sk+1 is given by

sk+1 := 2−kd

 ∑
∆′,∆′′∈T̃ dk+1:dist∞(∆′,∆′′)=0

|av∆′(f̃)− av∆′′(f̃)|p
1/p

. (39)

In the case j ≥ k, consider any cube ∆ ∈ T̃ dk , and denote the set of its neighbors in
T dk by

n(∆) = {∆̃ ∈ T dk : ∆ ∩ ∆̃ 6= ∅}.

Recall from (30) that P̃kf̃ |∆ = av∆(f̃). Since κ2−j(x − ·) is supported in a cube of
side-length 2−j centered at x and is orthogonal to constants due to the assumed moment
condition for the kernel κ, for j ≥ k and x ∈ ∆ we have

|κ(2−j, P̃ f̃)(x)| = |κ(2−j, P̃ f̃(·)− av∆(f̃))(x)|
≤ |κ(2−j, P̃kf̃(·)− av∆(f̃))(x)|+ |κ(2−j, P̃ f̃ − P̃kf̃)(x)|.

Here, both terms in the right-hand side vanish only if the support cube of κ2−j(x − ·)
intersects with the boundary of any of the dyadic cubes in T̃ dk+1, where the piecewise

constant functions P̃ f̃ , P̃kf̃ may have jumps. The set of these x ∈ ∆ has measure
≤ C2−j2−k(d−1), and due to (30) we have the bound

|κ(2−j, P̃kf̃(·)− av∆(f̃))(x)| ≤ C
∑

∆̃∈n(∆)

|av∆(f̃)− av∆̃(f̃)|,

which in turn can be estimated by the sum of differences |av∆′(f̃)− va∆′′(f̃)| appearing
in (38) with neighboring ∆′,∆′′ ∈ T̃ dk+1 belonging to the union of cubes in n(∆). The
other term is similarly bounded since for x ∈ ∆

|κ(2−j, P̃ f̃ − P̃kf̃)(x)| ≤ C‖
∑

h∈H̄d
k+1:

|ch(f̃)h(·)|‖L∞(∪∆̃∈n(∆)∆̃),
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and we can apply (31). Thus, altogether we arrive at

|κ(2−j, P̃ f̃)(x)| ≤ C
∑′

∆′,∆′′
|av∆′(f̃)− av∆′′(f̃)|, x ∈ ∆ ∈ T̃ dk , j ≥ k, (40)

where
∑′ indicates that the summation extends to all those neighboring dyadic cubes

∆′,∆′′ in T̃ dk+1 which belong to the union of all cubes in n(∆). This bound is only needed
on a subset of ∆ of measure ≤ C2−j2−k(d−1).

From (40) we get for j ≥ k

‖κ(2−j, P̃ f̃)‖p
Lp(Rd)

=
∑

∆∈T̃ dk

‖κ(2−j, P̃ f̃)‖pLp(∆)

≤ C
∑

∆∈T̃ dk

2−j−k(d−1)
∑′

∆′,∆′′
|av∆′(f̃)− av∆′′(f̃)|p

≤ C2k−j2−kd(1−p)
∑

∆′,∆′′∈T̃ dk+1: dist∞(∆′,∆′′)=0

|av∆′(f̃)− av∆′′(f̃)|p

= C2−j2−k(d−1)spk+1,

where we have used that each term |av∆′(f̃)−av∆′′(f̃)|p belongs to at most 3d neighbor-
hoods n(∆). Taking the previous estimate to the power q/p and substituting the result
into the left-hand side of (38) leads to the desired estimate in (38). Indeed,

∞∑
j=k

2jd(1/p−1)q‖κ(2−j, P̃ f̃)‖q
Lp(Rd)

≤ C2k(1/p−d/p)qsqk+1

∞∑
j=k

2−j(1/p−d(1/p−1))q ≤ C2−kdqsqk+1,

since 1/p− d(1/p− 1) < 0 for d/(d+ 1) < p < 1.

Step 2. For 1 ≤ j < k, we start with

‖κ(2−j, P̃ f̃)‖p
Lp(Rd)

≤ ‖κ(2−j, f̃ − P̃ f̃)‖p
Lp(Rd)

+ ‖κ(2−j, f̃)‖p
Lp(Rd)

,

(similarly for j = 0 and κ0(1, P̃ f̃)), and proceed with estimates for the term correspond-
ing to f̃ − P̃ f̃ (after substitution into the expression for the local means quasi-norm, the
other term will be automatically bounded by the right-hand side in (35)). This time we
use the fact that f̃ − P̃ f̃ has zero average on each dyadic cube ∆̃ ∈ T̃ dk , and that the
kernel κ is smooth. With the short-hand notation ∆j

x for the support cube of κ2−j(x−·),
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this yields

|κ(2−j, f̃ − P̃ f̃)(x)| ≤
∑

∆̃∈T̃ dk : ∆̃∩∆j
x 6=∅

∣∣∣∣∫
∆̃

2jdκ2−j(x− y)(f̃ − P̃ f̃)(y) dy

∣∣∣∣
≤

∑
∆̃∈T̃ dk :∆̃∩∆j

x 6=∅

inf
ξ∈R
‖κ2−j(x− ·)− ξ‖L∞(∆j

x∩∆̃)

∫
∆̃

|(f̃ − P̃ f̃)(y)| dy

≤ C2jd2j−k
∑

∆̃∈T̃ dk :∆̃∩∆j
x 6=∅

∫
∆̃

|f̃ − P̃ f̃)(y)| dy

≤ C2jd2j−k
∑

∆̃∈T̃ dk : dist∞(∆̃,∆)≤C12−j

∫
∆̃

|f̃ − P̃ f̃ | dy, x ∈ ∆ ∈ T̃ dk ,

if the constant C1 is suitably chosen depending on d. Since moment conditions of the
kernel κ did not play a role in this part, the estimate will also hold for j = 0 and
κ0(1, f̃ − P̃ f̃).

We next compute the Lp(Rd) quasi-norm of κ(2−j, f̃ − P̃ f̃):

‖κ(2−j, f̃ − P̃ f̃)‖p
Lp(Rd)

=
∑

∆∈T̃ dk

‖κ(2−j, f̃ − P̃ f̃)‖pLp(∆)

≤ C2jdp2(j−k)p
∑

∆∈T̃ dk

2−kd

 ∑
∆̃∈T̃ dk : dist∞(∆̃,∆)≤C12−j

∫
∆̃

|f̃ − P̃ f̃ | dy

p

≤ C2jdp2(j−k)p
∑

∆∈T̃ dk

2−kd
∑

∆̃∈T̃ dk : dist∞(∆̃,∆)≤C12−j

(

∫
∆̃

|f̃ − P̃ f̃ | dy)p

≤ C2jd(p−1)2(j−k)p
∑

∆̃∈T̃ dk

(

∫
∆̃

|f̃ − P̃ f̃ | dy)p

= C2jd(p−1)2(j−k)ps̄pk, j = 1, . . . , k − 1,

where in the change of summation step we used that the number appearances of integrals
over any fixed ∆̃ ∈ T̃ dk is bounded by C2d(k−j). The notation

s̄k :=

∑
∆̃∈T̃ dk

(

∫
∆̃

|f̃ − P̃ f̃ | dy)p

1/p

(41)

is introduced for convenience. The estimate also holds for j = 0 with κ replaced by κ0.
This eventually gives

‖κ0(1, P̃ f̃)‖q
Lp(Rd)

+
k−1∑
j=1

2jd(1/p−1)q‖κ(2−j, P̃ f̃)‖q
Lp(Rd)

≤ C2−kqs̄qk

k−1∑
j=0

2jq ≤ Cs̄qk.
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Together with (38), we arrive at

‖P̃ f̃‖∗
B
d(1/p−1)
p,q (Rd)

≤ C(sk+1 + s̄k + ‖f̃‖∗
B
d(1/p−1)
p,q (Rd)

). (42)

Step 3. It remains to deal with the terms sk+1 and s̄k in (42) which do not depend on
q. This task is reminiscent of the estimation of the right-hand side in (15) in the proof
of Theorem 1. We show all details for s̄k, the estimates for sk+1 are analogous, we only
indicate the changes in the argument.

We explore the atomic decomposition (25) of f̃ ∈ Y ∩Bd(1/p−1)
p,q (Rd), and observe that

for 0 < q ≤ p we have
‖f̃‖+

B
d(1/p−1)
p,p (Rd)

≤ C‖f̃‖+

B
d(1/p−1)
p,q (Rd)

.

Therefore, it suffices to set q = p and to show that

s̄pk ≤ C
∞∑
j=0

2−jdpcpj , cj :=

(∑
i∈Zd
|cj,i|p

)1/p

, (43)

since, after taking the infimum in (43) with respect to all atomic decompositions repre-
senting the same f̃ , we get the desired bound

s̄k ≤ C‖f̃‖+

B
d(1/p−1)
p,p (Rd)

≤ C‖f̃‖+

B
d(1/p−1)
p,q (Rd)

, 0 < q ≤ p.

For each integral over a dyadic cube ∆̃ ∈ T̃ dk in s̄pk, we estimate∫
∆̃

|f̃ − P̃ f̃ | dx ≤
∞∑
j=0

∑
i: supp(aj,i)∩∆̃ 6=∅

|cj,i|
∫

∆̃

|aj,i − P̃ aj,i| dx.

For j > k, we can estimate the relevant terms in the sum by∫
∆̃

|aj,i − P̃ aj,i| dx ≤ C

∫
∆̃

|aj,i| dx ≤ C2−jd,

and each such term may appear only for ≤ C different ∆̃ (this C depends on C0 and d).
For j ≤ k, we explore the C1 continuity of the atoms (recall that we assumed a ∈ CσC0

with σ > 1 in (24)) which gives

|aj,i(x)− P̃ aj,i(x)| ≤ |aj,i(x)− av∆̃(aj,i)|+
∑

h∈H̄d
k+1: supp(h)=∆̃

2kd/2|ch(aj,i)|

≤ C2j−k, x ∈ ∆̃,

where C depends on C0, σ, and d. Thus, in this case we get∫
∆̃

|aj,i − P̃ aj,i| dx ≤ C2j−k2−kd,
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where each such term appears for ≤ C2(k−j)d different ∆̃.
Substitution into the expression (41) for s̄pk in gives

s̄pk =
∑

∆̃∈T̃ dk

(

∫
∆̃

|f̃ − P̃ f̃ | dy)p

≤ C

(
k∑
j=0

∑
i∈Zd

2(k−j)d2(j−k−kd)p|cj,i|p +
∞∑

j=k+1

∑
i∈Zd

2−jdp|cj,i|p
)

= C

(
2k(−1+d(1/p−1))p

k∑
j=0

2j(−d/p+1)pcpj +
∞∑

j=k+1

2−jdpcpj

)
.

Since 1− d(1/p− 1) < 0 for our parameter range p > d/(d+ 1) implies

2k(−1+d(1/p−1))p2j(−d/p+1)p = 2−(k−j)(1−d(1/p−1))p2−jdp ≤ 2−jdp,

this proves (43).
To estimate spk+1 by the right-hand side in (43), instead of the terms ‖f̃ − P̃ f̃‖p

L1(∆̃)

with ∆̃ ∈ T̃ dk , we must now consider the terms

2−kdp|av∆′(f̃)− av∆′′(f̃)|p = 2dp
∣∣∣∣∫

∆′
f̃ dy −

∫
∆′′
f̃ dx

∣∣∣∣p
≤ 2dp

∞∑
j=0

∑
i∈Zd: supp(aj,i)∩(∆′∪∆′′)6=∅

|cj,i|p
∣∣∣∣∫

∆′
aj,i dy −

∫
∆′′
aj,i dx

∣∣∣∣p
for neighboring dyadic cubes ∆′,∆′′ in T̃k+1. But the estimates for the quantities∣∣∣∣∫

∆′
aj,i dy −

∫
∆′′
aj,i dx

∣∣∣∣p
in the two cases j > k and j ≤ k look completely the same as the estimates for ‖aj,i −
P̃ aj,i‖L1(∆̃). The remaining steps can be repeated without change.

Together with (42), we have shown the uniform boundedness of the partial sum
operators P̃ in Bs

p,q(Rd). This finishes the argument.

References

[1] R.A. DeVore, V.A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc.
305:1, 1988, 397–414.

[2] D.E. Edmunds, H. Triebel, Function spaces, entropy numbers, and differential op-
erators, Cambridge Tracts in Mathematics v. 120, Cambr. Univ. Press, 1996.

[3] G. Garrigos, A. Seeger, and T. Ullrich, The Haar system as a Schauder basis in
spaces of Hardy-Sobolev type, J. Four. Anal. Appl., to appear, arXiv:1609.08225.

26



[4] P. Oswald, On inequalities for spline approximation and spline systems in the space
Lp (0 < p < 1), in Approximation and Function Spaces, Proc. Int. Conf. Gdansk
1979 (Z. Ciesielski, ed.), PWN Warszawa/North-Holland Amsterdam, pp. 531–552,
1981.

[5] P. Oswald, Approximation by splines in the Lp metric, 0 < p < 1, Math.
Nachrichten, 94, 1980, 69–96 (in Russian).

[6] C. Schneider, On dilation operators in Besov spaces, Rev. Mat. Complut. 22:1,
2009, 111–128.

[7] H. Triebel, On Haar bases in Besov spaces, Serdica 4, 1978, 330–343.

[8] H. Triebel, Theory of Function Spaces III, Monogr. Math. 100, Birkhäuser, Basel,
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