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In this work, we apply stochastic collocation methods with radial kernel basis functions for an uncertainty quantifi-

cation of the random incompressible two-phase Navier–Stokes equations. Our approach is nonintrusive and we use

the existing fluid dynamics solver NaSt3DGPF to solve the incompressible two-phase Navier–Stokes equation for

each given realization. We are able to empirically show that the resulting kernel-based stochastic collocation is highly

competitive in this setting and even outperforms some other standard methods.

KEY WORDS: stochastic collocation, incompressible two-phase Navier–Stokes, uncertainty quantifica-
tion

1. INTRODUCTION

In this paper, we apply uncertainty quantification to the large-scale complex fluid dynamics problem of incompress-

ible two-phase flows modeled by the three-dimensional random two-phase Navier–Stokes equations. The two-phase

Navier–Stokes equations describe the interaction of two nonmixing fluids like water and oil or water and air (at low

Mach numbers). It has important applications ranging from fluvial construction analysis to flows in chemical bubble

reactors. In fluvial construction analysis, a quantification of uncertainties is crucial for public safety. In chemical bub-

ble column reactors, we can use uncertainty quantification to obtain a stochastic homogenization of the perturbation

of a liquid in the presence of many rising bubbles. This is important for large-scale chemical process optimization.

Depending on the respective applications, we treat densities, viscosities, or volume forces as stochastic values or

fields. This renders also the systems’ solution, i.e., the velocity field, the pressure field, and the liquid-liquid interface

as stochastic quantities. Moreover, quantities of interest computed from these solution fields thereby also become

stochastic. After the numerical solution of the overall problem, its uncertainty quantification can be achieved by

a stochastic moment analysis, which will include the evaluation of the, e.g., first stochastic moment. Methods for

stochastic moment analysis are intrusive (e.g., stochastic Galerkin [1,2]) or nonintrusive (e.g., Monte Carlo, quasi-

Monte Carlo [3], multilevel Monte Carlo [4] and (generalized) polynomial chaos [5] and stochastic collocation [6]).

Moreover, there is some related work for stochastic moment analysis in computational fluid dynamics applications,

with examples in groundwater flow [7] and incompressible flows [8,9]. However, to our knowledge, the application

of the two-phase incompressible Navier–Stokes equations has never been considered before.

2152–5080/19/$35.00 © 2019 by Begell House, Inc. 1



2 Griebel, Rieger, & Zaspel

Our approach to solve the random two-phase Navier–Stokes equations will be based on a nonintrusive stochastic

collocation approach. This enables us to reuse our existing two-phase Navier–Stokes solver NaSt3DGPF [10,11].

This code covers applications such as river simulations in the presence of hydraulic constructions and, more recently,

sediment transport [12] and non-Newtonian flows [13]. It has also been parallelized on CPU and GPU clusters [14].

In stochastic collocation, spectral (sparse) tensor-product approximation [6] is widely used. However, since reg-

ularity results are in general not available for the two–phase Navier–Stokes equations, we can in general not expect

to have the high parametric regularity required by some of the recent spectral approximation approaches (even in

the regime of moderately high Reynolds numbers). Moreover, the number of samples in grid-based approximation

approaches, even for sparse grids, can be prohibitively high due to its dyadic construction. This is problematic for our

application, since already one single deterministic high-resolution two-phase Navier–Stokes simulation often requires

computational resources in the range of hours to days on a parallel computer. Therefore, we introduce a mesh-free

approach for the treatment of the stochastic variables, namely the radial basis function (RBF) kernel-based stochas-

tic collocation, to achieve both high asymptotic convergence rates and good preasymptotic behavior for stochastic

moment analysis. We note the close relationship of kernel-based approximation to kriging [15,16] with its low error

for few collocation points and to Gaussian process regression [17] with its profound stochastic framework. Related

recent work on kernel-based collocation covers the approximate solution of stochastic partial differential equations

[18], the special case of an elliptic random PDE [19] by an intrusive method, the case of parametric partial differential

equations [20], and the parallel treatment of large random partial differential equations; see [21].

In our numerical results with several rising bubble test cases, we focus on a small number of random parameters,

which are of nearly equal importance to the simulation. This is justified by an engineering perspective where a

few physical parameters are considered with small fluctuations. A small number of parameters is also justified by

practical limitations since we would never be able to sample enough solutions (or store them) to sufficiently resolve

a larger and higher-dimensional parameter domain. As discussed before, we do not assume or expect to have high

spatial/temporal regularity for the quantities of interest. Therefore, we employ algebraically smooth kernels to this

situation. Algebraically smooth kernels are known to achieve a convergence rate which corresponds to the minimum

of the smoothness of the kernel and the smoothness of the function to be approximated; see [22]. Hence, by using a

kernel approach with higher algebraic regularity, we employ a method which is capable of exploiting the unknown

smoothness of the parametric function which needs to be reconstructed. Moreover, in the isotropic case where all

dimensions in the parameter space are nearly equally important, we know that kernel methods are quasi-optimal;

see [23]. From a practical point of view, kernel methods are easy to implement compared to more sophisticated

approximation methods such as multilevel or sparse grid constructions. Finally, kernel methods allow one to increase

the number of sampling points by just any arbitrary number and we do not need to stick to prime numbers (as in

some QMC methods), grid sizes (as in some sparse grids), or dimensions of polynomial spaces. In addition, we

use the Gaussian kernel if the quantity of interest might depend smoothly on the parameters as we expect it for

integrated quantities of interest. In such a situation, kernel methods are able to provide exponential convergence rates

from the very beginning. We confirm these statements by numerical results. In particular, we show empirically that

kernel-based stochastic collocation methods allow one to outperform the algebraic convergence rates of isotropic

(quasi-)Monte Carlo techniques. Moreover, in a direct comparison to a (sparse) spectral tensor-product method, in

which we consider an integrated quantity of interest, the kernel-based method shows exponential convergence rates.

Hence, our approach is able to deliver a decent approximation with very few deterministic solutions of the two-phase

Navier–Stokes equations.

The remainder of this work is organized as follows. Section 2 introduces the random two-phase Navier–Stokes

equations including details on their numerical treatment. Section 3 discusses the RBF kernel-based stochastic collo-

cation. The main results, i.e., empirical convergence studies, are presented in Section 4. Finally, Section 5 gives some

conclusions and a short outlook.

2. RANDOM TWO-PHASE NAVIER–STOKES EQUATIONS

The application problem motivating this work is a random version of the two-phase incompressible Navier–Stokes

equations. They model the interaction of two incompressible fluids which do not mix but remain disjoint with a
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Kernel-Based UQ for Two-Phase Navier–Stokes 3

common interface. Classical examples for such fluid-fluid systems in the real world are oil and water or water and air,

noting that it is usual to assume air to be incompressible for the discussed test cases. The random model discussed here

is derived from the deterministic two-phase Navier–Stokes equations as discussed, e.g., in [10]. Further references

are [24,25].

Formally, the introduction of the random two-phase Navier–Stokes equations would start from a probability space

(possibly infinite-dimensional) with stochastic parameters in which all stochastic variations are expressed. However,

the finite-noise approximation leads us to consider only a D-dimensional parameter space Y ⊂ R
D, cf. e.g., [6]. The

parameter space Y is considered to be a measure space (Y,B, ρ dy) with density ρ and the usual Borel σ–algebra

B. Here we directly introduce the finite-dimensional (parametric) model of the random two-phase Navier–Stokes

equations, noting that the parameter space Y ⊂ R
D might be still high-dimensional, i.e., D might be large.

2.1 Finite-Dimensional Random Model

Now, we present the finite-dimensional random two-phase Navier–Stokes equations with respect to the parameter

space (Y,B, ρ dy). The physical space D ⊂ R
3 is a connected domain with boundary Γ = ∂D. Two subdomains

D1,D2 identify the two fluid phases. Technically, they are time- and parameter-dependent; i.e., Di = Di(y, t) for

i = 1, 2 with D1(y, t) ∩ D2(y, t) = ∅ for all t ∈ [0, T ] and T ∈ R+ the final simulation time. The full domain D is

covered by D1, D2 and the time- and parameter-dependent fluid-fluid separation interface Γf (y, t). Thus there holds

D = D1(y, t)∪D2(y, t)∪Γf (y, t); cf. Fig. 1. Moreover, the outer domain boundary is decomposed into Γ1 := Γ∩∂D1

and Γ2 := Γ∩∂D2. We note that by this construction the whole domain D is fixed but the two subdomains and the free

surface separating them are parameter-dependent. In each of the two subdomains Di, i = 1, 2, the finite-dimensional

random system of the two-phase Navier–Stokes equations reads as

ρi(y)
Dui

Dt
= ∇ · µi(y)Si −∇pi + ρi(y)g(y) in Y ×Di(y) × [0, T ], (1)

∇ · ui = 0 in Y ×Di(y) × [0, T ], (2)

ui = u0i
(y,x) in Y ×Di(y) × {0}, (3)

Bui = bΓ on Y × Γ × [0, T ], (4)

∂pi

∂nΓ
= 0 on Y × Γ × [0, T ], (5)

u1 = u2 on Y × Γf (y) × [0, T ], (6)

[Tn] = σκn on Y × Γf (y) × [0, T ]. (7)

The main part of the random two-phase Navier–Stokes equations is the momentum equation (1) and the continuity

equation (2). The first equation is decomposed into the material derivative Dui/Dt := ∂tui + (ui · ∇)ui and terms

FIG. 1: The domain D with boundary Γ is subdivided into two distinct fluid phase domains D1 and D2 and the fluid-fluid interface

Γf in the two-phase Navier–Stokes equations

Volume 9, Issue 5, 2019



4 Griebel, Rieger, & Zaspel

involving the viscosity (with Si := ∇ui + {∇ui}T ), pressure, and volume forces. The second equation represents

the incompressibility constraint for both fluids.

Both fluids interact with respect to a random volume force g : Y × D → R
3, e.g., gravity with some pertur-

bation.† At the fluid-fluid interface Γf , there holds the jump condition (7) for the stress tensor Ti := −piI + µiSi,

Ti : Y × Di × [0, T ] → R
3×3, with [Tn] being the jump (T1n − T2n) across the interface and I ∈ R

3×3 be-

ing the identity matrix. The continuity condition for the velocitities u1 and u2 at the interface is given in Eq. (6).

Finally, σ ∈ R is the surface tension coefficient, κ : Y × Γf (y) × [0, T ] → R is the curvature of Γf , and

n : Y × Γf (y) × [0, T ] → R
3 is the surface normal of the interface. For simplicity, we keep σ to be determin-

istic.

This system is augmented by proper initial conditions for the velocity field by u0i
: Di → R

3, by boundary

conditions (4) for the velocities, and by approximate boundary conditions (5) for the pressures. Velocity boundary

conditions are here denoted for the sake of simplicity by some general boundary operator B and the space-time-

dependent right-hand side function bΓ. For all parameters y ∈ Y , Eqs. (1)–(7) are solved for the velocity fields

ui : Y × Di × [0, T ] → R
3 [m/s] and pressures pi : Y × Di × [0, T ] → R [kg/(m·s2)]. The two important material

properties for incompressible fluids are the (random) subdomain-wise constant densities ρi : Y → R [kg/m3] and

viscosities µi : Y → R [kg/(m·s)]. Note that it is common to have no initial conditions for the pressure, since the

pressure is usually understood as a Lagrange multiplier. Moreover, the solution method applied in this work does not

require initial conditions for pressure.

Altogether, this formulation of the random model explicitly introduces a parametric/random dependence of the

two-phase Navier–Stokes equations in the densities, viscosities, the volume force, and the initial condition. This way,

all other quantities become dependent on the random/parametric input.

2.2 Continuous Formulation Using Random Level Sets

We now follow the common approach to introduce a level-set function φ to distinguish the two fluid phases. For fur-

ther details, see [10]. This way, the equations can be formulated with respect to the common domain D. Deterministic

level-set techniques have been proven useful in the context of two-phase flows in [24]. In our situation the level-set

function φ is now random/parametric. To this end, φ : Y × D × [0, T ] → R is a signed distance function implicitly

defining the two random domains D1, D2 as

φ(y,x, t)











< 0 if x ∈ D1(y, t),

= 0 if x ∈ Γf (y, t),

> 0 if x ∈ D2(y, t).

(8)

Also, φ obeys the eikonal equation

|∇xφ(y,x, t)| = 1 for almost all (y,x, t) ∈ Y ×D × [0, T ], (9)

which makes it for fixed parameter y ∈ Y a distance function. The free surface Γf , i.e., the (random) interface

between both fluids, is given by

Γf (y, t) = {x : φ(y,x, t) = 0}. (10)

Based on the continuum surface force scheme [26] it is possible to reformulate the discontinuous equation system (1)–

(7) into a continuous representation [24]. This works analogously for the random/parametric case. In the remainder

of this section, we understand all equations in the sense that they hold for (almost) every parameter value y ∈ Y . We

here follow [10] and introduce, by slightly abusing notation, domain-dependent densities and viscosities,

ρφ(y) := ρ1(y) + (ρ2(y) − ρ1(y)) H(φ(y)), (11)

µφ(y) := µ1(y) + (µ2(y) − µ1(y)) H(φ(y)), (12)

†While a random volume force might not have an immediate physical correspondence, the choice of a random right-hand side in the literature on

uncertainty quantification for model partial differential equations is very common. Therefore, this case is addressed here, too.

International Journal for Uncertainty Quantification



Kernel-Based UQ for Two-Phase Navier–Stokes 5

with the Heaviside step function,

H(φ) :=















0 if φ < 0,
1

2
if φ = 0,

1 if φ > 0.

(13)

This function is smoothed out in a neighborhood of the free surface leading to jump-free functions Hǫ, ρǫ
φ, and

µǫ(φ); cf. [10] for more details. It is then possible to derive the initial-boundary value problem,

ρǫ
φ

Du

Dt
= ∇ · (µǫ

φS) −∇p − σκφδǫ∇φ + ρǫ
φg in Y ×D × [0, T ], (14)

∇ · u = 0 in Y ×D × [0, T ], (15)

∂tφ + u · ∇φ = 0 in Y ×D × [0, T ], (16)

|∇φ| = 1 on Y × Γ × [0, T ], (17)

u = u0 in Y ×D × {0}, (18)

Bu = bΓ on Y × Γ × [0, T ], (19)

∂p

∂nΓ
= 0 on Y × Γ × [0, T ], (20)

φ = φ0 in Y ×D × {0}, (21)

∂φ

∂nΓ
= 0 on Y × Γ × [0, T ], (22)

with u : Y × D × [0, T ] → R
3 and p : Y × D × [0, T ] → R the velocity and pressure fields, respectively,

defined on the full domain D. It turns out that the jump condition for the stress tensor translates to the volume force

−σκǫ
φδǫ

φ∇φ, where δǫ
φ denotes a smoothed-out Dirac functional and κφ is the curvature of the free surface. It is

given in the level-set case (cf. [27]) as

κφ(y,x, t) = ∇x · ∇xφ(y,x, t)

‖∇xφ(y,x, t)‖ for x ∈ Γf (y, t). (23)

The transport equation (16) governs the evolution of the interface. Equation (17) describes the reinitialization of

the level-set function and introduces a nonlinearity. It will be treated by an iterative method; see [10] for further

details. Again, the system is augmented by proper initial and boundary conditions; see Eqs. (18)–(22). Altogether,

the Eqs. (14)–(22) describe a continuum surface force formulation of the parametric Navier–Stokes equation. As

already mentioned, this system of equations holds (in the sense of almost everywhere) for each parameter. For a fixed

parameter, the system of equations reduces to a common deterministic two-phase Navier–Stokes equation.

2.3 Numerical Treatment of the Two-Phase Navier–Stokes Equations

The stochastic collocation approach only requires us to consider the solution of the deterministic two-phase Navier–

Stokes equations for a set of fixed parameter values y ∈ Y . To this end, classical solution techniques can be used. In

practice, we employ the flow solver NaSt3DGPF [10,11], which implements the pressure correction approach [28] to

solve the deterministic two-phase Navier–Stokes equations over time. Details can be found in [10]. The main features

of the code are as follows:

Finite differences/volumes are used as discretization method in space with a classical marker-and-cell (MAC)

staggered uniform grid. The velocity components are therefore discretized on the centers of the cell faces whereas

pressure and level-set function are discretized on the centers of the cells. Wherever it is necessary to evaluate quanti-

ties, e.g., from cell centers on the cell faces, higher-order interpolation is used. The convective terms of the momentum

equations are discretized by the fifth-order weighted essentially nonoscillatory (WENO) scheme. The diffusion term

is computed by second-order central differences. The WENO scheme is also applied to the gradient evaluation in

Volume 9, Issue 5, 2019



6 Griebel, Rieger, & Zaspel

the reinitialization equation and to the transport term in the level-set advection. The pressure Poisson equation is

discretized with a standard seven-point second order stencil and solved with a Jacobi-preconditioned conjugate gra-

dient (CG) method. As time integrator, a second-order Adams–Bashforth scheme with an adaptive time step selection

mechanism is employed, cf. [11], which obeys the Courant–Friedrichs–Lewy (CFL) condition.

As a consequence of this discretization and the numerical solution, note that we have at no point of our stochastic

collocation procedure access to the true solutions u, p, and φ. Instead, we will restrict ourselves to the numerical

approximations uh, ph, and φh where h indicates spatial and temporal discretization.

3. KERNEL-BASED STOCHASTIC COLLOCATION FOR STOCHASTIC MOMENT ANALYSIS

3.1 Objective

The numerical solution to the random two-phase Navier–Stokes system with random level sets consists of three com-

ponents, namely a time-dependent velocity random vector field uh : Y × D̄× [0, T ] → R
3 with uh = (uh

1 , uh
2 , uh

3 )T ,

and time-dependent pressure random field ph : Y × D̄ × [0, T ] → R and time-dependent random domains Dh
i (y, t)

for i = 1, 2, which we represent by the time-dependent level-set random field φh : Y × D̄ × [0, T ] → R.

It is common not to consider the full solution but some quantities of interest, which are to be derived from these

numerical solutions. To this end, we consider the following two quantities of interest. The first one is just the first

component of the solution velocity field,

uh
1 : Y × D̄ × [0, T ] → R. (24)

This is a parameter-dependent real-valued field discretized in space and time. The second quantity of interest is the

center of mass,

ch : Y × [0, T ] → R
3, (25)

with ch := (ch
1 , ch

2 , ch
3 )⊤ of the second fluid phase and

ch(y, t) :=
1

Vol(Dh
2 (y, t))

∫

Dh
2 (y,t)

x dx =

(

∫

Dh
2 (y,t)

1 dx

)−1
∫

Dh
2 (y,t)

x dx. (26)

Obviously, this is a vector-valued parameter-dependent quantity in time. We will here only focus on the second

component, namely ch
2 .

For both quantities of interest, we are interested to compute the first statistical moment; that is, we only compute

E
[

uh
1

]

(x, t) =

∫

Y

uh
1 (y,x, t)ρ(y) dy (27)

and

E
[

ch
2

]

(t) =

∫

Y

ch
2 (y, t)ρ(y) dy. (28)

While all quantities of interest and their statistical moments are here given as time-dependent values, we will in

practice always evaluate them for the final time t = T of a given Navier–Stokes simulation only. This gives us a

space-discrete function, cf. Eqs. (27), or a single number, cf. Eq. (28).

3.2 Stochastic Collocation

To underline the generality of the kernel-based stochastic collocation, we will consider a general quantity of interest

u : Y × D̄ × [0, T ] → R for the rest of this section. We leave it to the reader to associate its approximation with the

concrete examples of uh
1 and ch

2 , which were discussed before.

Following [6], stochastic collocation evaluates the quantities of interest with respect to y in collocation points,

International Journal for Uncertainty Quantification
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YN := {y1, . . . ,yN} ⊂ Y. (29)

The point evaluations u(yi,x, t) are used to numerically approximate the continuous function,

u(y,x, t) ≈
N

∑

i=1

u(yi,x, t)Li(y) for all y ∈ Y. (30)

This is done with a Lagrange basis in a certain function (approximation) space H with respect to Y , where the space

H still needs to be specified; i.e.,

{Li}N
i=1, Li ∈ H, Li : Y → R, with Li(yj) =

{

1 i = j,

0 i 6= j.
(31)

Since each evaluation of the quantities of interest for a fixed parameter value y ∈ YN involves, e.g., a whole

deterministic fluid dynamics simulation, we do not want the set YN to be of any regular gridlike structure. Grid like

structures suffer in particular in a mesh refinement step. Typically, not just one point can be added at a time but several

points have to be added in order to maintain the grid structure. Instead, we aim for a mesh-free collocation procedure.

Another issue is that we do not know the smoothness of the dependence of the quantities of interest on the

parameters. This makes the use of approximation by reproducing kernels and in particular radial basis functions

favorable since these methods are known to adapt to the smoothness of the function which is reconstructed once the

radial basis function is chosen smooth enough and the point set YN is not too far from quasi-uniformity; see [22].

Consequently, we will choose the function space H to be a reproducing kernel Hilbert space (RKHS).

3.3 Reproducing Kernel Hilbert Spaces and Native Spaces

Following [23], a reproducing kernel Hilbert space is defined as a Hilbert space of functions,

Hk(Y) ⊆
{

f : Y → R
∣

∣ ∅ 6= Y ⊆ R
D

}

, (32)

which possesses a kernel function k : Y × Y → R that satisfies

k(·,y) ∈ Hk(Y) for all y ∈ Y and (33)

f(y) = (f, k(·,y))Hk(Y) for all f ∈ Hk(Y) and all y ∈ Y. (34)

This kernel k is called the reproducing kernel. For two functions f, g ∈ Hk with f =
∑N

j=1 α
(f)
j k(·,yj) the inner

product is defined as (f, g)Hk
:=

∑N
j=1

∑N
j′=1 α

(f)
j α

(g)
j′ k(yj ,yj′). A kernel k is called strictly positive definite on

Y ⊆ R
D if for all N ∈ N, all pairwise distinct YN = {y1, . . . ,yN} ⊆ Y , and all α ∈ R

N \ {0} we have

N
∑

j=1

N
∑

k=1

αjαk k(yj ,yk) > 0. (35)

Note that it is possible to construct a RKHS Hk from a given strictly positive definite kernel function k. We then call

Hk the native space of k; see [23].

3.4 Best Approximation and Regression in RKHS

Now, let a strictly positive definite kernel function k with its associated native space Hk(Y) be given. For the finite

set of collocation points YN as in Eq. (29) we evaluate the kernel function k in these points. Thereby we introduce a

finite-dimensional subspace,

HYN
:= span{k(·,yi)|yi ∈ YN} ⊂ H = Hk, (36)
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of the reproducing kernel Hilbert space. Our aim is to approximate a given function f ∈ Hk by a function in HYN
,

i.e.,

f(y) ≈
N

∑

i=1

αik(y,yi). (37)

It is well known that, if we only consider evaluations of f in the collocation points YN , we get the best approximation

of f with respect to the native space norm by computing coefficients α := (α1, . . . ,αN )⊤ with

Ak,YN
α = f , (38)

where f is the data vector (f(y1), . . . , f(yN ))⊤. Here, the matrix Ak,YN
is given by

Ak,YN
:=









k(y1,y1) . . . k(y1,yN )
...

. . .
...

k(yN ,y1) . . . k(yN ,yN )









, (39)

where the strict positive definiteness of k ensures invertibility of this system. We can build the Lagrange basis of HYN

by setting

(L1(z), . . . , LN (z))
⊤

:= A−1
k,YN

(k(z,y1), . . . , k(z,yN ))
⊤

. (40)

This leads to an approximation of f in terms of the Lagrange basis of the form

f(y) ≈
N

∑

j=1

Lj(y)f(yj). (41)

Once the Lagrange basis is determined, this is a favorable way to represent interpolation.

From a practical point of view, the matrix Ak,YN
may in general become ill-conditioned, depending on the

kernel and the choice and number of collocation points. One approach to tackle this issue is the introduction of

a regularization. A standard technique is the Tikhonov regularization [29]. It involves replacing the original linear

system by

(Ak,YN
+ ǫreg IN )α = f , (42)

with IN the identity matrix. This regularization reduces the condition number of Ak,YN
, but introduces a new error of

the order of the regularization parameter ǫreg . Moreover, this regularization also accounts for the fact that we never

deal with the true quantities of interest, e.g., f = u, but always with some numerical approximations of them. Hence,

the regularized regression approach is favorable compared to classical interpolation. Nevertheless, we assume the

data to be almost precise and hence ǫreg will be chosen very small, for example, ǫreg = 10−12 as in Section 4.1.

An alternative to Tikhonov regularization is regularization by a truncated singular value decomposition (TSVD)

[30]. In this approach, a singular value decomposition of matrix Ak,YN
is computed. The SVD is truncated for singular

values below a given magnitude. Then, instead of solving the linear system Ak,YN
α = f , the pseudo-inverse of the

truncated matrix Ak,YN
is applied to f . In Section 4.2, we briefly compare numerical results with Tikhonov and TSVD

regularization for a model problem.

3.5 Estimation of Stochastic Moments

The approximation of the stochastic moment E[u] needs the evaluation of an integral. To this end, conventional

numerical quadrature methods like MC, QMC, or sparse grids, etc. could be employed. Here, we restrict ourselves to

kernel-based interpolatory quadrature rules. We have

E[u](x, t) =

∫

Y

u(y,x, t)ρ(y) dy ≈
N

∑

i=1

u(yi,x, t)

∫

Y

Li(y)ρ(y)dy, (43)
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with the Lagrange basis from Eq. (40). Moreover, we can reduce the integral,

∫

Y

Li(y)ρ(y)dy =
N

∑

j=1

ch
i,j

∫

Y

k(y,yj)ρ(y)dy, (44)

to linear combinations of integrals over the kernel where the coefficients are given as A−1
k,YN

= (ch
i,j)1≤i,j≤N . In

order to approximate the kernel integral in Eq. (44), we employ here for the reason of simplicity full tensor-product

Clenshaw-Curtis quadrature but also any other suitable method will do. Hence, the quadrature points are in general

different from the sampling points. Note here that the quadrature of the kernel functions can be made arbitrarily

precise and once the collocation points are designed, the integral in Eq. (44) can be precomputed anyway. Moreover,

we do not consider the numerical costs for the quadrature. This is due to the fact that a sampling point corresponds to

a full three-dimensional two-phase fluid simulation and hence is much more costly than a quadrature point.

3.6 Sampling in Y and Choice of Kernels

As collocation points YN , we use low discrepancy point sets. They have the advantage that they allow one to produce

almost quasi-uniform point sets in higher dimensions. Since kernel-based methods can work on arbitrarily scattered

point sets, the specific choice is not crucial for the remainder of this article. We use so-called quasi-random sequences

ZQMC := {zi}N
i=1 to sample collocation points. Quasi-random sequences are designed to have a small discrepancy

[31]. Here, to be precise, we employ multidimensional Halton sequences. The ith element of a D-dimensional Halton

sequence in [0, 1)D is given as

zi = (ψR1
(i), ψR2

(i), . . . ,ψRD
(i))⊤, (45)

ψR(i) =
∞
∑

j=1

aj(i)R
−j , with i =

∞
∑

j=1

aj(i)R
j−1. (46)

Here, the sums are all finite and the Rk have to be coprime integers, and the aj(i) just denote the R-adic representation

of i. We employ the Halton points here, since we work in moderately high dimensions. We are well aware of the fact

that Halton points might deteriorate in high dimensions and scrambling might be needed then; see [32–34]. Moreover,

we stress that we work with a kernel-based and hence mesh-free method. This implies that our methods work on all

scattered point sets and only the theoretical convergence analysis is affected by the distribution properties of the point

set.

Our approach was so far described for any suitable RKHS. The final question is now what types of RKHS we

want to invoke and what the associated kernel k : Y × Y → R will be. To this end, we restrict ourselves to radial

basis functions/radial kernels. They are given by

k(y,y′) := ϕ(||y − y′||2), (47)

with an appropriate function ϕ : R
≥0 → R.

There are several examples of such radial kernels. Table 1 summarizes the kernel functions used in this work and

the Sobolev spaces that are equal to their native space.

Wendland kernels kd,k [23] are compactly supported functions with some minimality properties for the degrees

of the polynomials involved in their construction. They are positive definite and it holds that ϕD,k ∈ C2k(R). For

their associated kD,k for k = 0, 1 we, e.g., have

ϕD,0(r) = (1 − r)
⌊D/2⌋+1
+ , ϕD,1(r) = (1 − r)ℓ+1

+ [(ℓ + 1)r + 1], (48)

with ℓ := ⌊D/2⌋ + k + 1 and the notation (r)+ =

{

r if r ≥ 0,

0 if r < 0.

The Matérn kernels kβ with β > d/2 use in their definition Kν and Y , which are the modified Bessel function

of the second kind of order ν and the Gamma function; see also [23]. These kernels are strictly positive definite as
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TABLE 1: The above radial kernel functions are used in this work to build native (approximation)

spaces. The resulting native spaces are well-known Sobolev spaces

Kernel Definition Sobolev space

Wendland kD,k(y,y′) := ϕD,k(‖y − y′‖) HD/2+k+1/2(RD)

Matérn kβ(y,y′) := (Kβ−D/2(‖y − y′‖)‖y − y′‖β−D/2)/2β−1Y(β) Wβ,2(RD)

Gaussian kǫ(y,y′) := ϕǫ(‖y − y′‖) := e−ǫ2‖y−y
′‖2

n/a

long as d < 2β. According to [35, Section 4.4], we have for special choices of parameter β simplified representations

of the Matérn kernel function (up to a dimension-dependent scaling constant), e.g.,

k(D+1)/2(y,y′) := e−‖y−y
′‖, k(D+3)/2(y,y′) := (1 + ‖y − y′‖)e−‖y−y

′‖. (49)

The last example is the well-known Gaussian kernel with ǫ ∈ R
+ as the scaling parameter. It is special in the sense

that its native space is contained in every Sobolev space.

4. NUMERICAL RESULTS

In the following, we will discuss our method for two analytic test cases and several two-phase flow problems. After

the introduction of the setup, empirical convergence results will be presented for kernel-based stochastic collocation

using different kernel functions. At the end of this section, we also briefly compare results from our kernel-based

approach with a sparse grid approach for stochastic collocation.

4.1 Setup

In this section, we first consider the approximation of means of two analytic test functions; cf. Section 4.2. There-

after, we compute approximations to the field E
[

uh
1

]

(x, T ) and the scalar E
[

ch
2

]

(T ) for fixed T . The deterministic

evaluations of the quantities of interest uh
1 and ch

2 are done using NaSt3DGPF for each yi ∈ Y . Since this solver uses

a finite volume/finite difference method on a staggered grid, we obtain scalar-valued, space-dependent fields as grid

functions on a regular grid with Mh := M points. Here, the parameter h, which will be dismissed in the remainder,

indicates that the M points correspond to a grid in space with uniform mesh size h and an accordingly chosen CFL

conforming time step. In case of the quantity of interest uh
1 , we thus actually compute pointwise for every grid point

the first moment E
[

uh
1

]

(T ) ∈ R
M . The quantity E

[

ch
2

]

(T ) is a single number.

To approximate these quantities with respect to the stochastic space, we use the RBF kernel-based stochastic

collocation method. If not stated otherwise, the applied kernel functions are the Gaussian kernel kǫ with scaling

parameter ǫ = 1.0, compactly supported Wendland kernels kD,k with smoothness parameters k = 0, 1, 2, 3, and

appropriate dimensionality D and the Matérn kernel kβ with parameter β = (D + 3)/2. Remember that we call

the dimension of the stochastic space D; thus Y ⊂ R
D. The regularization parameter, cf. Section 3.4, is set to

ǫreg = 10−12. The kernel interpolation problem is solved by direct LU factorization. Radial basis functions are

isotropic, by standard; thus the norm involved in their construction is the (scaled) Euclidean distance ‖ · ‖ := ζ‖ · ‖2,

with a default of ζ = 1.0. In Section 4.2, we briefly compare different choices of ζ for a model problem. The N
collocation points are generated from a Halton sequence of appropriate dimension.

Quadrature is carried out by a full tensor-product rule constructed by univariate Clenshaw-Curtis quadrature rules

with 2lq−1 + 1 nodes, if not indicated differently. The quadrature level is usually lq = 7. Sparse grid quadrature rules

are used whenever the dimensionality of the stochastic space would lead to prohibitive computational run times and

memory requirements.

In the empirical convergence studies, the reference solutions will be computed on an extremely fine grid. We

will use a subscript H to denote the reference solutions. Moreover, in order to visualize the numerical error, we

approximatively compute the expectation of the reference solution as
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E
[

uH
i

]

(x, T ) :=

∫

Y

uH
i (y,x, T )ρ(y)dy ≈

Nmax
∑

n=1

uH
i (ỹn, ·, T )

∫

Y

L̃n(y)ρ(y)dy, (50)

where ỸNmax
⊂ Y denotes a fine sampling set, i.e., Nmax ≫ N . Here, L̃ is computed based on a possibly different

kernel compared to the approximation.

4.2 Problems with Analytic Solution

Before we discuss numerical results for the challenging two-phase Navier–Stokes application problem, we briefly

analyse the properties of the kernel-based stochastic collocation for two representative test cases with analytic solu-

tion. To this end, we restrict ourselves to a simple model problem.

The first test case is an elliptic PDE with random coefficient similar to [36]. The parameter space is (Y,B, ρ dy)
with Y ⊂ R and stems from a one-term Karhunen–Loève expansion of a random coefficient. We want to approximate

E[u] with u : Y × [−0.5, 0.5]2 → R being the solution of

−∇ · (a(y,x)∇u(y,x)) = f(x) in Y × (−0.5, 0.5)2, (51)

u(y,x) = 0 on Y × ∂(−0.5, 0.5)2, (52)

with the random diffusion coefficient a(y,x) = 1 + σ(1/π2)y1 cos
(

(π/2)
(

x2
1 + x2

2

))

; thus we have y = y1. The

right-hand side term is given as

f(y,x) = 32

(

1 + σ +
y1 cos((1/2)π(x2

1 + x2
2))

π2

)

e−y2
1

(

x2
2 −

1

2
+ x2

1

)

− 32

π
y sin

(

1

2
π(x2

1 + x2
2)

)(

x2
1e

−y2
1

(

x2
2 −

1

4

)

+ x2
2e

−y2
1

(

x2
1 −

1

4

))

.

With this construction, it is possible to derive an exact solution of the parametric PDE problem as

u(y,x) = 16 e−y2
1

(

x2
1 −

1

4

)(

x2
2 −

1

4

)

. (53)

The variable y1 corresponds to the random variable Y1(ω) ∼ U(−
√

3,
√

3); thus we employ the density function

ρ(y) = 1/2
√

3. It is possible to derive the exact mean as E[u] = (1/6) erf
(√

3
)√

3
√

π
(

16x2
1x

2
2 − 4x2

1 − 4x2
2 + 1

)

.

The convergence study for the mean is presented on the left-hand side of Fig. 2. It shows absolute errors of the

mean solution field with respect to the exact solution measured in a discrete l2 norm and compares different kernel

choices. The regularization parameter ǫreg is set to 10−15 for the Gaussian kernel. All other parameters remain at

the previously defined values; see Section 4.1. Approximation with the Gaussian kernel leads to an almost perfect

solution, i.e., machine precision with only two collocation points, which is due to the specific choice of the unknown

function u. All other kernels give algebraic convergence rates with measured approximate orders 2, 3, 4, and 5

for Wendland kernels with k = 0, 1, 2, 3, and third-order convergence for that specific choice of a Matérn kernel.

Convergence saturates between machine accuracy and the size of the regularization parameter, which, in contrast to

the Gaussians, is set to ǫreg = 10−12 for these kernels.

On the right-hand side of Fig. 2, we repeat the same convergence study. However, we now fix the Wendland kernel

k1,3 and change the scaling ζ. The results indicate that this scaling has a substantial influence on the convergence of

the method. In the given results, a choice of ζ, which is too large, leads to a longer preasymptotic regime. A choice of

ζ, which is too small, leads to convergence issues. For the rest of this paper, we will manually optimize this parameter.

Figure 3 shows results for the use of Tikhonov regularization on the left-hand side and for the use of the truncated

SVD on the right-hand side. As before, we approximate the mean, fixing the kernel function k1,3. However, we do

variations in either the regularization parameter ǫreg (for Tikhonov) or in the dropping tolerance for singular values

(for TSVD). Both approaches show similar regularization properties, i.e., stronger regularization leads to a higher
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FIG. 2: Error convergence analysis for the mean approximation in the random-coefficient Poisson problem test case Eqs. (51) and

(52) with D = 1. Left: Comparison of different kernel functions. Right: Comparison of different scalings ζ for the fixed kernel

function k1,3.

FIG. 3: Comparison of the Tikhonov regularization (left) and the TSVD regularization (right) for the random-coefficient Poisson

problem test case. The same Wendland kernel is applied.

total error in the approximation. Throughout the rest of this work, we will use Tikhonov regularization, since this

approach seemed to be numerically more stable for smaller regularization.

As a higher-dimensional test problem with limited smoothness, we further consider the function

u(y) =
D
∏

m=1

|4ym − 2| + am

1 + am
; (54)
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cf. [37]. Here, we approximate the exact mean E[u] = 1 with the choices am = (m − 2)/2, ρ(y) = 1. Moreover, the

ym are realizations of independent random variables Ym(ω) ∼ U(0, 1).
In the numerical results, the scaling of the Gaussian kernel is set to ǫ = 2.0. Furthermore the approximation

by the Gaussian kernel is regularized with a regularization parameter ǫreg = 10−8. We set D = 3. Figure 4 shows

the error behavior of the mean of this model problem for different kernels. We observe convergence rates which

are better than that for Monte Carlo and even better than that for quasi Monte Carlo methods. However, all kernel

functions show qualitatively identical results. This suggests that all results are affected by the limited smoothness of

the function (54), in the first place.

4.3 Bubble Flow under Random Volume Force

Our first application for the two-phase Navier–Stokes equations is a rising air bubble in water under a random volume

force field with known covariance spectrum. The random force field is approximated by a truncated Karhunen–

Loève expansion. All other parameters are deterministic. Figure 5 outlines the basic setup of the two-phase flow

problem‡. The domain is given as D̄ = [0, 0.2]3 and the fluid flow is computed up to T = 0.35 sec. Since an air-water

system shall be analyzed, we have the densities ρ1 = 1000 and ρ2 = 1 and viscosities µ1 = 1.002 × 10−3 and

µ2 = 1.72 × 10−5.§ The initial conditions are set to uh
0i

= (0, 0, 0)
⊤

. Moreover, the surface tension coefficient is

set to σ = 0.0728 which reflects the parameter of a water-air interface. Boundary conditions of the velocity field are

described in terms of a boundary operator,

Buh :=

(

uh · nh
Γ,

∂(uh · sh
Γ)

∂nh
Γ

,
∂(uh · th

Γ)

∂nh
Γ

)⊤

= (0, 0, 0)⊤ = bΓ, (55)

FIG. 4: Error convergence analysis for the mean approximation comparing different kernel functions for the function (54)

‡Note that some quantities have physical units. We do not write them every time in order to keep the notation simple. We will assume the densities

ρ in [kg · m−3], the viscosities in [kg · m−1
· s−1], the surface tension in [N · m−1], and the gravitational force g in [ms−2].

§The dimensionless Reynolds number is given as Re = ρvL/µ, where v and L are the characteristic velocity and the characteristic length. Here,

the Reynolds number is in the range Re ∈ [104, 106]. The validity of the discretization in the regime presented here was shown in [10].
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FIG. 5: Two-dimensional side view of the three-dimensional rising bubble application setup

with the notation as in Eq. (4). Thus, infinite slip is assumed on the boundary. Furthermore, the initial position of the

center of the bubble is xinit = (0.1, 0.06, 0.1)⊤. The phasewise subdomains Dh
1 ,Dh

2 are given by

Dh
i (t) = Φ

[

(Dh
i )0

]

(t). (56)

Here, Φ describes the transformation of the initial domains (Dh
i )0 := Dh

i (t = 0) under fluid flow. These initial

domains are defined such that the gas phase is a sphere of radius 0.03 m; thus

(Dh
1 )0 := {x ∈ D|‖x − xinit‖ > 0.03}, (57)

(Dh
2 )0 := {x ∈ D|‖x − xinit‖ < 0.03}. (58)

The initial free surface is Γf (t = 0) = D \ (D0
1 ∪ D0

2). In order to model a stochastic/parametric volume force g, we

consider a lognormal random field gLc
with E[gLc

] ≡ −9.81 and

Cov[log(gLc
− (−9.81))](x, x′) = e−(x−x′)

2
/L2

c , (59)

where the correlation length is assumed to be Lc = 2.0. The random field gLc
is approximated by a truncated

Karhunen–Loève expansion resulting in gD,Lc
. Consequently,

log(gLc
(y,x) + 9.81) ≈ log(gD,Lc

(y,x) + 9.81) := 1 + y1

(√
πLc

2

)1/2

+
D

∑

m=2

λmφm(x2)ym, (60)

with truncation after D expansion terms. Here, the {ym}D
m=1 correspond to the independent random variables

{Ym(ω)}D
m=1 with each Ym ∼ U(−

√
3,
√

3); thus ρ(y) =
(

1/2
√

3
)D

. Furthermore, the eigenvalues and eigen-

functions are given as

λm := (
√

πLc)
1/2 exp

(−(⌊m/2⌋πLc)
2

8

)

, φm(x2) :=

{

sin(⌊m/2⌋πx2) if m even,

cos(⌊m/2⌋πx2) if m odd,
(61)

with m > 1. Finally, the volume force is set to

g(y,x) := (0, gD,Lc
(y, x2), 0)

⊤
. (62)

This two-phase flow problem is now discretized in space by a mesh of M = 1003 grid points. Time discretization

is done with a second-order Adams–Bashforth method and adaptive time-step size control. The Karhunen–Loève

International Journal for Uncertainty Quantification



Kernel-Based UQ for Two-Phase Navier–Stokes 15

expansion is truncated after D = 3 terms (mainly for performance reasons). The correlation length is set to Lc = 2.0.

The norm in the radial basis function construction is ‖ · ‖ := ζ‖ · ‖2, with ζ = 0.1 for the Gaussian kernel and all

Wendland kernels and ζ = 1.0 for the Matérn kernel. The reference moment as in Eq. (50) is computed by a Gaussian

kernel with Nmax = 1024 collocation points. Quadrature follows the default of tensor-product quadrature with an

approximation level of lq = 7.

Figure 6 displays visualizations of four solution realizations at T = 0.2 sec. The bubble is shown by extracting

the isosurface of the zero level-set function. Furthermore, a slice of the velocity field with coloring by the magnitude

and velocity field streamlines is given.

On the left-hand side in Fig. 7, a visualization of the mean velocity field E
[

uh
]

by means of a slice of streamlines

through all three mean velocity field components is shown. The diagram in Fig. 7(right) displays the convergence of

the approximation of E
[

uh
1

]

(T ) for different kernel functions with respect to the reference solution. We observe

that rates in the range of 0.75 are achieved by the Wendland and Matérn kernels. There is a slight reduction of the

convergence rate for smoother Wendland kernels. However, the convergence results obtained by the Gaussian kernel

clearly show higher-order and maybe even an exponential convergence behavior might be anticipated here. This

suggests a smooth dependence of the quantity of interest on the random input.

FIG. 6: Visualizations of flow field solutions of the bubble flow with random volume force and D = 3 at T = 0.2 seconds for

stochastic parameters y1 ≈ (0.0,−0.58,−1.04)⊤, y12 ≈ (−1.08,−1.22,−0.07)⊤, y19 ≈ (0.97,−0.32, 1.45)⊤, and y411 ≈

(1.21,−0.93,−0.72)⊤ (from left to right)
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FIG. 7: Streamline slice visualization of the mean velocity field with color-coded velocity magnitude in the bubble flow problem

with random volume forces (left) and error convergence results for the first component of the mean velocity field E
[

uh
1

]

(T ) (right)

4.4 Rising Bubble Flow in a Random Situation

Our second application for the two-phase Navier-Stokes equations uses a similar setup as the first flow example. We

again consider a rising air bubble in some liquid. Now, however, the density, viscosity, and initial bubble position are

under stochastic influence, whereas the volume forces are deterministically given.

Again Fig. 5 outlines the basic setup of this two-phase flow problem. The domain is given as D̄ = [0, 0.2]3 and we

have T = 0.35. The volume force g is given as standard gravity. The initial conditions are also set to u0i
= (0, 0, 0)

⊤
.

Furthermore, the surface tension coefficient is σ = 0.0728. The boundary conditions are the same as in the previous

test case. The gas phase D2 once more modeled as air; i.e., the density is ρ2 = 1, and the viscosity is µ2 = 1.72×10−5.

The remaining quantities are assumed to be random. The missing random density ρ1 and viscosity µ1 will be given in

Eq. (67). The initial position of the air bubble shall be a random quantity; see Eq. (66). This means that the phasewise

subdomains Dh
1 ,Dh

2 (or the level-set function describing them) are stochastic processes themselves. Therefore, these

domains are given for time t byDh
i (y, t) with

Dh
i (y, t) = Φ[(Dh

i )0(y)](t), (Dh
i )0(y) := Dh

i (y, 0), y ∈ Y, (63)

where Φ again describes the transformation of the initial domains (Dh
i )0(y) under fluid flow. It deterministically

depends on the velocities u1, u2, but the initially given domains are subject to random perturbations. We define the

initial liquid and gas phase domains D0
1(y) and (Dh

2 )0(y) such that the gas phase domain is a sphere of radius 0.03 m
around some random initial center xinit(y) at the beginning, thus

(Dh
1 )0(y) := {x ∈ D|‖x − xinit(y)‖ > 0.03}, (64)

(Dh
2 )0(y) := {x ∈ D|‖x − xinit(y)‖ < 0.03}. (65)

The initial free surface is Γf (y, 0) = Dh \ ((Dh
1 )0(y) ∪ (Dh

2 )0(y)). Moreover, the random parameter functions

xinit
1 (y), xinit

2 (y), and xinit
3 (y) with xinit(y) =

(

xinit
1 , xinit

2 , xinit
2

)

as well as the material parameters for the liquid
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phase, µ1(y) and ρ1(y), are modeled by truncated Karhunen–Loève expansions. Truncation is done after the first

stochastic term. Overall, these functions are given as

xinit
1 (y) = 0.1 +

0.06√
3

yx1

1 , xinit
2 (y) = 0.06 +

0.01√
3

yx2

1 , xinit
3 (y) = 0.1 +

0.06√
3

yx3

1 , (66)

µ1(y) = 0.5005 +
0.4995√

3
yµ1

1 , ρ1(y) = 750 +
250√

3
yρ1

1 . (67)

All parameters of this problem are now collected in the five-dimensional vector y with

y = (yx1

1 , yx2

1 , yx3

1 , yµ1

1 , yρ1

1 )⊤. We assume y to be a realization of the independent random vector Y with

Y x1

1 ∼ U
(

−
√

3,
√

3
)

, Y x2

1 ∼ U
(

−
√

3,
√

3
)

, Y x3

1 ∼ U
(

−
√

3,
√

3
)

, (68)

Y µ1

1 ∼ U
(

−
√

3,
√

3
)

, Y ρ1

1 ∼ U
(

−
√

3,
√

3
)

. (69)

Consequently, the density function becomes ρ(y) =
(

1/2
√

3
)5

. Here, we again approximate the first stochastic

moment E
[

uh
1

]

(T ).
This flow problem is now discretized using a uniform grid with M = 1003 grid points, a finite-difference

discretization in space, and a second-order Adams–Bashforth method with adaptive time stepping in time. We apply

the stochastic approximation in the image of the five random input variables (see also Eqs. (66) and (67)); thus

a stochastic space Y ′ = [0.04, 0.16] × [0.05, 0.07] × [0.04, 0.16] × [0.001, 0.1] × [500, 1000] is considered. To

approximate this space uniformly, the norm

‖y′‖ := ζ
∥

∥(5xinit
1 , 5xinit

2 , 5xinit
3 ,µ1, 103ρ1)

∥

∥

2
(70)

is used in the construction of the radial basis functions. Approximation by Gaussian kernels is done with ζ = 0.1,

while the other kernels have ζ = 1.0. All other approximation parameters are set as mentioned in Section 4.1.

Figure 8 shows four flow field realizations at T = 0.2 s. Approximation results for the mean of the velocity field

at T = 0.2 s are given in Fig. 9 the left, a streamline slice visualization of the reference solution is shown, which is

approximated by the Gaussian kernel with Nmax = 512 collocation points. On the right-hand side, error convergence

in the mean E
[

uh
1

]

(T ) of the first component of the velocity field is given for different kernel functions. We observe

that rates in the range of 0.7–0.8 are achieved by Wendland, Matérn, and Gauss kernels. The use of higher-order

Wendland kernels does not result in any improvement. The highest convergence rates are achieved by the Gaussian

and the Matérn kernel with about 0.8.

4.5 Comparison to Sparse Spectral Tensor-Product Approximations

In this section, our proposed kernel-based stochastic collocation method is compared to sparse grid approximations.

To this end, we employ on the one hand our kernel-based method with the default parameter chosen as in Section 4.1,

and on the other hand the sparse grid method within the Dakota framework [38]. Dakota is a parallel software suite de-

veloped by the Sandia National Laboratories. It allows, one e.g., to apply optimization and uncertainty quantification

for black-box solvers. Dakota features, among others, sparse grid stochastic collocation.

Classical stochastic collocation as provided by Dakota uses univariate Lagrange polynomials as Lagrange ba-

sis functions [6]. For multivariate interpolation, i.e., higher dimensions in stochastic space, a Smolyak sparse grid

construction as in [6] is used. More details on the Dakota-based implementation of the Smolyak sparse grid con-

struction are given in [38]. The employed parameters for sparse grid stochastic collocation in Dakota are depicted in

Configuration 1 in Appendix A. We will employ the Dakota implementation for the numerical comparison in Fig. 10.

Note here that we do not consider anisotropic sparse grid constructions [39], because the RBF kernel-based

stochastic collocation is employed without any directional preference anyway. However, the topic of dimension-wise

weighting is future work and has been already partially considered in [21].
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FIG. 8: Flow field and bubble visualization of solution realizations of the rising bubble problem with stochastic parameters

y
′

8 ≈ (0.05, 0.07, 0.12, 0.02, 863.64)⊤, y
′

6 ≈ (0.09, 0.05, 0.07, 0.09, 772.73)⊤, y
′

33 ≈ (0.1, 0.05, 0.12, 0.08, 512.4)⊤, and

y
′

27 ≈ (0.14, 0.05, 0.09, 0.09, 735.54)⊤ (from left to right)

For reason of simplicity, in contrast to the previous paragraphs, the subsequent convergence study compares

kernel-based results and the Dakota-based sparse grid result using only the single-valued quantity of interest, E
[

ch
2

]

(T ).
The single deterministic two–phase flow problems are discretized and solved as before by using NaSt3DGPF. In the

Dakota calculations, NaSt3DGPF is directly called from the Dakota control program.

We come back to the problem of a rising gas bubble in water which is subject to a random volume force; cf. Sec-

tion 4.3. Again, the random input is modeled by a Karhunen–Loève expansion which is truncated after the third term;

thus we have D = 3 stochastic dimensions and a correlation length of Lc = 2.0 is used. The quantity of interest

is now the second component ch
2 of the bubble’s center position at physical time T = 0.2 sec. The reference mean

E
[

cH
2

]

(T ) is approximated by a Gaussian kernel with Nmax = 512 collocation points. In the case of kernel-based

approximation, the standard RBF norm ‖ · ‖ := ζ‖ · ‖2 with a modified scaling of ζ = 0.1 is employed. Results

computed with the Gaussian kernel are regularized with ǫreg = 10−6 while Matérn kernel results are regularized

with ǫreg = 10−5. Quadrature is the full tensor-product quadrature on level lq = 9.
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FIG. 9: Left: Streamline slice visualization of the mean velocity field (color-coded by velocity magnitude) in the bubble flow

stochastic homogenization problem. Right: Error convergence results for the approximated mean of the first component of the

velocity field E[U1](T ) of the same problem. Approximations using different kernel functions are compared.

In Fig. 10, convergence results are given for a mean approximation by Gaussian kernels, Matérn kernels, and

stochastic collocation by sparse grids (SG). We observe that the kernel-based methods show better convergence

FIG. 10: Error convergence results of the approximation of the mean bubble center position E
[

ch
2

]

(T ) in the large-scale two-phase

flow problem with rising bubbles. Kernel-based stochastic collocation (with Gaussian and Matérn kernel) and sparse grid-based

stochastic collocation are compared.
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than the sparse grid method and a higher-order algebraic rate is achieved. Moreover, we even observe a spectral

convergence rate for the Gaussian kernel. Furthermore, the errors of the RBF-based stochastic collocation method are

always below the results of the sparse grid stochastic collocation method.

Note at this point that a computationally challenging problem is considered and to achieve an error with almost

the size of 10−4 with only 256 simulations is quite remarkable. It is well known that stochastic collocation on sparse

tensor-product constructions shows asymptotically exponential convergence rates on sufficiently smooth problems;

see [6]. Nevertheless, in many large-scale uncertainty quantification application problems, the quantity of interest

has limited smoothness with respect to the random input and/or bad preasymptotic error behavior is dominating the

convergence to a significant extent. This is where kernel-based stochastic collocation has its main advantage.

5. CONCLUSIONS

In this work, the solution of random two-phase Navier–Stokes problems by means of the kernel-based stochastic

collocation has been considered. Here, the first stochastic moment of solutions of two–phase flow problems was

computed by applying a new nonintrusive method to the existing flow solver NaSt3DGPF which is based on a ker-

nel approximation. For any method, given a fixed target error tolerance, it is indispensable to keep the number of

discretization points in stochastic space as low as possible. A way to overcome this issue is to introduce an approx-

imation method in stochastic space, which has high convergence order with a very small pre-asymptotic error. This

has been achieved in this work by the introduction of the RBF kernel-based stochastic collocation method. Numerical

results were given that underline the good properties of the kernel-based method. For the random two-phase Navier–

Stokes equations, algebraic convergence rates were shown and a small error in the pre-asymptotic regime was always

present. Thus, our kernel–based stochastic collocation approach outperformed well known established methods such

as Monte Carlo, or sparse spectral tensor-product stochastic collocation in this situation.
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APPENDIX A. PARAMETERS FOR SPARSE GRID STOCHASTIC COLLOCATION

For the sake of reproducibility, we give here the Dakota settings, which are used in Section 4.5.

Configuration 1. Standard parameters for sparse grid stochastic collocation in Dakota

method

stoch collocation

sparse grid level = <level>

dimension preference = <N KL>*1

samples = 10000 seed = 12347 rng rnum2

output silent
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