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Generalized Sparse Grid Interpolation Based on
the Fast Discrete Fourier Transform

Michael Griebel and Jan Hamaekers

Abstract In [9], an algorithm for trigonometric interpolation involving only so-
called standard information of multivariate functions on generalized sparse grids has
been suggested and a study on its application for the interpolation of functions in
periodic Sobolev spaces of dominating mixed smoothness has been presented. In this
complementary paper, we now give a slight modification of the proofs, which yields
an extension from the pairing (H s,H t

mix) to the more general pairing (H s,H t,r
mix)

and which in addition results in an improved estimate for the interpolation error. The
improved (constructive) upper bound is in particular consistent with the lower bound
for sampling on regular sparse grids with r = 0 and s = 0 given in [4, 5].

1 Introduction

This is an addendum to our previous paper [9]. Throughout this article we will
use the definitions and notation given therein. As noted in [9], so-called sparse
grid based approaches [2, 12] have emerged as useful techniques to tackle higher-
dimensional problems, since they allow to break the curse of dimensionality under
certain conditions. For example, for the periodic Sobolev spaces

H t,r
mix(T

n) :=

{
f :

√
∑

k∈Zn

n

∏
d=1

(1+ |kd |)2t(1+ |k|∞)2r| f̂k|2 < ∞

}
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2 Michael Griebel and Jan Hamaekers

of bounded mixed smoothness on the n-dimensional torus Tn which, e.g. indeed
appear with t = 3

4 −ε , r = 1 for the solution of electronic Schrödinger equation [20], a
specific generalization of the regular sparse grid spaces based on Fourier polynomials
eikT x and associated Fourier coefficients f̂k with frequencies k from the generalized
hyperbolic cross

Γ
T

2L :=

{
k ∈ Zn :

n

∏
d=1

(1+ kd) · (1+ |k|∞)−T ≤ 2L(1−T )

}

were introduced in [18] and further discussed in [9, 11, 12, 14, 19]. Here, T ∈
[−∞,1) is an additional parameter that controls the mixture of isotropic and mixed
smoothness: The case T = 0 corresponds to the conventional hyperbolic cross (or
regular sparse grid) discretization space where O(2LLn−1) frequencies are involved.
Furthermore, the case T =−∞ corresponds to the full tensor grid. The case T → 1
corresponds to a latin hypercube and the case 0 < T < 1 resembles certain energy-
norm based sparse grids where the order of the amount of included frequencies does
not depend on the number of dimensions n, i.e. it is O(2L) only.

Usually, these generalized sparse grid spaces are based on linear information, i.e.
on the Fourier coefficients of f , which involve an explicit integration of f against the
respective Fourier basis function. In contrast to that, so called standard information
involves only function values, which is of interest in many practical applications.
In this case, it is in general not clear if the approximation error of an associated
interpolant exhibits the same order of the convergence rate as that of the best linear
approximation [15, 25].

In [9], we have shown that, if L ∈ N0, T < 1, s < t, t > 1
2 and f ∈ H t

mix := H t,0
mix

with a pointwise convergent Fourier series, it holds

∥ f − IJ T
L

f∥H s ≲

{
2−((t−s)+(Tt−s) n−1

n−T )LLn−1∥ f∥H t
mix

for T ≥ s
t ,

2−(t−s)L∥ f∥H t
mix

for T < s
t ,

(1)

where IJ T
L

denotes the general sparse grid interpolation operator, as defined via (13)
with

J T
L := {l : |l|1 −T |l|∞ ≤ (1−T )L}, T < 1. (2)

Analogous estimates for the specific case of regular sparse grids, i.e. T = 0, can
be found e.g. in [23, 24, 27]. Moreover, for T = 0, estimates with an improved
logarithmic term, i.e. L

n−1
2 , are given in [3, 6, 22, 26, 28].

In this addendum to our previous article [9] we now show the following: Let
L ∈ N0, T < 1, s− r < t, t + r

n > 1
2 , t ≥ 0, r ≥ 0 and f ∈ H t,r

mix with a pointwise
convergent Fourier series. Then it holds

∥ f − IJ T
L

f∥H s ≲

2−((t−(s−r))+(Tt−(s−r)) n−1
n−T )LL

n−1
2 ∥ f∥H t,r

mix
for T ≥ s−r

t ,

2−(t−(s−r))L∥ f∥H t,r
mix

for T < s−r
t .
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Thus, we extend (1) from the pairing (H s,H t
mix) to the more general case of

(H s,H t,r
mix). This allows us to also treat the case r > 0, in contrast to the previ-

ous estimate (1). At the same time we prove for the first clause a logarithmic term
of type L(n−1)/2 only, which improves on the Ln−1 term contained in the first clause
of (1). Moreover, for the specific case T = 0, s = 0, r = 0, this upper bound is in
particular consistent with the lower bound given in case of sampling on the Smolyak
grid (regular sparse grid) in [4, 5, 17].

The remainder of this paper is organized as follows: In section 2, we summarize
necessary definitions. In section 3, we present our improved error estimate. In section
4, we discuss our new result and give some concluding remarks.

2 Fourier-based approximation for general sparse grids

In this section we will shortly recall necessary definitions given in our previ-
ous article [9]. Let Tn be the n-torus, which is the n-dimensional cube Tn ⊂ Rn,
T= [0,2π], where opposite sides are identified. We then have n-dimensional coor-
dinates x := (x1, . . . ,xn), where xd ∈ T. We define the basis function associated to a
multi-index k = (k1, . . . ,kn) ∈ Zn by

ωk(x) :=

(
n⊗

d=1

ωkd

)
(x) =

n

∏
d=1

ωkd (xd), ωk(x) := eikx.

Every f ∈ L2(Tn) has the unique expansion f (x) = ∑k∈Zn f̂kωk(x), where the
Fourier coefficients are given by

f̂k :=
1

(2π)n

∫
Tn

ω
∗
k(x) f (x)dx. (3)

In the following, let us now define finite-dimensional subspaces of the space
L2(Tn)∼= H 0(Tn) and associated appropriate interpolation operators. To this end,
we first consider the one-dimensional case, i.e. n = 1, and we set

σ : N0 → Z : j 7→

{
− j/2 if j is even,
( j+1)/2 if j is odd.

(4)

For l ∈ N0 we introduce the one-dimensional nodal basis

Bl := {φ j}0≤ j≤2l−1 with φ j := ωσ( j) (5)

and the corresponding spaces Vl := span{Bl}.
Now, let the Fourier series ∑k∈Z f̂kωk be pointwise convergent to f (x). Then, for

interpolation points Sl := {m 2π

2l : m= 0, . . . ,2l −1} of level l ∈N0, the interpolation

operator can be defined by Il : V →Vl : f 7→ Il f := ∑ j∈Gl
f̂ (l)j φ j with indices Gl :=
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{0, . . . ,2l −1} and discrete nodal Fourier coefficients

f̂ (l)j := 2−l
∑

x∈Sl

f (x)φ ∗
j (x), (6)

which only involve point evaluations f (x) at points x ∈ Sl . This way, the 2l inter-
polation conditions f (x) = Il f (x) for all x ∈ Sl are fulfilled. In particular, from (6)
and (3), one can deduce the well-known aliasing formula

f̂ (l)j = ∑
k∈Z

f̂k2−l
∑

x∈Sl

ω
∗
σ( j)(x)ωk(x) = ∑

m∈Z
f̂
σ( j)+m2l . (7)

Next, we introduce an univariate Fourier hierarchical basis function for j ∈ N0 by

ψ j :=

{
φ0 for j = 0,
φ j −φ2l−1− j for 2l−1 ≤ j ≤ 2l −1, l ≥ 1,

(8)

and we define the one-dimensional hierarchical Fourier basis including basis func-
tions up to level l ∈ N0 by Bh

l := {ψ j}0≤ j≤2l−1.
Let us further introduce the difference spaces

Wl :=

{
span{Bh

0} for l = 0,
span{Bh

l \Bh
l−1} for l > 0.

Note that there holds the relation Vl = span{Bl}= span{Bh
l } for all l ∈N0. Thus, we

have the decomposition of Vl into the direct sum Vl =
⊕l

v=0 Wl . Now, let l ∈ N0 and
u ∈Vl . Then, for any u ∈Vl , one can easily switch from its hierarchical representation
u = ∑0≤ j≤2l−1 uh

jψ j, where uh
j ∈ R, to the nodal representation u = ∑0≤ j≤2l−1 u jφ j

by a linear transform.
Next, we define the difference operator

∆l := (Il − Il−1) : V →Wl , for l ≥ 0,

where we set I−1 = 0. Note that the image of ∆l is a subspace of Wl . Hence, we define
the corresponding hierarchical Fourier coefficients f̆ j by the unique representation

∆l f = ∑
0≤v<l

∑
j∈Jv

( f̂ (l)j − f̂ (l−1)
j )φ j + ∑

j∈Jl

f̂ (l)j φ j =: ∑
j∈Jl

f̆ jψ j (9)

with

Jl :=

{
{0} for l = 0,
{2l−1, . . . ,2l −1} for l ≥ 1.

Moreover, we can write the interpolation operator associated with level l in the form
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Il f = (Il − Il−1 + Il−1 −·· ·− I0 + I0 − I−1) f

= (∆l + · · ·+∆0) f

= ∑
0≤v≤l

∑
j∈Jv

f̆ jψ j = ∑
0≤ j≤2l−1

f̆ jψ j.

In particular, let us note that the interpolation relation

∆l f (x) = f (x)− Il−1 f (x) for all x ∈ S h
l and ∆l f (x) = 0 for all x ∈ Sl−1

holds, where S h
l := Sl \Sl−1, with S−1 := /0.

For l ∈ N0, the equation

∑
0≤v<l

∑
j∈Jv

( f̂ (l)j − f̂ (l−1)
j )φ j + ∑

j∈Jl

f̂ (l)j φ j =− ∑
0≤v<l

∑
j∈Jv

f̆2l−1− jφ j + ∑
j∈Jl

f̆ jφ j

follows by the definitions (8) and (9). Therefore, the hierarchical Fourier coefficient
f̆ j is equal to the discrete nodal Fourier coefficient f̂ (l)j associated with level l for
j ∈ Jl . Hence in the case l ∈ N0, j ∈ Jl , we obtain the relation

f̆ j = f̂ (l)j = ∑
m∈Z

f̂
σ( j)+m2l (10)

with the help of the aliasing formula (7).
Now, let us consider the multivariate case. To this end, let the Fourier series

∑k∈Zn f̂kωk be pointwise convergent to f . Then, we introduce the n-dimensional
interpolation operator on full tensor grids as

Il := Il1 ⊗·· ·⊗ Iln : V →Vl : f 7→ Il f = ∑
j∈Gl

f̂ (l)j φj, with Gl := Gl1 ×·· ·×Gln ⊂Nn
0

and multi-dimensional discrete nodal Fourier coefficients

f̂ (l)j := 2−|l|1 ∑
x∈Sl

f (x)φ ∗
j (x), where Sl := Sl1 ×·· ·×Sln ⊂ Tn.

Moreover, for the n-dimensional case, we use a tensor product ansatz to construct n-
dimensional basis functions as well as spaces. To this end, for a multi-index l∈Nn

0, we
define finite-dimensional spaces by a tensor product construction, i.e. Vl :=

⊗n
d=1 Vld .

Furthermore, we introduce the space V := ∑l∈Nn Vl and we set ψj :=
⊗n

d=1 ψ jd and
Wl :=

⊗n
d=1 Wld for l ∈ Nn

0. In addition, we define WJ :=
⊕

l∈J Wl for an index set
J ⊂ Nn

0. Now, similar to (7), there holds the multi-dimensional aliasing formula

f̂ (l)j = ∑
m∈Zn

f̂σ(j)+m2l , (11)

where σ(j) := (σ( j1), . . . ,σ( jn)) and m2l :=
(
m12l1 , . . . ,mn2ln

)
.
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For the general sparse grid construction, we restrict ourselves to index sets, which
obey the admissibility condition given in [7, 13]. For any admissible index set J ,
we define generalized sparse grid space by

VJ := ∑
l∈J

Vl =
⊕
l∈J

Wl =WJ . (12)

Moreover, we introduce the corresponding general sparse grid trigonometric interpo-
lation operator by

IJ := ∑
l∈J

∆l : V →VJ , where ∆l := ∆l1 ⊗·· ·⊗∆ln : V →Wl. (13)

The associated set of interpolation points is given by

SJ :=
⋃

l∈J

S h
l , where S h

l := S h
l1 ×·· ·×S h

ln .

For a function f with a pointwise convergent Fourier series, the multi-dimensional
hierarchical coefficients f̆j are given by the unique representation

∆l f = ∑
j∈Jl

f̆jψj, where Jl := Jl1 ×·· ·×Jln .

In particular, the hierarchical Fourier series ∑l∈Nn
0

∑j∈Jl f̆jψj converges pointwise
to f on all grids Sl, l ∈ Nn

0. Furthermore, with the help of the multi-dimensional
aliasing formula (11), a relation similar to (10) can easily be deduced, that is, for
l ∈ Nn

0 and j ∈ Jl, it holds

f̆j = f̂ (l)j = ∑
m∈Zn

f̂σ(j)+m2l .

3 Approximation error of the interpolant

In the following, we consider the error of the approximation by trigonometric interpo-
lation. We proceed in two steps. First, we introduce functions β̃ , β , which determine
Sobolev spaces of general smoothness H

β̃
, Hβ and we derive an upper bound of

the interpolation operator IJ in terms of the pairing (H
β̃

, Hβ ). Then, we invoke

for β̃ and β the specific functions which characterize the norm of H s in which
the interpolation error will be measured and the regularity assumption f ∈ H t,r

mix,
respectively. Finally, we derive our new bound in Lemma 1.

To this end, let β : Zn → R+ be a continuous and positive function, which
implicitly expresses some smoothness class and defines the Sobolev space given by
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Hβ (Tn) :=

{
f (x) = ∑

k∈Zn
f̂kωk(x) : ∥ f∥β :=

√
∑

k∈Zn
β (k)2| f̂k|2 < ∞

}
.

Now, let us consider two smoothness functions β̃ and β with associated Sobolev
spaces H

β̃
and Hβ and norms ∥ f∥H

β̃
and ∥ f∥Hβ

, respectively. It should hold

Hβ ⊂ H
β̃
⊂ L2 and thus β (k)≲ β̃ (k).

Let furthermore f ∈Hβ obey a pointwise convergent (hierarchical) Fourier series.
Then, the relation

∥ f − IJ f∥H
β̃
= ∥ ∑

l∈Nn
0

∑
j∈Jl

f̆jψj − ∑
l∈J

∑
j∈Jl

f̆jψj∥H
β̃
= ∥ ∑

l∈Nn
0\J

∑
j∈Jl

f̆jψj∥H
β̃

≤ ∑
l∈Nn

0\J
∥ ∑

j∈Jl

f̆jψj∥H
β̃

(14)

holds. By definition of the hierarchical basis (8) we obtain

∥ ∑
j∈Jl

f̆jψj∥2
H

β̃

= ∥ ∑
j∈Jl

∑
v∈{0,1}n

f̆j

n⊗
d=1

φ
µ

ld
vd ( jd)

∥2
H

β̃

= ∑
j∈Jl

∑
v∈{0,1}n,l−v≥0

| f̆j|2β̃ (σ(µ l
v(j)))

2

= ∑
j∈Jl

∑
v∈{0,1}n,l−v≥0

∣∣∣∣∣ ∑
m∈Zn

f̂σ(j)+m2l

∣∣∣∣∣
2

β̃ (σ(µ l
v(j)))

2

= ∑
j∈Jl

∑
v∈{0,1}n,l−v≥0

∣∣∣∣∣ ∑
m∈Zn

f̂σ(j)+m2l
β (σ(j)+m2l)

β (σ(j)+m2l)

∣∣∣∣∣
2

β̃ (σ(µ l
v(j)))

2,

where

µ
l
0( j) = j, µ

l
1( j) =

{
−1 if l ≤ 0,
2l −1− j if l ≥ 1,

µ l
v = (µ l1

v1 , . . . ,µ
ln
vn) and φ−1 = 0. With the Cauchy-Schwarz inequality it follows that

∣∣∣∣∣ ∑
m∈Zn

f̂σ(j)+m2l
β (σ(j)+m2l)

β (σ(j)+m2l)

∣∣∣∣∣
2

≤

(
∑

m∈Zn

∣∣∣ f̂σ(j)+m2lβ (σ(j)+m2l)
∣∣∣2)( ∑

m∈Zn
β (σ(j)+m2l)−2

)
(15)

and hence it holds
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∥ ∑
j∈Jl

f̆jψj∥2
H

β̃

≤ ∑
j∈Jl

∑
v∈{0,1}n,l−v≥0

(
∑

m∈Zn

∣∣∣ f̂σ(j)+m2l

∣∣∣2 ∣∣β (σ(j)+m2l)
∣∣2)×

×

(
∑

m∈Zn
β (σ(j)+m2l)−2

)
β̃ (σ(µ l

v(j)))
2.

Now, let us assume that there is a function g : Nn
0 → R such that it holds

β̃ (σ(µ l
v(j)))

2
∑

m∈Zn

∣∣β (σ(j)+m2l)
∣∣−2 ≤C2g(l)2 (16)

for all j ∈ Jl and v ∈ {0,1}n, l−v ≥ 0, with a constant C independent of j and v.
Then, with |{0,1}n|= 2n, we have

∥ ∑
j∈Jl

f̆jψj∥H
β̃
≤ 2nCg(l)

(
∑

j∈Jl

∑
m∈Zn

| f̂σ(j)+m2l |2β (σ(j)+m2l)2

) 1
2

,

which results with relation (14) in

∑
l∈Nn

0\J
∥ ∑

j∈Jl

f̆jψj∥H
β̃
≤ 2nC ∑

l∈Nn
0\J

g(l)

(
∑

j∈Jl

∑
m∈Zn

| f̂σ(j)+m2l |2β (σ(j)+m2l)2

) 1
2

.

With Hölder’s inequality we obtain

∑
l∈Nn

0\J
∥ ∑

j∈Jl

f̆jψj∥H
β̃
≤ 2nC

 ∑
l∈Nn

0\J
g(l)2

 1
2

×

×

 ∑
l∈Nn

0\J
∑

j∈Jl

∑
m∈Zn

| f̂σ(j)+m2l |2β (σ(j)+m2l)2

 1
2

.

This leads finally to the estimate

∥ f − IJ f∥H
β̃
≲

 ∑
l∈Nn

0\J
g(l)2

 1
2

∥ f∥Hβ
. (17)

Let us now specifically consider the error in the H s-norm for approximating
f ∈ H t,r

mix in the sparse grid space VJ T
L

by interpolation. To this end, we specify

β (k) := λiso(k)r
λmix(k)t and β̃ (k) := λiso(k)s, (18)

where
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λ iso(k) := 1+ |k|∞ and λmix(k) :=
n

∏
d=1

(1+ |kd |). (19)

Furthermore, let us recall the following upper bound: For L ∈ N0, T < 1, s < t
and t ≥ 0 it holds

∑
l∈Nn

0\J
T
L

2−t|ll|1+s|ll|∞ ≲

{
2−((t−s)+(Tt−s) n−1

n−T )LLn−1 for T ≥ s
t ,

2−(t−s)L for T < s
t .

(20)

A proof is for example given in [18], Theorem 4.
Now, we can give the following lemma:

Lemma 1. Let L ∈ N0, T < 1, s− r < t, t + r
n > 1

2 , t ≥ 0, r ≥ 0 and f ∈ H t,r
mix with

a pointwise convergent Fourier series. Then it holds

∥ f − IJ T
L

f∥H s ≲

2−((t−(s−r))+(Tt−(s−r)) n−1
n−T )LL

n−1
2 ∥ f∥H t,r

mix
for T ≥ s−r

t ,

2−(t−(s−r))L∥ f∥H t,r
mix

for T < s−r
t .

(21)

Proof. For j ∈ Jl and v ∈ {0,1}n with l−v ≥ 0 it follows the relation

∑
m∈Zn

n

∏
d=1

(
1+ |σ( jd)+md2ld |

)−2t (
1+ |σ(j)+m2l|∞

)−2r

≲ ∑
m∈Zn

n

∏
d=1

(
2ld (1+ |md |)

)−2t (
2|l|∞(1+ |m|∞)

)−2r

≲ 2−2t|l|12−2r|l|∞ ∑
m∈Zn

n

∏
d=1

(1+ |md |)−2t(1+ |m|∞)−2r. (22)

For t ≥ 0 and r ≥ 0 it follows with the inequality of arithmetic and geometric means

∑
m∈Zn

n

∏
d=1

(1+ |md |)−2t(1+ |m|∞)−2r ≲ ∑
m∈Zn

(
1
n

n

∑
d=1

(1+ |md |)−2t

)n

(1+ |m|∞)−2r

≲ ∑
m∈Zn\0

|m|−2tn
1 |m|−2r

∞ ≲ ∑
m∈N

∑
|m|=m

|m|−2tn
∞ |m|−2r

∞ ≲ ∑
m∈N

mn−1m−2tnm−2r

= ∑
m∈N

m−2tn−2r+n−1

and hence, with t + r
n > 1

2 and (22), we obtain

(1+ |σ(µ l
v(j))|∞)2s

∑
m∈Zn

n

∏
d=1

(
1+ |σ( jd)+md2ld |

)−2t (
1+ |σ(j)+m2l|∞

)−2r

≲ 2−t|l|1+(s−r)|l|∞ .

According to the estimates (16) and (17) with the definitions (18) and (19), this yields
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∥ f − IJ T
L

f∥H s ≲

 ∑
l∈Nn

0\J
T
L

2−2t|l|1+2(s−r)|l|∞

 1
2

∥ f∥H t,r
mix

and, with relation (20), we obtain the upper estimate√
∑

l∈Nn
0\J

T
L

2−2t|l|1+2(s−r)|l|∞ ≲

{
2−((t−(s−r))+(Tt−(s−r)) n−1

n−T )LL
n−1

2 for T ≥ s−r
t ,

2−(t−(s−r))L for T < s−r
t ,

which gives the desired result. □

Note again that our previous article [9] contained a weaker version of Lemma 1,
which just involved the logarithmic term Ln−1 instead of L(n−1)/2 and which was
restricted to the case r = 0.

4 Discussion and Concluding Remarks

Now, we want to compare the error bounds for standard information and linear
information. To this end, for l ∈ Nn

0, let us first define the approximation operator Ql
with respect to the L2-norm by Ql := Ql1 ⊗ . . .⊗Qln : L2(Tn)→Vl, where

Ql : L2(T)→Vl : f 7→ ∑
0≤ j≤2l−1

f̂σ( j)φ j.

Then, for any admissible index set J , we define the general sparse grid approxima-
tion operator QJ : L2(Tn)→VJ by

QJ f := ∑
l∈J

∑
j∈Jl

f̂σ(j)ωσ(j). (23)

Now, we can get from [9] the following upper estimate associated to linear informa-
tion for the special case of the error measured in the H s-norm: For L ∈ N0, T < 1,
s < t + r, t ≥ 0 and f ∈ H t,r

mix(Tn) it holds

inf
f̃∈V

J T
L

∥ f − f̃∥H s ≤ ∥ f −QJ T
L

f∥H s

≲

2L((s−r)−t+(Tt−(s−r)) n−1
n−T )∥ f∥H t,r

mix
for T ≥ s−r

t ,

2L((s−r)−t)∥ f∥H t,r
mix

for T ≤ s−r
t ,

(24)

with the approximation operator QJ T
L

as defined via (23) with the index set J T
L

from (2).
We see that, for general sparse grids, there is a difference in the error behavior

between the best approximation (24) and the approximation by interpolation (21)
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in the situation T ≥ s−r
t . Indeed, in the H s-norm error estimate for the interpolant

resulting from Lemma 1 with t + r
n > 1

2 , t > 0, s− r ≥ 0 and T ≥ s−r
t , there is the

logarithmic factor L(n−1)/2 present. In contrast, for the best linear approximation
error in the H s-norm, there is no such logarithmic term involved, compare relation
(24) with s− r ≥ 0, t > 0 and T ≥ s−r

t . For the special example of regular sparse
grids, i.e. T = 0, see also Table 1.

Table 1: Convergence behavior in case of regular sparse grid spaces, i.e. T = 0, in
situation T ≥ s−r

t for best linear approximation and for interpolation, i.e. QJ 0
L

and
IJ 0

L
, respectively. Note that, for reasons of simplicity, we restricted ourselves to just

the case s = r here.

f ∈ H s-error dof M convergence

QJ 0
L

H t,s
mix, t > 0 O(2−tL) O(2LLn−1) O

(
M−t log(M)t(n−1)

)
IJ 0

L
H t,s

mix, t > 1
2 O(2−tLL(n−1)/2) O(2LLn−1) O

(
M−t log(M)(t+1/2)(n−1)

)

Next, we cast the estimates on the degrees of freedom and on the associated error
of approximation by interpolation into a form which measures the error with respect
to the number M of the involved degrees of freedom. To this end, let us first recall
from [9] the following: Let L ∈ N0 and T < 1. Then, the number of the degrees of
freedom of the general sparse grid spaces VJ T

L
with respect to the discretization

parameter L is

M :=
∣∣∣VJ T

L

∣∣∣≲ ∑
l∈J T

L

2|l|1 ≲


2L for 0 < T < 1,
2LLn−1 for T = 0,

2L T−1
T/n−1 for T < 0,

2Ln for T =−∞.

(25)

Now, we restrict ourselves to the special case of regular sparse grids, i.e. T = 0,
and s− r = 0. Here, a simple consequence of Lemma 1 and relation (25) is that for
L ∈ N0, t > 1

2 and f ∈ H t,s
mix with a pointwise convergent Fourier series, there holds

the relation

∥ f − IJ 0
L

f∥H s ≲ M−tL(t+1/2)(n−1)∥ f∥H t,s
mix

≲ M−t log(M)(t+1/2)(n−1)∥ f∥H t,s
mix

,

(26)
whereas, for linear information, we only have

∥ f −QJ 0
L

f∥H s ≲ M−t∥ f∥H t,s
mix

≲ M−t log(M)t(n−1)∥ f∥H t,s
mix

.



12 Michael Griebel and Jan Hamaekers

The question, if this gap between the sampling (standard information) and the
approximation numbers (linear information) exists or if it can be closed, is for general
sampling point distributions an open problem, see [15, 25, 17] for the case s = 0
and compare also the recent improvement in [21]. However, in the special case of
sampling on Smolyak grids (i.e. for regular sparse grids with T = 0) and for the
pairing (L2,H

t,0
mix), i.e. with s = 0 in (26), it follows from the lower bound given

in [4, 5] that estimate (26) is indeed asymptotically sharp. Hence the corresponding
sampling number and approximation number are not equal in this case, compare also
Table 1 and see [5, 17] for a further more detailed discussion.

In contrast, for general sparse grid spaces in the situation T < s−r
t , the error of

the best linear approximation and the error by interpolation behave asymptotically
equal and hence there is no gap in these situations, c.f. Table 2. Note that, compared
to the case T = 0 given in Table 2 with T < s−r

t , Table 1 covers the case T = 0 in
the situation T ≥ s−r

t .

Table 2: Convergence behavior in case of general sparse grid spaces with T < 1,
s < t + r and T < s−r

t for best linear approximation and for interpolation, i.e. QJ T
L

and IJ T
L

, respectively. For a shorter notation we set α := t +(r− s).

f ∈ H s-error dof M convergence

QJ T
L
,0 < T < s−r

t H t,r
mix, t > 0 O(2−αL) O(2L) O(M−α )

IJ T
L
,0 < T < s−r

t H t,r
mix, t + r

n > 1
2 O(2−αL) O(2L) O(M−α )

QJ T
L
,T = 0 H t,r

mix, t > 0 O(2−αL) O(2LLn−1) O(M−α log(M)α(n−1))

IJ T
L
,T = 0 H t,r

mix, t + r
n > 1

2 O(2−αL) O(2LLn−1) O(M−α log(M)α(n−1))

QJ T
L
,−∞ < T < 0 H t,r

mix, t > 0 O(2−αL) O(2L T−1
T/n−1 ) O(M−α

T/n−1
T−1 )

IJ T
L
,−∞ < T < 0 H t,r

mix, t + r
n > 1

2 O(2−αL) O(2L T−1
T/n−1 ) O(M−α

T/n−1
T−1 )

QJ −∞

L
H t,r

mix, t ≥ 0 O(2−αL) O(2Ln) O(M− α
n )

IJ −∞

L
H t,r

mix, t + r
n > 1

2 O(2−αL) O(2Ln) O(M− α
n )

Note furthermore that, in the case T ≥ s−r
t > 0, we still see the additional factor

L
n−1

2 , i.e. a gap, for the error estimate and we do not know a lower bound like for
T = 0 and s = 0 as in [4, 5], i.e. we do not know if our estimate is sharp in this
situation. But this is not the interesting case anyway, since we have a dimension-
dependent error rate and dimension-dependent convergence complexity.

Altogether our theory shows that, in many cases, general sparse grids are a suitable
approach to avoid the curse of dimensionality at least to a certain level of extent.
Especially, in case of H s-error measurement of an interpolate IJ T

L
f for f ∈ H t,r

mix

with t + r
n > 1

2 , s < t + r and 0 < T < s−r
t , the rate of the interpolation error with
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respect to the involved degrees of freedom is independent of the dimension and hence
the curse of dimensionality is completely avoided, see also the first row in Table 2,
albeit it may still be present in the big O constants. Moreover, our numerical results
given in [9] are consistent with the derived theory.

Let us furthermore note that we only discussed the sparse grid interpolation oper-
ator IJ T

L
for the periodic case. However, all the related estimates can be transferred

in a straightforward way to other spectral transforms like e.g. discrete cosine, sine,
Chebyshev, Legendre, generalized Hermite, Jacobi transform and Laguerre trans-
forms, which allow to treat non-periodic cases as well. Here, just the cost for the
underlying one-dimensional transform may differ, e.g. in the worst case O(22l) for
a naive polynomial transform might be involved in a general situation compared
to O(l2l) for the fast Fourier transform in the simple periodic setting. Indeed, our
implemented software library HCFFT (www.hcfft.org) allows in particular to
deal with discrete cosine, sine, Chebyshev, Legendre, generalized Hermite, Jacobi
transform and Laguerre transforms, and also their mixtures, compare [29]. Moreover,
discretization spaces associated with arbitrary admissible index sets and also spaces
with finite-order weights [8, 10] and dimension-adaptive methods [1, 7, 16] can be
treated analogously.

We believe that our general approach via the functions β̃ and β and the pairing
(H

β̃
,Hβ ) is helpful for much more general situations than the one dealt with in this

article, as long as the corresponding right hand side of (17) involving the g-based
bound of (16) can be handled properly.
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3. D. Dũng. B-spline quasi-interpolant representations and sampling recovery of functions with

mixed smoothness. Journal of Complexity, 27(6):541–567, 2011.
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22. T. Kühn, W. Sickel, and T. Ullrich. Approximation of mixed order Sobolev functions on
the d-torus: asymptotics, preasymptotics, and d-dependence. Constructive Approximation,
42(3):353–398, 2015.

23. F. Kupka. Sparse Grid Spectral Methods for the Numerical Solution of Partial Differential
Equations with Periodic Boundary Conditions. PhD thesis, University of Wien, 1997.

24. F. Kupka. Sparse grid spectral methods and some results from approximation theory. In
C. Lai, P. Bjørstad, M. Cross, and O. Widlund, editors, Proceedings of the 11th International
Conference on Domain Decomposition Methods in Greenwich, pages 57–64, England, 1999.

25. E. Novak and H. Wozniakowski. On the power of function values for the approximation
problem in various settings. Surveys in Approximation Theory, 6:1–23, 2011.

26. W. Sickel and T. Ullrich. Spline interpolation on sparse grids. Applicable Analysis, 90(3-
4):337–383, 2011.

27. V. Temlyakov. Approximation of Periodic Functions. Nova Science, New York, 1993.
28. H. Triebel. Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, volume 11

of EMS Tracts in Mathematics. European Mathematical Society, 2010.
29. V. Velikov. Fast Sparse Pseudo-spectral Methods for High-dimensional Problems. Master

thesis, Institute for Numerical Simulation, Universität Bonn, 2016.


