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Empirical economic research frequently applies maximum likelihood esti-
mation in cases where the likelihood function is analytically intractable. Most
of the theoretical literature focuses on maximum simulated likelihood (MSL)
estimators, while empirical and simulation analyzes often find that alterna-
tive approximation methods such as quasi–Monte Carlo simulation, Gaussian
quadrature, and integration on sparse grids behave considerably better nu-
merically. This paper generalizes the theoretical results widely known for
MSL estimators to a general set of maximum approximated likelihood (MAL)
estimators. We provide general conditions for both the model and the ap-
proximation approach to ensure consistency and asymptotic normality. We
also show specific examples and finite–sample simulation results.

1. Introduction

Consider classical maximum-likelihood estimation, i.e. the estimated parameter vector
θ̂ML ∈ Θ ⊂ R

p is obtained by maximizing

Ln(θ) =
1

n

n
∑

i=1

log f(zi,θ). (1.1)

Here, f(zi,θ) denotes the individual likelihood contribution of the sample zi ∈ Z ⊂ R
q.

As n tends to infinity, the ML-estimator converges to the true parameter θ0, which
defines the distribution the sample z1, . . . , zn was drawn from, i.e. plimn→∞ θ̂ML = θ0.

Often, the function f stems from an integral representation

f(z,θ) =

ˆ

Ω
ϕ(v, z,θ)ω(v)dv, (1.2)

where ϕ : Ω×Z ×Θ → R is some (usually non-negative) function that is integrated with
respect to the variable v and a weight function ω : Ω → R+ that is defined on a domain
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Ω ⊂ R
d. In many relevant cases, these integrals cannot be computed in closed form,

e.g. for models of discrete choice (Butler and Moffitt, 1982; McFadden and Train, 2000;
Train, 2009), or general limited dependent variable models (Hajivassiliou and Ruud,
1994). Then, f can be approximated with an r-point quadrature rule, i.e.

f̃r(z,θ) :=
r
∑

j=1

wj,rϕ(vj,r, z,θ) ≈ f(z,θ). (1.3)

Here, the quadrature points and weights (vj,r, wj,r)r
j=1 are independed of z and need to

be chosen properly to guarantee a certain accuracy, provided that specific assumptions
on ϕ are valid. Moreover, increasing the parameter r allows to increase the accuracy on
the one hand, but leads to additional cost on the other hand. Therefore, it is necessary to
determine the required accuracy for the approximation of f by f̃r such that the resulting
estimator maintains consistency and asymptotical normality.

To this end, we introduce a link function R : N → N that couples the number of inte-
gration points r to the sample size n, i.e. r = R(n). Now, R(n) can be chosen such that
f̃R(n)(zi,θ) approximates f(zi,θ) well enough to ignore this additional approximation
error but not better, to keep the overall cost at a tractable level. Altogether, this leads
to the maximum approximated likelihood estimator (MALE) given by

θ̂
(n)
MAL := arg max

θ∈Θ
L̃n(θ), where L̃n(θ) :=

1

n

n
∑

i=1

log f̃R(n)(zi,θ). (1.4)

Here, the cost for one evaluation of L̃n in terms of evaluations of ϕ is n ·R(n).

A classical and flexible tool to deal with the numerical integration problems in (1.3) is
Monte Carlo simulation (MC). Here, all weights are chosen uniformly as wj,r = 1/r, j =
1, . . . , r and the points vj,r are drawn identically and independently from the probability
distribution induced by the weight function ω. Since MC only requires weak assumptions
on ϕ, simulation-based estimation has become part of the standard econometrics toolkit.
It is implemented in software packages and taught at graduate schools. Comprehensive
surveys can be found in Hajivassiliou and Ruud (1994), Gouriéroux and Monfort (1996)
and Train (2009).

Maximum simulated likelihood (MSL) is consistent under the usual assumptions if the
number of simulation draws r increases with the sample size n. In order to achieve
asymptotic efficiency for identical sampling, r has to grow at least linearly in n, i.e.
r = R(n) ≥ n.1

While asymptotically the simulation error disappears under the appropriate conditions,
the computational burden imposed by a sufficient number of simulation draws to achieve

1"Identical sampling" denotes the use of one draw-set for all likelihood contributions, i.e. the same
quadrature rule is used for all samples zi. In contrast, "independent sampling" denotes the use of one
draw-set per likelihood contribution, i.e. for each likelihood contribution an individual quadrature
rule is applied. In case of independent sampling, r only has to increase faster than

√

n, see for example
Hajivassiliou and Ruud (1994). A recent discussion about the difference between both methodologies
can also be found in Kristensen and Salanié (2017).
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well-behaved estimators can be cumbersome or prohibitive in practice. Many stud-
ies have found that approximation algorithms other than Monte-Carlo simulation can
achieve much higher accuracy and better behaved estimators with a reduced level of com-
putational costs. For one-dimensional problems that are sufficiently smooth, Gaussian
quadrature (Butler and Moffitt, 1982) is an obvious choice. For multivariate problems,
quasi-Monte-Carlo methods like Halton draws (Bhat, 2001) or other deterministic ap-
proaches like integration on sparse grids (Heiss and Winschel, 2008) have been applied
successfully.

These deterministic approximation algorithms work well enough in practice to warrant
their routine use in software packages like the mixed logit implementation of Stata. But
while there is plenty of literature on properties of simulation-based approaches, little is
known for estimators based on the other methods. Some papers that use determinis-
tic numerical integration methods other than pure simulation ignore the approximation
error in the discussion of the estimator. This applies mainly to examples with one-
dimensional integration problems which are tackled with Gaussian quadrature such as
Butler and Moffitt (1982). Other papers discuss the well-studied simulation-based esti-
mators before arguing that their deterministic approaches tend to work better in practice,
e.g. in Bhat (2001) or in Sándor and Train (2004). This might be due to the fact that
the theoretical properties and prerequisites of deterministic approximation schemes are
not yet very well understood. Ackerberg et al. (2009) took a first step by giving a set
of conditions for the approximated log likelihood contributions that imply consistency
and asymptotic normality. However their results remain on the rather abstract level of
log-likelihood approximation and provide no guidance on how to check these conditions
for specific applications and approximation algorithms. In particular, it remains unclear
how the integration error for the approximation of (1.2) by (1.3) influences the statistical
properties of the approximated likelihood estimator.

This paper aims at closing this gap and provides a general and unified discussion of the
asymptotic properties of a large class of estimators that is based on a broad range of
integration methods. The well-known results of simulation-based approaches emerge as
special cases. We provide specific conditions under which these estimators are consistent
and under which additional conditions the approximation error is irrelevant for their
asymptotic distribution. For example, we can derive that a logarithmic growth of the
number of samples r is sufficient, if the convergence in r is fast enough. Therefore,
in the setting of Gaussian quadrature, it suffices to have r = R(n) = log(n). This
is a huge reduction compared to R(n) ≈ n or R(n) ≈ √

n. As an application and
demonstration of our framework to a specific model, we deal with mixed logit models
and the Butler-Moffitt model, which both are estimated using an approximation that is
based on Gauss-Hermite quadrature or Gauss-Hermite sparse grids.

The remainder of this article is organized as follows: In Section 2 we discuss conditions
that imply the consistency and asymptotic normality of general extremum estimators.
In Section 3 we specialize on maximum approximated likelihood estimators and the
assumptions that have to be made such that the conditions from the previous section are
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fulfilled. Then, in Section 4, we deal with specific integration algorithms, like Gaussian
quadrature, quasi–Monte Carlo and sparse grids. In Section 5, we put our theory into
practice, by analyzing specific econometric models in the light of our results. This
analysis is supplemented by numerical results in Section 6.

2. Asymptotic theory with approximated objective functions

As the most general framework, we consider extremum or M-estimators as discussed
in Newey and McFadden (1994), NM hereafter. An M-estimator θ̂M maximizes (or
minimizes) some objective function Qn(θ), i.e.

θ̂M = arg max
θ∈Θ

Qn(θ), (2.1)

where n refers to the number of samples z1, . . . , zn that contribute to Qn(θ). Examples
include least squares, maximum likelihood, GMM, and minimum distance. Throughout
this paper, we will maintain the assumption that θ̂M would have all desired properties
if we were able to compute the respective objective function Qn(θ) and therefore the
estimator itself. NM comprehensively discuss the conditions to ensure these properties.

We are interested in the problems that arise if Qn(θ) cannot be evaluated analytically
and therefore needs to be approximated. Let Q̃n(θ) denote the approximated objective
function. Then, our approximated M-estimator is simply

θ̂AM = arg max
θ∈Θ

Q̃n(θ). (2.2)

We now give general conditions to ensure consistency and the asymptotic distribution
of θ̂AM . We start by recalling Theorem 2.1 of NM:

Lemma 1. Assume that there is a function Q0(θ) such that (i) Q0(θ) is uniquely max-
imized at θ0; (ii) θ ∈ Θ and Θ is compact; (iii) Q0(θ) is continuous; (iv) the function
Qn(θ) converges uniformly in probability to Q0(θ). Then, θ̂M = arg maxθ∈ΘQn(θ) is a
consistent estimator of θ0, i.e. plimn→∞ θ̂ = θ0.

We abstract from any misspecifications and other problems that could violate the condi-
tions of Lemma 1 in order to focus on the inaccuracies introduced by the approximation
of the objective function. Indeed, We can apply the same arguments as in Lemma 1
to the approximated M-estimator θ̂AM if we can ensure that assumption (iv) also holds
for the approximated objective function. The following Theorem 2 states that this is
the case as long as Q̃n(θ) converges uniformly in probability to the unavailable exact
objective function Qn(θ).

Theorem 2. Assume that (i) the assumptions of Lemma 1 hold (ii) Q̃n(θ) converges

uniformly in probability to Qn(θ), i.e. plimn→∞ supθ∈Θ

∣

∣

∣Q̃n(θ) −Qn(θ)
∣

∣

∣ = 0. Then,

θ̂AM is a consistent estimator of θ0, i.e.

plim
n→∞

θ̂M = θ0. (2.3)
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Proof. We assume in 2(i) that the M-estimator with the exact objective function is
consistent. We can use the same arguments as NM to show Lemma 1 if we can establish
that Q̃n(θ) converges uniformly in probability to Q0(θ) (Assumption 1(iv)). To see why
this holds true, note that, by the triangle inequality for norms there holds

sup
θ∈Θ

∣

∣

∣Q̃n(θ) −Q0(θ)
∣

∣

∣ = sup
θ∈Θ

∣

∣

∣

(

Q̃n(θ) −Qn(θ)
)

+
(

Qn(θ) −Q0(θ)
)

∣

∣

∣ (2.4)

≤ sup
θ∈Θ

∣

∣

∣Q̃n(θ) −Qn(θ)
∣

∣

∣+ sup
θ∈Θ

|Qn(θ) −Q0(θ)| .

Both terms converge to zero in probability: the first by assumption 2(ii), the second by
assumption 2(i).

Note that assumption 2(ii) requires the approximation accuracy to increase with n. In
the well-known example of approximation by Monte Carlo simulation, we can increase
the number of simulation draws as n → ∞. We will come back to this more explicitly
when we discuss specific approximations approaches.

accuracy parameter r to the number of observations n we introduce a function R : N →
N. We will assume that R(n) is monotonically increasing, i.e. R(n+ 1) ≥ R(n).

In order to derive the asymptotic distribution of θ̂AM , we again recall the relevant
Theorem 3.1 of NM for extremum estimators θ̂ = arg maxθ Qn.

Lemma 3. Suppose that the assumptions of Lemma 1 hold and that (i) θ0 ∈ interior(Θ);
(ii) Qn(θ) is twice continuously differentiable in a neighborhood N of θ0; (iii)√
n∇θQn(θ0)

d→ N(0,Σ); (iv) there is H(θ) that is continuous at θ0 and

supθ∈N ‖∇θθQn(θ) −H(θ)‖ p→ 0; (v) H = H(θ0) is nonsingular. Then the

M-estimator is asymptotically normal distributed, i.e
√
n(θ̂ − θ0)

d→ N(0, H−1ΣH−1).

To analyze our approximate M-estimator, we again assume that the conditions of this
lemma hold and then give additional assumptions such that the same results apply to
the approximate M-estimator θ̂AM .

Theorem 4. Assume that (i) the assumptions of Lemma 3 hold; (ii) With probabil-
ity one, Q̃n(θ) is twice continuously differentiable in a neighborhood N of θ0; (iii)

plimn→∞ supθ∈Θ

∣

∣

∣Q̃n(θ) −Qn(θ)
∣

∣

∣ = 0; (iv) plimn→∞
√
n supθ∈Θ

∥

∥

∥∇θQ̃n(θ) − ∇θQn(θ)
∥

∥

∥ =

0; (v) plimn→∞ supθ∈Θ

∥

∥

∥∇θθQ̃n(θ) − ∇θθQn(θ)
∥

∥

∥ = 0. Then

√
n
(

θ̂AM − θ0

)

d→ N(0, H−1ΣH−1), (as n → ∞)

so θ̂AM has the same limiting distribution as the infeasible θ̂M .
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Proof. We can apply the same arguments used by NM to show Lemma 3, applied to our
approximated objective function Q̃n(θ). By our assumptions 4(i) and 4(ii), assumptions
3(i), 3(ii), and 3(v) are directly implied. To check 3(iii), we write

√
n∇θQ̃n(θ0) =

√
n∇θQn(θ0) +

√
n
(

∇θQ̃n(θ0) − ∇θQn(θ0)
)

. (2.5)

The first term converges in distribution to N(0,Σ) by assumption 4(i) and 3(iii). The
second term converges in probability to zero by 4(iv). Finally, we confirm 3(iv) by noting
that

sup
θ∈N

∥

∥∇θθQ̃n(θ) −H(θ)
∥

∥ ≤ sup
θ∈N

∥

∥∇θθQ̃n(θ) − ∇θθQn(θ)
∥

∥+ sup
θ∈N

∥

∥∇θθQn(θ) −H(θ)
∥

∥

(2.6)

is implied by the triangle inequality. Both terms converge to zero in probability: the
first by assumption 4(v), the second by assumption 4(i).

Arguably the most important condition for deriving the asymptotic distribution is as-
sumption 4(iv). It not only requires the approximated gradient to converge to the exact
value, but the rate of convergence also needs to be faster than 1/

√
n.

3. Maximum approximated likelihood

In the last section we discussed general extremum estimators with approximated objec-
tive functions. These results are similar to those of Ackerberg et al. (2009) who study
general approximation algorithms for maximum likelihood estimation. For the remain-
der of this paper, we focus on the case of maximum likelihood. This covers a large share
of the applications of approximate M-estimation and allows us to be more specific. We
will derive general conditions for the likelihood contributions and the approximation
algorithm to ensure favorable properties of the resulting MAL estimator.

3.1. Asymptotic analysis with respect to likelihood contributions

We consider an i.i.d. random sample [zi ∈ Z; i = 1, . . . , n] from a population distribution
characterized by the family of probability mass or density functions f(z; θ0) and the
sample space Z ⊂ R

d. Here, z includes all variables. In most econometric models, z

includes some “endogenous” variables y and some “exogenous” variables x. In these
cases, f(z; θ0) is actually conditional on x. For notational convenience and consistency
with the literature, we will not explicitly make this distinction. The exact log likelihood
function is

Qn(θ) = Ln(θ) =
1

n

n
∑

i=1

log f(zi; θ), (3.1)

where the individual likelihood contributions of sample zi are given by f(zi; θ). The
maximum likelihood estimator θ̂ML maximizes Ln(θ), i.e. θ̂ML = arg maxθ Ln(θ).
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Moreover, in the context of the preceding section, we have plimn→∞Qn(θ) = Q0(θ),
where Q0 was introduced in Lemma 1 and is maximized by the true parameter θ0.

Newey and McFadden (1994, Theorems 2.5, 3.3) provide conditions for the ML estimator
to have favorable properties like consistency and asymptotic normality. We recall them
in the following, treating the consistency of the ML estimator first.

Lemma 5. Assume that (i) For all θ 6= θ0, we have f(y; θ) 6= f(y; θ0); (ii) θ0 ∈ Θ
and Θ is compact; (iii) log f(y; θ) is continuous at each θ ∈ Θ with probability one; (iv)
Ey[supθ∈Θ | log f(y; θ)|] < ∞. Then, plimn→∞ θ̂ML = θ0 (consistency).

Next, we recall the following result on the asymptotic normality of the ML estimator.

Lemma 6. Assume that (i) the assumptions of Lemma 5 hold and that
(ii) θ0 ∈ interior(Θ); (iii) f(y; θ) is twice continuously differentiable and
f(y; θ) > 0 in a neighborhood N of θ0; (iv)

´

supθ∈N ‖∇θf(y; θ)‖ dy < ∞
and

´

supθ∈N ‖∇θθf(y; θ)‖ dy < ∞; (v) I = Ey

[

∇θf(y; θ0) (∇θf(y; θ0))T
]

exists and is nonsingular, (vi) Ey [supθ∈N ‖∇θ log f(y; θ0)‖] < ∞. Then
√
n
(

θ̂ML − θ0

)

d→ N
(

0, I−1
)

(asymptotic normality).

If the likelihood contributions f(zi; θ) cannot be computed analytically, we need to
approximate them using some algorithm. The approximated likelihood contributions
are denoted by f̃r(zi; θ), i = 1, . . . , n and depend on an accuracy parameter r, but not
on the sample zi, i.e. the same approximation approach to f is used for all likelihood
contributions. For maximum simulated likelihood, r might be the number of simulation
draws. In general, it determines the amount of approximation error as well as the
computational costs.

Theorems 2 and 4 require the approximated objective function Q̃n(θ) to converge to the
exact function Qn(θ) as n → ∞. In general, this requires r to increase with n. Therefore,
it is not sufficient to keep r fixed for all n, but to consider a sequence of approximation
functions (f̃r(zi; θ))∞

r=1 which, in a sense that will be clarified later, converge to the exact
f(zi; θ) as r → ∞. Then, the approximated log-likelihood

L̃n,r(θ) :=
1

n

n
∑

i=1

log f̃r(zi; θ) (3.2)

fulfills limn,r→∞ L̃n,r(θ) = Q0(θ). In practice for any finite n ∈ N, we need to choose a
finite accuracy level r. Choosing r too large will result in unneccesary cost, while using
a too small n will result in an additional error contribution. This trade-off will be the
subject of the remainder of this section.

In order to link the accuracy parameter r to the number of observations n we introduce
a function R : N → N. We will assume that R(n) is monotonically increasing, i.e.
R(n+ 1) ≥ R(n) and limn→∞R(n) = ∞. The speed with which R(n) needs to increase
with n will depend on the specific approximation algorithms as will be discussed below.
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Then, the maximum approximated likelihood estimator θ̂MAL maximizes

Q̃n(θ) = L̃n(θ) =
1

n

n
∑

i=1

log f̃R(n)(zi; θ). (3.3)

We now discuss general properties of f̃R(n)(zi; θ) that imply the consistency and the

asymptotic distribution of θ̂MAL. In order to focus on the effects of approximation,
we assume that the infeasible ML estimator would have all desired properties if it were
available, i.e. that the assumptions of Lemma 5 and 6 hold.

In addition to the consistency of the ML estimator, the only additional assumption we
need for consistency of θ̂MAL according to Theorem 2 is the uniform convergence in
probability of the approximation L̃n(θ) to the true, but intractable Ln(θ).

Theorem 7. Assume that (i) the conditions of Lemma 5 hold and that (ii) there ex-
ists δ̄ > 0 such that for all z ∈ Z and all θ ∈ Θ it holds that f(z,θ) ≥ δ̄; (iii)

limr→∞ supz∈Z,θ∈Θ

∣

∣

∣f̃r(z,θ) − f(z,θ)
∣

∣

∣ = 0; (iv) R(n) is monotonically increasing in n

and limn→∞R(n) = ∞. Then, θ̂MAL is a consistent estimator of θ0, i.e.

θ̂MAL
p→ θ0. (3.4)

Proof. We use our general results from Theorem 2. Given the (infeasible) MLE is con-
sistent by assumption (i), we only have to verify Assumption 2(ii).

Note at this point that there exists r0 ∈ N and a real number δ ∈ (0, δ̄) such that for all
r ≥ r0, all z ∈ Z and all θ ∈ Θ it holds that both, f̃r(z,θ) ≥ δ and f(z,θ) ≥ δ̄ ≥ δ. To
see why this is true, we use that there exists δ̄ > 0 such that for all θ ∈ Θ and z ∈ Z it
holds f(θ, z) > δ̄. Then, we choose some δ with 0 < δ < δ̄. Because of 7(iii), we have
limr→∞ f̃r(z; θ) = f(z; θ) for all z ∈ Z and θ ∈ Θ. Hence, there exists r0(δ) ∈ N such
that for all r ≥ r0(δ) it holds for all z ∈ Z and all θ ∈ Θ that

|f̃r(z; θ) − f(z; θ)| < δ̄ − δ. (3.5)

This implies f̃r(z; θ) ≥ δ for all r ≥ r0(δ).

Now we are in the position to show

sup
θ∈Θ

∣

∣

∣L̃n(θ) − Ln(θ)
∣

∣

∣

p→ 0. (3.6)

To this end, we write

sup
θ∈Θ

∣

∣

∣L̃n(θ) − Ln(θ)
∣

∣

∣ = sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

log(f̃R(n)(zi,θ)) − log(f(zi,θ))

∣

∣

∣

∣

∣

≤ sup
θ∈Θ,z∈Z

∣

∣

∣log(f̃R(n)(z,θ)) − log(f(z,θ))
∣

∣

∣ .
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For sufficiently large n (i.e. R(n) ≥ r0), we can use Corollary 19 (i) in Appendix A. By
assumptions (i) and (ii) with h(θ) = f(zi,θ) and g(θ) = f̃R(n)(zi,θ) it follows that

sup
θ∈Θ

∣

∣

∣L̃n(θ) − Ln(θ)
∣

∣

∣ ≤ 1

δ
sup

θ∈Θ,z∈Z

∣

∣

∣f̃R(n)(z,θ) − f(z,θ)
∣

∣

∣ .

Moreover, by assumption (iii) and (iv), this expression converges to zero in probability.

In order to study the asymptotic distribution of the MAL estimator, we assume that
the (intractable) ML estimator θ̂ML is asymptotically normally distributed and efficient
and that the MAL estimator θ̂MAL is consistent. Then we make additional assumptions
to derive the asymptotic distribution of θ̂MAL. To this end, we define the quantity

E(r) := sup
z∈Z,θ∈Θ

∣

∣

∣f̃r(z; θ) − f(z; θ)
∣

∣

∣+ sup
z∈Z,θ∈Θ

∥

∥

∥∇θf̃r(z; θ) − ∇θf(z; θ)
∥

∥

∥ , (3.7)

which measures the worst-case approximation error of both, the function f and its
gradient ∇f by f̃r and ∇f̃r, respectively.

Theorem 8. Assume that the assumptions of Lemma 6 and Theorem 7 hold.
Also assume that (i) f̃r(z; θ) is twice continuously differentiable in θ ∈ Θ
and bounded for all z ∈ Z and r ∈ N; (ii) plimn→∞

√
n E(R(n)) = 0; (iii)

supz∈Z,θ∈Θ

∥

∥

∥∇θθf̃R(n)(z; θ) − ∇θθf(z; θ)
∥

∥

∥

p→ 0. Then

√
n
(

θ̂MAL − θ0

)

d→ N(0, I−1).

Proof. We proceed by verifying the assumptions of Theorem 4. Assumption 4(i) directly
follows from Assumption 8(i).

The critical conditions we have to check are 4(iv) and 4(v). The arguments are similar to
that in the proof of Theorem 7: Again, there exists a δ ∈ (0, δ̄) such that for sufficiently
large r it holds f̃r > δ. In order to show 4(iv), we define

C1(f) :=
1 + supz,θ ‖∇θf(z,θ)‖

δ2

and

C2(f) := 2
1 + supz,θ ‖∇θf(z,θ)‖2 + supz,θ ‖∇θ,θf(z,θ)‖

δ3
.

Then, we use Corollary 19 (ii) and the definition of Er to derive

√
n sup

θ∈Θ

∥

∥

∥∇θL̃n(θ) − ∇θLn(θ)
∥

∥

∥ ≤ √
n sup

θ∈Θ,z∈Z

∥

∥

∥∇θ

[

log(f̃R(n)(z,θ)) − log(f(z,θ))
]
∥

∥

∥

≤ C1(f)
√
nE(R(n)),

which converges to zero in probability by Assumption 8(iv).
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Using similar arguments, we employ Corollary 19(iii) to verify 4(v). We compute

sup
θ∈Θ

∥

∥

∥∇θθL̃n(θ) − ∇θθLn(θ)
∥

∥

∥ ≤ sup
θ∈Θ,z∈Z

∥

∥

∥∇θθ

[

log(f̃R(n)(z,θ)) − log(f(z,θ))
]
∥

∥

∥

≤ C2(f)

(

E(R(n)) + sup
θ∈Θ,z∈Z

∥

∥

∥∇θf̃R(n)(z,θ) − ∇θf(z,θ)
∥

∥

∥

2

+ sup
θ∈Θ,z∈Z

∥

∥

∥∇θθf̃R(n)(z,θ) − ∇θθf(z,θ)
∥

∥

∥

)

.

Clearly, as n → ∞, by the given assumptions, all three summands within the bracket
tend to zero in probability. This implies that the whole expression tends to zero, because
C2(f) is independent of n.

3.2. The level of approximation accuracy

In Theorem 8 it is required by condition (ii) that plimn→∞
√
n E(R(n)) = 0, i.e. the

approximation error (3.7) of the gradient E(R(n)) needs to decay faster than n−1/2.
Different approximation algorithms behave differently in terms of how the error bounds
E(r) change with r. We discuss the two most common forms of convergence and their
implication on the choice of R : N → N.

(a) Algebraic convergence: For constants c > 0 and s > 0 it holds

E(r) ≤ cr−s. (3.8)

(b) Exponential convergence: For constants c > 0 and α, β > 0 it holds

E(r) ≤ c exp
(

−αrβ
)

. (3.9)

Now, we give general results on how to choose R(n) depending on the convergence rates
of the approximation algorithm for f̃r.

Theorem 9. (a) Assume that an algebraic convergence rate E(r) ≤ cr−s holds for

sufficiently large r ∈ N and s > 0. Then, for all γ > 1
2 it holds that

√
nE(R(n))

p→ 0
if

R(n) ≥
⌈

c
1
sn

γ

s

⌉

. (3.10)

(b) Assume that an exponential convergence rate E(r) ≤ c exp
(− αrβ

)

holds for suffi-

ciently large r ∈ N and α, β > 0. Then, for all γ > 1
2 it holds that

√
nE(R(n))

p→ 0
if

R(n) ≥
⌈

(

log c

α
+
γ

α
logn

)
1
β

⌉

. (3.11)
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Proof. For (a), we insert (3.10) into (3.8). This yields

√
nE(R(n)) ≤ c

√
n
⌈

c
1
sn

γ

s

⌉−s
≤ √

nn−γ ≤ n
1
2

−γ ,

which, for γ > 1/2 tends to zero as n → ∞.

For (b), we insert (3.11) into (3.9) and obtain

√
nE(R(n)) ≤ c

√
n exp

(

− α
⌈( log c

α
+
γ

α
logn

)

1
β
⌉β
)

≤ √
n exp (−γ logn) =

√
nn−γ ,

which also tends to zero as n → ∞, if γ > 1/2.

4. Specific approximation algorithms

Up to this point, we did not specify any particular approximation. In the following, we
examine a very common setting, i.e. a likelihood contribution of the form

f(zi; θ) =

ˆ

Ω
ϕ(v, zi,θ)ω(v) dv, (4.1)

which is a (possibly multivariate) integral of a function ϕ : Ω × Z × Θ → R over the
domain of integration Ω ⊂ R

d with respect to a given weight function ω : Ω → R+.
The integral typically represents the expectation over a nonlinear function ϕ of a set
of random variables with density function ω. This class of models includes nonlinear
random effects models like Butler and Moffitt (1982) and random coefficients models
like the mixed logit model, see for example McFadden and Train (2000).

The need for approximation arises because the integral in (4.1) often cannot be com-
puted in closed form. To this end, several estimators have been proposed including the
method of simulated moments (MSM; McFadden (1989)) and the method of maximum
simulated scores (MSS; Hajivassiliou and McFadden (1998)). Possibly the most widely
used approach is the maximum simulated likelihood (MSL) estimator. It approximates
f(zi; θ) with a Monte Carlo estimate, i.e. f̃r(zi; θ) = 1

r

∑r
j=1 ϕ(vj , zi,θ), where (vj)r

j=1

is a set of random draws distributed according to the weight function ω.

Many authors have found that integration rules other than pure Monte-Carlo simulation
often perform much better in practice. Examples include Quasi-Monte Carlo rules in
Bhat (2001), Gaussian quadrature in Butler and Moffitt (1982), or quadrature on sparse
grids in Heiss and Winschel (2008).

To cover all the mentioned approaches, we consider a general approximation2

f̃r(zi; θ) = Ur(ϕ(·, zi,θ)) :=
r
∑

j=1

wj,rϕ(vj,r, zi,θ) (4.2)

2Note that both, the weights wj,r and the points vj,r do not depend on the sample zi. This implies
that for each likelihood contribution the same approximation algorithm is employed.
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to the true integral of (4.1). This formulation includes Monte-Carlo, where all weights
(ωj,r) are equal to r−1 and the nodes (vj,r) are random draws, but also Quasi-Monte
Carlo (QMC; like Halton or Sobol sequences), cf. Halton (1964) or Sobol (1967), where
the weights are also equal to r−1 but the nodes are deterministic. Moreover, it includes
classical (Gaussian) quadrature rules, cf. Davis and Rabinowitz (2007), as well as sparse
grids (Gerstner and Griebel, 1998). We will come back to specific algorithms below.

Remember that for continuous ϕ(·, z,θ) our likelihood contributions f(z,θ) and their
derivatives now have the following general form

f(z; θ) =

ˆ

Ω
ϕ(v, z,θ)ω(v) dv

∇θf(z; θ) =

ˆ

Ω
∇θϕ(v, z,θ)ω(v) dv

∇θθf(z; θ) =

ˆ

Ω
∇θθϕ(v, z,θ)ω(v) dv.

(4.3)

Their associated approximations f̃r(z,θ) stem from some cubature rule Ur of the form

f̃r(z; θ) = Ur(ϕ(·, z,θ)) =
r
∑

j=1

wj,rϕ(vj,r, z,θ)

∇θf̃r(z; θ) = Ur(∇θϕ(·, z,θ)) =
r
∑

j=1

wj,r∇θϕ(vj,r, z,θ)

∇θθf̃r(z; θ) = Ur(∇θθϕ(·, z,θ)) =
r
∑

j=1

wj,r∇θθϕ(vj,r, z,θ).

(4.4)

The goal in this section will be to impose conditions on ϕ as well as on the integration
rule Ur such that the assumptions of Theorems 7 and 8 hold. To this end, the following
notation for the partial derivative of a sufficiently smooth function g will be helpful.

D(θ)
α g(θ) =

∂|α|
∏p

j=1 θ
αj

j

g(θ), (4.5)

where α = (α1, . . . , αp) is a multi-index that contains the order of the partial derivatives
for different coordinate directions θ1, . . . , θp.

In order to bound the magnitude of supz∈Z,θ∈Θ

∣

∣

∣f̃r(z,θ) − f(z,θ)
∣

∣

∣, as well as

supz∈Z,θ∈Θ ‖∇θf̃r(z; θ) − ∇θf(z; θ)‖ and supz∈Z,θ∈Θ ‖∇θθf̃r(z; θ) − ∇θθf(z; θ)‖ defined
by (4.3) and (4.4), we resort to

Ēk(r) := max
|α|1≤k

sup
z∈Z,θ∈Θ

∣

∣

∣D(θ)
α f(z,θ) −D(θ)

α f̃r(z,θ)
∣

∣

∣

= max
|α|1≤k

sup
z∈Z,θ∈Θ

∣

∣

∣

∣

∣

∣

ˆ

Ω
D(θ)

α ϕ(v, z,θ)ω(v) dv −
r
∑

j=1

wj,rD
(θ)
α ϕ(vj,r, z,θ)

∣

∣

∣

∣

∣

∣

(4.6)

12



for k = 0, 1, 2. Since all matrix- and vector-norms can be bounded by the ℓ∞ norm
it holds E(r) ≤ 2pĒ1(r) and hence it is sufficient (and convenient) to work with the
quantity defined in (4.6).

Now, limr→∞ Ēk(r) = 0 basically implies that the quadrature rules (Ur)r∈N in (4.4)
converge for ϕ(·, z,θ) and all partial derivatives with respect to θ up to order k.

4.1. Consistency and asymptotic normality

First, we deal with consistency, which follows as a simple application of Theorem 4 to
the specific setting where f has the form (4.3) and f̃r has the form (4.4).

Corollary 10. Assume that the conditions of Lemma 1 hold and that (i) there exists
δ̄ > 0 such that for all values of z ∈ Z and θ ∈ Θ it holds f(z; θ) > δ̄ > 0; (ii)
the function ϕ(v, z,θ) is continuous in θ ∈ Θ; (iii) plimr→∞ Ē0(r) = 0; (iv) R(n) is
monotonically increasing in n. Then, θ̂MAL is a consistent estimator of θ0, i.e.

θ̂MAL
p→ θ0. (4.7)

Condition 10(iii) states that the cubature rule Ur converges for ϕ, which is a rather mild
assumption since no requirements are made regarding the speed of convergence.

Next, we consider the asymptotic distribution of θ̂MAL. Again, f has the form (4.3)
and f̃r has the form (4.4). The critical part of the properties of θ̂MAL is the worst-case
approximation error, i.e. (4.6) for k = 1, which not only has to go to zero, but also has
to vanish at a certain speed.

Corollary 11. Assume that the assumptions of Lemma 6 and Corollary 10 hold. Also
assume that (i) for all v ∈ Ω and all z ∈ Z it holds that ϕ(v, z, ·) is twice continuously
differentiable; (ii) for all z ∈ Z and all θ ∈ Θ all terms in (4.3) remain bounded. (iv)

plimr→∞ Ē2(r) = 0; (v) R(n) rises fast enough with n to ensure
√
nĒ1

(

R(n)
) p→ 0. Then

√
n
(

θ̂MAL − θ0

)

d→ N(0, I−1).

Remark 12. Note that at no point the positivity of the integration weights is assumed.
Only (sufficiently fast) convergence of Ur for all partial derivatives of ϕ up to order 2 is
required.

Remark 13. Note that the results obtained in the last three Sections are of asymptotical
nature, i.e. they hold for n → ∞. In practice, n and also r = R(n) need to be finite
numbers, where R(n) has to be chosen such that R(n) ≥ r0(δ) because otherwise f̃R(n) > δ

might not hold true. Especially for f̃R(n) ≤ 0 the whole approach does not work anymore
because of the logarithm in the log-likelihood contributions.
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4.2. Examples for integration rules

In this section we will turn from the previous abstract framework to more explicit ap-
proximation algorithms and likelihood constructions. We will discuss several choices for
the approximation of the integrals (4.3) and their resulting complexities. To this end,
remember that the likelihood function consists of n terms where each one requires the
numerical approximation of an integral with r = R(n) evaluations of ϕ. Therefore, the
total complexity for one evaluation of the approximated likelihood function is n · R(n),
with the requirements on R(n) given in Theorem 9. Several concrete examples are
provided in Table 1.

4.2.1. Monte Carlo simulation

In order verify the consistency of the Monte Carlo simulation (MC) approach it only
is required that ϕ(·, z,θ) is uniformly bounded in L2(Ω, ω) for all data z ∈ Z and all
parameters θ ∈ Θ. This means that supz,θ

´

Ω ϕ(v, z,θ)2 ω(v)dv < ∞. Then, the choice
wj,r = 1/r and independent and identical draws vj,r from the probability distribution
induced by ω yield a quadrature rule that converges both, in expectation and with high
probability at a rate of O(r−1/2). By Corollary 10 the resulting estimator is consistent.

For asymptotical normality, also the partial derivatives of ϕ with respect to θ must be
square integrable, i.e.

sup
z,θ

ˆ

Ω

(

D(θ)
α ϕ(v, z,θ)

)2
ω(v)dv < ∞ for all |α|1 ≤ 2.

Then, with high probability and also in expectation, Ē1 ≤ cr−1/2 and Ē1 converges to
zero at a rate of O(r−1/2). It follows by Corollary 11 and Theorem 9 that the Monte
Carlo based MAL estimator is asymptotically normal if the number of integration points
r increases at least linearly in the number of data samples n, i.e. r = R(n) = nβ with
β > 1.

Setting Error bound Total cost n ·R(n)

Monte Carlo O(r−1/2) O(n2)

Quasi – Monte Carlo O(r−1+ε) O(n3/2+ε)

Gaussian quadrature, smoothness k = 2 O(r−2) O(n5/4)
Gaussian quadrature, analytic function O(e−r) O(n log(n))

Sparse grid, bounded domain O(r−k+ε) O(n1+ 1
2k

+ε)

Sparse grid, unbounded domain O(r−k/2+ε) O(n1+ 1
k

+ε)

Table 1: Total number of integrand evaluations for MALE with different integration
schemes.
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4.2.2. Quasi – Monte Carlo integration

Another approach to multivariate integration on the d-dimensional unit cube Ω = (0, 1)d

is the quasi–Monte Carlo method. Similar to Monte Carlo it has all weights wj = r−1,
but the points are not drawn randomly, but determined deterministically by certain
number-theoretic considerations. Quasi–Monte Carlo methods exist in differenct vari-
ants, depending on the specific selection of points. Examples are Halton points, cf.
Halton (1964), lattice rules, cf. Sloan and Joe (1994) or Sobol points, cf. Sobol (1967).
A rather recent development are higher-order QMC points, cf. Dick and Pillichshammer
(2010); Hinrichs et al. (2016).

For integrands that possess bounded variation in the sense of Hardy and Krause,
cf. Niederreiter (1992), most QMC constructions achieve a convergence rate of order
O(r−1 log(r)d−1). Asymptotically, this bound behaves like O(r−1+ε), where the ε > 0
asymptotically suppresses the d-dependent power of log r.

Details on the definition of the Hardy-Krause variation can be found in Dick and Pil-
lichshammer (2010); Niederreiter (1992); Owen (2005). We just note at this point that
bounded variation is a much stronger assumption than bounded variance (as it is re-
quired for Monte Carlo integration) since for bounded Hardy-Krause variation also the
mixed derivatives need to exist and to be bounded, i.e.

ˆ

[0,1]d

∂d

∏d
j=1 ∂vj

g(v) dv < ∞ for all (z,θ) ∈ Z × Θ. (4.8)

If this property is fulfilled for g(v) = ϕ(v, z,θ), the resulting estimator will be consistent.
If in addition also (4.8) is fulfilled for all partial derivatives of ϕ up to order 2 with respect

to θ, i.e. g(v) = D
(θ)
α ϕ(v, z,θ), |α|1 ≤ 2 then both, Ē1(r) and Ē2(r) decay at a rate of

O(r−1+ε) and Corollary 11 and Theorem 9 yield that the number of QMC integration
points needs to increase as r = R(n) = nβ with any β > 1/2.

We remark that in some cases the condition of bounded Hardy-Krause variation can be
relaxed to deal with integrands that possess mild singularities, cf. Owen (2006).

4.2.3. Gaussian quadrature and related methods

The classical approach to numerical integration aims at the so-called degree of exactness.
This means that the quadrature rule is constructed such that it integrates polynomials
up to a certain degree D exactly, i.e. the points v1,r, . . . , vr,r and weights w1,r, . . . , wr,r

are determined such that
r
∑

j=1

wj,rv
k
j,r =

ˆ

Ω
vk ω(v)dv for all k = 0, 1, . . . , D. (4.9)

The quadrature rule with the best possible degree of exactness 2r−1 is Gaussian quadra-
ture. Depending on the smoothness of the integrand, Gaussian quadrature yields al-
gebraic convergence rates (for integrands with finite smoothness) or (sub-)exponential
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convergence rates for infinitely differentiable or analytic integrands, cf. Davis and Ra-
binowitz (2007). We will discuss two examples for Gaussian quadrature in more detail
below. Note that it is also possible to extend the Gaussian approach to non-polynomial
basis functions, e.g. to deal with certain boundary singularities that occur with the
GHK sampling approach, cf. Griebel and Oettershagen (2014). Moreover, there are fur-
ther approaches that yield quadrature rules with a polynomial degree of exactness that
involve nested point sets. Examples are Gauss-Patterson quadrature rules, cf. Patterson
(1968), Clenshaw-Curtis quadrature, cf. Imhof (1963) or Leja points, cf. Jantsch et al.
(2016); Griebel and Oettershagen (2016).

Besides favorable convergence rates, Gaussian quadrature rules have the property that
the Stone-Weierstrass Theorem and its variations ensure their convergence for any con-
tinuous integrand. Therefore, by Theorem 10 maximum approximated likelihood estima-
tors based on Gaussian quadrature rules and other stable polynomial-based quadrature
rules usually are consistent if ϕ(·, z,θ) is continuous for all (z,θ) ∈ Z × Θ.

Gauss-Legendre quadrature If the weight function is constant, i.e. ω(x) = 1 and Ω is
bounded, e.g. Ω = [0, 1], Gauss-Legendre quadrature achieves the best possible degree
of polynomial exactness. As a consequence, it achieves exponential convergence rates of
type O(e−αr), α > 0 for integrands that are analytic in certain ellipses or circles that
enclose the domain of integration Ω, cf. Davis and Rabinowitz (2007). However, if the
integrand is only k < ∞ times differentiable, the convergence rate deteriorates to the
order O(r−k).

Gauss-Hermite quadrature If the weight function corresponds to a standard normal
density, e.g. ω(x) = 1√

2π
e−x2/2 and Ω = R, then Gauss-Hermite quadrature is op-

timal with respect to polynomial exactness. The analysis of Gaussian quadrature on
unbounded domains Ω is more complicated than in the case of bounded Ω. Yet, there
are a number of useful results available: For integrands with k continuous and inte-
grable derivatives, the error of Gauss-Hermite quadrature can be bounded by O(r−k/2),
cf. Smith et al. (1983) or Mastroianni and Monegato (1994). To be more precise, if there
exists a constant c > 0 such that

g(k)(v) ≤ c
e

v2

2√
1 + v2

for all v ∈ R (4.10)

then it holds
∣

∣

∣

∣

∣

∣

ˆ

R

g(v)
e− v2

2√
2π

dv −
r
∑

j=1

wj,rg(vj,r)

∣

∣

∣

∣

∣

∣

≤ C(k, g)r−k/2, (4.11)

where the constant C(k, g) > 0 may depend on k and the integrand g, but not on r.
Basically, condition (4.10) bounds the growth of the k-th derivative along the real axis.
Moreover, for integrands that are analytic in an infinite complex strip that contains
the real axis R, sub-exponential convergence rates of type O(e−αnβ

) are shown in Boyd
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(1984). Finally, for certain classes of entire functions, even exponential convergence
O(e−αr) is possible, cf. Kuo and Woźniakowski (2011) or Irrgeher et al. (2015).

4.2.4. Sparse grid cubature

For multivariate integration problems it is possible to use sparse grids, cf. Gerstner and
Griebel (1998, 2003); Griebel and Oettershagen (2016); Novak and Ritter (1996) to turn
a univariate quadrature rule to a multivariate integration method.

For integrands with bounded mixed derivatives up to order k on bounded domains a
classical result is the convergence rate of order O(r−k(log r)(d−1)(r+1)), cf. Gerstner and
Griebel (1998) and Novak and Ritter (1996). In the case of sparse grid Gauss-Hermite
quadrature on the unbounded domain R it holds, cf. Zhang et al. (2013),

∣

∣

∣

∣

∣

∣

ˆ

Rd

g(v)
e− v

t
v

2

(2π)d/2
dv −

r
∑

j=1

wj,rg(vj,r)

∣

∣

∣

∣

∣

∣

≤ C(k, g)r−k/2(log r)(d−1)(k/2+1), (4.12)

which asymptotically behaves like O(r−k/2+ε). Here, as before C(k, g) depends on k and
g and the integrand g must have continuous partial derivatives up to order k which fulfill

∂kd

∏d
l=1 ∂v

k
l

g(v) ≤ c
e

v
t

v

2

∏d
l=1

√

1 + v2
l

for all v ∈ R
d, (4.13)

i.e. the mixed derivative of order k is continuous and does not grow too fast as v

approaches infinity. For integrands that are infinitely often differentiable, k ∈ N can be
chosen as large as desired, but then also the constant C(k, g) might become arbitrary
large.

5. Examples

Example Ia In the logit model, one needs to compute integrals of the form

ˆ

R

1

1 + e−zix

e− (x−µ)2

2σ2

√
2πσ2

dx. (5.1)

Since the parameter vector θ = (θ1, θ2) = (µ, σ) shall only contribute to ϕ in (4.1) we
reformulate the integral (5.1) using the change of variable v = (x− µ)/σ to obtain

ˆ

R

1

1 + e−zix

e− (x−µ)2

2σ2

√
2πσ2

dx =

ˆ

R

1

1 + e−zi(σv+µ)

e− v2

2√
2π

dv.

Hence, in the notation of (4.1) we have with θ = (θ1, θ2) := (µ, σ)

Ω = R, ω(v) =
1√
2π
e− v2

2 , ϕ(v, zi,θ) =
1

1 + e−zi(θ2v+θ1)
. (5.2)
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In order to determine the convergence rate of Gauss-Hermite quadrature, we have to
analyze the function v 7→ ϕ(v, zi,θ), as well as its derivatives with respect to θ, i.e. the

functions v 7→ D
(θ)
α ϕ(v, zi,θ) for |α|1 ≤ 2. To this end, we use Lemma 20 from the

Appendix, which ensures that (4.10) is satisfied for all k ∈ N, i.e.

dk

dvk
D(θ)

α ϕ(v, zi,θ) ≤ c(k,α)
e

v2

2√
1 + v2

for all v ∈ R and all α ∈ N
2
0. (5.3)

Therefore, we can expect arbitrary large algebraic convergence of order O(r−k).

Example Ib In the multivariate random coefficients logit model one needs to compute
integrals of the form

ˆ

Rd

1

1 + e−zi·v
exp

(− 1
2(v − µ)tΣ−1(v − µ)

)

√

(2π)d det Σ
dv. (5.4)

We use the variable transformation

u = C−1(v − µ),

where C denotes the Cholesky factorization of Σ, i.e. Σ = CCt. Then, for any f : Rd →
R we obtain

ˆ

Rd

f(v)
exp

(− 1
2(v − µ)tΣ−1(v − µ)

)

√

(2π)d det Σ
dv

=

ˆ

Rd

f(C(u + µ))
exp

(− 1
2utCtΣ−1Ctu

)

√

(2π)d det Σ
det Cdu

=

ˆ

Rd

f(C(u + µ))
exp

(− 1
2utu

)

√

(2π)d
du.

Hence, in the notation of (4.3) we have with θ = (θ1, θ2, . . . , θp) := (µ,C), where
p = d+ d(d+ 1)/2, that

Ω = R
d, ω(v) =

e− v
t

v

2

√

(2π)d
, ϕ(v, zi,θ) =

1

1 + e−zi·C(v+µ)
. (5.5)

Again, we can use Lemma 20 from the Appendix to ensure that (4.13) is fulfilled for all
k ∈ N, i.e.

∂kd

∏d
l=1 ∂v

k
l

D(θ)
α ϕ(v, zi,θ) ≤ c(k,α)

e
v

t
v

2

∏d
l=1

√

1 + v2
l

for all v ∈ R
d and all α ∈ N

p
0. (5.6)

Therefore, for any k ∈ N we can (asymptotically) expect algebraic convergence of order
O(r−k/2(logn)(d−1)(k/2+1)), which asymptotically behaves like O(r−k/2+ε).
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Example 2 In the Butler-Moffitt model one has to solve univariate integrals of the form

f(zi,θ) =

ˆ

R

T
∏

t=1

Φ(zi,tβ + σv)
e− v2

2√
2π

dv,

where Φ : R → (0, 1) denotes the cumulative distribution functions of the standard
normal distribution.

Hence, in the notation of (4.1) we have with θ = (θ1, θ2) := (σ, β)

Ω = R, ω(v) =
1√
2π
e− v2

2 , ϕ(v, zi,θ) =
T
∏

t=1

Φ(zi,tβ + σv). (5.7)

In order to determine the convergence rate of Gauss-Hermite quadrature, we have to
analyze the function v 7→ ϕ(v, zi,θ), as well as its derivatives with respect to θ, i.e. the

functions v 7→ D
(θ)
α ϕ(v, zi,θ) for |α|1 ≤ 2. To this end, we note that Φ is bounded and

all of its derivatives are also bounded. Therefore, by the general Leibnitz / product rule,
(4.10) is fulfilled for all k ∈ N, i.e.

dk

dvk
D(θ)

α ϕ(v, zi,θ) ≤ c(k,α)
e

v2

2√
1 + v2

for all v ∈ R and all α ∈ N
2
0. (5.8)

Thus, we can expect arbitrary large algebraic convergence of order O(r−k).

Remark 14. Note that an arbitrary large algebraic rate of convergence usually amounts
to an (sub-)exponential convergence of type O(exp(−αrβ)). However, to determine the
exact rate of decay, i.e. α and β or even to check the required assumptions, usually re-
quires advanced techniques from complex analysis, cf. e.g. Davis and Rabinowitz (2007)
or Boyd (1984), which are beyond the scope of this article. Therefore, at this point, we
will stay with algebraic convergence rates for any k ∈ N and their much simpler to check
prerequisites.

6. Pre-Asymptotics

So far we have discussed the asymptotic behavior of the maximum approximated likeli-
hood estimator where n and r approach infinity. In the following simulation study we
focus on the illustration of the theoretical findings as well as practical relevant insights
into the pre-asymptotic behavior. First we demonstrate the relative performance of
common approximation methods and link the result to our theory. Second we consider
the consequences caused by the approximation error for the estimation accuracy.

Relative Performance of Approximation Methods

To ensure consistency in the context of Corollary 10 an approximation method is re-
quired for which the approximation error disappears if r → ∞. For all reasonable
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approaches, including Monte-Carlo methods, quasi Monte-Carlo and numerical quadra-
ture this assumption is fulfilled. However, for a finite r the approximation accuracy can
differ dramatically.

For our illustration we analyze a simplified random coefficient regression model of the
form

yi = xiβi + εi with εi ∼ N(0, 1) βi ∼ N(β̄, 1).

The likelihood contribution is

f
(

zi = (y, x), θ = β̄
)

=

ˆ

R

g(y − xβ) × g(β − β̄) dβ, (6.1)

where g(·) denotes the standard normal density function with g(x) = 1√
2π
e−x2/2. The

likelihood contribution is evaluated at θ = 0 using

f̃ (zi, θ) =
r
∑

j=1

wj,rg(y − xvj,r),

where vj,r denotes the draws or nodes regarding the standard normal distribution and
wj,r the corresponding weights. For every run in the experiment we randomly generate
xi ∼ N(0, 1), βi ∼ N(0, 1) and εi ∼ N(0, 1). Based on the generated data we compute
the approximated likelihood contribution.

We apply three approximation methods, i.e. (1) ordinary Monte-Carlo sampling using
pseudo-random draws, (2) quasi Monte-Carlo sampling proposed by Halton (1964) and
(3) Gauss-Hermite quadrature3. As reference fref ≃ f we compute the approximation
f̃(zi, θ = 0) with a very fine Gauss-Hermite quadrature using 100 grid-points.

For an increasing sequence of r we repeat the experiment m = 5.000 times and compute
for each repetition the approximation error (f̃−fref). We aggregate the results in Figure

6.1 using the "maximum absolute error" (left panel) and the RMSE=
√

1
m

∑m
i=1(f̃ − fref)2

(right panel). The maximum absolute error complies with the worst case error in as-
sumption (iii) of Theorem 7. The RMSE is a more common measure of convergence
used here for the comparison of the approximation methods.

3We also tested quasi Monte-Carlo draws following Sobol (1967) and, representative for variance re-
duction techniques, we use Modified Latin Hypercube Sampling (MLHS) (see Hess, Train and Po-
lak, 2006) as well as Gauss-Legendre quadrature and the midpoint-rule. The general result is that
Monte-Carlo performs worse, quasi Monte-Carlo and MLHS perform roughly the same and Gaussian-
Quadrature performs best.
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Figure 6.1: Convergence behavior using different approximation methods for a smooth

function f
(

zi = (y, x), θ = β̄
)

=
´

R
g(y − xβ) × g(β − β̄) dβ

As shown in Figure 6.1 the three methods are converging in the worst case error and in
the average error, respectively. But the methods differ in their convergence rates. The
function f(·) used here is smooth and therefore we observe the corresponding theoretical
error bounds of the different employed methods (see Table 1). As expected, Gauss-
quadrature outperforms the other methods and obtains even an exponential convergence
rate. Thus, to reach at least the same accuracy as Monte-Carlo with 16.384 draws, just
128 Halton-draws and even only 16 nodes for the Gauss-Hermite quadrature are needed.

As stated in section 4.2 the convergence behavior and the relative performance is related
to the smoothness of the approximated function. In general there is no absolute domi-
nant approximation method but, based on the properties of the likelihood function, one
method could perform better than another, provided that more smoothness is present,
compare Table 1.

To illustrate this result we also analyze the Accept-Reject-Sampling (ARS) solution for
the standard-normal-cdf (see equation (6.2)). This model has a discontinuity at z = x
and is therefore not smooth in terms of section 4.2. We consider

f (z) =

ˆ

R

1(x ≤ z) · g(x) dx, (6.2)
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where 1(·) denotes the indicator function, which is one if the expression in brackets is
true and zero otherwise. This function is approximated using

f̃ (z) =
r
∑

j=1

wj,r1(vj,r ≤ z)).

For our simulation study we randomly draw 5.000 z-values from a standard-normal-
distribution for each accuracy level r. We apply Monte-Carlo, Halton draws and Gauss-
Legendre quadrature. As reference solution we take the error-function representation

fref = 1
2

[

1 + erf
(

z√
2

)]

. The results are summarized in Figure 6.2.
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Figure 6.2: Convergence behavior using different approximation methods for a non-
smooth function f (z) =

´

R
1(x ≤ z) · g(x) dx

The result for the non-smooth ARS confirms that the relative performance depends
strongly on the smoothness of the approximated function. Here Monte-Carlo achieves
the same convergence rate as before. The Halton draws and Gauss-Legendre achieve
a higher rate, but Gauss-quadrature does not outperform the other two methods any
more.

As stated in section 3.2 the convergence rate of an approximation method translates into
the required link-function R(n) to achieve asymptotic normality. Figure 6.3 shows the
results for the previous model f(·) from (6.1) were the scaled approximation error E(r)
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Figure 6.3: Convergence of
√
nE(R(n)) for different link functions

(see equation (3.7)) is plotted against the sample size in terms of Theorem 8 (ii). For
Theorem 8 we require a link function which ensures plimn→∞

√
nE(R(n)) = 0. For the

constant link-function (upper left panel) this condition is not met by any approximation
method. For the logarithmic link-function (upper right panel) and for the

√
n link-

function (lower left panel) only the more efficient Gauss-Hermite or the Gauss-Hermite
and Halton draws, respectively, meet the condition. And for the computationally most
costly link function n (lower right panel) all methods meet the condition, even the
Monte-Carlo method (blue line), albeit with a very flat slope.

Consequences for the practical application of MALE

The overall estimation error (θ̂MAL − θ0) in MAL has two components (compare also
equation (2.4)). First, the sampling error and, second, the approximation error. In
most practical applications, the sample size is typically fixed and there is only a small
variation allowed in the approximation accuracy. Thus, we now run a simulation were
we generate m = 2000 data sets for our random coefficient model with sample size
fixed at n = 50 and n = 5000, respectively. We estimate the parameter β̄ using the
likelihood function (6.1) from above. To illustrate the convergence behavior we compute

the RMSE =
√

1
m

∑m
i=1(θ̂MALE − θ0)2 based on the estimated parameter θ = β̄. Figure

6.4 shows the result.
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Figure 6.4: Convergence of the estimator with sample size n fixed

If there would be no approximation error only the sample error would cause variation in
the result and would not be affected by r. This sample-error expressed in the RMSE is
given by the dashed horizontal line in Figure 6.4. For increasing sample size this error
decreases (compare left and right panel). Indeed, the estimator’s variance needed for
standard hypothesis testing is just of this type.

For finite r there is also an approximation error whose size depends on the approxima-
tion method and r. This error component increases the variance for the estimator and
therefore potentially affects the interpretation of hypothesis tests. To correct for the ap-
proximation error in the inference one could apply corrections as proposed in Kristensen
and Salanié (2017). So, also for practical applications, it is recommended to choose the
most efficient method to minimize this error-component for a given computational cost.
Moreover, Figure 6.4 shows an increasing relevance of the approximation error due a
rising number of observations. This leads to the conclusion that, for a large dataset, an
appropriate approximation is of higher interest than for a small dataset.

7. Summary and conclusions

This paper discusses maximum approximated likelihood (MAL) estimators that gener-
alize maximum simulated likelihood (MSL) estimators. A major advantage of MSL is
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that the underlying Monte Carlo simulation techniques provide favorable asymptotic
properties under very general conditions. This not only makes it a versatile tool for the
practitioner, it also simplifies the theoretical analysis. However, it has been frequently
found that the computational costs required to achieve a sufficient approximation qual-
ity can be burdensome or infeasible. So it has become common practice to use more
accurate numerical approximation algorithms such as quasi–Monte Carlo simulation,
Gaussian quadrature, and integration on sparse grids. This paper contributes to the
theoretical underpinning of these approaches. It establishes sets of conditions on the
model, the approximation approach and their interactions that ensure the consistency
and the asymptotic efficiency of general MAL estimators. We also provide discussions
of specific algorithms and models and show their behavior both asymptotically and in a
simulation analysis.

Overall, numerical approximation methods have stronger requirements on properties of
the models such as the smoothness of the likelihood contributions than MSL. Given
that these conditions are met, not only their finite sample properties, but also their
asymptotic behavior can be superior. This is manifested mainly in the fact that the speed
with which the computational burden has to be asymptotically increased (as n → ∞)
can be dramatically decreased relative to MSL.

The verification of the general conditions provided in this paper for specific models and
approximation methods can be a nontrivial task. We provide examples to demonstrate
the approach. But we expect that more work discussing the specifics for different classes
of models and algorithms would be useful for guiding the practitioner.
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A. Appendix: Technical results

In Section 3, we have worked with distances of the log likelihood function from its
quadrature-approximation as well as their derivatives. In order to deal with the loga-
rithm in the log likelihood contribution, we now present a general result that relates the
distance of a function or its derivatives up to order 2 to the respective distance between
the logarithmized functions and its derivatives.

To this end, we will again use the notation D
(θ)
α g(θ) to denote the partial derivatives

with respect to θ, cf. (4.5). Moreover, we use ‖∇θg‖ to denote the ℓ2-(vector-)norm of
the gradient of g and ‖∇θ,θg‖ to denote the ℓ2-(matrix-)norm of the Hessian of g.

Moreover, we will use the L∞(X) space which contains all functions that are bounded
on some domain X, i.e.

‖f‖L∞(X) := sup
x∈X

|f(x)| < ∞.

Theorem 15. Consider real-valued functions g and h defined on a compact set Θ ⊂ R
p.

Assume that (i) the image of g and h is bounded away from zero, i.e. for all θ ∈ Θ it
holds g(θ), h(θ) ∈ J = [δ,D] with 0 < δ < D < ∞; (ii) the partial derivatives of g and
h up to order k ∈ N0 exist and are bounded in L∞(Θ). Moreover, consider a function
ψ : J → R, whose first k+ 1 derivatives exist and are bounded in L∞(J). Then, it holds
for

(i) k = 0, i.e. g, h ∈ L∞(Θ) and ψ,ψ′ ∈ L∞(J), that

sup
θ∈Θ

|ψ ◦ g(θ) − ψ ◦ h(θ)| ≤ ‖ψ′‖L∞(J) · sup
θ∈Θ

|g(θ) − h(θ)|. (A.1)

(ii) k = 1, i.e. g, h, ‖∇θg‖, ‖∇θh‖ ∈ L∞(Θ) and ψ,ψ′, ψ′′ ∈ L∞(J), that

sup
θ∈Θ

‖∇θψ ◦ g(θ) − ∇θψ ◦ h(θ)‖ ≤ ‖ψ′′‖L∞(J) · sup
θ∈Θ

|g(θ) − h(θ)| · sup
θ∈Θ

‖∇θh(θ)‖

+ ‖ψ′‖L∞(J) · sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖.
(A.2)

(iii) k = 2, i.e. g, h, ‖∇θg‖, ‖∇θh‖, ‖∇θ,θg‖, ‖∇θ,θh‖ ∈ L∞(Θ) and ψ,ψ′, ψ′′, ψ′′′ ∈
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L∞(J), that

sup
θ∈Θ

‖∇θθψ ◦ g − ∇θθψ ◦ h‖ ≤ ‖ψ′′′‖L∞(J) sup
θ∈Θ

‖∇θh(θ)‖2 sup
θ∈Θ

|g(θ) − h(θ)|

+ ‖ψ′‖L∞(J) sup
θ∈Θ

∥

∥∇θθg(θ) − ∇θθh(θ)
∥

∥

+ ‖ψ′′‖L∞(J) sup
θ∈Θ

‖∇θθh(θ)‖ sup
θ∈Θ

|g(θ) − h(θ)|

+ 2‖ψ′′‖L∞(J) sup
θ∈Θ

‖∇θh(θ)‖ sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖

+ ‖ψ′′‖L∞(J) sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖2.

(A.3)

The theorem is proven by the following three Lemmas.

Lemma 16. For a differentiable function ψ : J → R, with [a, b] ⊆ J ⊂ R, it holds that

|ψ(b) − ψ(a)| ≤ ‖ψ′‖L∞
|b− a|.

Proof. The claim follows immediately from the mean-value theorem, i.e. there exists
ξ ∈ [a, b] such that it holds

ψ′(ξ) =
ψ(b) − ψ(a)

b− a
.

Lemma 16 immediately implies

|ψ ◦ g(θ) − ψ ◦ h(θ)| ≤ ‖ψ′‖L∞(J)|g(θ) − h(θ)|,

which implies Theorem 15 for the case k = 0, i.e. (A.1).

Next, we deal with the gradient.

Lemma 17. For a twice differentiable function ψ : J → R with ψ,ψ′, ψ′′ ∈ L∞(J) and
J-valued functions g, h : Θ → J with bounded derivatives of first order it holds that

sup
θ∈Θ

‖∇θψ ◦ g(θ) − ∇θψ ◦ h(θ)‖ ≤‖ψ′′‖L∞(J) sup
θ∈Θ

|g(θ) − h(θ)|‖∇θh(θ)‖

+ ‖ψ′‖L∞(J) sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖.

Proof. Using the chain rule for the gradient ∇θψ ◦ g(θ) = ψ′(g(θ)) · ∇g(θ) we compute
∥

∥∇θψ ◦ g(θ) − ∇θψ ◦ h(θ)
∥

∥ =
∥

∥ψ′ ◦ g(θ)∇θg(θ) − ψ′ ◦ h(θ)∇θh(θ)
∥

∥

=
∥

∥ψ′ ◦ g(θ)∇θg(θ) − ψ′ ◦ g(θ)∇θh(θ)

+ ψ′ ◦ g(θ)∇θh(θ) − ψ′ ◦ h(θ)∇θh(θ)
∥

∥

≤ |ψ′ ◦ g(θ)| ·
∥

∥∇θg(θ) − ∇θh(θ)
∥

∥

+ |ψ′ ◦ g(θ) − ψ′ ◦ h(θ)| ·
∥

∥∇θh(θ)
∥

∥.
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By |ψ′ ◦ g(θ)| ≤ ‖ψ′‖L∞(J) and by applying Lemma 16 we obtain

|ψ′ ◦ g(θ) − ψ′ ◦ h(θ)| ≤ ‖ψ′′‖L∞(J)|g(θ) − h(θ)|.

Taking the sup over all θ ∈ Θ we arrive at the desired result, which is (A.2), i.e. (ii) in
Theorem 15.

Next, we deal with the Hessian matrix ∇θθf(θ) = (∂θk
∂θj
f(θ))p

k,j=1 .

Lemma 18. For a 3-times differentiable function ψ : J → R with ψ,ψ′, ψ′′, ψ′′′ ∈ L∞(J)
and J-valued functions g, h : Θ → J with bounded derivatives up to second order it holds
that

sup
θ∈Θ

‖∇θθψ ◦ g − ∇θθψ ◦ h‖ ≤ ‖ψ′′′‖L∞(J) sup
θ∈Θ

‖∇θh(θ)‖2| sup
θ∈Θ

g(θ) − h(θ)|

+ ‖ψ′‖L∞(J)

∥

∥ sup
θ∈Θ

∇θθg(θ) − ∇θθh(θ)
∥

∥

+ ‖ψ′′‖L∞(J) sup
θ∈Θ

‖∇θθh(θ)‖|g(θ) − h(θ)|

+ 2‖ψ′′‖L∞(J) sup
θ∈Θ

‖∇θh(θ)‖ sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖

+ ‖ψ′′‖L∞(J) sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖2.

(A.4)

Proof. First we note that it holds by the multivariate chain-rule that

∇θθψ ◦ g(θ) = ψ′′ ◦ g(θ) (∇θg(θ)) · (∇θg(θ))t + ψ′ ◦ g(θ)∇θθg(θ)

= ψ′′ ◦ g(θ) · pθ(g) + ψ′ ◦ g(θ) · ∇θθg(θ),
(A.5)

where we abbreviated pθ(g) := (∇θg(θ)) · (∇θg(θ))t. Here, pθ(g) ∈ R
p×p is a rank-1

matrix that consists of the outer product of the gradient of g at θ with itself. For its
norm it holds that ‖pθ(g)‖ = ‖∇θg(θ)‖2. Moreover, ∇θθg(θ) denotes the Hessian matrix
of g at θ.

Now, we proceed analogously to the proof of the preceeding Lemma and compute

‖∇θθψ ◦ g(θ) − ∇θθψ ◦ h(θ)‖
=
∥

∥ψ′′ ◦ g(θ) pθ(g) + ψ′ ◦ g(θ)∇θθg(θ) − ψ′′ ◦ h(θ) pθ(h) − ψ′ ◦ h(θ)∇θθh(θ)
∥

∥

=
∥

∥ψ′′ ◦ g(θ) pθ(g) − ψ′′ ◦ h(θ) pθ(h) + ψ′′ ◦ g(θ) pθ(h) − ψ′′ ◦ g(θ) pθ(h)

+ ψ′ ◦ g(θ)∇θθg(θ) − ψ′ ◦ h(θ)∇θθh(θ)
∥

∥

≤ |ψ′′ ◦ g(θ)|
∥

∥pθ(g) − pθ(h)‖ + ‖pθ(h)‖|ψ′′ ◦ g(θ) − ψ′′ ◦ h(θ)|
+
∥

∥ψ′ ◦ g(θ)∇θθg(θ) − ψ′ ◦ h(θ)∇θθh(θ)
∥

∥

≤ ‖ψ′′‖L∞(J)

∥

∥pθ(g) − pθ(h)
∥

∥+ ‖∇θh(θ)‖2‖ψ′′′‖L∞(J)|g(θ) − h(θ)|
+
∥

∥ψ′ ◦ g(θ)∇θθg(θ) − ψ′ ◦ h(θ)∇θθh(θ)
∥

∥.

(A.6)
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Next, we will take care of the last summand in (A.6) and derive

‖ψ′ ◦ g(θ)∇θθg(θ) − ψ′ ◦ h(θ)∇θθh(θ)
∥

∥

=
∥

∥ψ′ ◦ g(θ)∇θθg(θ) − ψ′ ◦ g(θ)∇θθh(θ) + ψ′ ◦ g(θ)∇θθh(θ) − ψ′ ◦ h(θ)∇θθh(θ)
∥

∥

≤ |ψ′ ◦ g(θ)|
∥

∥∇θθg(θ) − ∇θθh(θ)
∥

∥+ ‖∇θθh(θ)‖
∣

∣

∣ψ′ ◦ g(θ) − ψ′ ◦ h(θ)
∣

∣

∣

≤ ‖ψ′‖L∞(J)

∥

∥∇θθg(θ) − ∇θθh(θ)
∥

∥+ ‖∇θθh(θ)‖‖ψ′′‖L∞(J)|g(θ) − h(θ)|.

Inserting this back into (A.6) we obtain

‖∇θθψ ◦ g(θ) − ∇θθψ ◦ h(θ)‖
≤ ‖ψ′′‖L∞(J)

∥

∥pθ(g) − pθ(h)
∥

∥+ ‖∇θh(θ)‖2‖ψ′′′‖L∞(J)|g(θ) − h(θ)|
+ ‖ψ′‖L∞(J)

∥

∥∇θθg(θ) − ∇θθh(θ)
∥

∥+ ‖∇θθh(θ)‖‖ψ′′‖L∞(J)|g(θ) − h(θ)|.
(A.7)

It remains to bound the term
∥

∥pθ(g)−pθ(h)
∥

∥ in (A.6). To this end, we derive for vectors
v,w ∈ R

p

‖v · vt − w · wt‖ = ‖v · vt − v · wt + v · wt − w · wt‖
= ‖v · (vt − wt) + (v − w) · wt‖
≤ ‖v − w‖ (‖v‖ + ‖w‖)

= ‖v − w‖ (‖w + (v − w)‖ + ‖w‖)

≤ ‖v − w‖ (‖w‖ + ‖v − w‖ + ‖w‖)

= 2‖w‖‖v − w‖ + ‖v − w‖2.

(A.8)

Now, using (A.8) with v = ∇θg(θ) and w = ∇θh(θ) we obtain

∥

∥pθ(g) − pθ(h)
∥

∥ =
∥

∥(∇θg(θ)) · (∇θg(θ))t − (∇θh(θ)) · (∇θh(θ))t
∥

∥

≤ 2‖∇θh(θ)‖∇θg(θ) − ∇θh(θ)‖ + ‖∇θg(θ) − ∇θh(θ)‖2.
(A.9)

Hence, inserting (A.9) into (A.7) we arrive at

‖∇θθψ ◦ g(θ) − ∇θθψ ◦ h(θ)‖
≤ ‖∇θh(θ)‖2‖ψ′′′‖L∞(J)|g(θ) − h(θ)| + ‖ψ′‖L∞(J)

∥

∥∇θθg(θ) − ∇θθh(θ)
∥

∥

+ ‖∇θθh(θ)‖‖ψ′′‖L∞(J)|g(θ) − h(θ)| + ‖ψ′′‖L∞(J)2‖∇θh(θ)‖∇θg(θ) − ∇θh(θ)‖
+ ‖ψ′′‖L∞(J)‖∇θg(θ) − ∇θh(θ)‖2,

which concludes the proof.

For the special case ψ(x) = log(x) we obtain the following result.
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Corollary 19. Consider real-valued functions g, h on some compact domain Θ ⊂ R
p.

Assume that the image of g and h is bounded away from zero, i.e. for all θ ∈ Θ it holds
g(θ), h(θ) ∈ J = [δ,D] with 0 < δ < 1 ≤ D < ∞. Then

(i) for g, h ∈ L∞(Θ) it holds

sup
θ∈Θ

| log g(θ) − log h(θ)| ≤ 1

δ
sup
θ∈Θ

|g(θ) − h(θ)|. (A.10)

(ii) for differentiable g, h with bounded first derivatives it holds

sup
θ∈Θ

‖∇θ log g(θ) − ∇θ log h(θ)‖

≤ C1(h)

(

sup
θ∈Θ

|g(θ) − h(θ)| + sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖
)

,
(A.11)

where

C1(h) =
1 + supθ ‖∇θh‖

δ2
.

(iii) for 2-times differentiable g, h with bounded derivatives up to second order it holds

sup
θ∈Θ

‖∇θ,θ log g(θ) − ∇θ,θ log h(θ)‖

≤ C2(h)

(

sup
θ∈Θ

|g(θ) − h(θ)| + sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖

+ sup
θ∈Θ

‖∇θg(θ) − ∇θh(θ)‖2 + sup
θ∈Θ

‖∇θ,θg(θ) − ∇θ,θh(θ)‖
)

,

(A.12)

where

C2(h) = 4
1 + supθ ‖∇θh‖2 + supθ ‖∇θ,θh‖

δ3
.

Proof. First note that
dj

dxj
log(x) =

(−1)j−1(j − 1)!

xj
.

Then, for (i) and (ii) we use that ‖ψ(j)‖L∞(J) = (j−1)!
δj with j ∈ N and J = [δ,∞). For

(iii) we additionally use the inequality max(x, x2) ≤ 1 + x2.

We finally prove the following result that was employed in the analysis of the logit model
in Section 5.

Lemma 20. Let θ,v ∈ R
n and

f(θ,v) =
1

1 + exp(−θ · v)
. (A.13)

Then it holds for all α,β ∈ N
n
0 that
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(i) there exists a constant 0 < c(α,β) < ∞ such that

|D(θ)
α D

(v)
β f(θ,v)| ≤ c(α,β)θβ · vα for all v,θ ∈ R

n. (A.14)

(ii) there exists a constant 0 < c̃(α,β) < ∞ such that

|D(θ)
α D

(v)
β f(θ,v)| ≤ c̃(α,β)θβ · e

v
t

v

2

∏n
i=1

√

1 + v2
i

for all v,θ ∈ R
n. (A.15)

Proof. First, we note that (ii) follows from (i), because the function t 7→ et2/2/
√

1 + t2

grows faster than any polynomial.

In order to prove (i), we write f(θ,v) := g(θ · v), where g(t) = (1 + e−t)−1. Note that
g and hence gp are bounded on R for all p ∈ N. Next, we use that

∂

∂θi
g(θ · v) = vi(g(θ · v) − g2(θ · v)) (A.16)

and likewise also ∂
∂vi
g(θ · v) = θi(g(θ · v) − g2(θ · v)). This proves (i) for |α| = 1

and |β| = 1. The case of higher order derivatives follows by induction by showing that

D
(θ)
α D

(v)
β g(θ · v) always has a representation as

∑

j cjvaj θbjgpj (θ · v) with aj ≤ α,
bj ≤ α and pj ≤ |α| + |β| + 1.
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