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Abstract

We determine all cases for which the d-dimensional Haar wavelet system Hd on the unit
cube Id is a conditional or unconditional Schauder basis in the classical isotropic Besov
function spaces Bs

p,q,1(I
d), 0 < p, q < ∞, 0 ≤ s < 1/p, defined in terms of first-order

Lp moduli of smoothness. We obtain similar results for the tensor-product Haar system
H̃d, and characterize the parameter range for which the dual of Bs

p,q,1(I
d) is trivial for

0 < p < 1.

Keywords: Haar system, Besov spaces, Schauder bases in quasi-Banach spaces,
unconditional convergence, piecewise constant approximation.
2000 MSC: 42C40, 46E35, 41A15, 41A63

1. Introduction

The univariate Haar system H := {hm}m∈N was one of the first examples of a
Schauder basis in some classical function spaces on the unit interval I := [0, 1], see
[3], [12, Section III], and [29, Section 2.1] for a review of the early history of the Haar
system as basis in function spaces. Meantime the existence of Schauder bases in func-
tion spaces of Besov-Hardy-Sobolev type has been established in most cases, see [27]
for a recent exposition. Early on, a major step was taken by Ciesielski and co-workers
[1, 2, 3, 4, 5, 6] who constructed families of spline systems generalizing the classical Haar,
Faber, and Franklin systems, and established their basis properties in Lebesgue-Sobolev
spaces over d-dimensional cubes and smooth manifolds for 1 ≤ p ≤ ∞. For distribu-
tional Besov spaces Bs

p,q(R
d) and Triebel-Lizorkin spaces F s

p,q(R
d) with 0 < p, q < ∞,

s ∈ R, wavelet systems provide examples of unconditional Schauder bases. Results in
these directions and their generalization to spaces on domains in R

d are presented in
[28, 29]. Needless to say that not all quasi-Banach function spaces possess nice basis
properties. E.g., L1(I) does not possess an unconditional Schauder basis, see [12, Theo-
rem II.13], while the quasi-Banach space Lp(I), 0 < p < 1, cannot have Schauder bases
at all since its dual Lp(I)

′ = {0} is trivial.
In this paper, we deal with the multivariate anisotropic tensor-product Haar system

H̃d = H ⊗ . . .⊗H
︸ ︷︷ ︸

d times

, d ≥ 1, (1)
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and its isotropic counterpart Hd on the unit cube Id ⊂ R
d (the latter is called Haar

wavelet system in [29]), and consider their Schauder basis properties in the Besov spaces
Bs

p,q,1(I
d) ⊂ Lp(I

d). These function spaces are classically defined in terms of first-order
Lp moduli of smoothness (detailed definitions are given in the next section), and coincide
with their distributional counterparts Bs

p,q(I
d) only under some restrictions on p, q, s. We

mostly concentrate on the parameter range

0 < p, q <∞, 0 < s < 1/p. (2)

With the exception of the special case s = 0, this is the maximal range of parameters
for which Bs

p,q,1(I
d) is a separable quasi-Banach space and contains the Haar systems

H̃d and Hd. Moreover, for this parameter range Bs
p,q,1(I

d) admits a characterization in
terms of best Lp-approximations with piecewise constant functions on dyadic partitions
of Id which is used in the proofs. Our main result for the Haar wavelet system Hd is
the following theorem.

Theorem 1 Assume (2).
a) If 1 ≤ p < ∞ then the Haar wavelet system Hd is an unconditional Schauder basis
for Bs

p,q,1(I
d) for all parameters 0 < s < 1/p, 0 < q <∞ of interest.

b) Let 0 < p < 1. Then Hd is an unconditional Schauder basis for Bs
p,q,1(I

d) if and only
if d(1/p− 1) < s < 1/p, 0 < q <∞. If s = d(1/p− 1), 0 < q ≤ p then Hd is a Schauder
basis for Bs

p,q,1(I
d) but not unconditional. In all other cases, Hd does not possess the

Schauder basis property for Bs
p,q,1(I

d).

The statements about unconditionality of Hd in Theorem 1 are proved by giving a
characterization of Bs

p,q,1(I
d) in terms of Haar coefficients. We refer to Theorem 3 in

Section 3.2 which states conditions under which Bs
p,q,1(I

d) is isomorphic to some weighted
ℓq(ℓp) sequence space. The exceptional case s = 0 is covered by Theorem 4 in Section
5.2. We also have

Theorem 2 If 0 < p < 1 in (2) then the Besov space Bs
p,q,1(I

d) does not possess non-
trivial bounded linear functionals, i.e., Bs

p,q,1(I
d)′ = {0}, if and only if s < d(1/p − 1),

0 < q <∞ or s = d(1/p− 1), 1 < q <∞.

Consequently, for these parameters Bs
p,q,1(I

d) does not have a Schauder basis at all
which is a stronger statement than proving that the Haar wavelet system Hd fails to be
a Schauder basis. For the parameters

0 < p < q ≤ 1, s = d(1/p− 1), (3)

where according to Theorem 1 Hd is not a Schauder basis in Bs
p,q,1(I

d), we have the
continuous embedding Bs

p,q,1(I
d) ⊂ L1(I

d), and thus L∞(Id) ⊂ Bs
p,q,1(I

d)′. We do not
know if the spaces Bs

p,q,1(I
d) satisfying (3) possess (unconditional) Schauder bases at all.

As Schauder basis in Besov spaces Bs
p,q,1(I

d), the tensor-product Haar system H̃d

behaves the same as Hd for 1 ≤ p < ∞ but fails completely for the parameter range
p < 1. This is the essence of Theorem 5 in Section 5.3.
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Let us comment on known results that motivated this study. For d > 1, the two
Haar systems H̃d and Hd have formally been introduced in the 1970-ies, see [3, 6], the
system Hd implicitly appeared already in [25]. In the univariate case d = 1, part a) of
Theorem 1 has essentially been established by Triebel [25] and Ropela [21] under the
restriction q ≥ 1. Extensions to d ≥ 1 are due to Ciesielski [3] and Triebel. The results
of Triebel who worked in the framework of distributional Besov spaces Bs

p,q(R
d) and

Bs
p,q(I

d) are summarized in [29, Section 2]. Starting from [26], Triebel considered the
parameter values 0 < p, q < ∞, −∞ < s < ∞, and proved the unconditionality of Hd

in Bs
p,q(I

d) for the parameter range

max(d(1/p− 1), 1/p− 1) < s < min(1, 1/p), 0 < p, q <∞.

This is the essence of Theorem 2.13 (i) (d = 1) and Theorem 2.26 (i) (d > 1) in [29].
Note that for the range 0 < p, q ≤ ∞ we have

Bs
p,q(I

d) = Bs
p,q,1(I

d) ⇐⇒ max(0, d(1/p− 1)) < s < min(1, 1/p), (4)

i.e., for the parameters in (4), the scales Bs
p,q(I

d) and Bs
p,q,1(I

d) coincide up to equivalent
quasi-norms. Consequently, with the exception of the range 1 ≤ s < 1/p for 0 < p < 1,
the unconditionality of Hd in the spaces Bs

p,q,1(I
d) essentially follows from Triebel’s

results for Bs
p,q(I

d) for all cases stated in Theorem 1 and Theorem 3. However, we
give a direct proof for Bs

p,q,1(I
d) using its characterization by piecewise constant best Lp

approximations on dyadic partitions.
Triebel [26] also established that outside the closure of the parameter range (??), the

Haar wavelet system Hd is not a Schauder basis in the spaces Bs
p,q(I

d). The boundary
cases remained unsettled until recently when Garrigós, Seeger, and Ullrich dealt in a
series of papers [8, 9, 10, 22, 23] with the open cases for both the distributional Bs

p,q and
F s
p,q scales. In particular, [9] provides complete answers concerning the Schauder basis

properties of the Haar wavelet systems in Bs
p,q(R

d) and Bs
p,q(I

d). They also established
a subtle difference between the cases R

d and Id for the critical smoothness parameter
s = d(1/p − 1), 0 < p < 1, and provided correct asymptotic estimates of the norms of
partial sum projectors associated with Hd. We also mention the paper [31] related to the
questions considered in this paper, where the authors study necessary and sufficient con-
ditions on the parameters p, q, s, τ for which the map f → (f, χId)L2 =

∫

Id
f dx extends

to a bounded linear functional on Besov-Morrey-Campanato-type spaces Bs,τ
p,q (R

d).
Independently, for 0 < p < 1 the Schauder basis property of Hd in Bs

p,q(I
d) and

Bs
p,q,1(I

d) spaces was also considered by the author in [18]. This paper expanded on [16],
where a partial result was stated for d = 1, namely that the univariate Haar system H
forms a Schauder basis in Bs

p,q,1(I) for the critical smoothness parameter s = 1/p− 1 if
0 < q ≤ p < 1 (see the remark at the end of [16]). In [16], it was also established that
Bs

p,q,1(I) has a trivial dual if 0 < s < 1/p− 1, 0 < p < 1, 0 < q <∞.
The paper is organized as follows. In Section 2, we give the necessary definitions

and state auxiliary results on Besov spaces and on piecewise constant Lp-approximation
with respect to dyadic partitions. Section 3 deals with the proof of the sufficiency of
the conditions on the parameters p, q, s appearing in the main results formulated in
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Theorems 1 and 3. The necessity of these conditions and Theorem 2 are dealt with in
Section 4, where we construct specific counterexamples consisting of piecewise constant
functions. Similar in spirit examples have already been used in [16]. We conclude in
Section 5 with some remarks on higher-order spline systems, analogous results for the
tensor-product Haar system H̃d, and the exceptional cases s = 0 and q = ∞.

2. Definitions and auxiliary results

2.1. Haar systems

Recall first the definition of the univariate L∞ normalized Haar functions. By χΩ

we denote the characteristic function of a Lebesgue measurable set Ω ⊂ R
d, and by

∆k,i := [(i − 1)2−k, i2−k) the univariate dyadic intervals of length 2−k, k ∈ Z+, i ∈ Z.
Then the univariate Haar system H = {hm}m∈N on I := [0, 1] is given by h1 = χI , and

h2k−1+i = χ∆k,2i−1
− χ∆k,2i

, i = 1, . . . , 2k−1, k ∈ N,

Throughout the paper, we work with L∞-normalized Haar functions. The Haar functions
hm with m ≥ 2 can also be indexed by their supports, and identified with the shifts and
dilates of a single function, the Haar wavelet h0 := χ[0,1/2) − χ[1/2,1). Indeed,

h∆k−1,i
:= h2k−1+i = h0(2

k−1 · −i), i = 1, . . . , 2k−1, k ∈ N.

The above introduced enumeration of the Haar functions hm is the natural ordering used
in the literature, however, one can also define H as the union of dyadic blocks

H = ∪∞
k=0Hk, H0 = {h1}, Hk = {h∆k−1,i

: i = 1, . . . , 2k−1}, k ∈ N,

and allow for arbitrary orderings within each block Hk. Below, we will work with the
multivariate counterparts of the spaces

Sk = span({hm}
2k

m=1) = span({χ∆k,i
}2

k

i=1), k = 0, 1, . . . ,

of piecewise constant functions with respect to the uniform dyadic partition Tk = {∆k,i :
i = 1, . . . , 2k} of step-size 2−k on the unit interval I.

The Haar wavelet system
Hd = ∪∞

k=0H
d
k (5)

on the d-dimensional cube Id, d > 1, is defined in a blockwise fashion as follows. Let
the partition T d

k be the set of all dyadic cubes of side-length 2−k in Id. Each cube in T d
k

is the d-fold product of univariate ∆k,i, i.e.,

T d
k = {∆k,i := ∆k,i1 × . . .×∆k,id : i = (i1, . . . , id) ∈ {1, . . . , 2k}d}.

The set of all piecewise constant functions on T d
k is denoted by Sd

k . With each ∆k−1,i ∈
T d
k−1, i ∈ {1, . . . , 2k−1}d, k ∈ N, we associate the set Hd

k,i ⊂ Sd
k of 2d − 1 multivariate

Haar functions with support ∆k−1,i, given by all possible tensor products

ψk,i1 ⊗ ψk,i2 ⊗ . . .⊗ ψk,id , ψk,i = h∆k−1,i
or χ∆k−1,i
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where at least one of the ψk,il equals h∆k−1,il
. The blocks Hd

k appearing in (5) are given

as follows: The block Hd
0 is exceptional, and consists of the single constant function

χId . The block Hd
1 coincides with Hd

1,1 and consists of 2d − 1 Haar functions, where
1 = (1, . . . , 1). For general k ≥ 2, the block

Hd
k := ∪∆k−1,i∈T

d
k−1

Hd
k,i

consists of (2d − 1)2(k−1)d Haar functions of level k. It is obvious that

Sd
k = span(∪k

l=0H
d
l ),

and that Hd is a complete orthogonal system in L2(I
d).

Since each Haar function in Hd has support on a d-dimensional dyadic cube, we
sometimes call this system isotropic, in contrast to the anisotropic tensor-product Haar
system H̃d defined in (1), where the supports of the tensor-product Haar functions
h̃ ∈ H̃d are d-dimensional dyadic rectangles. Note that H̃d can also be organized into
blocks H̃d

k , where for k ≥ 1 the block H̃d
k consists of the tensor-product Haar functions

h̃ ∈ Sd
k orthogonal to Sd

k−1, and H̃
d
0 = Hd

0 = {χId}. Obviously, we have

span(H̃d
k ) = span(Hd

k ), k ∈ Z+,

such that H̃d represents a level-wise transformation of Hd vice versa. The basis proper-
ties of H̃d in the spaces Bs

p,q,1(I
d) are exhaustively dealt with in Section 5.3, see Theorem

5. It turns out that for 0 < p < 1 the two Haar systems Hd and H̃d behave quite differ-
ently in this respect.

As for the univariate case, the ordering of the Haar functions within the blocks Hd
k

can be arbitrary. The statements of Theorems 1 and 2 hold for any enumeration of Hd

as long as the enumeration does not violate the natural ordering by level k. Note that
slightly more general orderings have been considered in [9] for Haar wavelet systems on
Id and R

d.

2.2. Function spaces

The Besov function spaces Bs
p,q,1(I

d) are traditionally defined for s > 0, 0 < p, q ≤ ∞,
as the set of all f ∈ Lp(I

d) for which the quasi-norm

‖f‖Bs
p,q,1

:=

{
(‖f‖qLp

+ ‖t−s−1/qω(t, f)p‖
q
Lq(I)

)1/q, 0 < q <∞

‖f‖Lp + supt∈I t
−sω(t, f)p, q = ∞

is finite. Formally, the definition makes sense for all s ∈ R, see below for further
comments in this direction. Here,

ω(t, f)p := sup
0<|y|≤t

‖∆yf‖Lp(Idy )
, t > 0,

stands for the first-order Lp modulus of smoothness, and

∆yf(x) := f(x+ y)− f(x), x ∈ Idy := {z ∈ Id : z + y ∈ Id}, y ∈ R
d,

5



denotes the first-order forward difference. Here and throughout the remainder of the
paper, we adopt the following notational convention: If the domain is Id, we omit
the domain in the notation for spaces and quasi-norms, e.g., we write Bs

p,q,1 instead of
Bs

p,q,1(I
d), and ‖ ·‖Lp instead of ‖ ·‖Lp(Id). An exception are the formulation of theorems.

Also, by c, C we denote generic positive constants that may change from line to line,
and, unless stated otherwise, depend on p, q, s only. The notation A ≈ B is used if
cA ≤ B ≤ CA holds for two such constants c, C.

The space Bs
p,q,1 is a quasi-Banach space equipped with a γ-quasi-norm, where γ =

min(p, q, 1), meaning that ‖ · ‖Bs
p,q,1

is homogeneous and satisfies

‖f + g‖γBs
p,q,1

≤ ‖f‖γBs
p,q,1

+ ‖g‖γBs
p,q,1

.

Similarly, Lp is a quasi-Banach space equipped with a γ-quasi-norm if we set γ = γp :=
min(p, 1).

If 0 < q < ∞ then the spaces Bs
p,q,1 are of interest only if 0 ≤ s < 1/γp. Indeed,

if f ∈ Bs
p,q,1 for some s ≥ γp, 0 < q < ∞, then using the properties of the first-order

Lp modulus of smoothness we have ω(t, f)p = o(t1/γp), t → 0, which in turn implies
ω(t, f)p = 0 for all t > 0 and f(x) = ξ for some constant ξ ∈ R almost everywhere on
Id. Thus, in this case Bs

p,q,1 deteriorates to the set of constant functions on Id. On the

other hand, one has ω(t, f)p ≤ 21/γp‖f‖Lp which implies that

‖f‖Bs
p,q,1

≈ ‖f‖Lp , f ∈ Lp, s < 0.

In other words, Bs
p,q,1 = Lp for all s < 0 (this holds also for s = 0 and q = ∞).

To conclude this short discussion of the definition and properties of Bs
p,q,1-spaces, let

us motivate our basic assumption (2) on the parameter range adopted in this paper. The
case s = 0 is in some sense exceptional and often not considered at all, we return to it in
Section 5.2. Since our main concern is the Schauder basis property of the countable Haar
systems Hd and H̃d, we can also neglect all parameters for which Bs

p,q,1 is non-separable
or does not contain piecewise constant functions on dyadic partitions. The separability
requirement excludes the spaces with p = ∞ or q = ∞. Since, with constants also
depending on k, we have

ω(t, h)p ≈ t1/p, t→ 0,

for any Haar function h ∈ Hd
k , k = 1, 2, . . ., we see that Hd is not contained in Bs

p,q,1

whenever s ≥ 1/p, 0 < q <∞. Thus, the restrictions in (2) are natural.
For completeness, we give the definition of the distributional Besov spaces using

dyadic Fourier transform decompositions, see e.g. [29, Section 1.1]. Denote by F :
S ′(Rd) → S ′(Rd) the Fourier transform operator on the set of tempered distributions.
Consider a smooth partition of unity {φk}k∈Z+ , where φ0 ∈ C∞(Rd) satisfies φ0(x) = 1
for |x| ≤ 1 and φ0(x) = 0 for |x| ≥ 3/2, and φk(x) = φ0(2

−kx) − φ0(2
−k+1x) for

x ∈ R
d, and k ≥ 1. Then a tempered distribution f ∈ S ′(Rd) belongs to Bs

p,q(R
d) if the

min(p, q, 1)-quasi-norm

‖f‖Bs
p,q(R

d) := ‖(‖2ksF−1φkFf‖Lp(Rd))k∈Z+‖ℓq(Z+)

6



is finite. By exchanging the order of taking Lp(R
d) and ℓq(Z+) quasi-norms in (??),

one defines the Triebel-Lizorkin spaces F s
p,q(R

d). Spaces on domains are defined by
restriction. In particular, for the domain Id

Bs
p,q = {f : ∃ g ∈ Bs

p,q(R
d) such that f = g|Id}

and
‖f‖Bs

p,q
:= inf

g: f=g|
Id

‖g‖Bs
p,q(R

d).

This definition, and many equivalent ones, are surveyed in [27] and [29, Chapter 1],
with references to earlier papers. In particular, the equivalence (4) is mentioned in [29,
Section 1.1].

2.3. Piecewise constant Lp-approximation

We start with introducing an equivalent quasi-norm in Bs
p,q,1 which is based on ap-

proximation techniques using piecewise constant approximation on dyadic partitions.
Let

Ek(f)p := inf
s∈Sd

k

‖f − s‖Lp , k = 0, 1, . . . ,

denote the best approximations to f ∈ Lp with respect to Sd
k .

Lemma 1 Let 0 < p, q <∞, 0 ≤ s < 1/p, and d ≥ 1. Then

‖f‖As
p,q,1

:=

(

‖f‖qLp
+

∞∑

k=0

(2ksEk(f)p)
q

)1/q

(6)

provides an equivalent quasi-norm on Bs
p,q,1.

This result follows from the direct and inverse inequalities relating best approximations
Ek(f)p and moduli of smoothness ω(t, f)p which have many authors. In the univariate
case d = 1, see e.g. Ul’yanov [30], Golubov [11] for 1 ≤ p < ∞, and [24, Section 2] for
0 < p < 1. Lemma 1 is a partial case of [7, Theorem 5.1], for d = 1 and 0 < p < 1
see [15, Theorem 6]. The proofs for s > 0 also cover the case s = 0 not mentioned in
these papers. Note that in [7] the parameter range 1 ≤ s < 1/p, 0 < p < 1, is formally
excluded but the result holds for the special case of piecewise constant approximation.
With the appropriate modification of the quasi-norm, such an approximation-theoretic
characterization also holds for q = ∞ and 0 ≤ s < 1/p.

The norm equivalence (6) automatically implies that the set of all dyadic step func-
tions

Sd := span(Hd) = span({Sd
k}k∈Z+)

is dense in Bs
p,q,1(I

d) for the parameter values stated in Lemma 1. It can be used to
prove sharp embedding theorems of Bs

p,q,1 into Lr. In particular, we have continuous
embeddings

B
d(1/p−1)
p,p,1 ⊂ B

d(1/p−1)
p,1,1 ⊂ L1, (d− 1)/d < p < 1. (7)

7



We refer to [15] for d = 1, and to [7, Theorem 7.4] for d > 1. A local version of the
associated embedding inequality will be used in Section 3.

At the heart of the counterexamples constructed in Section 4 for p ≤ 1 is a simple
observation about best Lp approximation by constants which we formulate as

Lemma 2 Let (Ω,A, µ) be a finite measure space, and let the function f ∈ Lp(Ω) :=
Lp(Ω,A, µ), 0 < p ≤ 1, equal a constant ξ0 on a measurable set Ω′ ∈ A of measure
µ(Ω′) ≥ 1

2
µ(Ω). Then

‖f − ξ0‖Lp(Ω) = inf
ξ∈R

‖f − ξ‖Lp(Ω),

i.e., best approximation by constants in Lp(Ω) is achieved by setting ξ = ξ0.

Proof. Indeed, under the above assumptions and by the inequality |a+ b|p ≤ |a|p + |b|p

we have

‖f − ξ‖pLp(Ω) =

∫

Ω′

|f(x)− ξ|p dµ(x) + µ(Ω\Ω′)|ξ − ξ0|
p

≥

∫

Ω′

(|f(x)− ξ|p + |ξ − ξ0|
p) dµ(x)

≥

∫

Ω′

|f(x)− ξ0|
p dµ(x) = ‖f − ξ0‖

p
Lp(Ω)

for any ξ ∈ R, with equality for ξ = ξ0. This gives the statement. ✷

Note that the equivalence (up to constants depending on parameters but not on f)
between Lp quasi-norms and best approximations by constants holds also for p ≥ 1
and under weaker assumptions on the relative measure of Ω′ (e.g., µ(Ω′)/µ(Ω) ≥ δ > 0
would suffice). We will apply this lemma to the Lebesgue measure on dyadic cubes in Id

and special examples of dyadic step functions constructed below. Extensions to higher
degree polynomial and spline approximation are possible as well (see the proof of the
lemma on p. 535 in [16] for d = 1).

2.4. Schauder basis property

A sequence (fm)m∈N of elements of a quasi-Banach space X is called a Schauder basis
in X if every f ∈ X possesses a unique series representation

f =
∞∑

m=1

cmfm

converging in X. If every rearrangement of (fm)m∈N is a Schauder basis in X then
this system is called unconditional Schauder basis. Below we will rely on the following
criterion whose proof for Banach spaces can easily be extended to the quasi-Banach
space case.

8



Lemma 3 The sequence (fm)m∈N of elements of a quasi-Banach space X is a Schauder
basis in the quasi-Banach space X if and only if its span is dense in X, and there exists
a sequence (λm)m∈N of continuous linear functionals on X such that

λn(fm) =

{
1, m = n,
0, m 6= n,

m, n ∈ N,

and the associated partial sum operators

Sn(x) :=
n∑

m=1

λm(x)fm, n ∈ N, x ∈ X,

are uniformly bounded operators in X.
In order for (fm)m∈N to be unconditional, all operators

SJ(x) :=
∑

m∈J

λm(x)fm, x ∈ X,

where J is an arbitrary finite subset of N, must be uniformly bounded operators in X.

An immediate consequence of Lemma 3 is that, in order to possess a Schauder basis at
all, X must have a sufficiently rich dual space X ′ of continuous linear functionals.

If Hd is a Schauder basis in a quasi-Banach space X of functions defined on Id

then Sd = span(Hd) must be a dense subset of X by the density condition in Lemma
3. This is satisfied for all X = Bs

p,q,1 with parameters satisfying (2). Moreover, since
Sd ⊂ L∞ ⊂ L2 and Hd is an orthogonal system in L2, any dyadic step function g ∈ Sd

has a unique Haar expansion given by

g =
∑

h∈Hd

λh(g)h, λh(g) := 2kd
∫

Id
gh dx. (8)

Since for g ∈ Sd only finitely many coefficients λh(g) do not vanish, the summation in (8)
is finite, and there are no convergence issues. Thus, for the Schauder basis property of
Hd in X to hold, the coefficient functionals λh(g) in (8) must be extendable to elements
in X ′, and the level k partial sum operators

Pkg =
k∑

l=0

∑

h∈Hd
l

λh(g)h, k = 0, 1, . . . , (9)

must form a sequence of uniformly bounded linear operators in X. Due to the local
support properties of the Haar functions within each block Hd

l and the assumed ordering
of the Haar wavelet system it often suffices to deal with this subsequence of partial sum
operators. The statements in Theorem 1 b) about the failure of the Schauder basis
property of Hd in Bs

p,q,1 will be shown by either relying on Theorem 2 or proving that
the operators Pk are not uniformly bounded.

9



Whenever X is continuously embedded into L1, the level k partial sum operators Pk

extend to bounded projections with range Sd
k , and with constant values on the dyadic

cubes in T d
k explicitly given by averaging. This comes in handy when computing Pkf

for concrete functions f . Indeed, the constant values taken by Pkf on dyadic cubes in
T d
k are given by

Pkf(x) = av∆(f) := 2kd
∫

∆

f dx, x ∈ ∆, ∆ ∈ T d
k , , k = 0, 1, . . . , (10)

if f ∈ L1(I
d). Note that the coefficient functionals λh of the Haar expansion are finite

linear combinations of functionals as defined in (10), vice versa. Finally, forX = L2 ⊂ L1

the level k partial sum operator Pk realizes the orthoprojection onto Sd
k .

3. Proofs: Sufficient conditions

3.1. The case s = d(1/p− 1)

The positive results on the Schauder basis property of Hd in B
d(1/p−1)
p,q,1 stated in

Theorem 1 b) for the parameter range

d− 1

d
< p < 1, 0 < q ≤ p, (11)

can be traced back to [16] for d = 1, we reproduce the proof for d ≥ 1 given in the
preprint [18]. For similar results in the case of distributional Besov spaces Bs

p,q(R
d) and

Bs
p,q we refer to [29, 18, 9].
According to (7), for the parameters in (11) we have the continuous embedding

B
d(1/p−1)
p,q,1 ⊂ B

d(1/p−1)
p,p,1 ⊂ L1.

This ensures that the Haar coefficient functionals λh defined in (8) are continuous on
Bs

p,q,1. Moreover, Sd = span(Hd) is dense in Bs
p,q,1. Due to Lemma 1 and Lemma 3, it is

therefore sufficient to establish the inequality

‖Pg‖
A

d(1/p−1)
p,q,1

≤ C‖g‖
A

d(1/p−1)
p,q,1

, g ∈ B
d(1/p−1)
p,q,1 , (12)

for any partial sum operator P of the Haar expansion (8), with a constant C independent
of g and P , if the parameters satisfy (11).

According to our ordering convention for Hd, any partial sum operator P can be
written, for some k = 0, 1, . . . and some subset H̄d

k+1 ⊂ Hd
k+1, in the form

Pg = Pkg +
∑

h∈H̄d
k+1

λh(g)h ∈ Sd
k+1. (13)

For H̄d
k+1 = ∅, we get P = Pk as partial case.

10



The first step for establishing (12) is the proof of the inequality

‖Pg‖pLp
≤ C2kd(p−1)

∑

∆∈T d
k

‖g‖pL1(∆), (14)

with the explicit constant C = 2d. By (10), we have

‖Pkg‖
p
Lp

=
∑

∆∈T d
k

2−kd

(

2kd
∫

∆

g dx

)p

≤ 2kd(p−1)
∑

∆∈T d
k

‖g‖pL1(∆).

The remaining h ∈ H̄d
k+1 can be grouped by their support cubes ∆ ∈ T d

k . Each such
group may hold up to 2d − 1 Haar functions with the same supp(h) = ∆ ∈ T d

k . By the
definition of the Haar coefficient functionals λh(g) for each term λh(g)h associated with
such a group we obtain the estimate

‖λh(g)h‖
p
Lp

= |λh(g)|
p‖h‖pLp(∆) ≤ 2kdp‖g‖pL1(∆) · 2

−kd = 2kd(p−1)‖g‖pL1(∆).

Thus, using the p-quasi-norm triangle inequality for Lp,

‖Pg‖pLp
≤ ‖Pkg‖

p
Lp

+
∑

h∈H̄d
k+1

‖λh(g)h‖
p
Lp

≤ 2kd(p−1)
∑

∆∈T d
k

‖g‖pL1(∆) +
∑

∆∈T d
k

(2d − 1)2kd(p−1)‖g‖pL1(∆)

= 2d2kd(p−1)
∑

∆∈T d
k

‖g‖pL1(∆),

we obtain (14).
Now we apply the embedding inequality associated with (7), with the appropriate

coordinate transformation, locally on ∆ to the terms ‖g‖pL1(∆). This gives

‖g‖pL1(∆) ≤ C

(

2kd(1−p)‖g‖pLp(∆) +
∞∑

l=k

2ld(1−p)El(g)
p
p,∆

)

for each ∆ ∈ T d
k , where

El(g)p,∆ := inf
s∈Sd

l

‖g − s‖Lp(∆), l = k, k + 1, . . . ,

denotes the local best Lp approximation by dyadic step functions restricted to cubes ∆
from T d

k . Since

‖g‖pLp
=
∑

∆∈T d
k

‖g‖pLp(∆), El(g)
p
p =

∑

∆∈T d
k

El(g)
p
p,∆, l = k, k + 1, . . . ,

11



after substitution into (14), we arrive at the estimate

‖Pg‖pLp
≤ C

(

‖g‖pLp
+ 2kd(p−1)

∞∑

l=k

2ld(1−p)El(g)
p
p

)

(15)

for the Lp quasi-norm of any partial sum Pg.

With the auxiliary estimate (15) at hand, we turn now to the estimate of the A
d(1/p−1)
p,q,1

quasi-norm of g − Pg. Since Pg ∈ Sd
k+1, we have

El(g − Pg)p = El(g)p, l > k,

while for l ≤ k the trivial bound

El(g − Pg)p ≤ ‖g − Pg‖Lp(Id)

will suffice. This gives

‖g − Pg‖q
A

d(1/p−1)
p,q,1

= ‖g − Pg‖qLp
+

∞∑

l=0

(2ld(1/p−1)El(g − Pg)p)
q

≤ C

(

2kd(1/p−1)q‖g − Pg‖qLp
+

∞∑

l=k+1

(2ld(1/p−1)El(g)p)
q

)

, (16)

uniformly for all P and g ∈ Sd. Recall that 0 < d(1/p− 1) < 1/p for the parameters in
(11).

To deal with the term ‖g − Pg‖Lp , we introduce the element sk ∈ Sd
k of best Lp

approximation, i.e.,
‖g − sk‖Lp = Ek(g)p,

and estimate with (15) and Psk = Pksk = sk as follows:

‖g − Pg‖pLp
≤ ‖g − sk‖

p
Lp

+ ‖P (g − sk)‖
p
Lp

≤ ‖g − sk‖
p
Lp

+ C

(

‖g − sk‖
p
Lp(Id)

+ 2kd(p−1)

∞∑

l=k+1

2ld(1−p)El(g − sk)
p
p

)

≤ C2kd(p−1)

∞∑

l=k

2ld(1−p)El(g)
p
p. (17)

Now we can finish the proof of (12). According to (17) we get for the first term in
the right-hand side of (16)

2kd(1/p−1)q‖g − Pg‖qLp
≤ C

(
∞∑

l=k

2ld(1−p)El(g)
p
p

)q/p

≤ C
∞∑

l=k

(2ld(1/p−1)El(f)p)
q,
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where the inequality
(

∞∑

l=0

al

)γ

≤
∞∑

l=0

aγl , al ≥ 0, 0 < γ ≤ 1,

has been used with γ = q/p ≤ 1, al = 2ld(1−p)El(g)
p
p for l ≥ k, and al = 0 for l < k.

After substitution into (16) we arrive at

‖g − Pg‖q
A

d(1/p−1)
p,q,1

≤ C

∞∑

l=k

(2lsEl(g)p)
q ≤ C‖g‖q

A
d(1/p−1)
p,q,1

, g ∈ B
d(1/p−1)
p,q,1 , (18)

for the parameters (11). Since the As
p,q,1-quasi-norm is a q-quasi-norm for the parameters

in (11), (18) is equivalent with (12). This proves the Schauder basis property for Hd in

B
d(1/p−1)
p,q,1 for this parameter range.
Under the condition (11), unconditionality of Hd does not hold, see Section 4 for

a counterexample. The parameter range for which Theorem 1 asserts that Hd is an
unconditional Schauder basis in Bs

p,q,1 is dealt with in the next subsection.

For use in the next subsection, we mention the following by-product of the consider-
ations leading to (17). Consider the k-th block

Qkg := (Pk − Pk−1)g =
∑

h∈Hd
k

λh(g)h, k = 1, 2, . . . ,

of the Haar expansion (8). Using a standard compactness argument and the dyadic
dilation- and shift-invariance of the Haar wavelet system Hd, we have the equivalence
of quasi-norms

‖
∑

h∈Hd
k−1:supp(h)=∆

γhh‖
p
Lp(∆) ≈ 2−kd

∑

h∈Hd
k−1:supp(h)=∆

|γh|
p, 0 < p <∞,

which holds with constants independent of the coefficient sequence (γh)h∈Hd and the
dyadic cubes ∆ ∈ T d

k−1, k = 1, 2, . . .. Consequently,

‖
∑

h∈Hd
k−1

γhh‖
p
Lp

≈ 2−kd
∑

h∈Hd
k−1

|γh|
p, 0 < p <∞, (19)

with constants independent of (γh)h∈Hd and k = 1, 2, . . .. For the Lp quasi-norm of Qkg
this yields

‖Qkg‖
p
Lp

= ‖
∑

h∈Hd
k−1

λh(g)h‖
p
Lp

≈ 2−kd
∑

h∈Hd
k−1

|λh(g)|
p, 0 < p <∞,

Thus, we have
∑

h∈Hd
k−1

|λh(g)|
p ≈ 2kd‖Qkg‖

p
Lp

≤ C2kd(‖g − Pkg‖
p
Lp

+ ‖g − Pk−1g‖
p
Lp
),
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k = 1, 2, . . ., for arbitrary g ∈ L1 and 0 < p <∞.
In combination with (17) this gives the estimate

∑

h∈Hd
k−1

|λh(g)|
p ≤ C2kdp

∞∑

l=k−1

2ld(1−p)El(g)
p
p, k = 1, 2, . . . , (20)

for the k-th block of Haar coefficients of arbitrary g ∈ B
d(1/p−1)
p,p,1 , d−1

d
< p < 1.

3.2. Unconditionality

Now we turn to the parameter range

max(d(1/p− 1), 0) < s < 1/p, 0 < q <∞, (d− 1)/d < p <∞, (21)

and establish the unconditional Schauder basis property of Hd in Bs
p,q,1 by proving a

slightly stronger statement.

Theorem 3 For the parameter range (21), the mapping

Λ : g 7−→ Λg := (λh(g))h∈Hd , g ∈ L1, (22)

provides an isomorphism between Bs
p,q,1(I

d) and a weighted ℓq(ℓp) space, more precisely,
we have

‖g‖Bs
p,q,1

≈ ‖Λg‖ℓp(ℓq) :=






∞∑

k=0




∑

h∈Hd
k

2k(sp−d)|λh(g)|
p





q/p





1/q

. (23)

Consequently, Hd is an unconditional Schauder basis in Bs
p,q,1(I

d) for the parameter
range (21).

Proof. For all parameters considered in (21) we have the continuous embedding Bs
p,q,1 ⊂

L1. This ensures that Λ is well-defined on Bs
p,q,1. In the following, we will concentrate

on the case (d − 1)/d < p < 1 which is partly new. For 1 ≤ p < ∞, the result is fully
covered by [29, Theorem 2.26 (i)] stating the above isomorphism for Bs

p,q, since then (21)
implies that Bs

p,q and B
s
p,q,1 coincide up to equivalent norms, see also [19, 20]. Therefore,

we only sketch the arguments that allow us to prove the result for 1 ≤ p < ∞ directly,
without reference to the results for distributional Besov spaces Bs

p,q.
Step 1. The upper bound

‖Λg‖ℓp(ℓq) ≤ C‖g‖Bs
p,q,1

, g ∈ Bs
p,q,1, (24)

can be proved as follows. For (d− 1)/d < p < 1 we can use (20): Set temporarily

ak :=
∑

h∈Hd
k

|λh(g)|
p, k = 0, 1, . . . .
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With this notation, we have

‖Λg‖qℓp(ℓq) =
∞∑

k=0

(2k(sp−d)ak)
q/p

≤ a
q/p
0 + C

∞∑

k=0

(

2k(sp−d(1−p))

∞∑

l=k

2ld(1−p)El(g)
p
p

)q/p

≤ C



‖g‖qLp
+

∞∑

k=0

(

2k(sp−d(1−p))

∞∑

l=k

2ld(1−p)El(g)
p
p

)q/p


 . (25)

In the last estimation step, we substituted the estimate

|a0|
q/p =

∣
∣
∣
∣

∫

Id
g(x) dx

∣
∣
∣
∣

q

≤ ‖g‖qL1
≤ C‖g‖q

A
d(1/p−1)
p,p,1

≤ C



‖g‖pLp
+

(
∞∑

l=0

2ld(1−p)El(g)
p
p

)q/p


 .

which follows from the definition of a0 and the continuous embedding (7).
Now recall that under the assumption (21) we have d(1/p − 1) < s < 1/p. We can

therefore choose ǫ such that 0 < ǫ < s−d(1/p−1), and apply the Hardy-type inequality

(
∞∑

l=k

brl

)1/r

≤ Cǫ,q/r2
−kǫ

(
∞∑

l=k

(2lǫbl)
q

)1/q

, ǫ > 0, k = 0, 1, . . . , (26)

valid for non-negative sequences (bl)l∈Z+ and all 0 < r, q <∞, with bl = 2ld(1/p−1)El(f)p
and r = p. This gives

(
∑

l=k

2ld(1−p)El(g)
p
p

)q/p

≤ C2−kǫq

∞∑

l=k

(2l(ǫ+d(1/p−1))El(g)p)
q, k = 0, 1, . . . .

After substitution into (25), we arrive at

‖Λg‖qℓp(ℓq) ≤ C

(

‖g‖qLp
+

∞∑

k=0

2kq(s−d(1/p−1)−ǫ)

∞∑

l=k

(2l(ǫ+d(1/p−1))El(g)p)
q

)

= C

(

‖g‖qLp
+

∞∑

l=0

(2l(ǫ+d(1/p−1))El(g)p)
q

k∑

l=0

2kq(s−d(1/p−1)−ǫ)

)

≤ C

(

‖g‖qLp
+

∞∑

l=0

(2lsEl(g)p)
q

l∑

k=0

2kq(s−d(1/p−1)−ǫ)

)

≤ C‖g‖qAs
p,q,1

.

This proves (24) for the range (d− 1)/d < p < 1.
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For 1 ≤ p <∞ we can use the inequality

‖g − Pkg‖Lp ≤ CEk(g)p, g ∈ Lp, k ∈ Z+,

which follows from the uniform boundedness of the projectors Pk in Lp (for details, see
Section 5.2). As above, in conjunction with (??) this gives

ak =
∑

h∈Hd
k

|λh(g)|
p ≤ C2kd‖Qkg‖

p
Lp

≤ C2kdEk−1(g)
p
p, k = 1, 2, . . . ,

and a0 ≤ ‖g‖pLp
. Then (24) follows by simple substitution into the expression for the

weighted ℓq(ℓp)-norm of Λg defined in (23).
It remains to prove that Λ is surjective. Since the operator Λ is obviously injective on

any Besov space Bs
p,q,1 embedded into L1, surjectivity together with (24) automatically

implies boundedness of the inverse mapping Λ−1 as a consequence of the open mapping
theorem for F -spaces (all γ-quasi-normed Banach spaces and, in particular, the Besov
spaces Bs

p,q,1 are F -spaces).
Let Γ = (γh)h∈Hd be an arbitrary sequence with finite weighted ℓq(ℓp)-quasi-norm:

‖Γ‖ℓq(ℓp) :=






∞∑

k=0




∑

h∈Hd
k

2k(sp−d)|γh|
p





q/p





1/q

<∞. (27)

To show the surjectivity of Λ, we need to find a g ∈ Bs
p,q,1 such that

λh(g) = γh, h ∈ Hd. (28)

We will show this in all detail only for the case (d − 1)/d < p < 1 in (21), the case
1 ≤ p <∞ is analogous, see [21] for d = 1 and [29] for d > 1.

Set

qk :=
∑

h∈Hd
k

γhh, pk :=
k∑

l=0

ql, k ∈ Z+.

We first show that (pk)k∈Z+ is fundamental in L1 whenever s > d(1/p − 1) in (27).
Indeed, by (19) and (26) we have

‖pm − pk‖L1 ≤
∞∑

l=k+1

‖ql‖L1 ≤ C
m∑

l=k+1

2−ld
∑

h∈Hd
l−1

|γh| ≤ C
∞∑

l=k

2−ld




∑

h∈Hd
l

|γh|
p





1/p

≤ C2−k(s−d(1/p−1))






∞∑

l=k




∑

h∈Hd
l

(2l(sp−d)|γh|
p





q/p





1/q

≤ C2−k(s−d(1/p−1))‖Γ‖ℓq(ℓp)
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for arbitrary 1 ≤ k < m < ∞. The Hardy-type inequality (26) has been applied in the
last but one estimation step with ǫ = s− d(1/p− 1) > 0 to the sequence

bl = 2−ld




∑

h∈Hd
l

|γh|
p





1/p

, l ≥ k,

whereas the parameter r in (26) has been set to r = 1. The above bound on ‖pm−pk‖L1

shows that (pk)k∈Z+ is fundamental in L1, and that it converges to a function g ∈ L1.
Obviously, this implies the L1 convergence of the Haar series with coefficients γh to g,
i.e.,

g =
∑

h∈Hd

γhh,

assuming the agreed upon blockwise ordering of the Haar functions. By orthogonality
of Hd and λh ∈ L∞ = L′

1 for all Haar functions, we also must have (28).
It remains to show that the above g belongs to Bs

p,q,1. We use

Ek(g)
p
p ≤ ‖g − pk‖

p
Lp

≤
∑

l>k

‖ql‖
p
Lp
, k ∈ Z+,

and, similarly,

‖g‖pLp
≤

∞∑

l=0

‖ql‖
p
Lp
.

As above, together with Lemma 1, (19), and (26) with 0 < ǫ < s, this gives

‖g‖qBs
p,q,1

≤ C‖g‖qAs
p,q,1

≤ C

∞∑

k=0

(

2ksp
∞∑

l=k

‖ql‖
p
Lp

)q/p

≤ C

∞∑

k=0

2k(s−ǫ)q

(
∞∑

l=k

2lǫq‖ql‖
q
Lp

)

≤ C

∞∑

l=0

‖ql‖
q
Lp

≤ C

∞∑

l=0

2lsq



2−ld
∑

h∈Hd
l

|γh|
p





q/p

= C‖Γ‖qℓq(ℓp).

This finishes the proof of Theorem 3 for (d− 1)/d < p < 1.
The proof of the surjectivity of the map Λ for 1 ≤ p < ∞ is similar. We mention

the minor differences. Instead of L1 convergence, we can directly prove Lp convergence
of the Haar series with coefficient sequence Γ since

‖pm − pk‖Lp ≤
∞∑

l=k+1

‖ql‖Lp ≤ C2−ks

(
∞∑

l=k+1

(2ls‖ql‖Lp)
q

)1/q

≤ C2−ks

∞∑

l=k



2l(sp−d)
∑

h∈Hd
l−1

|γh|
p





q/p

, 1 ≤ k < m <∞,

17



where (26) has been applied with ǫ = s > 0, bl = ‖ql‖Lp , and r = 1, followed by (19).
In the proof of g ∈ Bs

p,q,1 instead of the p-quasi-norm property for p < 1, we use the
additivity of the norm for p ≥ 1:

Ek(g)p ≤
∑

l>k

‖ql‖Lp , ‖g‖Lp ≤
∞∑

l=0

‖ql‖Lp .

The rest of the proof is, up to obvious changes in the application of (26), the same as
for p < 1.

4. Proofs: Necessary conditions

4.1. Proof of Theorem 2

Let the parameters satisfy (3). For (d − 1)/d < p < 1 the Besov space Bs
p,q,1 is

continuously embedded into L1 if and only if

d(1/p− 1) < s < 1/p, 0 < q <∞ or s = d(1/p− 1), q ≤ 1,

see (7), while for p ≥ 1 this embedding is obvious. In all these cases, the dual of Bs
p,q,1 is

therefore infinite-dimensional. This proves the necessity of the condition in Theorem 2.
For the sufficiency, we can concentrate on the range 0 < p < 1, and assume on the

contrary that there is a non-trivial continuous linear functional φ on Bs
p,q,1. Since the

span of characteristic functions χ∆ of all dyadic cubes in Id is dense in Bs
p,q,1, there must

be a dyadic cube ∆0 such that φ(χ∆0) 6= 0. Without loss of generality, we may assume
that

∆0 = Id, φ(χ∆0) = 1.

Each dyadic cube in T d
k , k ≥ 0, is the disjoint union of 2d dyadic cubes from T d

k+1.
Therefore, using the linearity of φ, we can construct by induction a sequence of dyadic
cubes ∆k ∈ T d

k such that

∆0 ⊃ ∆1 ⊃ . . . ⊃ ∆k ⊃ . . . , φ(χ∆k
) ≥ 2−kd, k = 0, 1, . . . .

For a given sequence a = (ak)k∈Z+ , consider the function

fm =
m∑

l=0

alχ∆l
∈ Sd

m, m = 0, 1, . . . . (29)

The Lp and Besov space quasi-norms of fm can be computed exactly. Indeed, fm is

constant on all cubes ∆ ∈ T d
k but ∆k, and equals the constant ξk :=

∑k
l=0 al on ∆′

k :=
∆k\∆k+1, where

µ(∆′
k) = (1− 2−d)µ(∆k) = (1− 2−d)2−kd ≥

1

2
µ(∆k),
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and µ denotes the Lebesgue measure on R
d. Thus,

‖fm‖
p
Lp

= (1− 2−d)
m∑

n=0

2−nd

∣
∣
∣
∣
∣

n∑

l=0

al

∣
∣
∣
∣
∣

p

. (30)

Moreover, by Lemma 2 applied to Ω = ∆k and Ω′ = ∆′
k we have

Ek(fm)
p
p = ‖fm−ξk‖

p
Lp(∆k)

= (1−2−d)
m∑

n=k+1

2−nd

∣
∣
∣
∣
∣

n∑

l=k+1

al

∣
∣
∣
∣
∣

p

, k = 0, 1, . . . ,m−1, (31)

while obviously Ek(fm)p = 0 for k ≥ m.
Now we choose the particular sequence

ak = 2kd(k + 1)−1, k = 0, 1, . . . ,

in (29). Substituting into (30) and (31), we have for 0 < p < 1

‖fm‖
p
Lp

≈
m∑

n=0

2−nd

(
n∑

l=0

2ld

l + 1

)p

≈
m∑

n=0

2−nd(1−p)

(n+ 1)p
≈ 1,

and similarly

Ek(fm)
p
p ≈

m∑

n=k+1

2−nd(1−p)

(n+ 1)p
≈

2−kd(1−p)

(k + 1)p
, k = 0, 1, . . . ,m− 1.

Note that by the same token

‖fm‖L1 ≈
m∑

n=0

1

n+ 1
≈ ln(m+ 1), m = 0, 1, . . . ,

and

φ(fm) =
m∑

l=0

alφ(χ∆l
) ≥

m∑

l=0

2ld

l + 1
2−ld ≥ c ln(m+ 1) → ∞, m→ ∞. (32)

Next we compute the Besov quasi-norm of fm:

‖fm‖
q
Bs

p,q,1
≤ C‖fm‖

q
Bs

p,q,1
= C

(

‖fm‖
q
Lp

+
m−1∑

k=0

(2ksEk(fm)p)
q

)

≤ C

(

1 +
m−1∑

k=0

(
2k(s−d(1/p−1))

k + 1

)q
)

≤ C
∞∑

k=0

2k(s−d(1/p−1))q

(k + 1)q
.

Thus, if 0 < s < d(1/p − 1) and 0 < q < ∞ or if s = d(1/p − 1) and 1 < q < ∞, the
sequence (fm)m∈Z+ is uniformly bounded in Bs

p,q,1 which according to (32) contradicts
the assumed boundedness of the linear functional of φ. This proves the necessity part
of Theorem 2. We note that for s < d(1/p − 1) simpler examples can be used to show
the same result, see [16, 18].
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4.2. The case s = d(1/p− 1) > 0, 0 < q ≤ p < 1

In Section 3.1 we established that Hd has the Schauder basis property for B
d(1/p−1)
p,q,1

if 0 < q ≤ p, (d − 1)/d < p < 1. That Hd is not an unconditional Schauder basis for
these spaces can be shown by a simple example. It also appears in [9, Section 13] in
similar context, a related construction for d = 1 can be found in [14].

For (d− 1)/d < p < 1, consider the sequence

fm = 2mdχ∆m ∈ Sd
m, ∆m := [0, 2−m)d ∈ T d

m, m = 0, 1, . . . .

Obviously, Ek(fm)p = 0 for k ≥ m, and using Lemma 2 we compute

Ek(fm)p = ‖fm‖Lp = 2−md/p2md = 2−md(1/p−1), k = 0, 1, . . . ,m− 1.

Thus, since

‖fm‖
q

B
d(1/p−1)
p,q,1

≈ ‖fm‖
q

A
d(1/p−1)
p,q,1

= ‖fm‖
q
Lp

(

1 +
m−1∑

k=0

2kd(1/p−1)q

)

≈ 1, m = 0, 1, . . . ,

(33)

the B
d(1/p−1)
p,q,1 quasi-norms of fm are uniformly bounded for the indicated parameter

range.
The Haar coefficients of fm are easily computed:

λh(fm) =







1, h ∈ Hd
0 ,

2(k−1)d, ∆m ⊂ supp(h), h ∈ Hd
k , k = 1, . . . ,m

0, otherwise.

From this, it is immediate that
∑

h∈Hd
l

λh(fm)h = fl − fl−1, l = 0, 1, . . . ,m,

where we have set f−1 = 0 for convenience. Consider now the function

g2k :=
k∑

l=0

∑

h∈Hd
2l

λh(fm)h =
2k∑

l=0

(−1)lfl =
2k∑

l=0

(−1)l2ldχ∆l
,

where 2k ≤ m. This function is of the same type as the functions f2k considered in the
previous subsection but with a different coefficient sequence a = ((−1)l2ld)l∈Z+ and a
specific nested sequence of dyadic cubes ∆l ∈ T d

l . Using the formula (31), we compute

El(g2k)p ≈ 2−ld(1/p−1), l = 0, . . . , 2k − 1, El(g2k)p = 0, l ≥ k,

and conclude that

‖g2k‖
q

B
d(1/p−1)
p,q,1

≥ c

2k−1∑

l=0

(2ld(1/p−1)El(g2k)p)
q ≥ ck, 2k ≤ m,

20



grows unboundedly if k,m → ∞, independently of 0 < q < ∞ and, in particular,
for the range 0 < q ≤ p of interest. In conjunction with (33) this contradicts the
unconditionality of Hd since the g2k are partial sums of the Haar expansion of fm with
respect to a specific finite subset of Hd. Recall that by Lemma 3 unconditionality of
a Schauder basis requires the uniform boundedness of the partial sum operators for
arbitrary finite subsets of basis elements.

4.3. The case s = d(1/p− 1) > 0, (d− 1)/d < p < q ≤ 1

For the parameters

s = d(1/p− 1), (d− 1)/d < p < q ≤ 1, (34)

the failure of the Schauder basis property claimed in Theorem 1 b) cannot be deduced
from Theorem 2. Since the Haar coefficient functionals λh are continuous on Bs

p,q,1,
the finite-rank partial sum operators Pk defined in (9) represent bounded operators.
However, they are not uniformly bounded on Bs

p,q,1 for the parameter values in (34).
To establish this fact, we need another type of examples which were introduced in

[18] in a slightly different form. Fix a k ≥ 1 arbitrarily, and select a subset T ′ ⊂ T d
k

such that each dyadic cube ∆ ∈ T d
k−1 contains exactly 2d−1 cubes ∆′ ∈ T ′ (and thus

exactly 2d−1 cubes from T d
k \T

′). This way T ′ contains 2kd−1 cubes from T d
k which will

be enumerated in an arbitrary order, and denoted by ∆′
i, i = 1, . . . , 2kd−1. For each

i = 1, . . . , 2kd−1, choose a dyadic cube ∆i ∈ T d
k+i contained in ∆′

i, and set

fk :=
2kd−1
∑

i=1

biχ∆i
, bi := 2(k+i)di−α, i = 1, . . . , 2kd−1,

where α < 1/q is fixed.
It is clear by this construction that on each dyadic cube ∆ we have either fk = 0

on a subset Ω′ ⊂ ∆ of measure µ(Ω′) ≥ 1
2
µ(∆), or fk is constant on ∆. For ∆ ∈ T d

l

with l < k, only the former option is possible due to the properties of T ′. For ∆ ∈ T d
l

with l ≥ k, we have three mutually exclusive cases: 1) ∆ ⊂ ∆i for some i, 2) ∆i is
strictly contained in ∆ for some i, or 3) ∆ does not intersect any of the ∆i. In case
1) and 3) fk is constant on ∆, while in case 2) fk = 0 on a set Ω′ ⊂ ∆ of measure
µ(Ω′) ≥ (1− 2−d)µ(∆) ≥ 1

2
µ(∆). This enables the use of Lemma 2 for the computation

of best approximations. Since p < 1, for l = 0, . . . , k, we obtain

El(fk)
p
p = ‖fk‖

p
Lp

=
2kd−1
∑

i=1

2−(k+i)dbpi =
2kd−1
∑

i=1

2−(k+i)d(1−p)i−αp ≈ 2−kd(1−p).

For l = k + 1, . . . , k + 2kd−1 − 1 we similarly have

El(fk)
p
p = ‖

2kd−1
∑

i=l+1−k

biχ∆i
‖pLp

=
2kd−1
∑

i=l+1−k

2−(k+i)d(1−p)i−αp ≈ 2−ld(1−p)(l − k)−αp,
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while El(fk)p = 0 for l ≥ k+2kd−1. Substitution into the A
d(1/p−1)
p,q,1 quasi-norm expression

gives

‖fk‖
q

B
d(1/p−1)
p,q,1

≈ 2−kd(1/p−1)q

k∑

l=0

2ld(1/p−1)q +
k+2kd−1−1∑

l=k+1

(2ld(1/p−1)2−ld(1/p−1)(l − k)−α)q

≈ 1 +
2kd−1
∑

i=1

i−αq ≈ 2kd(1−αq), k = 1, 2, . . . ,

where αq < 1 has been used.
The construction of T ′ also allows us to compute the best approximations of the

partial sum Pkfk of the finite Haar expansion of fk. Indeed, according to (10-??), Pkfk
is given by

Pkfk(x) =

{
2kd2−(k+i)dbi = 2kdi−α, x ∈ ∆′

i, i = 1, . . . , 2kd−1,
0, x ∈ ∆′, ∆′ ∈ T d

k \T
′.

Since Pkfk ∈ Sd
k we have El(Pkfk)p = 0 for l ≥ k. By the selection rule of the cubes

∆′
i ∈ T ′, on any cube ∆ ∈ T d

l with l < k we have Pkfk = 0 on the union of all ∆′ ∈ T d
k \T

′

intersecting with ∆ which has always exactly half of the measure of ∆. For this reason,
Lemma 2 is applicable and gives

El(Pkfk)
p
p = ‖Pkfk‖

p
p =

2kd−1
∑

i=1

2−kd(2kdi−α)p = 2−kd(1−p)

2kd−1
∑

i=1

i−αp

for l = 0, . . . , k − 1. Consequently, we have

‖Pkfk‖
q

B
d(1/p−1)
p,q,1

≈ 2kd(1/p−1)q‖Pkfk‖
q
p ≈





2kd−1
∑

i=1

i−αp





q/p

≈ 2kd(1/p−1)q,

since for the parameter range of interest α < 1/q < 1/p.
Comparing the above estimates for the Besov quasi-norms of Pkfk and fk shows that

‖Pk‖Bd(1/p−1)
p,q,1 →B

d(1/p−1)
p,q,1

≥
‖Pkfk‖Bd(1/p−1)

p,q,1

‖fk‖Bd(1/p−1)
p,q,1

≥ c2kd(1/p−1/q), k ≥ 1,

for values 0 < p < q. I.e., the partial sum operators Pk are not uniformly bounded, and
Hd cannot be a Schauder basis in B

d(1/p−1)
p,q,1 for the parameter range (34). This concludes

the proof of the necessity of the conditions in Theorem 1.

5. Remarks and extensions

5.1. Higher-order spline systems

The Schauder basis property of spline systems of order m > 1 in Lebesgue-Sobolev
spaces and in Besov spaces Bs

p,q,m defined by m-th order moduli of smoothness

ωm(t, f)p := sup
0≤|y|≤t

‖∆m
y f‖Lp(Idy,m), t > 0,
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where ∆m
y denotes the m-th order forward difference operator with step-size y, and

Idy,m = {x ∈ Id : x + my ∈ Id}, has also attracted attention, see [1, 4, 5, 6] for
1 ≤ p ≤ ∞. Note that, with the exception of [6], in these papers the case d > 1 has been
treated by the tensor product construction, i.e., with analogs of H̃d, not the Haar wavelet
system Hd. For 0 < p < 1, we refer to [16] which treats orthogonal spline systems in the
one-dimensional case. Higher-order spline wavelet systems as unconditional Schauder
bases in Besov-Triebel-Lizorkin spaces Bs

p,q(R
d) and F s

p,q(R
d) have been considered in

[29, Section 2.5].
Without going into much detail, we claim that analogs of the above results hold for

Bs
p,q,m and m-th order orthogonal spline wavelet systems in the parameter range

0 < s < min(m,m− 1 + 1/p), 0 < p, q <∞,

and can be proved following the above reasoning for the Haar system Hd. To be more
specific, take the univariate orthogonal Ciesielski system Fm of order m ≥ 1. This is the
system {fm−2

n , n ≥ −m + 2} from [1, 2] obtained by Gram-Schmidt orthogonalization
of a suitably chosen system of B-splines of degree m − 1 associated with the dyadic
partitions Tk of the unit interval I, k = 0, 1, . . .. Its d-dimensional wavelet counterpart
Fm,d is then constructed along the lines of [6, Section 10] or [29, Section 2.5.1], where
the fm

n play the role of the wavelet functions, and the B-splines the role of the scaling
functions, respectively. Note that what we call order m in this paper means degree
m − 1 and Cm−2 smoothness of the splines, respectively, and is used differently in the
cited papers. Then, using the exponential decay properties of the Ciesielski functions
fm−2
n , and the characterization of Bs

p,q,m in terms of best approximations from [7] valid
for the indicated range of smoothness parameters s, one first proves an analog

‖Pmg‖pLp
≤ C2kd(p−1)

∑

∆∈T d
k

‖g‖pL1(∆), 0 < p ≤ 1, g ∈ L1,

of the crucial estimate (14), now for partial sum operators Pm of level k with respect to
Fm,d, and then follows the proof of Theorem 1 in Section 3.1. This essentially leads to
positive results for max(0, d(1/p − 1)) < s < min(m,m − 1 + 1/p) and 0 < q < ∞ as
well as on the critical line s = d(1/p− 1), 0 < q ≤ p < 1, for d = 1 see [16].

The counterexamples for the remaining cases in the range 0 < s ≤ d(1/p − 1),
0 < p < 1, can be built using linear combinations of B-splines with well-separated
supports, as done in [16] for d = 1 (see the lemma on p. 535 there). Some additional
technical difficulties arise from the fact that partial sum operators are not as local as in
the Haar case (m = 1) but can be overcome using the exponential decay of the associated
operator kernels in conjunction with the support separation in the examples.

Since for m ≥ 2 and d > 1 we have

Fm,d 6⊂ Bs
p,q,m, s ≥ m, 0 < q <∞, 0 < p < 1,

the restriction to the range 0 < s < m for 0 < p < 1 is natural. This is in contrast to
the case m = 1, where Hd remained an unconditional Schauder basis also for the range
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1 ≤ s < 1/p, 0 < p < 1. One could therefore ask if the spaces Bs
p,q,m permit specific

spline bases for the remaining values

m ≤ s < m− 1 + 1/p, 0 < q <∞, 0 < p < 1, (35)

also for d > 1. In order for a spline system to belong to Bs
p,q,m for this parameter range, it

is desirable that it consists of splines which are locally polynomials of exactly total degree
m − 1, and globally belong to Cm−2 over well-shaped and refinable partitions. These
are the spline functions that are maximally smooth in Lp, 0 < p < 1, in the sense that
their m-th order modulus of smoothness decays at the best possible rate O(tm−1+1/p),
t → 0. Tensor-product constructions such as Fm,d lead to Cm−2 smooth splines with
local coordinate degree m− 1 but total degree d(m− 1) > m− 1 for which only a O(tm)
decay of the m-th order modulus of smoothness can be expected. To the best of our
knowledge, spline systems with all properties desirable for the construction of Schauder
bases in Bs

p,q,m with parameters satisfying (35) are available only in special cases. E.g.,
for m = 2 semi-orthogonal prewavelet systems over dyadic simplicial partitions of Id are
a candidate for any dimension d > 1. For m = 3 and d = 2, the 12-split Powell-Sabin
spline spaces over dyadic triangulations of I2 may potentially lead to such a construction,
see [17]. However, we doubt that covering the range (35) has any merit beyond academic
interest.

5.2. The exceptional case s = 0, 1 ≤ p <∞

With a few exceptions, the literature about Besov function spaces such as Bs
p,q,1 deals

only with parameters s > 0 although the definition given in Section 2.2 formally leads
to meaningful spaces in the case s = 0 as well. As our proof of Theorem 2 reveals, the
statement

(Bs
p,q,1)

′ = {0}

about the triviality of the dual space remains true also for s = 0 if we are in the range
0 < p < 1, 0 < q < ∞. Thus, the question about the Schauder basis property of Hd in
B0

p,q,1 is of interest only if 1 ≤ p < ∞. Since Hd is a Schauder basis in Lp = Bs
p,∞,1 for

this range (even unconditional if 1 < p <∞), one would expect positive results also for
B0

p,q,1 in the case 0 < q < ∞. Unfortunately, our proof of the unconditionality results
formulated in Theorem 1 and sketched at the end of Section 3.2 uses the assumption
s > 0 in an essential way. We thus use an alternative argument inspired by [13] to
establish the following result.

Theorem 4 The Haar wavelet system Hd is an unconditional Schauder basis in B0
p,q,1(I

d)
if and only if 1 < p < ∞, 0 < q < ∞. It is still a conditional Schauder basis if p = 1,
0 < q <∞ (assuming blockwise ordering).

Proof. The proof uses the following well-known facts. Since Hd is a Schauder basis in
Lp, 1 ≤ p <∞, we have

Ek(g)p ≈ ‖g − Pkg‖Lp , k = 0, 1, . . . , (36)
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for all g ∈ Lp, 1 ≤ p <∞. Indeed,

Ek(g)p ≤ ‖g − Pkg‖Lp ≤ ‖g − sk‖Lp + ‖Pk(g − sk)‖Lp ≤ CEk(g)p

since Pksk = sk for the best approximating element sk ∈ Sd
k and since the partial sum

operators Pk are uniformly bounded in Lp, see Lemma 3. Thus, if P is a partial sum
operator for Hd of the form (13) then El(Pg)p = 0 for l > k since Pg ∈ Sd

k+1, and

El(Pg) ≤ ‖Pg − PlPg‖Lp = ‖P (g − Pl)g‖Lp ≤ C‖g − Plg‖Lp ≤ CEl(g)p (37)

for l = 0, . . . , k, since P and Pl commute, and the P are uniformly bounded in Lp. This,
together with Lemma 1 for s = 0, establishes the uniform boundedness of the operators
P , and consequently the Schauder basis property of Hd in the assumed natural ordering,
in B0

p,q,1 for all 1 ≤ p <∞, 0 < q <∞.
To prove the stronger unconditionality statement for 1 < p < ∞, we again resort

to the criterion for unconditionality stated in Lemma 3. Since Hd is an unconditional
Schauder basis in Lp, 1 < p <∞, we have

‖PJg‖Lp ≤ C‖g‖Lp , PJg :=
∑

h∈J

θhλh(g)h, (38)

for all g ∈ Lp and all finite subsets J of Hd. Since the projectors PJ and Pk commute,
as in (37) this also implies

Ek(PJg) ≤ CEk(g), k = 0, 1, . . . , g ∈ Lp. (39)

We use (38-39) in conjunction with Lemma 1, and bound the B0
p,q,1 quasi-norm of PJg

as follows:

‖PJg‖
q

B0
p,q,1

≤ C‖PJg‖
q

A0
p,q,1

= C

(

‖PJg‖
q
Lp

+
∞∑

k=0

Ek(PJg)
q
p

)

≤ C

(

‖g‖qLp
+

∞∑

k=0

Ek(g)
q
p

)

= C‖g‖q
A0

p,q,1
≤ C‖g‖q

B0
p,q,1

.

This proves the unconditionality of Hd in B0
p,q,1 for 1 < p <∞, 0 < q <∞.

Finally, to show that Hd is not unconditional in B0
p,q,1 if p = 1, 0 < q <∞, we reuse

the example fm from Section 4.2. Since Lemma 2 also holds for p = 1, we compute

El(fm)1 =

{
1, l < m,
0, l ≥ m,

and

El(g2k)1

{
≈ 2k − l, l < 2k,
= 0, l ≥ 2k,

25



where g2k = PJkfm for a specific choice of Jk ⊂ Hd and 2k ≤ m. Substitution into the
formulas for the equivalent A0

1,q,1 quasi-norms of these functions gives

‖fm‖
q

B0
1,q,1

≈ m, ‖g2k‖
q

B0
1,q,1

= ‖PJkfm‖
q

B0
1,q,1

≈
∑

l<2k

(2k − l)q ≈ kq+1.

Now choose k ≈ m/2 and let m → ∞, to show that the operators PJ , J ⊂ Hd, are
not uniformly bounded in B0

1,q,1, 0 < q < ∞. Consequently, Hd is only a conditional
Schauder basis in B0

1,q,1. ✷

One may ask if an analog of Theorem 3, i.e., an isomorphism with a certain sequence
space in terms of Haar coefficients, holds for B0

p,q,1, 1 < p < ∞, 0 < q < ∞, as well.
In principle, the answer is yes but it looks more complicated than the description via
weighted ℓq(ℓp) spaces. Indeed, the Littlewood-Paley-type characterization for Lp in
terms of Hd expansions, namely the norm equivalence

‖f‖Lp ≈ ‖(
∞∑

l=0

∑

h∈Hd
l

2−ldλh(f)
2|h|2)1/2‖Lp , f ∈ Lp, 1 < p <∞, (40)

see [29, Corollary 2.28, (2.223)], can be used in conjunction with (36) and Lemma 1:

‖g‖q
B0

p,q,1
≈ ‖g‖q

A0
p,q,1

≈ ‖g‖qLp
+

∞∑

k=0

‖g − Pkg‖
q
Lp

≈
∞∑

k=0

∥
∥
∥
∥
∥
∥
∥





∞∑

l=k

∑

h∈Hd
l

2−ldλh(f)
2|h|2





1/2
∥
∥
∥
∥
∥
∥
∥

q

Lp

.

Recall that |h|2 = χ∆, where ∆ is the support cube of the Haar function h ∈ Hd.
We doubt that the above equivalent quasi-norm for B0

p,q,1, 1 < p < ∞, 0 < q < ∞,
can be made more explicit, except for the special case p = 2, where the orthogonality of
Hd leads to simplifications:

‖g‖q
B0

2,q,1
≈

∞∑

k=0





∞∑

l=k

∑

h∈Hd
l

2−ldλh(g)
2





q/2

, 0 < q <∞.

This further simplifies if we also set q = 2:

‖g‖2B0
2,2,1

≈
∞∑

k=0

∑

h∈Hd
k

(k + 1)2−kdλh(g)
2, 0 < q <∞.
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5.3. Tensor-product Haar system H̃d as basis in Bs
p,q,1

The historically first constructions of Schauder bases for Banach spaces of smooth
functions over higher-dimensional cubes and manifolds [1, 4, 5] exclusively used tensor
products of univariate Schauder bases. Later, due to the desire to work with systems
with better support localization and the need to cover quasi-Banach spaces as well,
wavelet-type constructions became more popular. As a matter of fact, in more recent
texts such as [29], the tensor-product construction is examined only with respect to
function spaces of dominating mixed smoothness.

This raises the following question: Can the Haar tensor-product system H̃d be a
Schauder basis in any of the separable Besov function spaces Bs

p,q,1 it is contained in?
Note that if we write

H̃d = ∪∞
k=0H̃

d
k ,

where H̃d
k = {h̃ ∈ Sd

k : h̃ 6∈ Sd
k−1 for k ≥ 1 and H̃d

0 = Hd
0 , and order by blocks, then the

set of partial sum operators P̃ associated with H̃d expansions contains {Pk}k∈Z+ as a

subsequence. Consequently, such an ordering of H̃d assumed, {P̃} is uniformly bounded
in Bs

p,q,1 only if the Haar wavelet system Hd with the natural ordering is a Schauder

basis in this space. When this is the case, one may hope that H̃d is a Schauder basis as
well.

For 1 ≤ p < ∞ this is indeed the case: The properly ordered tensor-product Haar
system H̃d is a Schauder basis in Bs

p,q,s, 1 ≤ p < ∞, 0 < q < ∞, 0 ≤ s < 1/p, and is
even unconditional if 1 < p < ∞. We believe that this is known but could not locate
the corresponding statement in the literature. However, for 0 < p < 1 a simple example
shows that H̃d is not a Schauder basis in Bs

p,q,s, independently of the ordering in H̃d.

Theorem 5 Let d > 1, 0 < q <∞, 0 ≤ s < 1/p.
a) The tensor-product Haar system H̃d is an unconditional Schauder basis in Bs

p,q,1(I
d)

if and only if 1 < p < ∞, for p = 1 it remains a conditional Schauder basis for a
particular blockwise ordering.
b) If 0 < p < 1 then the family of L2 orthogonal projectors

Λh̃ : f → Λh̃f := ‖h̃‖−2
L2

(∫

Id
fh̃ dx

)

h̃, h̃ ∈ H̃d,

onto one-dimensional subspaces spanned by tensor-product Haar functions h̃ ∈ H̃d can-
not be uniformly bounded in Bs

p,q,1(I
d). As a consequence, H̃d cannot be a Schauder basis

in Bs
p,q,1(I

d) for 0 < p < 1, independently of the ordering within H̃d.

Proof. Step1. We start with part b). For k = 1, 2, . . ., consider the characteristic
function fk := χ[0,2−k)d ∈ Sd

k and the particular tensor-product Haar function

h̃k := h[0,2−(k−1)) ⊗ χI ⊗ . . .⊗ χI = h2k−1+1 ⊗ h1 ⊗ . . .⊗ h1 ∈ H̃d
k ,

see the notation in Section 2.1. Using Lemma 1 and 2, we have

‖fk‖
q
Bs

p,q,1
≈ ‖fk‖

q
Lp

+
k−1∑

l=0

2lsqEl(fk)
q
p = ‖fk‖

q
Lp
(1 +

k−1∑

l=0

2lsq) ≈ 2−kdq/paq,s,k,
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where aq,s,k :=
∑k

l=0 2
lsq, and 0 ≤ s < 1/p, 0 < q <∞. Similarly,

‖h̃k‖
q
Bs

p,q,1
≈ ‖h̃k‖

q
Lp

+
k−1∑

l=0

2lsqEl(h̃k)
q
p ≈ ‖h̃k‖

q
Lp
(1 +

k−1∑

l=0

2lsq) ≈ 2kq/paq,s,k,

where, by applying Lemma 2 locally on cubes ∆ ∈ T d
l with l < k, we could use that

El(h̃k)p = ‖h̃k‖Lp = 2−(k−1)/p) for all l < k − 1 and Ek−1(h̃k)p = 2 · 2−k/p = 21−1/p‖h̃k‖Lp

for l = k − 1.
Putting things together, with

‖h̃k‖
2
L2

= 2−k+1,

∫

Id
fkh̃k dx = 2−kd,

and
‖Λh̃k

fk‖
q
Bs

p,q,1
= (2k−1 · 2−kd)q‖h̃k‖

q
Bs

p,q,1
,

we arrive at

‖Λh̃k
‖qBs

p,q,1→Bs
p,q,1

≥
‖Λh̃k

fk‖
q
Bs

p,q,1

‖fk‖
q
Bs

p,q,1

≈
2−k(d−1)q2−kq/p

2−kdq/p
= 2k(1/p−1)(d−1)q.

Since 0 < p < 1 and d > 1 this shows that {Λh̃k
}k=1,2,... and, consequently, the whole

family {Λh̃}h̃∈H̃d cannot be uniformly bounded on Bs
p,q,1.

Finally, since Λh̃ is the difference of two consecutive partial sum operators for the
series expansion with respect to H̃d, independently of the ordering within H̃d, the se-
quence of partial sum operators cannot be uniformly bounded on Bs

p,q,1 either. Due to

Lemma 3 this shows that H̃d cannot have the Schauder basis property in Bs
p,q,1 for the

indicated parameter range if 0 < p < 1. ✷

Step 2. We next prove the unconditionality of H̃d in Bs
p,q,1 for all parameters

1 ≤ p <∞, 0 < q <∞, 0 ≤ s < 1/p. (41)

To this end, recall from Lemma 1 and (36) that

‖f‖qBs
p,q,1

≈ ‖f‖qAs
p,q,1

≈ ‖f‖qLp
+

∞∑

k=0

(2ks‖f − Pkf‖Lp)
q, f ∈ Bs

p,q,1, (42)

for the parameters in (41). Using

‖f − Pk‖Lp ≤
∞∑

l=k

‖(Pl+1 − Pl)f‖Lp

and (26), this further transforms to

‖f‖qBs
p,q,1

≈
∞∑

k=0

(2ks‖Pk − Pk−1f‖Lp)
q, f ∈ Bs

p,q,1, (43)
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if 0 < s < 1/p (we have set P−1 = 0).
Similar to (40) for Hd, we have a Littlewood-Paley-type norm equivalence

‖g‖Lp ≈

∥
∥
∥
∥
∥
∥
∥




∑

h̃∈H̃d

(µ(supp(h̃))−1λh̃(g)h̃)
2





1/2
∥
∥
∥
∥
∥
∥
∥
Lp

, g ∈ Lp, 1 < p <∞, (44)

for H̃d, where µ(·) denotes the Lebesgue measure in Id, see [29, Corollary 2.28, (2.223)].
Substituted into (43), this yields the following characterization of the Bs

p,q,1 quasi-norm
if 1 < p <∞, 0 < q <∞, and 0 < s < 1/p:

‖f‖qBs
p,q,1

≈
∞∑

k=0






2ks

∥
∥
∥
∥
∥
∥
∥




∑

h̃∈H̃d
k

(µ(supp(h̃))−1λh̃(g)h̃)
2





1/2
∥
∥
∥
∥
∥
∥
∥
Lp







q

, f ∈ Bs
p,q,1.

For s = 0, we obtain a similar characterization of the B0
p,q,1 quasi-norm if we substitute

(44) into (42). This shows that H̃d is an unconditional Schauder basis in Bs
p,q,1 for the

parameters in (41) if 1 < p <∞.

Step 3. For p = 1 we only establish the Schauder basis property for a specific
blockwise ordering of H̃d. The idea is old, see e.g. [1, Section 11] or [4, Section 4-5], in
the latter paper, the Haar case corresponds to the parameter settings r = 1, k = 0. For
clarity, we restrict ourselves to d = 2, the general case can be handled by induction in d.
Consider the natural ordering H = {hn}n∈N of the univariate Haar system H introduced
in Section 2.1, and denote the partial sum operators by Qn. These operators are L2

ortho-projectors onto span({hl}l=1,...,n), and uniformly bounded on L1.
With this ordering for H, we enumerate the blocks H̃2

k of the tensor-product Haar
system

H̃2 = {h̃i1,i2 := hi1 ⊗ hi2 , (i1, i2) ∈ N
2}

as follows: We set H̃2
0 = {h̃1 := h̃1,1} for k = 0, and

H̃2
k+1 =

(

∪2k

i=1{h̃2k+i,n}n=1,...,2k+1

)

︸ ︷︷ ︸

H̃′

k+1

∪
(

∪2k

i=1{h̃n,2k+i}n=1,...,2k

)

︸ ︷︷ ︸

H̃′′

k+1

(45)

for k ≥ 0. The enumeration of the functions within the subblocks H̃ ′
k+1 and H̃

′′
k+1 in (45)

is assumed lexicographic with respect to the index pairs (i, n). With this at hand, any
partial sum operator P̃ with respect to H̃2 is the linear combination of a few projectors
Qn1,n2 = Qn1 ⊗Qn2 . Indeed, similar to (13), any partial sum operator P̃ takes the form

P̃ g = Pkg +∆P̃ g; ∆P̃ g :=
∑

h̃∈ ¯̃H2
k+1

λh̃(g)h̃ ∈ S2
k+1.
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for some k = 0, 1, . . . and some section ¯̃H2
k+1 of H̃2

k+1 taken in the described order.

Obviously, Pk = Q2k,2k . If the section ¯̃H2
k+1 is contained in H̃ ′

k+1 then

∆P̃ = (Q2k+i−1 −Q2k)⊗Q2k+1 + (Q2k+i −Q2k+i−1)⊗Qn

= Q2k+i−1,2k+1 −Q2k,2k+1 +Q2k+i,n −Q2k+i−1,n

for some n = 1, . . . , 2k+1 and i = 1, . . . , 2k. Otherwise, we have

∆P̃ = (Q2k+1 −Q2k)⊗Q2k+1 +Q2k ⊗ (Q2k+i−1 −Q2k) +Qn ⊗ (Q2k+i −Q2k+i−1)

= Q2k+1,2k+1 −Q2k,2k+1 +Q2k+,2k+i−1 −Q2k,2k +Qn,2k+i −Qn,2k+i−1,

for some n = 1, . . . , 2k and i = 1, . . . , 2k. Altogether, this shows that P̃ is always a
linear combination of a few tensor-product projectors Qn1,n2 . Since tensor-products of
uniformly L1 bounded operators are uniformly L1 bounded as well, it follows that

‖P̃ g‖L1 ≤ C‖g‖, g ∈ L1, (46)

uniformly for all partial sum operators P̃ . Thus, H̃d is a Schauder basis in L1 for d = 2.
By induction, this holds for all d > 1. This is most probably known, and has been
proved here only in the absence of a proper reference.

For the parameters under consideration, the Schauder basis property of H̃d in Bs
1,q,1

follows now from (46) using the same arguments as in the proof of Theorem 4 in Section
5.2.

Step 4. Finally, it is easy to see that H̃d is not unconditional in Bs
1,q,1 for any

0 ≤ s < 1, 0 < q < ∞. If it were, then any finite subset of H̃d must be uniformly
unconditional as well. But this is not the case. Consider the finite subsets

Jk := {hn ⊗ h2k+1 ⊗ . . .⊗ h2k+1}n=1,...,2k+1 ⊂ H̃d
k+1, k = 0, 1, . . . .

This Jk is a finite section of H ⊗ h2k+1 ⊗ . . . ⊗ h2k+1. Since H is not unconditional in
L1(I), the subsets Jk cannot be uniformly unconditional in L1 either. This means that
there is a sequence of subsets J ′

k ⊂ Jk ⊂ H̃d
k+1, and a sequence of functions

gk ∈ span(H̃d
k+1) = span(Hd

k+1) = Sd
k+1 ⊖L2 S

d
k , k = 0, 1, . . . ,

such that
‖P̃J ′

k
gk‖L1

‖gk‖L1

→ ∞, k → ∞, (47)

where P̃J ′

k
denotes the partial sum projector with respect to the subset J ′

k ⊂ H̃d
k+1.

Consider now the Bs
1,q,1 quasi-norms of gk and P̃J ′

k
gk. Since these functions belong

to Sd
k+1 but are L2-orthogonal to S

d
k we have El(gk)1 = El(P̃J ′

k
gk)1 = 0 for l > k while

for l ≤ k we have Plgk = PlP̃J ′

k
gk = 0 and according to (36)

El(gk)1 ≈ ‖gk‖1, El(P̃J ′

k
gk)1 ≈ ‖P̃J ′

k
gk‖1.
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If we substitute this into the expressions for the As
1,q,1 norms then using Lemma 1 we

get

‖P̃J ′

k
‖Bs

1,q,1→Bs
1,q,1

≥
‖P̃J ′

k
gk‖Bs

1,q,1

‖gk‖Bs
1,q,1

≈
‖P̃J ′

k
gk‖As

1,q,1

‖gk‖As
1,q,1

≈
‖P̃J ′

k
gk‖L1

‖gk‖L1

.

Due to (47), this contradicts the unconditionality criterion formulated in Lemma 3. ✷

5.4. The exceptional case q = ∞

Since Bs
p,∞,1 is non-separable for 0 < s ≤ max(1, 1/p), it cannot possess Schauder

bases. However, one can talk about the (unconditional) Schauder basis property of a
system (fm)m∈N in a quasi-Banach space X with respect to its closure in X. In this case,
(fm)m∈N is called (unconditional) basis sequence in X. In particular, one can ask if Hd

is an (unconditional) basis sequence in Bs
p,∞,1(I

d) if 0 < s ≤ 1/p. Since B0
p,∞,1 = Lp, the

case s = 0 does not need consideration.
For d = 1 and 1 ≤ p < ∞, a detailed study of the Schauder basis property and

unconditionality of the univariate Haar system H has been provided by Krotov [13, 14]
for the generalized Nikolski classes

Λω
p (I) := {f ∈ Lp(I) : ‖f‖Λω

p
:= ‖f‖Lp + sup

0<t<1

ω(t, f)p
ω(t)

<∞},

where ω(t) is an appropriate comparison function. If ω(t) = ts, we have Λω
p (I) =

Bs
p,∞,1(I) as partial case. In particular, the results in [13, 14] for 1 ≤ p <∞ imply that

H is an unconditional basis sequence in Bs
p,∞,1(I) for 0 < s < 1/p, while for s = 1/p it

is a conditional basis sequence. More recently, [9] studied basis sequence properties of
Haar wavelet systems in distributional Besov spaces Bs

p,∞(Rd) and Bs
p,∞ for 0 < p <∞.

Implicitly, our considerations in Section 3 and 4 already answer the questions about
the basis sequence properties for Hd in Bs

p,∞,1. Without proof, we state the results. The
examples in Section 4.1 show that for 0 < s ≤ d(1/p − 1), 0 < p < 1, bounded linear
functionals on Bs

p,∞,1 must be trivial on the closure of Hd. Consequently, Hd is then not
a basis sequence in Bs

p,∞,1. For the parameter range

max(d(1/p− 1), 0) < s < 1/p, (d− 1)/d < p <∞,

in agreement with the above cited results for d = 1 and by slightly modifying the
arguments for Theorem 3, we can prove that Hd is an unconditional basis sequence in
Bs

p,∞,1. More precisely, the map Λ defined in (22) provides an isomorphism between
Bs

p,∞,1 and a closed subspace of the weighted ℓ∞(ℓp)) sequence space consisting of all
sequences Γ = (γh)h∈Hd with finite quasi-norm

‖Γ‖ℓ∞(ℓp) := sup
k≥0

2k(s−d/p)




∑

h∈Hd
k

|γh|
p





1/p

.
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This subspace is characterized by the additional condition

2k(s−d/p)




∑

h∈Hd
k

|γh|
p





1/p

→ 0, k → ∞.

With the exception of the parameter range 1 ≤ s < 1/p and (d − 1)/d < p < 1, this
result can also be recovered from the literature, see, e.g., [2, 21, 29].

For s = 1/p, (d−1)/d < p <∞, the Haar wavelet system Hd is only a conditional ba-

sis sequence. Since B
1/p
p,∞,1 cannot be characterized in terms of the sequence (Ek(f)p)k∈Z+ ,

and one needs to work with the original definition of the B
1/p
p,∞,1 quasi-norm in terms of

moduli of smoothness. We leave it to the reader to fill in the details.
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Basel, 2006.

[28] H. Triebel, Function Spaces and Wavelets on Domains, EMS Tracts in Mathematics
7, Europ. Math. Soc., Zurich, 2008.

[29] H. Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integra-
tion, EMS Tracts in Mathematics 11, Europ. Math. Soc., Zurich, 2010.

[30] P.L. Ul’yanov, On Haar series, Mat. Sbornik 63:3 (1964), 356–391 (in Russian).

[31] W. Yuan, W. Sickel, D. Yang, The Haar system in Besov-type spaces, Studia Math.,
2020, DOI: 10.4064/sm180828-9-7.

34


