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Abstract. We propose a simple domain decomposition method for d-dimensional el-

liptic PDEs which involves an overlapping decomposition into local subdomain problems

and a global coarse problem. It relies on a space-�lling curve to create equally sized

subproblems and to determine a certain overlap based on the one-dimensional ordering

of the space-�lling curve. Furthermore we employ agglomeration and a purely algebraic

Galerkin discretization in the construction of the coarse problem. This way, the use of

d-dimensional geometric information is avoided. The subproblems are dealt with in an

additive, parallel way, which gives rise to a subspace correction type linear iteration and

a preconditioner for the conjugate gradient method. To make the algorithm fault-tolerant

we store on each processor, besides the data of the associated subproblem, a copy of the

coarse problem and also the data of a �xed amount of neighboring subproblems with

respect to the one-dimensional ordering of the subproblems induced by the space-�lling

curve. This redundancy then allows to restore the necessary data if processors fail dur-

ing the computation. Theory from [GO20] supports that the convergence rate of such

a linear iteration method stays the same in expectation, and only its order constant

deteriorates slightly due to the faults. We observe this in numerical experiments for the

preconditioned conjugate gradient method in slightly weaker form as well. Altogether,

we obtain a fault-tolerant, parallel and e�cient domain decomposition method based on

space-�lling curves which is especially suited for higher-dimensional elliptic problems.

1. Introduction

Higher-dimensional problems beyond four dimensions appear in many mathematical mod-

els in medicine, �nance, engineering, biology and physics. Their numerical treatment poses

a challenge for modern high performance compute systems. With the advent of petascale

compute systems in recent years and exascale computers to arrive in the near future, there

is tremendous parallel compute power available for parallel simulations. But while higher-

dimensional applications involve a huge number of degrees of freedom, their e�cient paral-

lelization by e.g. conventional domain decomposition approaches is di�cult. Load balancing

and scalability might be dimension-dependent, especially for geometry-based domain de-

composition approaches, and necessary communication might grow strongly with increasing

dimensionality. Thus one aim is to �nd parallel algorithms with good load balancing, good

scaling properties and moderate communication costs especially for higher-dimensional

problems. Moreover systems with hundreds of thousand or even millions of processor units

Key words and phrases. Domain decomposition, parallelization, space-�lling curve, fault tol-

erance.
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will be increasingly prone to failures, which can corrupt the results of parallel solvers or

renders them obsolete at all. It is predicted that large parallel applications may su�er from

faults as frequently as once every 30 minutes on future exascale platforms [SW14]. Thus

a second aim is to derive not just balanced, scalable and fast parallel algorithms, but to

make them fault-tolerant as well. Besides hard errors, for which hardware mitigation tech-

niques are under development, there is the issue of soft errors [KRS13, SW14, Tre05]. For

further details and literature on resilience and fault tolerance, see [A20]. Altogether, the

development of fault-tolerant and numerically e�cient parallel algorithms are of utmost

importance for the simulation of large-scale problems.

In this article we focus on algorithm-based fault tolerance. Indeed, a fault-tolerant, parallel,

iterative domain decomposition method can be interpreted as an instance of the stochastic

subspace correction approach. For such methods there exists a general theoretical foun-

dation for convergence, which was developed in a series of papers [GO12, GO16, GO18].

Moreover, for a conventional geometry-based domain decomposition approach, this theory

was already employed in [GO20] to show algorithm-based fault tolerance theoretically and,

for the two-dimensional case, also practically under independence assumptions on the ran-

dom failure of subproblem solves. We now propose a simple domain decomposition method

for d-dimensional elliptic PDEs which works for higher dimensions. Besides an overlapping

decomposition into local subdomain problems, it also involves a global coarse problem.

To create nearly equally sized subproblems, we rely on space-�lling curves. This way, the

overall number N of degrees of freedom is partitioned for P processors into N/P -sized sub-

problems regardless of the dimension of the PDE and the number of available processors.

This is in contrast to many geometry-based domain decomposition methods, where � e.g.

in the uniform grid case with mesh size h and N ≈ h−d depending exponentially on d � the
number of processors is usually to be chosen as a power of d. Furthermore, in our method,

the overlap is determined based on the one-dimensional ordering of the space-�lling curve

as well. Moreover we employ agglomeration and a purely algebraic Galerkin discretization

to again avoid d-dimensional geometric information in the construction of the coarse space

problem. The subproblems and the coarse space problem are dealt with in an additive,

parallel way, which leads to an additive Schwarz subspace correction method that resem-

bles a block-Richardson-type linear iteration. To speed up convergence, we also employ this

approach in a preconditioner for the conjugate gradient (CG) method for the �ne grid dis-

cretization of the PDE. To this end, we store the global coarse space problem redundantly

on each processor and also solve it redundantly on each processor in parallel. Moreover,

to gain fault tolerance, we store on each processor not just the data of the associated

subproblem and the coarse problem but also the data of a �xed amount of neighboring

subproblems with respect to the one-dimensional ordering of the subproblems, which is

induced by the space-�lling curve. This results in su�cient redundancy of the stored data,

whereas the amount of stored data is just enlarged by a constant. If a processor now fails in

the course of the computation, a new replacement processor is invoked from a reserve batch

instead of the faulty one, the corresponding necessary data is transferred to it from (one
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of) the neighboring processors, and the iterative method proceeds with its computation

on this processor as well. Altogether, we obtain an algorithm-based fault-tolerant, parallel,

iterative algorithm, which can be interpreted as an instance of the stochastic subspace cor-

rection approach. Again, the theory in [GO20] supports that the convergence rate of the

overall linear Richardson-type iteration stays in expectation the same, and only the order

constant deteriorates slightly due to the faults, provided that the number of faults stays

bounded and their occurrence among the processors is su�ciently well distributed. For

the preconditioned conjugate gradient approach we do not have such a theory, but a simi-

lar, though slightly weaker behavior can nevertheless be observed in practice. Altogether,

we obtain a fault-tolerant, well-balanced, parallel domain decomposition method, which

is based on space-�lling curves and which is thus especially suited for higher-dimensional

elliptic problems.

The remainder of this paper is organized as follows: In section 2 we discuss our domain de-

composition method, which is based on a space-�lling curve. We �rst give a short overview

on domain decomposition methods and their properties for elliptic PDEs. Then we dis-

cuss space-�lling curves and their peculiarities. Finally, we present our algorithm and its

features. In section 3 we deal with algorithmic fault tolerance. Here we recall its close re-

lation to randomized subspace correction for our setting. Then we present a fault-tolerant

variant of our domain decomposition method. In section 4 we discuss the results of our

numerical experiments. We �rst de�ne the model problem which we employ. Then we give

convergence and parallelization results. Furthermore we show the behavior of our method

under failure of processors. Finally we give some concluding remarks in section 5.

2. A domain decomposition method based on space-filling curves

2.1. Domain decomposition. The domain decomposition approach is a simple method

for the solution of discretized partial di�erential equations and is typically used as a precon-

ditioner for the conjugate gradient method or other Krylov iterative methods. Its idea can

be traced back to Schwarz [S70]. Depending on the speci�c choice of the subdomains, one

can distinguish between overlapping and non-overlapping domain decomposition methods,

where the subdomains geometrically overlap either to a certain extent or intersect only

at their common interfaces. The latter are often also called iterative substructuring meth-

ods in the engineering community. It turned out that such simple domain decomposition

methods can not possess fast convergence rates and thus, starting in the mid 80s, vari-

ous techniques had been developed to introduce an additional coarse scale problem, which

provides a certain amount of global transfer of information across the whole domain and

thus substantially speeds up the iteration. For the overlapping case it could be shown

in [DW87] that the condition number of the �ne grid system preconditioned by such a

two-level additive Schwarz method is of the order

(2.1) O(1 +H/δ),
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where δ denotes the size of the overlap and H denotes the coarse mesh size. This bound

also holds for small overlap [DW94] and can not be improved further [B00]. Thus, if the

quotient of the coarse mesh size H and the overlap δ stays constant, the method is indeed

optimally preconditioned and weakly scalable. For further details on domain decomposition

methods see e.g. the books [SBWG96, QV99, TW04, DJN15].

We obtain a two-level additive Schwarz method as follows: Consider an elliptic di�erential

equation

(2.2) Lu = f

in the domain Ω ⊂ Rd, e.g. the simple Poisson problem on a d-dimensional cube. Using

a conforming �nite element, a direct �nite di�erence or a �nite volume discretization in-

volving N degrees of freedom and mesh size h ≈ N−1/d, we arrive at the system of linear

equations

(2.3) Ax = b

with sparse sti�ness matrix A ∈ RN×N , right hand side vector b ∈ RN and unknown

coe�cient vector x ∈ RN , which needs to be solved. Suppose that

Ω =

P⋃
i=1

Ωi

is covered by a �nite number P of well-shaped subdomains Ωi of diameter ≈ H which

might locally overlap. It is silently assumed that h << H and that the subdomains are

aligned with the �ne mesh. Now denote by Ni the number of grid points associated to each

Ωi, i.e. the degrees of freedom associated to the subdomains Ωi, i = 1, . . . , P . Then denote

by Ri : RN → RNi the restriction operators, which map the entries of the coe�cient vector

x corresponding to the full grid on Ω to the coe�cient vectors xi corresponding to the

local grids on the subdomains Ωi. Analogously denote by RTi : RNi → RN the extension

operators, which map the coe�cient vectors from the local grid on the subdomains Ωi to

that of the full grid on Ω via the natural extension by zero. Then the local sti�ness matri-

ces associated to the subdomains Ωi can be denoted as Ai ∈ RNi×Ni with Ai := RiAR
T
i .

Finally, we add a coarse space problem with dimension N0 as a second level via the restric-

tion operator R0 : RN → RN0 , which maps from the full grid on Ω to the respective global

coarse space. The associated coarse sti�ness matrix then can be generated via the Galerkin

approach as A0 := R0AR
T
0 . Altogether, with the one-level additive Schwarz operator

(2.4) C−1(1) :=
P∑
i=1

RTi A
−1
i Ri,

this gives the two-level additive Schwarz operator

(2.5) C−1(2) := RT0A
−1
0 R0 + C−1(1) =

P∑
i=0

RTi A
−1
i Ri,



A FAULT-TOLERANT DDM BASED ON SPACE-FILLING CURVES 5

which can be used, with a properly chosen relaxation parameter, directly for a linear

iterative method or as preconditioner within a steepest descent or conjugate gradient solver

for (2.3). A notational variant based on space splittings is given in [GO20]. Note that there

are more sophisticated space splittings which follow the Bank-Holst technique [BH03],

where the coarse problem is formally avoided by including a redundant copy of it into each

of the subdomain problems with i = 1, . . . , P . We will indeed follow this approach later

on.

Now, if the condition number κ(C−1(2)A) = λmax(C−1(2)A)/λmin(C−1(2)A) of the preconditioned

system is independent of the number P of subproblems for �xed N , we obtain strong

scalability. If it is independent of the quotient N/P , i.e. the problem size per subdomain

and thus per processor stays �xed, we obtain weak scalability. Moreover, if it is independent

of the numberN of degrees of freedom, we would have an optimally preconditioned method,

which however still may depend on P and might thus not be scalable. Note furthermore

that we employ here for reasons of simplicity a direct solver for A−1i on all subproblems

and for A−10 on the coarse scale, which involves Gaussian elimination and comes with a

certain cost. However, the corresponding matrix factorization needs to be performed just

once at the beginning and, in the plain linear iteration or in the preconditioned conjugate

gradient iteration, only the cheaper backward and forward steps need to be employed.

Alternatively, approximate iterative methods might be used as well, like the multigrid or

BPX-multilevel method, which would even results in optimal linear cost for the subproblem

solves. This given, to achieve a mesh-independent condition number for the preconditioned

system C−1(2)A with C−1(2) as in (2.5), one usually chooses for the coarse problem a suitable

FE space on the mesh of domain partitions, where a linear FE space will do for a second-

order elliptic problem such as (2.2). Mild shape regularity assumptions on the overlapping

subdomains Ωi then guarantee robust condition number estimates of the form κ ≤ c(1+H
δ ),

see [TW04, Theorem 3.13]. Dropping the coarse grid problem, i.e. considering a one-level

preconditioner as in (2.4) without the coarse problem RT0A
−1
0 R0, would lead to the worse

bound κ ≤ cH−2(1+H/δ). Note that, even though these estimates imply a deterioration of

the condition number proportional to δ−1 if δ → h, in practice good performance has been

observed when only a few layers of �ne mesh cells form the overlap at the surface of the Ωi.

With the use of an additional coarse grid problem based on piecewise linears, an optimal

order of the convergence rate is then guaranteed for elliptic problems. The additional coarse

grid problem results in a certain communication bottleneck, which however can by principle

not be avoided and is inherent in all elliptic problems. Similar issues arise for multigrid and

multilevel algorithms as well, but these methods are more complicated to parallelize in an

e�cient way on large compute systems. Moreover their achieved convergence rate and cost

complexity is not better than for the domain decomposition approach with coarse grid, at

least in order, albeit the order constant might be.

In the above two-level method, the coarse problem is mostly determined as a kind of geo-

metric coarse grid or mesh, which corresponds to the speci�cally chosen set of subdomains

and also involves a geometric coarse mesh size. Moreover, on this geometric coarse grid,
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usually a set of piecewise d-linear basis functions is employed, which directly gives a geo-

metric d-dimensional prolongation to the �ne grid space by e.g. interpolation. Furthermore

a conventional discretization by �nite elements (FE) is invoked on this coarse grid either

by direct discretization or by Galerkin coarsening. This is the basis for both the proofs of

the theoretical convergence estimates and the practical implementation of the algorithms.

Besides, the wire basket type constructions [BPS89, S90] and related techniques are used

in theory and practice with good success. They result in somewhat more general coarse

spaces, mimicking discrete harmonics to some extent, but are also based on geometric

d-dimensional information of the �ne mesh, the respective domain partitions and their

boundaries. Altogether, such geometric coarse spaces work well for problems with up to

three dimensions. Their extension to higher dimension, however, is neither straightforward

nor simple and involves local costs which in general scale exponentially in d. More infor-

mation on the development of coarse spaces for domain decomposition can be found in

[W09].

Besides a mesh-based geometric coarse grid problem, we can derive a coarse problem in a

purely algebraic way. To this end, let VH be a coarse space withN0 := dim(VH) and let Z be

a basis for it, i.e. VH = spanZ. The restriction R0 : RN → RN0 from the �ne grid space Vh

to the coarse space VH can be (algebraically) de�ned as the matrix R0 := ZT ∈ RN0×N and

the coarse space discretization is again given via the Galerkin approach as A0 := R0AR
T
0 .

There are now di�erent speci�c choices for Z or RT0 , respectively. In [N87] it was suggested

to employ the kernel of the underlying di�erential operator as coarse space, i.e. the constant

space for the Laplace operator. Thus, with N0 = P ,

RT0 := (RTi DiRi1)1≤i≤P

with 1 = (1, . . . , 1)T and with diagonal matrices Di such that a partition of unity results,

i.e.
P∑
i=1

RTi DiRi = I.

Indeed, it is observed that the associated two-level preconditioner gives good results [M88,

M90] and weak scaling is achieved in practice. Note that this approach can be easily

generalized to the case N0 = qP such that q degrees of freedom are associated on the

coarse scale to each subdomain instead of just one. Improved variants, namely the balanced

method [M93] and the de�ation method [VN06], had been developed subsequently. With

the de�nitions

(2.6) F := RT0A
−1
0 R0 and G := I −AF

and the plain one-level additive Schwarz operator C−1(1) from (2.4), we get the additively

corrected operator C−1(1) + F due to Nicolaides [N87], the de�ated approach GTC−1(1) + F

([VN06]) and the balanced version [M93]

(2.7) C−1(2),bal := GTC−1(1)G+ F.



A FAULT-TOLERANT DDM BASED ON SPACE-FILLING CURVES 7

Closely related are agglomeration techniques inspired by the algebraic multigrid method,

volume agglomeration methods stemming from multigrid in the context of �nite volume

discretizations and so-called spectral coarse space constructions, see e.g. [AAD11] and

[DJN15].

2.2. Space-�lling curves. A main question for domain decomposition methods is how to

construct the partition {Ωi}Pi=1 in the �rst place. To this end, for a �xed number P , one aim

is surely to derive a set of subdomains which involves equal size and thus equal computa-

tional load for each of the subdomains. If we just consider uniform �ne grid discretizations,

a simple uniform and geometric decomposition of the mesh would need P to be a power

of d, i.e. P = P̄ d with P̄ being the amount of subdomain splitting in each coordinate

direction. This however prohibits the use of a slowly growing number of processors and

merely allows numbers of processors which are to be chosen as a power of d. Similar issues

arise for anisotropic mesh sizes h = (h1, . . . , hd) with hi 6= hj , more general quasi uniform

�nite element meshes (for which often mesh partitioners like METIS or similar methods

are employed) or adaptive meshes, where a well-balanced domain decomposition can be

complicated to derive. In this article, we follow the lead of [GZ00, GZ01] and rely on space-

�lling curves to create nearly equally sized subproblems. This way, the overall number N

of degrees of freedom is partitioned for P processors into N/P -sized subproblems (up to

round-o� deviations, i.e. up to a value of just one) regardless of the dimension of the PDE

and the number of available processors. For further details see also [GKZ07, B13, Z03].

In general, we consider the situation where a domain X in a one-dimensional space X ⊂ R
is mapped to a domain Y in a d-dimensional space Y ⊂ Rd, d ≥ 1, i.e. we consider the

mapping

s : X → Y, x→ y := s(x).

The question is: Is there a one-dimensional curve that runs through all points of the d-

dimensional domain, i.e. that is indeed �lling the whole domain Y ? In 1878 Cantor [C78]

discovered that there is a bijective function between any two �nite-dimensional smooth

manifolds independent of their dimension. This is a remarkable and surprising result: For

example, it is possible to map a one-dimensional curve 1:1 onto a two-dimensional surface

and, consequently, the surface contains the same amount of points as the curve. Especially

the points of the unit interval [0, 1] can be mapped onto the unit square [0, 1]2 and vice

versa. Thus such a mapping from the interval to the square is indeed �lling the whole

square. The second question then is: Is there a continuous mapping between any two

�nite-dimensional smooth manifolds X and Y independent of their dimension? In 1879

Netto [N79] settled this issue by proving that, if the dimensions of the two manifolds are

di�erent, such a function is necessarily discontinuous. But what happens if one sacri�ces

bijectivity? Does a surjective, continuous map from the one-dimensional interval to the

higher-dimensional manifold exist? This question was positively answered in 1890 by Peano

[P90]. He was the �rst to present such a map, which is now known as Peano's space-�lling

curve. It maps the unit interval into the plane where the image has positive Jordan content.
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One year later, Hilbert [H91] gave another map with such properties. While Peano's curve

was de�ned purely analytically in the �rst place, Hilbert's approach was given by means of a

geometric construction, see below. In subsequent years, many other space-�lling curves were

discovered, for example the curves by Lebesgue, Moore, Sierpi«ski, Polya and Schoenberg.

For a detailed overview on space-�lling curves we refer to the book [S94].

The construction of the various space-�lling curves in general follows a speci�c recursive

process. They di�er in the dimension d of the space to be �lled, the shape of the space to

be �lled, i.e. the initial object (for example, a square or a triangle in the case d = 2), the

re�nement rule for the decomposition of the respective objects (for example, subdivision

by a factor of 1/2 or 1/3 in each direction), and the rule how the resulting sub-objects

are to be connected or ordered. The recursive construction process can be explained most

easily for the two-dimensional case and for the re�nement into four subsquares, i.e. for

subdivision by a factor of 1/2 in each coordinate direction. Indeed, this is the re�nement

rule which is used for the Hilbert curve, the Moore curve and the Lebesque curve. Then the

associated space-�lling curve s : [0, 1]→ [0, 1]2 is given as the limit of a sequence of curves

sn : [0, 1] → [0, 1]2, n = 1, 2, 3, . . .. Every curve sn connects the centers of the 4n squares

that are created by successive subdivision of the unit square by line segments in a speci�c

way. The curve sn+1 results from the curve sn as follows: Each square is subdivided, the

centers of the newly created four smaller squares are connected in a given order, and all

the 4n groups of 4n+1 centers of smaller squares are connected in the order given by the

curve sn. In this sense, the curve sn+1 re�nes the curve sn.

The various curves di�er in the ordering of the centers in each re�nement step. In the case

of the Lebesgue curve, the same ordering is used everywhere, as shown in Figure 1. For the

Hilbert curve, the ordering is chosen in such a way that, whenever two successive centers

are connected by a straight line, only the common edge of the two squares is crossed. The

construction is made clearer in Figure 2. There, from each iteration to the next, all existing

subsquares are subdivided into four smaller subsquares. These four subsquares are then

connected by a pattern that is obtained by rotation and/or re�ection of the fundamental

pattern given in Figure 2 (left). As it is known where the current discrete curve will enter

and exit the existing subsquare, one can determine how to orientate the local pattern and

can ensure that each square's �rst subsquare touches the previous square's last subsquare.

One can show that the sequence sn for Hilbert's curve converges uniformly to a curve s,

which implies that this limit curve is continuous. For the Lebesgue curve, the sequence

only converges pointwise and the limit is discontinuous.

An important aspect of any space-�lling curve is its locality property, i.e. points that are

close to each other in [0, 1] should tend to be close after mapping into the higher dimensional

space. But how close or apart will they be? To this end, let us consider the Hilbert curve.

In [Z03] it was shown that the d-dimensional Hilbert curve s(x) is Hölder continuous, but

nowhere di�erentiable and that we have, for any x, y ∈ [0, 1], the Hölder condition

|s(x)− s(y)|2 ≤ cs|x− y|1/d with cs = 2
√
d+ 3.
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Figure 1. Three steps in the construction of the Lebesgue curve.

Figure 2. Three steps in the construction of the Hilbert curve.

The exponent 1/d of the Hölder condition is optimal for space-�lling curves and cannot

be improved. It also holds for most of the other curves (Peano, Sierpi«ski, Morton,...),

albeit with associated curve- and dimension-dependent constants. It does not hold for

the Lebesgue curve, since this curve linearly interpolates outside its de�ning Cantor set.

The Lebesgue curve is thus non-injective, almost everywhere di�erentiable and its Hölder

exponent is merely 1/(d log2 3).

The two-dimensional recursive constructions can be generalized to higher space dimensions

d, i.e. to curves s : [0, 1] → [0, 1]d. There exist codes for certain space-�lling curves, and

especially for the Hilbert curve. A recursive pseudo-code for d dimensions is given in [Z03].

The approach in [B71] was further developed in [T92, M00, L00] and [S04]. Meanwhile,

various code versions can be found on github.com [C20, Sh20, P20]. Our implementation

of the d-dimensional Hilbert curve is based on [S04].

Space-�lling curves were originally developed and studied for purely mathematical reasons.

But since the 1980s they were successfully applied in numerics and computer science. This

is due to the fact that in one dimension we have a total ordering for points whereas in

higher dimensions there is only a partial ordering. Space-�lling curves in principle allow to

retract points from high dimensional space to one-dimensional space and to use the total

order there. Moreover the implicit reduction of the dimension from d to one is helpful in

many situations. Since space-�lling curves preserve locality and neighbor relations to some

extent, partitions that contain neighboring points in one-dimensional space will (more or

less) correspond to a local point set in the image space as well and it can be expected that a

parallelization based on space-�lling curves is able to satisfy the two main requirements for

partitions, namely uniform load distribution and compact partitions. Thus the space-�lling

approach is nowadays frequently used for partitioning and for static and adaptive mesh
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re�nement, for the parallelization and dynamic load balancing of tree-based multilevel

PDE-solvers and of tree-based fast integral transforms with applications in, e.g., molec-

ular dynamics and computational astrophysics, compare [GKZ07]. There, the underlying

partitioning problem is NP-hard and can only be e�ciently dealt with in an approximate

heuristic manner. To this end, since space-�lling curves provide a sequential order on a

multidimensional computational domain and on the corresponding grid cells or particles

used in simulations, the partitioning of the resulting list into parts of equal size is an easy

task. A further advantage of the space-�lling curve heuristic in this context is its simplicity:

Parallel dynamic partitioning basically boils down to parallel bucket or radix sort, for fur-

ther details see e.g. [GKZ07, Z03] and the references cited therein. Meanwhile, space-�lling

curves are also successfully applied in other areas of scienti�c computing where, besides

parallelization, cache-e�cient implementation plays an increasingly important role. There

exist now cache-aware and cache-oblivious methods for matrix-matrix multiplication, for

the handling of sparse matrices or for the stack&stream-based traversal of space-trees using

space-�lling curves. For further details see, e.g., [B13] and the references given there.

2.3. Our algorithm. Now we discuss the main features of our domain decomposition

method for d-dimensional elliptic problems Lu = f . For reasons of simplicity, we consider

here the unit domain Ω = [0, 1]d and employ Dirichlet boundary conditions on δΩ. The

discretization is done with a uniform but in general anisotropic mesh size h = (h1, . . . , hd),

where hj = 2−lj with multivariate level parameter l = (l1, . . . , ld), which gives the global

mesh Ωh. The number of interior grid points, and thus the number of degrees of freedom

is then

(2.8) N :=

d∏
j=1

(2lj − 1).

The reason for considering the general anisotropic situation is the following: In a forth-

coming paper, we will employ our speci�c domain decomposition method as a parallel and

fault-tolerant inner solver within the combination method [GSZ92, GH14] for the sparse

grid discretization [Z91, BG04, G12] of high-dimensional elliptic PDEs. There, problems

with in general anisotropic discretizations with the level parameters

l = (l1, . . . , ld) ∈ Nd, where |l|1 := l1 + . . .+ ld = L+ (d− 1)− i, i = 0, . . . , d− 1, , lj > 0.

are to be solved. The resulting solutions ul(x), x = (x1, . . . , xd), are then to be linearly

combined as

(2.9) u(x) ≈ u(c)L (x) :=

d−1∑
i=0

(−1)i

(
d− 1

i

) ∑
|l|1=L+(d−1)−i

ul(x).

Figure 3 illustrates the construction of the combination method in the two-dimensional

case with L = 3. Then �ve anisotropic coarse full grids Ωl are generated on which we

solve our problem. Once the problem is solved on each of the grids, we combine these

solutions with the appropriate weights (here either +1 or -1). This combination yields a
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sparse grid approximation (on the grid Ω
(c)
L ), which is our approximation to the problem

on the (unfeasibly large) full grid ΩL.

1 2 3

1

2

3

+ +

--

=

l2

l1
L L

Figure 3. The combination method, two-dimensional case with L = 3.

This results in a sparse grid approximation to the high-dimensional original problem thus

breaking the curse of dimension of a conventional full grid discretization, provided that

a certain bounded mixed regularity is present. For details see [BG04] and the references

cited therein. We were able to show that the direct hierarchical sparse grid approach and

the combination method indeed possess the same order of convergence, see also [GSZ92,

BGRZ94, GH14]. The combination method allows to reuse existing codes to a large extent.

Moreover the various discrete subproblems can be treated independently of each other

[Gri92], which introduces a second level of parallelization beyond the parallelism within

each subproblem solver due to the domain decomposition. Furthermore, by means of a fault-

tolerant domain decomposition method, also a fault-tolerant parallel combination method

for sparse grid problems is automatically induced. Thus it is necessary to be able to deal

with the various anisotropic problems arising in the combination method in a simple and

e�cient manner with one single domain decomposition code, which runs straightforwardly

and automatically for all these di�erent problems and will not need tedious modi�cations

and adaptions by hand.

Now, for the discretization of Lu = f on the grid Ωh, we employ the simple �nite di�erence

method (or the usual �nite element method with piecewise d-linear basis functions) on

Ωh which results in the system of linear equations Ax = b with sparse system matrix

A ∈ RN×N and right hand side vector b ∈ RN .

Next, we consider the case of P subdomains. To generate a partition of P overlapping sub-

domains {Ωi}Pi=1 of equal size, we employ the space-�lling curve approach and in principle

just map our d-dimensional (interior) grid points xk ∈ Ωh by means of the inverse, discrete

space-�lling curve s−1n with su�ciently large n to the one-dimensional unit interval [0, 1].

Then we simply partition the one-dimensional, totally ordered sequence of N points into a

consecutive one-dimensional set of disjoint subsets of approximate size N/P each. To this

end, we �rst determine the remainder r := N − P bN/P c. This gives us the number r of
subdomains which have to possess bN/P c + 1 grid points, whereas the remaining P − r
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subdomains possess just bN/P c grid points. Thus, with

(2.10) Ñi := bN/P c+ 1, i = 1, . . . , r and Ñi = bN/P c, i = r + 1, . . . , P,

we assign the �rst Ñ1 points to the set Ω̃1, the second Ñ2 points to the set Ω̃2, and so on.

Since the Ñi di�er at most by one, we obtain a perfectly balanced partition {Ω̃i}Pi=1. The

basic partitioning approach by means of the Hilbert curve is shown for the two-dimensional

case in Figures 4 and 5. Note here that the resolution of the discrete isotropic space-�lling

curve is chosen as the one which belongs to the largest value maxj=1,...,d lj of the entries

of the level parameter l = (l1, . . . , ld), i.e. to the �nest resolution in case of an anisotropic

grid.

→

↓

← 1 2 3 4

Figure 4. Decomposition of an isotropic grid with l = (3, 3) by the Hilbert curve

approach.

In practice, we do not use the grid points xk = (xk1 , . . . , xkd),∈ Rd with xkj = kj2
−lj in

the partitioning process, but merely their indices k := (k1, . . . , kd) ∈ Nd, kj = 1, . . . 2lj − 1,

which we store in an N -sized vector, e.g. in lexicographical order. The space-�lling curve

mapping then boils down to a simple sorting of the entries of this vector with respect to

the order relation of the indices induced by the space-�lling curve mapping. To this end, we

just need the one-dimensional relation < of the space-�lling curve ordering of the mapped

indices. This is realized by means of a comparison function cmp((k1, ..., kd), (k
′
1, ..., k

′
d))

for any two indices (k1, ..., kd) and (k′1, ..., k
′
d), which returns true if the index (k1, ..., kd)

is situated before the index (k′1, ..., k
′
d) on the space-�lling curve and which returns false

in the else clause. For the case of the Hilbert curve, the implementation follows mainly

[B71, M00, Sp20, Sh20]. Our variant is based on bit-operations on the indices (k1, ..., kd)

and (k′1, ..., k
′
d) only and is non-recursive. It corresponds to a 2d-tree traversal with one



A FAULT-TOLERANT DDM BASED ON SPACE-FILLING CURVES 13

→

↓

← 1 2 3 4

Figure 5. Decomposition of an anisotropic grid with l = (2, 3) by the Hilbert

curve approach.

rotation per depth of the tree on the bit level and a bit comparison. This avoids �rst

explicitly calculating and then comparing the associated keys. Note here that, if we would

�rst compute the full two keys, we would have to completely traverse the tree down to

the �nest scale of the discrete Hilbert curve and could only then compare the associated

numbers. In our direct comparison we however descend iteratively down the tree and stop

the traversal as soon as we detect on the current level that the two considered indices

belong to di�erent orthants. This is much faster. Moreover it avoids a problem which

might occur for strongly anisotropic grids with the isotropic Hilbert curve: For example,

in the case of a grid with the multivariate level parameter l = (L, 1, . . . , 1) we still would

have to deal with the universe of 2dL possible indices and keys due to the isotropy of

the d-dimensional Hilbert curve, but we employ for our anisotropic grid only 2L indices

altogether. This universe of keys for the Hilbert curve becomes, for larger d, with rising L

quickly too large for any conventional data type of the associated keys. Furthermore the

keys would contain large gaps and voids in this universe, since only 2L keys are present

anyway. Our approach of using just a comparison relation without explicitly computing

the two keys for the two indices still allows sorting of the indices. A key is then just given

as the position in the sorted index vector of length N = 2L, i.e. we only need 2L keys in

our position-universe which now contains no voids or gaps at all. The sorting is done by

introsort which has an average and worst-case complexity of O(N log(N)). We store the

full vector on each processor redundantly and perform the sorting redundantly as well. We

will mainly consider the Hilbert curve ordering in our experiments.
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In a next step, we enlarge the subdomains Ω̃j , i.e. the corresponding subsets of grid point

indices, in a speci�c way to create overlap. This is not done as in conventional, geometry-

based overlapping domain decomposition methods by adding a d-dimensional mesh-stripe

with diameter δ of grid cells at the boundary of the d-dimensional subdomains that are

associated to the sets Ω̃i. Instead, we deliberately stick to the one-dimensional setting

which is induced by the space-�lling curve: We choose an overlap parameter γ ∈ R, γ > 0,

and enlarge the index sets Ω̃i as

(2.11) Ωi := Ω̃i ∪
bγc⋃
k=1

(
Ω̃i−k ∪ Ω̃i+k

)
∪ Ω̃η,+

i−bγc−1 ∪ Ω̃η,−
i+bγc+1.

Here, with η := γ − bγc, the set Ω̃η,+
k is the subset of Ω̃k which contains its last dηNke

indices with respect to the space-�lling curve ordering, while the set Ω̃η,−
k is the subset of

Ω̃k which contains its �rst bηNkc indices. For example, for γ = 1, we add to Ω̃i exactly the

two neighboring index sets Ω̃i+1 and Ω̃i−1, for γ = 2, we add the four sets Ω̃i+1, Ω̃i+2 and

Ω̃i−1, Ω̃i−2. For γ = 0.5 we would add those halves of the indices of Ω̃i+1 and Ω̃i−1 which

are the ones closer to Ω̃i, etc. Moreover, to avoid any special treatment for the �rst and last

few Ω̃i, i = 1, 2, .. and i = P, P − 1, .., we cyclically close the enumeration of the subsets,

i.e. the left neighbor of Ω̃1 is set as Ω̃P and the right neighbor of Ω̃P is set as Ω̃1. Note

that, besides γ, also the speci�c values of the Ñi enter here. Examples of the enlargement

of the index sets from Ω̃i to Ωi with γ = 0.25 are given in Figures 6 and 7. Here we show

the induced domains Ω1 and Ω3 only.

← 1 2 3 4

Figure 6. Enlargement of the subdomains with the Hilbert space-�lling curve

and associated overlapping domain decomposition, isotropic grid with l = (3, 3).

This way, an overlapping partition {Ωi}Pi=1 is �nally constructed. Note at this point that,

depending on N,P, γ and the respective space-�lling curve type, each subdomain of the

associated decomposition is not necessarily fully connected, i.e. there can exist some sub-

domains with point distributions that geometrically indicate some further separation of the

subdomain, see e.g. Ω1 in Figure 6. But since we merely deal with index sets and not with

geometric subdomains, this causes no practical issues. Note furthermore that there is not

necessarily always a complete overlap but sometimes just a partial overlap between two

adjacent subdomains being created by our space-�lling curve approach. But this also causes
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← 1 2 3 4

Figure 7. Enlargement of the subdomains with the Hilbert space-�lling curve

and associated overlapping domain decomposition, anisotropic grid with l = (2, 3).

no practical issues. In contrast to many other domain decomposition methods, where a goal

is to make the overlap as small as possible, our approach rather aims at larger overlaps

along the space-�lling curve, which later gives the su�cient redundancy of stored data that

will be needed for fault tolerance.

Finally, we set up our coarse space problem. To this end, the sizeN0 of the coarse problem is

given via the number P of subdomains and the number of degrees of freedom ni considered

on the coarse scale per subdomain, i.e. N0 :=
∑P

i=1 ni. If we let all ni be equal to a �xed

integer q ∈ {1, . . . , bNP c}, i.e. ni = q, then N0 = q ·P . The mapping from the �ne grid to the

coarse space is now given by means of the restriction matrix R0 ∈ RN0×N and its entries.

Again, we avoid any geometric information here, i.e. we do not follow the conventional

approach of a coarse grid with associated coarse piecewise linear basis functions. Instead

we derive the coarse scale problem in a purely algebraic way. For that, we resort to the

non-overlapping partition {Ω̃i}Pi=1 and assign the values of zero and one to the entries of the

restriction matrix as follows: Let q be the constant number of coarse level degrees of freedom

per subdomain. With Ñi = bN/P c + 1 if i ≤ (N mod P ) and Ñi = bN/P c otherwise,
which denotes the size of Ω̃i, we have the index sets Ω̃i =

{∑i−1
j=1 Ñj + 1, . . . ,

∑i
j=1 Ñj

}
.

Now let Ω̃i,m be the m-th subset of Ω̃i with respect to the size q in the space-�lling curve

ordering, i.e.

Ω̃i,m =


i−1∑
j=1

Ñj +
m−1∑
n=1

Ñi,n + 1, ...,
i−1∑
j=1

Ñj +
m∑
n=1

Ñi,n

 ,

with associated size Ñi,m for which, with q coarse points per domain, we have

Ñi,m =

(
bÑi/qc+ 1 if m ≤ (Ñi mod q)

bÑi/qc otherwise.

Then, for i = 1, ..., P,m = 1, ..., q, j = 1, ..., N , we have

(2.12) (R0)((i−1)q+m,j) =

(
1 if j ∈ Ω̃i,m

0 otherwise.



16 MICHAEL GRIEBEL, MARC-ALEXANDER SCHWEITZER, AND LUKAS TROSKA

This way a basis is implicitly generated on the coarse scale: Each basis function is constant

in the part of each subdomain of the non-overlapping partition which belongs to the Ω̃i,m,

where q piecewise constant basis functions with support on Ω̃i,m are associated to each Ω̃i.

The coarse scale problem is then set up via the Galerkin approach as

(2.13) A0 = R0AR
T
0 .

Here we follow the Bank-Holst technique [BH03] and store a redundant copy of it on

each of the P processors together with the respective subdomain problem. This way, the

coarse problem is formally avoided. Moreover the coarse problem is redundantly solved on

each processor. It interacts with the respective subproblem solver in an additive, parallel

way, i.e. we solve the global coarse scale problem and the local �ne subdomain problem

independently of each other on the processor.

Finally, we have to deal with the overcounting of unknowns due to the overlapping of �ne

grid subdomains. To this end, we resort to the partition of unity on the �ne level

(2.14) I =
P∑
i=1

RTi DiRi

with properly chosen diagonal matrices Di ∈ RNi×Ni . This leads to the two-level domain

decomposition operator

(2.15) C−1(2),D := RT0A
−1
0 R0 + C−1(1),D =

P∑
i=0

RTi DiA
−1
i Ri, D0 = I,

with weighted one-level operator

(2.16) C−1(1),D :=
P∑
i=1

RTi DiA
−1
i Ri,

and to the iteration in the k-th step

xk+1 = xk + C−1(2),D(b−Axk).

Up to the coarse scale part, this resembles just the restricted additive Schwarz method of

[CS99], which is basically a weighted overlapping block-Jacobi/Richardson method. With

the choice D0 = I, the associated weighted balanced variant is then

C−1(2),D,bal := GTC−1(1),DG+ F,

with G and F from (2.6). The modi�cations of F,G and thus C−1(2),D,bal for general D0 are

obvious.

There are di�erent choices of the Di's since the above condition (2.14) does not have a

unique solution. A natural choice is here

(2.17) (Di)j,j = 1/|
{

Ωi′ , i
′ = 1, . . . P : j ∈ Ωi′

}
|,

which locally takes for each index j ∈ Ωi the number of domains that overlap this index

into account. Note that, for such general diagonal matrices Di, the associated C(2),D is not
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a symmetric operator. If however the Di are chosen as ωiIi with scalar positive weights

ωi, then, on the one hand, the partition of unity property is lost, but, on the other hand,

symmetry is regained and we have a weighted, two-level overlapping additive Schwarz

method, which can also used as a preconditioner for the conjugate gradient method. To

this end, a sensible choice is

(2.18) ωi = max
j

(Di)(j,j)

with Di from (2.17).

At this point a closer inspection of the relation of the overlap parameter γ to the entries

of Di or ωi, respectively, is in order. Of course we may choose any value for γ and we may

select quite freely the Di or ωi. However, if we want to achieve fault tolerance and thus

employ a larger overlap of the subdomains, which are created as described above via our

space-�lling curve construction to allow for proper redundant storage and for data recovery,

it is sensible to restrict ourselves to values of γ that are integer multiples of 0.5. In this

case, every �ne grid point is overlapped by exactly 2γ + 1 subdomains, whereas, if γ is

not an integer multiple of 0.5, the number of subdomains that overlap a point can indeed

be di�erent for di�erent points of the same subdomain. Additionally, integer multiples of

0.5 for γ are the natural redundancy thresholds of our fault-tolerant space-�lling curve

algorithm. In particular for 1
2n ≤ γ < 1

2(n + 1), n ∈ N, our fault-tolerant algorithm can

recover from faults occurring for at most n neighboring processors in the same iteration.

Thus, with these considerations, overlap parameter values of the form γ = 1
2n, n ∈ N,

are the ones that are most relevant for proper redundant storage, for data recovery and

thus for fault tolerance in practice. Additionally, such a speci�c choice of γ has a direct

consequence on the resulting ωi and Di. We have the following Lemma.

Lemma 2.1. Let d ≥ 1 be arbitrary and let γ = 1
2n, where n ∈ N, n ≤ P − 1. Then, with

c := 2γ + 1, there holds

Di = ωiI =
1

c
I

for all i = 1, . . . , P and any type of space �lling curve employed.

Proof. With the notation from above we need to show that we have

| {Ωi, i = 1, . . . P : j ∈ Ωi} | = c = 2γ + 1

for all j = 1, . . . , N , if γ = 1
2n. To this end, let j be arbitrary and m ∈ {1, . . . , P} such

that j ∈ Ω̃m. Since the Ω̃i are disjoint, there is exactly one such m. Now recall (2.11), i.e.

(2.19) Ωi := Ω̃i ∪
bγc⋃
k=1

(
Ω̃i−k ∪ Ω̃i+k

)
∪ Ω̃η,+

i−bγc−1 ∪ Ω̃η,−
i+bγc+1,

where η = γ − bγc.

First consider the case where n is even. This implies that γ is an integer and bγc = γ. We

obtain η = 0 and therefore Ω̃η,+
i−bγc−1 = Ω̃η,−

i+bγc+1 = ∅ for all i. Furthermore, due to the
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assumption n ≤ P − 1, we have γ ≤ P−1
2 and, since the Ω̃i are disjoint by construction,

the sets of the union in (2.19) are disjoint. This implies that j ∈ Ωi if and only if j ∈ Ω̃i

or j ∈ Ω̃i−k or j ∈ Ω̃i−k for some k = 1, . . . , γ. Equivalently, j ∈ Ω̃i if and only if

i = m, i− k = m or i+ k = m for k = 1, . . . , γ. Hence there are exactly 1 + γ+ γ = 2γ+ 1

values for i, namely m and m+ 1, . . . ,m+ γ and m− 1, . . . ,m− γ. Therefore, we obtain

| {Ωi, i = 1, . . . P : j ∈ Ωi} | = 2γ + 1.

Now consider the case where n is odd. Then η = 1
2 and we have Ω̃η,−

i ∪ Ωη,+
i = Ω̃i and

Ω̃η,−
i ∩ Ω̃η,+

i = ∅ for all i, since Ω̃η,−
i contains the �rst bηNic = bNi

2 c and Ω̃η,+
i contains

the last dηNie = dNi
2 e indices of Ω̃i, respectively. Thus there is exactly one i such that

j ∈
(

Ω̃η,+
i−bγc−1 ∪ Ω̃η,−

i+bγc+1

)
. Furthermore, since γ ≤ P−1

2 , the sets of the union in (2.19) are

again disjoint. Using the same argument as for the previous case where γ was an integer,

there are now exactly 2bγc + 1 choices for i such that j ∈
(

Ω̃i ∪
⋃bγc
k=1

(
Ω̃i−k ∪ Ω̃i+k

))
.

Consequently, we also obtain for the case where n is odd that

| {Ωi, i = 1, . . . P : j ∈ Ωi} | = 2bγc+ 1 + 1 = 2(bγc+ 0.5) + 1

= 2(bγc+ η) + 1 = 2γ + 1.

Altogether, this proves the assertion. �

We thus have seen that the general weightings Di and ωi for the �ne scale subdomains

are the same and even boil down to a simple constant global scaling with the factor

1/c = 1/(2γ + 1) = 1/(n + 1) uniformly for all subdomains i = 1, . . . , P , if we a priorily

choose γ = 1
2n, n ∈ N. Recall that the single weight for the coarse scale problem was set

to one in the �rst place. Thus we regain symmetry of the corresponding operator also for

the Di-choice, as long as we employ values for γ that are integer multiples of 0.5. This

is a direct consequence of our one-dimensional domain decomposition construction due

to the space �lling curve approach involving the proper rounding in the de�nition of the

overlapping subdomains Ωi and using the value of γ not absolutely but relatively with

respect to the size of the non-overlapping subdomains Ω̃i, which are still allowed to be of

di�erent size. Moreover this property is independent of the respective type of space-�lling

curve and merely a consequence of our construction of the overlaps. Such symmetry of the

operator can not be obtained so easily for the general Di-weighting within the conventional

geometric domain decomposition approach for d > 1. Note also that the result of Lemma

2.1 holds analogously for more general geometries of Ω beyond the d-dimensional tensor

product domain. Note furthermore that, for the choice γ = 1
2n, n ∈ N, the weighted one-

level operator (2.16) becomes just a scaled version of the conventional one-level operator

(2.4), i.e.

C−1(1),D =
1

2γ + 1
C−1(1) .

Consequently, if we choose D0 = I, we obtain

C−1(2),D = RT0A
−1
0 R0 + C−1(1),D = RT0A

−1
0 R0 +

1

2γ + 1
C−1(1) .
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and

C−1(2),D,bal := GTC−1(1),DG+ F =
1

2γ + 1
GTC−1(1)G+ F,

which now just resemble a �ne-level-rescaled variant of the conventional two-level operator

and of its balanced version, respectively.

In any case, we obtain the damped linear two-level Schwarz/Richardson-type iteration as

given in Algorithm 2, where the setup phase, which is executed just once before the iteration

starts, is described in Algorithm 1. Its convergence property is well known, since it is a

special case of the additive Schwarz iteration as studied in [GO95]. There, in Theorem 2,

it is stated that the damped additive method associated to, e.g., our decomposition (2.15)

indeed converges in the energy norm for 0 < ξ < 2/λmax with convergence rate

ρ = max{|1− ξλmin|, |1− ξλmax|},

where λmin and λmax are the smallest and largest eigenvalues of C−1(2),DA, provided that

C−1(2),D is a symmetric operator, which for example is the case for the choice (2.18). Moreover

the convergence rate takes the minimum

(2.20) ρ∗ = 1− 2

1 + κ
for ξ∗ =

2

λmin + λmax

with κ = λmax/λmin. The proof is exactly the same as for the conventional Richardson

iteration. To this end, the numbers λmax and λmin need to be explicitly known to have the

optimal damping parameter ξ∗, which is of course not the case in most practical appli-

cations. Then good estimates, especially for λmax, are needed to still obtain a convergent

iteration scheme, albeit with a somewhat reduced convergence rate. Note at this point

that for the general non-symmetric case, i.e. for the general choice (2.17), this convergence

theory does not apply. In practice however, convergence can still be observed.

Here the following remarks are in order: We store and sort on each processor redundantly

the full index vector sfc_index of size N . The sorting could be done in parallel and non-

redundantly, but the redundant sorting is very cheap anyway. The two numbers tai, tbi

need, depending on the overlap factor γ, to be interpreted properly for the �rst and last

few i, since we cyclically close the enumeration of the subsets Ωi modulo P to avoid any

special treatment there. The relevant parts of A that belong to Ωi are the full rows of A with

indices j ∈ [tai, tbi]. They are stored in compressed row storage (CRS) format. But these

full rows can also contain entries whose column index might belong to another processor,

i.e. the column indices of such entries of the matrix need to be known to processor i to

be able to set up the full rows in the �rst place. Therefore, we store on each processor

a map of the global indices which this processor does not own but which are geometric

neighbors tied to an index on this processor due to the non-zero matrix entries of the

respective rows. This information is then used to determine the non-zero entries of the

complete rows associated to Ωi in the next step and can be deleted after that. It is not

necessary to store the relevant parts of Ri, i = 1, . . . , P . The matrices RTi , i = 1, . . . , P ,

and the the corresponding restriction matrices Ri, i = 1, . . . , P , are implicitly available
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Algorithm 1 Overlapping two-level additive Schwarz iteration with space-�lling curve:

Setup phase.

1: on every processor i = 1, . . . , P do

2: Set input parameters: d, l = (l1, . . . , ld), P , γ, q, ξ, type of space-�lling curve.

3: Derive N from (2.8), set Ñi, i = 1, . . . , P as in (2.10) and set N0 = q · P .
4: Compute the index vector sfc_index of length N from the d-dimensional grid

point indices k = (k1, . . . , kd), kj = 1, . . . , 2lj − 1, j = 1, . . . d, according to the

space-�lling curve by means of cmp((k1, ..., kd), (k
′
1, ..., k

′
d)) and introsort.

5: Derive the disjoint subdomain index sets {Ω̃i}Pi=1 by splitting the overall index set

into P subsets Ω̃i of consecutive indices, each of size Ñi. This is simply done by

storing two integers t̃ai, t̃bi, which indicate where the local index sequence of Ω̃i

starts and ends in sfc_index.

6: Derive the overlapping subdomain index sets {Ωi}Pi=1 by enlarging the Ω̃i with γ as

in (2.11). Again, this is simply done by storing two integers tai, tbi, which indicate

where the local index sequence of Ωi starts and ends in sfc_index.
7: Set up a map to neighboring grid points that are not in Ωi, i.e. store their global

indices, to later determine the column entries of the sti�ness matrix that are situated

outside of Ωi.

8: Set the rows of A that belong to Ωi, i.e. store the rows of A with indices j ∈ [tai, tbi]

in CRS format.

9: Initialize the part of the starting iterate x0 and the part of b that belong to Ωi.

10: Derive the rows of the matrix R0 from (2.12) with indices j ∈ [(i− 1)q + 1, . . . , iq]

and store them in CRS format.

11: Compute the rows of the coarse scale matrix A0 as in (2.13) that belong to Ωi, i.e.

with the indices j ∈ [(i− 1)q + 1, . . . , iq], and store them in CRS format.

12: end on

using the local part of Ωi of the sfc_index vector, since RTi is just the extension-by-zero

map and Ri the corresponding restriction. Note here that the product of two matrices in

CRS format can easily be stored in CRS format as well. This facilitates the setup of the

coarse scale matrix. In this step, the q rows of A0 that belong to Ωi, i.e. those with the

indices j ∈ [(i − 1)q + 1, . . . , iq], are �rst locally generated. Then, to create the complete

A0 redundantly on all processors i, an all-to-all communication step is necessary. For

Algorithm 2 we have three types of communication: First, an overlap-based data exchange

between processors i and i± 1, . . . , i± dγe, which are neighbors with respect to the space-

�lling curve ordering, is needed for the update of the RTxk+1. Second, an A-based data

exchange between processors is necessary for the parallel matrix-vector product Axk. And

third, all-to-all communcation is to be employed for the exchange of the coarse residual data

and the coarse update data due to the Bank-Holst technique. Note �nally that we store

on each processor the local part of x and b, which belongs to Ωi and not just to Ω̃i. This

avoids one communication step of the overlap data, which would be necessary otherwise.
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Algorithm 2 Overlapping two-level additive Schwarz iteration with space-�lling curve:

Linear iteration.

1: Set k=1.

2: while not converged do

3: on every processor i = 1, . . . , P do

4: Compute the part rki = Rir
k of the residual rk = b−Axk that belongs to Ωi.

5: Solve the local subproblems

Aid
k
i = rki .

6: Solve redundantly the coarse scale problem

A0d
k
0 = R0r

k.

7: Compute the part xk+1
i = Rix

k+1 of the correction

xk+1 = xk +
P∑
i=0

ξRTi Did
k
i

that belongs to Ωi.

8: end on

9: end while

Thus, in contrast to most conventional parallel domain decomposition implementations,

we trade communication for (moderate) storage costs.

This linear two-level additive Schwarz iteration can also be used as a preconditioner for the

conjugate gradient iteration, which results in a substantial improvement in convergence. In

the symmetric case, an error reduction factor of 2(1−2/(1+
√
κ)) per iteration step is then

obtained in contrast to the reduction factor of 1−2/(1+κ) from (2.20). Moreover a damping

parameter is no longer necessary, since the respective two-level additive Schwarz operator

from (2.15) with the weights (2.18) is merely used to improve the condition number and

no longer needs to be convergent by itself.

Then the basic conjugate gradient iteration must additionally be implemented in parallel.

This can easily be done in a way analogous to the overlapping Schwarz iteration above,

involving a further parallel vector product based on the overlapping decomposition {Ωi}Pi=1.

The details are obvious and are left to the reader. Note here again that, for general diagonal

matrices Di, the associated preconditioner is no longer symmetric, while it is in the case

Di = ωiI. This can cause both theoretical and practical problems for the conjugate gradient

iteration. Then, instead of the conventional conjugate gradient method, we could resort to

the �exible conjugate gradient method, which provable works also in the non-symmetric

case, see [BDK15] and the references cited therein. But, as already shown in Lemma 2.1,

this issue is completely avoided with the choice γ = 1
2n, n ∈ N.
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3. A fault-tolerant domain decomposition method

3.1. Fault tolerance and randomized subspace correction. Now we will focus on

algorithm-based fault tolerance. Usually, to obtain fault-tolerant parallel methods, tech-

niques are employed which are based on functional repetition and on check pointing. They

are however prone to scaling issues, i.e. naive versions of conventional resilience techniques

will not scale to the peta- or exascale regime, and more advanced techniques need to be

devised. An overview of the state of the art for resiliency in numerical algorithm design for

extreme scale simulations is given in [A20]. Depending on the PDE-problem to be treated,

certain error-oblivious algorithms had been developed that can recover from errors with-

out assistance as long as these errors do not occur too frequently. Besides time stepping

methods with check pointing for parabolic and hyperbolic problems, various iterative linear

methods and �xed-point solvers are able to execute to completion, especially in the setting

of elliptic PDEs. To this end, the view of asynchronous iterative methods can be taken. But

to make, for example, a parallel multigrid or multilevel solver fault-tolerant is still a chal-

lenging task, see [HGRW16, Sta19] for the two- and three-dimensional case. Furthermore,

albeit numerical experiments often show good convergence and impressive fault-tolerance

properties, most asynchronous iterative methods are not just simple �xed-point iterations

anymore and the development of a sound convergence theory for such algorithms is an

issue.

For higher-dimensional time-dependent problems, fault mitigation on the level of the com-

bination method has been experimentally tried for a linear advection equation in [HHLS14],

for the Lattice Boltzmann method and a solid fuel ignition problem in [ASHH16], and for

a gyrokinetic electromagnetic plasma application in [PBG14, OHHBP17, LOP20], where

existing (parallel) codes were used as black box solver for each of the subproblems and

adaptive time stepping methods were employed. But again, the considered numerical ap-

proaches (Lax-Wendro� �nite di�erences, the method of lines and Runge-Kutta 4th order

in the GENE code, the two-step splitting procedure in the Taxila Lattice Boltzmann code)

in general do not allow for a simple and clean convergence theory, nor do they allow for a

Hilbert space structure due to the involved time and advection operators.

However, if there is a direct Hilbert space structure as for elliptic problems, algorithm-

based fault tolerance can be interpreted in the framework of stochastic subspace correction

algorithms for which in [GO95, GO12, GO16, GO18] we recently developed a general

theoretical foundation for their convergence rates in expectation. Indeed, for a conventional

domain decomposition approach, we employed our stochastic subspace correction theory

to show algorithm-based fault tolerance theoretically and in practice under independence

assumptions for the random failure of subdomain solves in [GO20]. The main idea is to

switch from deterministic error reduction estimates of additive and multiplicative Schwarz

methods as subspace splitting techniques to error contraction and thus to convergence in

expectation. This way, convergence behavior and convergence rates can indeed be shown
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for certain iterative methods in a faulty environment, provided that speci�c assumptions

on the occurrence and the distribution of faults and errors are ful�lled.

To be precise, in [GO20], we considered linear iterative, additive Schwarz methods for

general stable space splittings, which we considered as subspace correction methods. For

the setting of the two-level domain decomposition of (2.5), the linear iteration reads as

follows in our notation: In the k-th iteration step, a certain index set Ik ⊂ {0, 1, . . . , P} is
selected. For each i ∈ Ik the corresponding subproblem

(3.21) Aid
k
i = Ri(b−Axk)

is solved for dki , and an update of the form

(3.22) xk+1 = xk +
∑
i∈Ik

ξk,iR
T
i d

k
i k = 0, 1, . . .

is performed. At the beginning we may set x0 to zero without loss of generality. In the

simplest case the relaxation parameters ξk,i are chosen independently of x(k) and we then

obtain an, in general, non-stationary but linear iteration scheme. The iteration (3.22)

subsumes di�erent standard algorithms such as the multiplicative (or sequential) Schwarz

method, where in each step a single subproblem (3.21) is solved (|Ik| = 1), the additive

(or parallel) Schwarz method, where all P + 1 subproblems are solved simultaneously

(Ik = {0, 1, . . . , P}), and intermediate block-iterative schemes (1 < |Ik| < P + 1). Here

and in the following, |I| denotes the cardinality of the index set I. The recursion (3.22)

therefore represents a one-step iterative method, i.e. only the current iterate xk needs to

be available for the update step.

In [GO20], we speci�cally discussed stochastic versions of (3.22), where the sets Ik are

chosen randomly. To this end, we assumed that

A Ik is a uniformly at random chosen subset of size pk in {0, 1, . . . , P}, i.e., |Ik| = pk

and P(i ∈ Im) = P(i′ ∈ Ik) for all i, i′ ∈ {0, 1, . . . , P}.
B The choice of Ik is independent for di�erent k.

We then considered expectations of squared energy error norms for iterations with any

�xed but arbitrary sequence {pk} and derived the following result:

Theorem 3.1. Let the relaxation parameters in (3.22) be given by ξk,i := ξωi, i = 0, 1, . . . , P,

where 0 < ξ < 2/λmax. Furthermore let the random sets Ik of size pk be selected in agree-

ment with A and let B hold. Then the algorithm (3.22) converges in expectation for any

x ∈ RN and

(3.23) E(‖x− xk‖2) ≤
k−1∏
s=0

(
1− λmax ξ (2− λmax ξ) ps

κ (P + 1)

)
‖x− x0‖2, k = 1, 2, . . .

where κ := λmax/λmin is the condition number of the underlying ωi-weighted decomposition.
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Here ‖x‖ :=
√
xTAx denotes the discrete energy norm which is associated to the FEM-

matrix A of the discretized Laplace operator. For a detailed proof in the case of general

space splittings see [GO20]. Here the norm equivalency

(3.24) λmin v
TC(2),ωAv ≤ vTAv ≤ λmax v

TC(2),ωAv, v ∈ RN

has to hold with 0 < λmin ≤ λmax ≤ ∞ and positive weights ω = {ωi > 0}i=0,1,...,P , where

we employ the ω-weighted, symmetric, additive Schwarz operator

(3.25) C−1(2),ω :=

P∑
i=0

ωiR
T
i A
−1
i Ri,

compare (2.15) with Di = ωiI. Now any application of the linear iteration (3.22) with

theoretical guarantees according to Theorem 3.1 requires knowledge of suitable weights ωi,

and an upper bound λ̄ for the stability constant λmax in order to choose the value of ξ,

whereas information about pk, i.e. the size of Ik, is not crucial. Numerical experiments for

model problems with di�erent values ξ ∈ (0, 2/λmax) suggest that the iteration count is

sensitive to the choice of ξ and that overrelaxation often gives better results. The weights ωi

can be considered as scaling parameters that can be used to improve the stability constants

λmax, λmin, and thus the condition number κ of the splitting.

The application of the above convergence estimate to fault tolerance will focus on the

situation

1 << pk ≤ p ≤ P + 1,

where p is the number of processors available in the compute network, and pk is a sequence

of random integers denoting the number of correctly working processors in iteration k. For

such a setting, the average reduction of the expectation of the squared error per iteration

is approximately given by

(3.26)

(
k−1∏
s=0

(
1− ps

(P + 1) κ

))1/k

≈ 1−
∑k−1

s=0 ps
k (P + 1) κ

≈ 1− rp
κ
, rp := E(pk)/(P + 1),

if we set ξ = 1/λmax and take a su�ciently large k. The number rp can be interpreted as

the average rate of subproblem solves per iteration (3.22) and the linear dependence on κ is

what can be expected from a linear iteration in the best case. Altogether, this convergence

theory covers a stochastic version of Schwarz methods based on generic splittings, where in

each iteration a random subset of subproblem solves is used. On the one hand, this theory

shows that randomized Schwarz iterative methods are competitive with their deterministic

counterparts. On the other hand, there are situations where randomness in the subproblem

selection is naturally occurring and is not a matter of choice in the numerical method. An

important example is given by algorithm-based methods for achieving fault tolerance in

large-scale distributed and parallel computing applications.

This theory was already successfully applied to two di�erent domain decomposition meth-

ods in a faulty environment, see [GO20] for further details. There, concerning the nature

of faults, we assumed that faults are detectable and represent subproblem solves that were
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unreturned or declared as incorrect, i.e., we ignored soft errors such as bit �ips in �oating

point numbers even if they were detectable. Moreover we assumed that the occurrence of

a fault is not related to some load imbalance, i.e., slightly longer execution or communica-

tion times for a particular subproblem solve do not increase the chance of declaring such

a process as faulty. Furthermore it should not matter if faults are due to node crashes or

communication failures, nor did we pose any restrictions on spatial patterns (which and

how many nodes fail) or temporal correlations of faults (distribution of starting points and

idle times of failing nodes). Then meaningful convergence results under such a weak fault

model follow almost directly from the results above, as long as we can select, uniformly at

random and independently of previous iterations, p subproblems out of the P + 1 available

ones at the start of each iteration, assign them in a one-to-one fashion to the p nodes, and

send the necessary data and instructions for processing the assigned subproblem solve to

each of the p nodes. Indeed, if the time available for a solve step is tuned such that there is

no correlation between faults and individual subproblem solves, then one can safely assume

that, with fk denoting the number of faulty subproblem solves, the index set Ik correspond-

ing to the pk = p− fk subproblem solutions detected as non-faulty at the end of a cycle is

still a uniformly at random chosen subset of {0, 1, . . . , P} that is independent of the index
sets I0, . . . , Ik−1 used in the updates of the previous iterations. The latter independence

property is the consequence of our scheme of randomly assigning subproblems to processor

nodes, and not an assumption on the fault model. Thus Theorem 3.1 applies and yields

the estimate

(3.27) E(‖x− xk‖2) ≤
k−1∏
s=0

(
1− ps

κ(P + 1)

)
‖x− x0‖2, k = 1, 2, . . . ,

for the expected squared error if we formally set ξ = λ−1max.

In [GO20], this approach was �rst applied for a simple manager-worker network example

with a reliable manager node that possesses enough storage capacity to keep all necessary

data, and a �xed number p of unreliable worker nodes, which perform the calculations. Here

communication only takes place between the manager and worker nodes, but not between

worker nodes. There, the P subproblems and also the coarse scale problem are randomly

assigned to one of the available worker nodes for each iteration, the worker node receives

the necessary data from the manager node for the corresponding subproblem, solves it

and sends the solution back to the manager node. For simplicity p was set to P + 1. For

example, a constant failure rate rf then results in a constant p∗ = pk = b(1− rf )(P + 1)c
and in each iteration a �xed number f∗ = P+1−p∗ of compute nodes fail to return correct
subproblem solutions, which �nally means that the index set Ik in the iteration was selected

as a random subset of size p∗ from {0, 1, . . . , P} and our assumptions in Theorem 3.1 are

indeed ful�lled.

Subsequently, our theory was also employed to a more general local communication net-

work with �xed assignment of the subproblems i = 1, . . . , P to P unreliable compute

nodes, decentralized parallel data storage with local redundancy, and treatment of the
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coarse scale problem on an additional reliable server node. Moreover communication was

possible between the server node and the compute nodes but now also between geometri-

cally neighboring compute nodes. Altogether, there were thus p = P +1 nodes available for

the computation. Moreover the data of the subdomain problem associated to a processor

were also redundantly stored on a �xed number of neighboring processors. This allowed,

in case of a fault occurring on a processor, to proceed with the associated computations

on one of these neighboring processors while delaying the computations of the neighbor-

ing processor. This behavior of the iterative method then could again be matched to our

convergence theory with minor modi�cations, compare Corollary 1 in [GO20].

The deterioration of the convergence rate with the condition number κ of the associated

weighted splitting in (3.25) is typical for one-step iterations such as (3.22). Note that

the convergence rate can be improved to a dependence on only
√
κ rather than on κ by

using multi-step strategies. This was indeed shown in [GO20] for a two-step variant of

the basic linear iteration. Note however that there is presently no similar theory for the

conjugate gradient method with a stochastic two-level Schwarz preconditioner. Moreover

we are presently not aware of simple, tight estimates for the values λmin and λmax that are

associated to our speci�c splitting from Subsection 2.3 of overlapping subdomains based on

space-�lling curves in the case of discretizations for general level parameters l = (l1, . . . , ld)

and a coarse scale problem associated to agglomeration like (2.12). This is future work. In

the following, we nevertheless apply our algorithm and report its behavior.

3.2. Our fault-tolerant algorithm. Now we discuss the main features of our two-level

domain decomposition algorithm based on space-�lling curves in a faulty environment.

The main idea is again to exploit redundancy to recover data in case of a fault and to

resume computation. This redundancy is now provided by means of the γ-overlap, which

is present in our construction of overlapping domains Ωi based on space-�lling curves.

Furthermore recall that we employ the Bank-Holst paradigm, i.e. the coarse scale problem

is stored and treated redundantly on each of the P processors together with the respective

subdomain problem. In the linear iteration, it interacts with the respective subproblem

in an additive, parallel way, i.e. we solve the global coarse scale problem and the local

�ne subdomain problem independently of each other on one processor. The coarse scale

problem is thus completely protected against faults due to this redundancy, i.e. as long as

there is at least one processor running, it is always solved. Thus, for reasons of simplicity,

we focus on failures in the computation of the local subproblems and just record if a

processor fails within its local subproblem solver in Algorithm 2. In case of a fault of a

certain processor we have to recover the necessary data of the associated subproblem from

some other processor, which is a γ-dependent neighbor with respect to the one-dimensional

space-�lling curve ordering of the subdomains. This way, we can proceed with the iteration

albeit delaying the corrections of faulty processors to a certain extent. Again, our above

theory can be modi�ed to cover this situation for the linear iteration case provided that

faults are detectable, represent subproblem solves that were declared as unsuccessful or
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incorrect, and are happening independently of each other. We then have the following

result:

Corollary 3.2. Let I1 = {0} and I2 = {1, . . . , P}. For �xed xk, let xk+1 be given by

(3.22) with Ik = I1 ∪ I2k , where the I2k are uniformly at random selected subsets of I2 of

size pk ≤ |I2|. Let furthermore ξk,i := ξkωi, i = 0, . . . , P . Then taking ξk = pk/(P λmax)

yields the estimate

(3.28) E(‖x− xk+1‖2|xk) ≤
(

1−
p2k
κ P 2

)
‖x− xk‖2.

This is a simple instance of the result in Corollary 1 in [GO20] for the local communication

network adapted to our speci�c situation, see also the bound (32) in [GO20]. Here E(‖x−
xk+1‖2|xk) denotes the expectation of ‖x−xk+1‖2 conditioned on xk. If no faults occur in

the k-th iteration, then the contraction rate stays 1− 1/κ of course.

If we now assume, as it is often done in the literature, that a faulty processor in iteration k

comes back to life (or is replaced by a new processor) in a relatively short time and thus is

active again in the next iteration, and if we assume that faults occur independently of each

other, we obtain the following result for our algorithm involving the Bank-Holst paradigm:

Theorem 3.3. Let ξk,i := ξkωi, i = 0, . . . , P where 0 < ξk < 2/λmax. Furthermore let

I1 = {0} and I2 = {1, . . . , P} and let Ik = I1 ∪ I2k , where in each iteration k of (3.22) the

I2k are uniformly at random selected subsets of I2 of size pk ≤ |I2|, i.e. let I2k be selected

in agreement with A and B. Then the algorithm (3.22) converges in expectation for any

x ∈ RN with

(3.29) E(‖x− xk‖2) ≤
k−1∏
s=0

(
1− p2s

κ P 2

)
‖x− x0‖2, k = 1, 2, . . .

where κ := λmax/λmin is the condition number of the underlying ω-weighted decomposition.

Now, for our setting, the average reduction of the expectation of the squared error per

iteration is approximately given by(
k−1∏
s=0

(
1− p2s

(κ P 2)

))1/k

≈ 1−
∑k−1

s=0 p
2
s

k P 2 κ
≈ 1− r̂p

κ
, r̂p := E(p2k)/P

2,

if we take k to be su�ciently large. Compared to rp in (3.26) we have lost the simple inter-

pretation as the average rate of subproblem solves per iteration. The squaring of the value

pk/P in the expectation is due to the imbalance of fault probabilities between the coarse

problem (never faulty) and �ne level local problems (potentially faulty) in comparison to

those in Corollary 1 of [GO20], which no longer allows to reduce the fraction and thus gives

a slightly weaker upper bound.

Altogether, we now have an estimate for the conditional expectation of the squared error in

one iteration with possible faults for some of the P processors and thus an asymptotic con-

vergence theory for our speci�c additive, two-level domain decomposition method based
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on space �lling curves for the faulty situation which involves the Bank-Holst approach.

This is under the assumption that we have a good upper estimate of the value λmax of

the associated Schwarz operator, i.e. the associated splitting, and that we have indepen-

dent occurrences of faults in each iteration and also independent occurrences between two

di�erent iterations. Note here that this gives � as already discussed in Theorem 3.1 � not

necessarily an optimal rate as for example for the non-faulty iteration method in (2.20)

with optimal damping parameter, but merely an upper bound. It nevertheless shows that

the asymptotic convergence rate depends on κ in a linear fashion, which is as good as we

can hope for with a linear iterative method after all.

We now describe the details of the fault-tolerant version of our domain decomposition

method of Algorithm 1 and 2. At the beginning, we assume to have P processors available in

our compute system, where each processor will be assigned to treat one of the P subdomain

problems (plus the redundant coarse scale problem) in our parallel domain decomposition

method. This way, subdomain i is uniquely associated to the processor with number proci.

Furthermore we have two di�erent components in our approach, namely the failure process

and the reconstruction process, which can be treated independently of each other.

In the failure process we decide which of the P processors fail and which stay active. Here,

for reasons of simplicity, we focus on failures in the computation of the local subproblems.

Note that if a fault would occur during another part of the overall algorithm, for example

in the coarse scale problem or in the computation of the residual, the data can be recovered

directly. This is due to the redundancy of the coarse scale problem with the Bank-Holst

approach in the �rst case and due to the redundancy induced by the overlap and the global

nature of the involved operations in the second case. This is di�erent for the treatment of

the local subproblems in our domain decomposition approach. In the following we measure

the failures in terms of cycles. To this end, we de�ne one cycle as one application of the

additive Schwarz operator. For each processor we assume that the processor fails in a

random fashion or successfully completes this cycle. Once a processor is discovered to be

faulty, its local subproblem will not contribute to the iteration for that cycle.

Furthermore we assume that a faulty processor will be instantly repaired and is available

again for the next iteration, i.e. a processor only stays faulty for the iteration in which the

fault was detected. Indeed, that faulty processors come back to life relatively quickly or are

quickly replaced is a common assumption in many algorithm-based fault-tolerant methods,

see e.g. [HHLS14, LOP20, OHHBP17, PBG14]. Note here that this does in principle not

exclude longer fault times of a processor since it may happen that the same processor is

faulty again in the next iteration. But this happens with the same probability pfault in each

iteration, which results in the much smaller overall probability psfault for a processor to be

faulty for s successive iterations. This way, we ensure the independence of faults between

iterations as required for Corollary 3.2 and Theorem 3.3. The more realistic scenario of a

longer lasting fault is not directly treated by our theory, but, nevertheless, our assumptions
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and thus our theory still give a crude worst case bound for such cases by adjusting the

failure rate pfault accordingly.

To simulate the failures of processors described above in our real compute system, we

do the following: In each cycle we determine the faulty processors via P independently

drawn Bernoulli-distributed random variables with fault probability pfault, which is the

same across all processors.

Once a failed processor proci returns to the computation in the next cycle, we �rst employ

the reconstruction process to restore its local data. To this end, we reassign the interval

limits of processor proci. This can be done without problem since, even as proci has failed

and its data is lost, its interval information can be taken from any other running pro-

cessor since we stored the index vector sfc_index and the interval limits tai, tbi, t̃ai, t̃bi

redundantly on all processors. The processor proci then locally recalculates his part of the

index vector, i.e. it executes steps (4)-(6) of Algorithm 1 with the input data of processor

proci. Consequently, processor proci is aware which other processor(s) possess(es) indices

which correspond to its lost local data. There exists at least one such healthy processor if

γ ≥ 0.5, since this ensures that at least two processors cover each index. These other pro-

cessors then also possess, due to the overlapping nature of the local subproblem, the rows

of A as well as the entries of all vectors (iterate, residual, etc.) that correspond to the data

lost by processor proci. Here we always choose the �rst processor that is not proci along

the space-�lling curve ordering on which the required data is available. Additionally, the

redundant coarse level problem, in particular the matrices R0, P0 and A0, can be fetched

from any living processor since it is stored redundantly on all of them. Alternatively, it can

be locally recalculated as in step (10) of Algorithm 1 to avoid communication.

Altogether, we obtain the failure and recovery process as given in Algorithms 3 and 4.

Algorithm 3 Overlapping two-level additive Schwarz using space-�lling curves: Failure

Cycle.

Input: number of subproblems P , cycle number k

1: on all processors proci independently do

2: Determine if proci has failed in cycle k.

3: if proci has failed in cycle k then

4: Remove proci from the computation for cycle k.

5: else if proci has not failed in cycle k but has failed in cycle k − 1 then

6: Reconstruction of the data of processor proci.

7: end if

8: end on

The determination of failures in Line 2 of Algorithm 3 will simply be done by drawing

independent random numbers from a Bernoulli distribution, i.e. X ∼ Bernoulli(pfault)
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with parameter pfault ∈ [0, 1]. Moreover line 4 in Algorithm 3 in the context of our DDM

Algorithm 2 essentially boils down to setting the local subproblem update dki to zero if the

processor corresponding to subproblem i failed in the current iteration k.

Algorithm 4 Overlapping two-level additive Schwarz using space-�lling curves: Recon-

struction.

Input: processor proci

1: on processor proci do

2: Recover interval bounds from a processor procs 6= proci and

recompute locally owned indices.
3: for locally owned indices j = tai, . . . , tbi do

4: Find some processor proct 6= proci which also owns index j.

5: Copy necessary data (vector entries, matrix rows) corresponding to j from

processor proct to processor proci.
6: end for

7: end on

Here the following remarks are in order: We employ the Bernoulli distribution which di-

rectly gives the independence of faults between two di�erent iterations and thus ful�lls the

prerequisites of Corollary 3.2 and Theorem 3.3. This is in contrast to the usual assumption

on the temporal distribution of faults where a Weibull distribution for the failure arrival

times is used instead, see [HHLS14, ASHH16, PAS14, LOP20]. The usage of a Weibull

distribution stems from the observations in [SG10]. There, in 2010, failure data had been

collected over 9 years at Los Alamos National Laboratory, which include about 23.000

failures recorded on more than 20 di�erent compute systems. The subsequent analysis of

inter-arrival times of failures then gave a good agreement with the Weibull distribution,

especially when the system was already in production for some time and the processors had

�burnt in�. Not so much is known about the length of failures of a processor (it could be

Weibull-, Gamma- or even lognormally-distributed). More recent studies can be found in

[YWWYZ12, JYS19]. There however, the picture is much less clear. Furthermore the data

of fault distributions for current, substantially larger compute systems are not publicly

known.

Note that a Weibull distribution is not memoryless and involves dependencies of the fault

time points. Thus the prerequisites of our Corollary 3.2 and our Theorem 3.3 are not ful�lled

for faults with inter-arrival times according to a Weibull distribution. In contrast, the use

of a Bernoulli distribution for the failures adheres to the prerequisites of our Corollary

3.2 and our Theorem 3.3 and allows proven convergence rates in the faulty situation.

If the true fault distribution would indeed be Weibull-distributed, our approach using a

Bernoulli distribution nevertheless gives a crude upper bound on the convergence rate of

a fault-tolerant method, since it can be seen as a worst case scenario (but with existing

convergence theory at least for the linear iteration case, while for fault-tolerant conjugate
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gradient iterations no convergence theory is presently available anyway). Moreover the

time scale for the occurrence of faults is unrealistically large in most Weibull-based fault

models. For more realistic fault values (like one fault a day on a big compute system) we

would not see much di�erence at all, as the occurrence of faults during the relatively short

computation time needed in our parallel domain decomposition method for any subdomain

problem within the sparse grid combination method is scarce in case of an elliptic problem.

The bene�t of the fault-tolerant repair mechanism will rather be visible for time-dependent

parabolic problems with long time horizons and long compute times, where elliptic DDM

solvers for the subproblems arising in the combination method are invoked in each time

step of an implicit time discretization method. But even then the number of faults during

a long time simulation is rather small and there is thus not much di�erence between the

choice of a Bernoulli or a Weibull distribution for the fault model. In any case, the Bernoulli

choice gives an upper bound for the convergence and the usage of a Weibull distribution

can only lead to better results in practice.

4. Numerical experiments

4.1. Model problem. We will consider the elliptic di�usion-type model problem

−∇α(x)∇u(x) = f(x) in Ω = [0, 1]d

with right hand side f(x) and appropriate boundary conditions on ∂Ω. Since we are merely

interested in the convergence behavior, the scaling properties and the fault tolerance qual-

ity of our approach and not so much in the solution itself, we resort to the simple Laplace

problem, i.e. we set α = I, f = 0, and employ zero Dirichlet boundary conditions. Conse-

quently, the solution is zero as well. For the discretization we employ �nite di�erences on

a grid with level parameter l = (l1, . . . , ld), which leads to N interior grid points and thus

N degrees of freedom, compare (2.8), and which results in the associated matrix A. Now

any approximation xk during an iterative process directly gives the respective error in each

iteration. We measure the error in the discrete energy norm associated to the matrix A

that stems from the �nite di�erence discretization , i.e. we track

‖xk‖A :=
√

(xk)TAxk

for each iteration of the considered methods. Note here that we run the iterative algo-

rithms for the symmetrically transformed linear system Âx̂ = b̂ with Â = T TAT , b̂ = T T b,

x̂ = T−1x and T = diag(A)−1/2, whereas we measure the error in the untransformed rep-

resentation, i.e. for x − xk. For the initial iterate x0 we uniformly at random select the

entries x̃0i , i = 1 . . . , N, of x̃0 from [−1, 1] and rescale them via x0i := x̃0i /‖x̃0‖A such that

‖x0‖A = 1 holds. To this end, we employed the routine uniform_real_distribution of

the C++ STL (Standard Template Library). We then run our di�erent methods until an

error reduction of the initial error x0 by at least a factor 10−8 is obtained and record the

necessary number K of iterations. We employ two types of convergence measures: First, we

consider the average convergence rate ρave = (‖xK‖A/‖x0‖A)1/K , which contains both a
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fast initial error reduction due to smoothing e�ects of the employed domain decomposition

iteration on the highly oscillating random initial error in the �rst iterations and the asymp-

totic linear error reduction later on. Secondly, we consider the asymptotic convergence rate

ρasy. To this end, we use the maximum of the last 5 iterations and the last 5 percent of the

iterations, i.e. we set K̃ := max(5, d0.05 ·Ke) and de�ne ρasy := (‖xK‖A/‖xK−K̃‖A)1/K̃

which gives the average convergence rate over the last K̃ iterations. Note that we usu-

ally have ρave ≤ ρasy. The quotient ρave/ρasy re�ects the in�uence of the preasymptotic

regime on the convergence. If the quotient is close to one, we have an almost linear de-

cay of the iteration error starting from the very beginning, whereas, if the quotient is

much smaller than one, we have a large and fast preasymptotic regime before the linear

asymptotic error reduction sets in. Note furthermore that instead of ρave we may just give

the necessary number K of iterations. It bears the same amount of information as ρave,

since K = dlog(10−8)/ log(ρave)e. Note �nally that, instead of the random initial iterate

and zero right hand side, we could have chosen zero as initial guess and a right hand side

which results from the application of the discrete Laplacian to an a priorily given non-zero

solution. We then would converge to the discrete solution instead of zero. This approach

might be more suitable from a practical point of view, since it eliminates the randomness

of the initial guess altogether and also eliminates certain smoothing e�ects of our algo-

rithms in the �rst few iterations (as discussed in more detail later on). Therefore, it almost

completely eliminates the corresponding preasymptotic regime in the convergence and di-

rectly gives the asymptotic properties of our algorithms. However, picking a su�ciently

general smooth solution in an arbitrary dimension is not an easy task and it may even

happen that, for a too simple solution candidate, the convergence may look deceptively

good. For our choice of a random initial guess we will observe the strongest in�uence of

the preasymptotic regime in any case.

In the following, we present the results of our numerical experiments. First, in Subsection

4.2, we study the convergence and parallel scaling behavior of both the linear two-level

Schwarz/Richardson-type iteration as given in Algorithm 2 and the associated precondi-

tioned conjugate gradient method. Then, in Subsection 4.3, we report on the behavior of

the fault-tolerant version of these two iterative methods in the presence of faults.

All calculations have been performed on the parallel system Drachenfels of the Fraunhofer

Institute for Algorithms and Scienti�c Computing (SCAI). It provides, among others, 1.824

Intel Sandy Bridge cores on 114 compute nodes, each one with 2 Xeon E5-2660 processors

(8 cores per CPU, disabled SMT) at 2.20 GHz and 32 GB RAM, i.e. 2GB RAM per core,

and 2.272 Ivy Bridge (Xeon E5-2650 v2) cores on 142 compute nodes, each one with 2

Xeon E5-2650 processors (8 cores per CPU, disabled SMT) at 2.60 GHz and 64 GB RAM,

i.e. 4GB RAM per core. Drachenfels is equipped with a Mellanox Technologies MT27500

Family [ConnectX-3] 4x (56Gbps) connection. Altogether, we may use 4.096 cores on this

system but we restricted ourselves to 256 cores and thus subdomains in our experiments

for practical reasons.
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4.2. Convergence and parallelization results. We are initially interested in the weak

scaling situation, i.e. we set

N := 2SP,

where S denotes the weak scaling parameter. This results in the size 2S for each subproblem,

whereas P denotes the number of subproblems. Thus the size of each subproblem stays

�xed for rising P and the overall number N of unknowns grows linearly with P . Before

we turn to the results of our numerical experiments, let us shortly put this weak scaling

situation into the conventional geometric perspective: There, with the isotropic �ne scale

mesh width h ≈ N−1/d and the isotropic coarse grid mesh size H ≈ (q · P )−1/d, we get

(4.30)
H

h
≈
(
q · P
N

)−1/d
=
(
q · 2−S

)−1/d
,

which is independent of P . From conventional domain decomposition theory we have (for

geometric coarse grid problems) a condition number of the order O(1 + H/h), compare

(2.1) with δ = ch. Now, with (4.30), we obtain a condition number and a convergence rate

which is independent of N and P , i.e. we achieve weak scaling of the respective domain

decomposition method. Moreover (4.30) suggests the choice

(4.31) q := c · 2S ,

which then gives H/h ≈ c−1/d independent of N , P and S. We are interested in also

observing such a weak scaling behavior for our non-geometric overlapping domain decom-

position method, which is based on the space-�lling curve approach and which involves a

coarse scale problem set up purely algebraically via agglomeration.

We study the convergence behavior of the two-level additive Schwarz/Richardson-type iter-

ation from Algorithm 2 with optimal damping parameter ξ∗ = 2/(λmin+λmax) as a solver.

To this end, we numerically determine the two eigenvalues by the Krylov-Schur method

beforehand. Note that the eigenvalues correspond to their speci�c subspace splitting, i.e.

to the speci�c two-level domain decomposition operator under consideration. The splitting

depends on the dimension d, on the discretization level l = (l1, . . . , ld), on the number P

of subdomains, on the weak scaling parameter S, on the coarse level parameter q, on the

overlap parameter γ, on the respective scalings Di, on the speci�c space-�lling curve, and

�nally on the speci�c type of Schwarz operator (plain additive, balanced).

First, we consider the one-dimensional case in our numerical experiments. Surely there is

no need to employ a parallel iterative domain decomposition solver and a direct sequential

Gaussian elimination would be su�cient. However, this is a good starting point to study

the convergence and parallel scaling properties of the various algorithmic variants. More-

over it will turn out that the one-dimensional case is indeed the most di�cult one for good

convergence and scaling results. This behavior stems from the relative �distance� of the

�ne scale to the coarse scale, which is maximal for d = 1. Here we study the convergence

and scaleup behavior of the standard additive two-level Schwarz/Richardson-type approach

(2.15) as well as its balanced variant (2.7). Furthermore we consider the conjugate gradient
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method with these two associated variants of the respective two-level domain decomposi-

tion operators as preconditioner. We set N := 2SP where S := 8. Thus the size of each

subproblem stays �xed at 28 with growing P , whereas the overall number N of unknowns

grows linearly with P . Moreover we �x q = 16 and γ = 0.5. We compare the di�erent

methods for the three scalings Di = I (no scaling at all), Di = ωiI with ωi according to

(2.18), and Di according to (2.17), i = 1, . . . , P . For our special choice of γ we know from

Lemma 2.1 that the weighting with ωi and the weighting with Di are indeed the same and

di�er from the unweighted case by just the constant scaling 1
c I with c = 2γ + 1. For the

coarse scale problem, we always set D0 = I. The results for the two types of convergence

rates of the standard additive two-level Schwarz/Richardson-type approach (2.15) and the

associated conjugate gradient method are shown in Figure 8. The results for the two types

of convergence rates of the balanced variants according to (2.7) are given in Figure 9.
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Figure 8. Weak scaling: Convergence rates ρave and ρasy versus number of

subdomains for the three weighted versions of the plain two-level additive

Schwarz/Richardson iteration (left) and the associated preconditioned conjugate

gradient method (right), d = 1, q = 16, γ = 0.5.

We see that the scaling with ωi and the scaling with Di indeed give the same results, as

was expected. Moreover the case of no scaling at all only gives slightly worse results for the

plain additive variant and even gives the same results for the balanced variant for this one-

dimensional situation. Furthermore we observe that ρave and ρasy are approximately the

same in the Richardson case, i.e. there is not much di�erence to be seen. This is surely due

to the large number of iterations needed to reach an error reduction of 10−8 and a moderate

preasymptotic regime. The rates are quite high with a value of about 0.98 for larger values

of P . Moreover, in the conjugate gradient case, we see a slight di�erence between ρave and

ρasy of about 0.08, which is due to the preasymptotic regime incorporated in ρave and

the lower number of iterations involved. For the balanced variants, there is still not much
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Figure 9. Weak scaling: Convergence rates ρave and ρasy versus number of

subdomains for the three weighted versions of the balanced two-level additive

Schwarz/Richardson iteration (left) and the associated preconditioned conjugate

gradient method (right), d = 1, q = 16, γ = 0.5.

di�erence for the Richardson iteration, i.e. there is just a di�erence of about 0.04 between

the ωi-scaling and no-scaling at all, but the rates are a improved with values of about 0.9.

In the conjugate gradient case, we now observe an improvement to a rate of 0.6 for ρave

due to balancing. Thus balancing indeed improves convergence substantially. Moreover we

obtain a more distinct di�erence between ρave and ρasy with a value of 0.13, which is again

due to the preasymptotic regime incorporated in ρave and the lower number of iterations

involved. Nevertheless, for rising values of P , constant convergence rates are obtained in

any case, which indicates weak scaling.

We conclude that the average convergence rate ρave is a su�cient measure to unveil the

weak scaling properties of our various algorithms, even though the asymptotic convergence

rate ρasy is a bit larger. Since ρave is related via K = dlog(10−8)/ log(ρave)e to the number
K of required iterations, we will report the number K of iterations instead of ρave for

the remainder of this subsection. As we are interested in weak scaling properties and

since a �xed reduction of the initial error is considered anyway, the necessary number K of

iterations is su�cient for our purpose and we may neglect the in�uence of the preasymptotic

regime. This will be di�erent in the next Subsection 4.3, where we will consider the behavior

of our algorithms for di�erent fault probabilities. Then the size of the preasymptotic regime

can be in�uenced by faulty subproblem solves and plays a certain role, as we will see later

on.

Thus, from now on in this subsection, the number K of iterations necessary to reduce the

initial error by a factor of 10−8 is shown. For the plain additive two-level Richardson-type
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approach (2.15) and the associated conjugate gradient method, they are given in Figure

10. For the balanced variants according to (2.7), they are given in Figure 11.

0 30 60 90 120 150 180 210 240

Number of Subdomains P

0

100

200

300

400

500

600

700

It
er
a
ti
o
n
s

Richardson

0 30 60 90 120 150 180 210 240

Number of Subdomains P

0

10

20

30

40

50

It
er
a
ti
o
n
s

CG
Weak Scaling, Additive, S = 8, q = 16, γ = 1/2, d = 1

Additive Additive, ωiIdi Additive, Di

Figure 10. Weak scaling: Number of iterations K versus number of subdo-

mains for the three di�erently weighted versions of the plain two-level additive

Schwarz/Richardson iteration (left) and the associated preconditioned conjugate

gradient method (right), d = 1, q = 16, γ = 0.5.
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Figure 11. Weak scaling: Number of iterations K versus number of subdo-

mains for the three di�erently weighted versions of the balanced two-level additive

Schwarz/Richardson iteration (left) and the associated preconditioned conjugate

gradient method (right), d = 1, q = 16, γ = 0.5.
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Of course we observe the same behavior as in the two previous �gures for ρave, albeit now

in a di�erent representation which is due to the measured number of iterations. Moreover

we again obtain weak scaling behavior in all cases, i.e. the necessary number of iterations

stays constant for growing values of P . This constant depends on the respective splitting:

For the plain additive Schwarz/Richardson iteration (left) we see that a scaling with ωi

(and equally with Di) reduces this constant compared to the no-scaling case, albeit a large

number of iterations is still needed. Moreover the results get substantially improved by

the balanced variants: All three scalings now give the same results and the weak scaleup

constant is reduced by a factor of approximately seven for the unweighted case and by a

factor of approximately six for the other two variants. For the associated preconditioned

conjugate gradient methods (right) we observe a further reduction of the necessary num-

ber of iterations. This re�ects roughly the κ-versus-
√
κ e�ect of the conjugate gradient

method in its convergence rate. For the balanced version, we additionally see a substan-

tial improvement of the scaleup constant compared to the plain additive preconditioned

conjugate gradient method by a factor of nearly one half. Note here that for values of γ

that are not integer multiples of 1/2, the Di-scaling does not lead to a symmetric operator,

which renders a sound and robust convergence theoretically questionable and in further

experiments gave considerably worse iteration numbers with oscillating behavior for the

corresponding preconditioned conjugate gradient method in practice.

We conclude that the balanced variant of both the Schwarz/Richardson iteration and the

associated preconditioned conjugate gradient method is substantially faster than the plain

version. We also see that, for our choice γ = 1/2, balancing eliminates the di�erence of the

unscaled and the ωi-scaled (and Di-scaled) cases. Moreover the preconditioned conjugate

gradient version is nearly quadratically faster and gives good weak scaling constants. In

further comparisons with the Nicolaides method (2.6) it was found that the balanced

approach was again superior. Also, a comparison with the de�ated variant (2.6) revealed

that the balanced method was more robust. Therefore, we will from now on focus on the

optimally damped, balanced Schwarz iteration and the associated preconditioned conjugate

gradient method. The type of damping we will choose, i.e. none at all, ωi according to

(2.18) or Di according to (2.17) is still to be determined. We refrain from employing the

Di-weighting for general choices of γ, since in general this results in a non-symmetric

operator for which our theory is not valid anymore. It now remains to study the behavior

of the unweighted and the ωi-weighted algorithms in more detail.

So far, we kept the value of the overlap parameter γ �xed. Now we vary γ and consider its

in�uence on the weak scaling behavior of our two algorithms in the balanced case. First we

consider the one-dimensional situation, where we set S = 8, q = 16 and vary the number P

of subdomains. The resulting number of iterations for di�erent values of γ ranging from 1/5

up to 5 are shown in Figure 12 for the unweighted case and in Figure 13 for the ωi-weighted

case.
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Figure 12. Weak scaling: Number of iterations versus number of subdomains for

the unweighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated preconditioned conjugate gradient method (right) for di�erent

values of γ with varying P , d = 1, q = 16, S = 8.

Comparing the ωi-weighted case to the unweighted case, there is not much visible di�erence

at all. We again clearly see weak scaling behavior. The scaling constant now depends on

the respective value of γ. In the Richardson case, it is interesting to observe that, in any

case, a constant number of iterations is quickly reached for rising values of P . Moreover,

for a small overlap value of γ = 1/5, it is quite bad. The number of iterations is seen to

be optimal for γ = 1/2 and then deteriorates for larger values of γ. Note at this point

that, starting with γ = 1/2, we observe a slight deterioration of the convergence curves

and of the weak scaling constant, where this deterioration is monotone in n if we restrict

ourselves to values of γ that are integer multiples of 0.5, i.e. γ = 1
2n, n ∈ N+. The non-

integer multiples give worse results. In the conjugate gradient case, the scaling constant

is reached increasingly later for rising values of P (which is desirable). It is improved in a

nearly monotonic way for rising values of γ. Furthermore the absolute value of necessary

iterations is again much smaller than in the Richardson case.

Next, we consider the three-dimensional case and again vary the value of γ. Then, in

contrast to the one-dimensional situation, the Hilbert curve structure comes into play. The

resulting iteration numbers for di�erent values of γ in the unweighted and the ωi-weighted

case are shown in Figures 14 and 15, respectively.

For the Richardson iteration we again see an analogous behavior for the weak scaling

constant but with a much lower number of iterations compared to the one-dimensional
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Figure 13. Weak scaling: Number of iterations versus number of subdomains for

the ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated preconditioned conjugate gradient method (right) for di�erent

values of γ with varying P , d = 1, q = 16, S = 8.

case. Furthermore we observe that the ωi-scaling improves the convergence: Except for

γ = 1/5, all required numbers of iterations are now close together for both the values of

γ that are integer multiples of 1/2 and the other values, and their respective number of

iterations are in any case reduced to around 50. This shows that ωi-weighting is able to deal

with the decomposition based on the Hilbert curve, which appears for d > 1, in a proper

way. In the unweighted conjugate gradient case, the curves are approximately the same for

all values of γ, except for γ = 1/5 which is too small again. They are successively improved

for rising values of γ in the ωi-weighted case, as is expected intuitively. Again, the conjugate

gradient method is much faster than the Richardson scheme. Similar observations could

be made for other dimensions.

Altogether, ωi-weighting stabilizes the iteration numbers against variations of γ and im-

proves the convergence behavior. In light of the larger costs involved for higher values of

γ, a good choice for γ is given by the value 1/2 in both the Richardson and the conjugate

gradient case. However, larger values of γ may be needed to attain fault tolerance due to

redundancy later on. The ωi-weighted case then indeed results in slightly better conver-

gence results for larger values of γ and shows no deterioration, which the unweighted case

does. From now on we therefore will focus on the optimally damped, ωi-weighted balanced

Schwarz iteration and the associated preconditioned conjugate gradient method. Moreover

we will restrict ourselves in this subsection to the value γ = 1/2. In the next subsection,
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Figure 14. Weak scaling: Number of iterations versus number of subdomains for

the unweighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated preconditioned conjugate gradient method (right) for di�erent

values of γ with varying P , d = 3, q = 16, S = 8.

where we deal with fault tolerance, we will also employ values of γ that are larger integer

multiples of 1/2.

So far, we kept the weak scaling parameter S, i.e. the size 2S of each subproblem, �xed and

only varied the number P of subdomains. But what happens if we also vary the subproblem

size? For �xed q = 16, the results are shown in Figure 16.

We again clearly see weak scaling behavior. However the weak scaling constant now depends

on the subproblem size, i.e. it grows with rising S. This holds for both the Richardson-

type iteration and the conjugate gradient approach. This behavior stems from the �xed

value of q and thus the �xed size of the coarse scale problem for �xed P . In this case the

di�erence between �ne scale and coarse scale increases with growing S and, consequently,

the additive coarse scale correction is weakened compared to the �ne scale.

We now let the coarse scale parameter q be dependent on S, compare also the discussion

leading to (4.31). To be precise, we set q = 2S−4, which gives a coarse problem of size

P · 2S−4, where we vary the parameter S. This way, we double q while doubling the

subdomain size 2S , i.e. N/P . The obtained results are shown in Figure 17.

In all cases, we obtain substantially improved results compared to the �xed choice q = 16

from Figure 16. This was to be expected since now the coarse scale correction is improved

for rising S. We again observe an asymptotically constant number of iterations for grow-

ing values of P and we obtain a weak scaling constant which is, compared to the �xed
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Figure 15. Weak scaling: Number of iterations versus number of subdomains for

the ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated preconditioned conjugate gradient method (right) for di�erent

values of γ with varying P , d = 3, q = 16, S = 8.
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Figure 16. Weak scaling: Number of iterations versus number of subdomains for

the ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated preconditioned conjugate gradient method (right) for di�erent

values of S, d = 1, q = 16, γ = 0.5.
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Figure 17. Weak scaling: Number of iterations versus number of subdomains for

the ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated preconditioned conjugate gradient method (right) for di�erent

values S, d = 1, q = 2S−4, γ = 0.5.

choice q = 16, now only slightly growing with S for the Richardson iteration and seems to

approach a limit of about 145 for rising values of S. Moreover it is now completely inde-

pendent of S for the conjugate gradient approach, for which we need at most 29 iterations

in all cases. This shows that q should scale proportional to N/P . In further experiments

we quadrupled q while doubling N/P and found that the weak scaling constant then even

shrank with growing S.

Note at this point that the size of the coarse scale problem is now 2−4 ·P ·2S , while the size
of each subdomain problem is 2S (whereas the size of the overall problem is N = P · 2S).
Thus the cost of solving the coarse scale problem tends to dominate the overall cost with

rising P , which is the price to pay for a more uniform convergence behavior. This calls for

further parallelization of the coarse scale problem itself via our P processors to remedy this

issue. Thus, in contrast to the present implementation via the Bank-Holst paradigm where

we redundantly keep the coarse grid problem on each processor (besides the associated

subdomain problem), we should partition the coarse scale matrix to the P processors and

therefore solve the coarse scale problem in a parallel way. This however will be future work.

Next, we consider the weak scaling behavior for varying dimensions d = 1, 2, 3, 4, 5, 6. For

the discretization we stick to the isotropic situation, i.e. we set

l = (b(S + log(P ))/dc, . . . , b(S + log(P ))/dc).
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Thus the overall number of degrees of freedom is independent of d, since

N ≈
d∏
j=1

2(S+log(P ))/d = 2S+log(P ) = P · 2S ,

and the size of each subdomain is again approximately 2S for all values of P . Furthermore

we choose γ = 0.5, S = 8 and q = 2S−4 and consider only the ωi-weighted balanced

methods. The resulting weak scaling behavior is shown in Figure 18.
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Figure 18. Weak scaling: Number of iterations versus number of subdomains for

the ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated preconditioned conjugate gradient method (right) for di�erent

dimensions d, q = 2S−4, γ = 0.5.

We always obtain weak scaling behavior, where now the constant depends on d. But it

improves for growing values of d and we see that the one-dimensional case is indeed the

most di�cult one. This is due to the relative �distance� of the �ne scale to the coarse scale

in the two-level domain decomposition method, which is largest for d = 1 and decreases for

larger values of d. Furthermore a stable limit of 26 and 16 iterations, respectively, is reached

for d ≥ 6. Such a behavior could be observed not only for the isotropic discretizations in

d dimensions but also for all the various anisotropic discretizations, which arise from (2.9)

in the sparse grid combination method. This becomes clear when we consider the simple

case of the anisotropic discretization l = (bS+log(P )c, 1, . . . , 1) in d dimensions: With our

homogeneous Dirichlet boundary conditions we obtain the same �ne scale �nite di�erence

discretization as for the case d = 1 with di�erential operator −∂2/∂2x1 + 8(d − 1) · Ix1 .
We then have an additional reaction term of size 8(d − 1), which merely improves the

condition number compared to the purely one-dimensional Laplacian. Consequently, the

one-dimensional convergence results impose an upper limit to the number of iterations

needed for all the subproblems arising in the combination method.
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Now let us shortly consider the strong scaling situation as well. There we have N = 2L,

where the size of each subdomain is 2L/P , i.e. it decreases with growing values of P .

Moreover values of P larger than 2L are not feasible. We consider again the one-dimensional

situation, set q = 2L−12, γ = 0.5, and vary the number P of subdomains. The resulting

strong scaling behavior is shown for L = 16, 18, 20 in Figure 19.
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Figure 19. Strong scaling: Number of iterations versus number of subdomains for

the ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated preconditioned conjugate gradient method (right), d = 1,

L = 16, 18, 20, q = 2L−12, γ = 0.5.

We see that the necessary number of iterations �rst grows with rising values of P and then,

after its peak, steadily declines, as is expected. This is due to the fact that now the size of

each subproblem shrinks with rising P , whereas the size P ·2L−12 of the coarse scale problem
grows linearly with P . There is not much of a di�erence for the three curves L = 16, L = 18

and L = 20 since for each P the coarse scale problem has the same relative distance to

the �ne grid for all values of L, i.e. 216/(216−12 · P ) = 218/(218−12 · P ) = 220/(220−12 · P ).

Note here that the downward peaks of the curves in Figure 19 correspond to the situation

where all subdomains are perfectly balanced, i.e. where N mod P = 0. Furthermore the

parameter q was chosen such that the case P = 256 for L = 16, 18, 20 in Figure 19 results in

exactly the same situation as the case P = 256 for S = 8, 10, 12 in Figure 17, respectively.

We �nally consider strong scaling for the situation where q = 2blog(N/P )c−4, i.e. where

the choice of q is P -dependent and is chosen such that the relative distance between the

coarse and the �ne grid is roughly four levels for all P , as was the case in the weak scaling

experiments in Figure 17. The results are given in Figure 20. Due to the involved round

o� there are now jumps at the points where log2(P ) is an integer. However we observe

the expected steady decline of the necessary number of iterations in between these jump

points. Note that, for this choice of q, the necessary numbers of iterations for the end points

of these intervals are approximately the same.
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Figure 20. Strong scaling: Number of iterations versus number of subdomains

for the ωi-weighted balanced two-level additive Schwarz (left) and the associ-

ated preconditioned conjugate gradient (right) method, d = 1, L = 16, 18, 20,

q = 2blog(N/P )c−4, γ = 0.5.

4.3. Fault tolerance results. We now consider the results of our fault tolerance experi-

ments. As already mentioned, we assume fault locality (in space and time) which is often

done in the literature for analysis purposes. As a model for faults we employ the Bernoulli

distribution to inject faults into our compute system, as described in detail in Subsection

3.2. This directly gives independent occurrences of faults per cycle. Furthermore we as-

sume that a faulty processor will be instantly repaired and is available again in the next

iteration, i.e. a processor only stays faulty for the iteration in which the fault was detected.

We exploit a su�ciently large γ of overlap and thus redundancy on the stored data in our

algorithm to be able to recover lost data due to a faulty processor. This assumption on

the model adheres to the prerequisites of our Corollary 3.2 and our Theorem 3.3 and thus

enables an estimate for the expectation of the squared error for our speci�c additive, two-

level domain decomposition method based on space �lling curves in the faulty situation.

Now we consider the ωi-weighted balanced two-level additive Schwarz/Richardson itera-

tion with damping parameter ξ∗ under faults. Moreover we are interested in the behavior

of the associated preconditioned conjugate gradient methods under faults, even though we

do not have a proper convergence theory for this case as for the simpler linear iteration.

Note to this end that the energy norm based on the �nite element matrix, for which our

theory is valid, and the energy norm based on the �nite di�erence matrix, which we use in

practice, are, up to a scaling of h−d/2 = 2(dL)/2, spectrally equivalent due to the well-known

L2-stability of the piecewise d-linear �nite element basis.

First we study the convergence behavior of these di�erent methods. To this end, we consider

the case d = 1, we set q = 16, S = 8 and P = 100. Thus the size N of the overall problem

is �xed to 100 · 28 with a size of 28 for each subproblem. Now we study the error reduction
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properties of our fault-tolerant algorithms. To this end we consider, besides the case of

no fault at all, the cases where the faults are randomly generated in each cycle and for

each processor according to the Bernoulli distribution with di�erent fault-probabilities

pfault = 0.01, 0.02, 0.05, 0.1 and 0.2. This way, on average, one, two, �ve, ten and twenty

processors fail in each iteration. Since the faults are randomly distributed, we run the

algorithms ten times and show the resulting convergence curves for each run in transparent

colors. We additionally show the averaged convergence curve in bold color. Note here also

that, if the overlap parameter γ is too small compared to the fault rate pfault, a proper fault

recovery might no longer be possible and, depending on the speci�c realization of random

picks of faulty processors, the respective run of the algorithm may no longer be able to

recover and may fail. These failed runs are discarded in the computation of the average

convergence rate. For the overlap parameter γ = 0.5, 1, 1.5, 2, the results for the ωi-weighted

balanced two-level Richardson/Schwarz iteration and the correspondingly preconditioned

conjugate gradient method are shown in Figure 21.

We see that in the ωi-weighted balanced Richardson case there is a slight preasymptotic

reduction of the initial error in the �rst iterations, which shortens but is more profound

the larger the values of pfault and of γ are. After that an asymptotic error reduction can

be observed which is nearly the same as for the non-faulty case. A close inspection reveals

that, depending on pfault, this asymptotic rate becomes slightly larger in the end compared

to the non-faulty case. This is however to be expected from our theory, compare also the

bound for the (asymptotic) rate in Theorem 3.3. The preasymptotic behavior stems from

the fact that a moderate number of faults indeed restores a certain smoothing e�ect in the

preasymptotic regime. This observed (small) preasymptotic smoothing e�ect in the faulty

cases can best be explained by looking at all the �ne grid points that belong to a failing

processor. For example, the overlap γ = 2 and the associated weighting ωiI = 1
2γ+1I = 1

5I

yields an (asymptotically) optimal damping parameter of ξopt = 2/(λmin + λmax) ≈ 1.86

for the balanced preconditioner. Recall that ω0 is chosen as one here. Then the e�ective

preconditioner, including damping, can be seen to be

(4.32)
ξoptC

−1
(2),D,bal = ξopt(G

TC−1(1),DG+ F ) = ξopt(
1

5
GTC−1(1)G+ F )

= ξopt
1

5
GTC−1(1)G+ ξoptF ≈ 0.37 GTC−1(1)G+ 1.86 F.

On the other hand, an intuitive way of weighting the respective �ne grid corrections in

the iteration would be to average just over all �ne grid contributions per point, which

resembles a certain smoothing of higher frequency error components. For our example,

this would yield a weighting factor of 1
5 , i.e. the associated preconditioner would then be

1
5G

TC−1(1)G+ F . A comparison of this preconditioner to the above e�ective preconditioner

(4.32), which involves the asymptotically optimal dampening parameter ξopt, shows that

the optimally damped version shifts the balance between �ne and coarse level more towards

the coarse side to achieve optimal convergence in the asymptotic regime. But this in turn

yields worse smoothing properties in the preasymptotic regime compared to the dampening
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Figure 21. Number of iterations (single runs and mean) of the fault-tolerant

version of the ωi-weighted balanced two-level additive Schwarz/Richardson itera-

tion (left) and the associated preconditioned conjugate gradient method (right) for

di�erent fault probabilities and di�erent overlaps γ = 0.5, 1, 1.5, 2, q = 16, d = 1.

due to averaging, since the factor 0.37 of the �ne grid contribution does not match the

fact that each point is overlapped by �ve �ne subdomains. However, if we now consider
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the faulty cases, the occurrence of a few faults brings the expected factor due to averaging

closer to this factor 0.37. For example, if one of �ve neighboring processors fails, one would

expect an averaging factor of 1
4 , since now only 4 = 5 − 1 processors contribute to the

correction at all points belonging to the failing processor. In the case of two neighboring

faults the expected weighting factor due to averaging of 1
3 in the points belonging to both

failing processors is now even closer to our asymptotically optimal �ne grid weighting of

0.37. Therefore we see an improved initial smoothing behavior for a moderate number of

neighboring faults compared to the non-faulty case simply due to the fact that the e�ective

weighting parameter for the �ne grid, i.e. ξopt · ωi, more closely resembles the intuitive

weighting factor due to averaging when a small number of neighboring faults is present.

Note however that, for larger values of pfault, the faulty cases still produce asymptotic rates

that are slightly worse than those of the non-faulty case. The somewhat better convergence

of the faulty cases is therefore only a result of the better initial smoothing. Hence one could

potentially improve the overall iteration scheme by starting with the dampening parameter

due to averaging and then (gradually) switching to the optimal damping parameter after a

certain number of iterations. Further experiments showed that the non-faulty case pfault = 0

then indeed exhibits better overall average convergence than the faulty cases and that the

convergence for the faulty cases gradually deteriorates with rising values of pfault. However,

a proper switching between these two damping parameters is not straightforward and the

convergence analysis of such a linear iterative method with dynamically changing damping

is quite involved. This is future work.

For the associated conjugate gradient method the convergence behavior is di�erent: We see

that there is a sudden reduction of the initial error in the �rst few iterations by a factor

of about 100, which even grows slightly with rising values of γ. This holds for all values of

pfault. Here indeed the same smoothing e�ect due to averaging as in the faulty Richardson

case comes into play. However, instead of the �xed ξopt, the conjugate gradient iteration

determines the optimal step size in the preconditioned search direction in the �rst iteration

step. This leads to a substantial smoothing e�ect in the �rst (few) iteration(s) and thus

to the steep drop of the error as seen in Figure 21 (right). After that the asymptotic error

reduction rate gradually sets in. It becomes monotonously worse for rising values pfault,

as is intuitively to be expected. Again, the necessary number of iterations is substantially

smaller due to the κ-versus-
√
κ e�ect of the conjugate gradient method compared to the

simple linear Richardson iteration. The conjugate gradient approach needs approximately

a quarter of the iterations of the Richardson approach in the non-faulty case. But it can

be seen that the conjugate gradient method tends to lose its advantage for larger values

of pfault. For example, for γ = 2 and pfault = 0.1, it merely needs approximately half the

number of iterations compared to the Richardson approach. Moreover recall that runs, for

which the recovery failed due to a larger number of faults than can be repaired with the

given values of γ, are discarded in the computation of the average convergence rate. This

is the reason why for example for γ = 1/2 in Figure 21 only averaged convergence plots for

pfault = 0, 0.01, 0.02 could be displayed, whereas the curves for the larger values of pfault are
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missing. We furthermore see that for the larger overlap γ = 2 also faults with larger fault

probabilities of pfault up to 0.1 could be recovered from and are treated successfully. We

�nally see that, if pfault is larger than 0, we gradually obtain better results for larger overlap

values γ as long as the runs are successful at all. For example, the number of iterations

improves with pfault = 0.05 from 50 for γ = 1 to 43 for γ = 1.5 and to 37 for γ = 2. In the

case pfault = 0 such a gain for rising values of γ is still there, but it is substantially smaller.

In further experiments with larger values of P , like for example P = 200, we could observe

analogous results with a further improvement in convergence for the faulty situations. This

is due to the larger subdomain sizes and the exact subdomain solves, while now larger costs

are involved of course.

Altogether, we see that the occurrence of a moderate number of faults does not have

much in�uence on the convergence rate of the fault-tolerant version of the balanced two-

level additive Richardson iteration, as already predicted by our convergence theory in

Subsection 3.1. We observe that, due to the error reduction in the preasymptotic regime, the

necessary number of iterations even decreases compared to the non-faulty case. Analogous

observations could be made for the plain Richardson iteration. Note that a similar behavior

was already present in the numerical experiments of [GO20], Figure 3, for the case of a

failure rate of eight percent using a Weibull distribution. For one, two, �ve, ten and twenty

failing processors in each iteration, which is indeed already an extremely large number of

failures regarding the short computation time and the employed number of 100 processors,

the in�uence on the number of iterations is deteriorating slightly and is thus only marginal.

This is somewhat di�erent when considering the associated preconditioned conjugate gradi-

ent method. Its convergence in the non-faulty case is substantially faster (i.e. it is dependent

on
√
κ instead of just κ), however we no longer have a sound convergence theory in the

faulty situation. Indeed, the behavior of the conjugate gradient approach is much more

sensitive to the occurrence of faults, as can be seen on the right side of the Figure 21. Now

the deviation from the non-faulty convergence rate grows substantially with rising values of

pfault. For example, for γ = 2, the necessary number of iterations grows in the ωi-weighted

balanced conjugate gradient case with pfault = 0, 0.01, 0.02, 0.05, 0.1 with 25, 28, 31, 37, 54.

Note furthermore that this dependence on the fault probability decreases with rising val-

ues of the overlap parameter γ. But, all in all, the fault-tolerant version of our conjugate

gradient method still exhibits excellent convergence properties in practice.

Next let us consider the convergence behavior of our ωi-weighted balanced methods for a

higher dimensional example. Here we focus on d = 6 and again set P = 100 and S = 8. Thus

the size N of the overall problem is �xed to 100 · 28 with a size of 28 for each subproblem.

Now we study the error reduction property of our fault-tolerant algorithms and consider

again, besides the case of no fault at all, the cases where the faults are randomly generated

in each cycle for each processor according to a Bernoulli distribution. We again employ

the di�erent fault-probabilities pfault = 0.01, 0.02, 0.05, 0.1, 0.2 where, on average, one, two,

�ve, ten and twenty processors fail in each cycle. For the overlap parameter γ = 0.5, 1, 1.5, 2,
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the results for the ωi-weighted balanced two-level Richardson/Schwarz iteration and the

correspondingly preconditioned conjugate gradient method are shown in Figure 22.
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Figure 22. Number of iterations (single runs and mean) of the fault-tolerant

version of the ωi-weighted balanced two-level additive Schwarz/Richardson itera-

tion (left) and the associated preconditioned conjugate gradient method (right) for

di�erent fault probabilities and di�erent overlaps γ = 0.5, 1, 1.5, 2, q = 16, d = 6.
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We now observe that, for the Richardson case, the preasymptotic error reduction is sub-

stantially longer but smoothly changes to the asymptotic convergence, which is in contrast

to the one-dimensional case. Furthermore we see that we obtain nearly the same conver-

gence curves for all the di�erent values of pfault for a �xed value of γ. Moreover we now

�nd that the number of iterations stays the same or slightly worsens for larger values of

pfault if γ increases. Again we observe that there are no results for large values of pfault but

small overlap γ, which stems from the failure of the recovery process due to insu�cient

redundancy. Consequently, γ should be chosen small but nevertheless still su�ciently large

to guarantee the necessary redundancy with respect to the fault rate pfault. This holds for

the associated conjugate gradient method as well. Moreover, for pfault = 0, the number of

iterations is not very sensitive to γ, it even marginally improves. For larger values of pfault

it monotonously improves with rising values of γ. The corresponding number of iterations

is still smaller compared to the Richardson case, possibly due to the
√
κ-versus-κ e�ect, but

the advantage of the conjugate gradient method now tends to be not as profound anymore.

Especially for larger fault rates pfault and larger values of γ the conjugate gradient methods

tends to lose its superiority over the Richardson iteration and can even be inferior, as the

example γ = 2, pfault = 0.2 shows: Now the Richardson approach only needs 25 iterations,

whereas the corresponding conjugate gradient method needs 40 iterations. In any case,

depending on the choice of the value of pfault, the value of γ must be large enough to allow

for a proper recovery after faults.

Finally, we consider the weak scaleup behavior of our ωi-weighted balanced algorithms

under faults. We select a substantial overlap of γ = 3 and set d = 1, q = 16, S = 8. Moreover

we allow the values pfault = 0, 0.01, 0.02, 0.05, 0.1, 0.2. This corresponds to pfault · P faults

in each cycle on average for varying numbers of P . The resulting number of iterations are

shown in Figure 23. The results for the average convergence rate ρave and the asymptotic

convergence rate ρasy are shown in Figure 24.

We see that the weak scaling constant associated to the iterations, i.e. the respective num-

ber of iterations for rising numbers of P , �rst (for pfault = 0.01, 0.02, 0.05, 0.1) marginally

improves in the Richardson case and then slightly deteriorates again (pfault = 0.2), which

can be explained by the preasymptotic behavior. In the conjugate gradient case it monoto-

nously deteriorates for rising values of pfault as intuitively expected, but the corresponding

iteration numbers are much better than those for the Richardson iteration. An analogous

behavior can be observed for the average convergence rate ρave. In addition the correspond-

ing weak scaling constant for the asymptotic convergence rate ρasy behaves similarly and

is only worse by a value of about 0.02 and about 0.1 than for ρave in the Richardson and

conjugate gradient case, respectively.

At last, for the six-dimensional case, the weak scaleup behavior of our ωi-weighted balanced

algorithms under faults, i.e. the number of iterations and the average and the asymptotic

convergence rate, are shown in the Figures 25 and 26.
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Figure 23. Number of iterations (mean) of the fault-tolerant version of the ωi-

weighted balanced two-level additive Schwarz/Richardson iteration (left) and the

associated conjugate gradient method (right) for di�erent fault probabilities, γ =

3, S = 8, q = 16, d = 1.
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Figure 24. Average and asymptotic rates (mean) of the fault-tolerant version of

the ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated conjugate gradient method (right) for di�erent fault probabil-

ities, γ = 3, S = 8, q = 16, d = 1.
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Figure 25. Number of iterations (mean) of the fault-tolerant version of the

ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left) and

the associated conjugate gradient method (right) for di�erent fault probabilities,

γ = 3, S = 8, q = 16, d = 6.
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Figure 26. Average rate and asymptotic rate (mean) of the fault-tolerant version

of the ωi-weighted balanced two-level additive Schwarz/Richardson iteration (left)

and the associated conjugate gradient method (right) for di�erent fault probabil-

ities, γ = 3, S = 8, q = 16, d = 6.
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We see that the algorithm exhibits good weak scaling properties also for the six-dimensional

case. For rising values of P , the number of iterations stays at around 23 for the balanced

Richardson iteration and is nearly independent of the fault rate (except of the case pfault =

0.2 which needs 28 iterations). Weak scaling can also be observed for the corresponding

conjugate gradient method. Now however the weak scaling constant is dependent on the

fault rate pfault and increases for rising numbers of faults, albeit with still less iterations

than in the Richardson case (except for the case pfault = 0.2). The situation is the same

for the average rate and the asymptotic rate is basically the same.

Altogether we conclude that, for a moderate number of faults and a su�ciently large

choice of γ, our fault-tolerant algorithms work and scale well with rising numbers of P and

associated rising number pfault ·P of faults. Thus we obtain fault-tolerance also in the weak

scaling regime.

5. Discussion and conclusion

In the present article we proposed and studied a simple additive two-level overlapping

domain decomposition method for d-dimensional elliptic PDEs, which relies on a space-

�lling curve approach to create equally sized subproblems and to determine an overlap

based on the one-dimensional ordering of the space-�lling curve. Moreover we employed

agglomeration and a purely algebraic Galerkin discretization in the construction of the

coarse problem to avoid d-dimensional geometric information. This resulted in a parallel

subspace correction iteration and an associated parallel preconditioner for the conjugate

gradient method which can be employed for any value of P and in any dimension d.

It exhibits the same asymptotic convergence rate as a conventional geometric domain

decomposition method, i.e. κ = O(1 + H
δ ) with δ = ch, compare [TW04, Theorem 3.13]

and (4.30), but allows for more �exibility and simplicity with respect to N , P and d due

to the space-�lling curve construction. Moreover it turned out that its balanced version

according to (2.7), which, compared to the plain version, involves two additional matrix-

vector-multiplications, three additional vector-vector-additions and one additional solve of

the coarse scale problem, was clearly superior and is therefore the recommended approach.

To gain fault-tolerance we stored on each processor, besides the data of the associated

subproblem, a copy of the coarse problem and also the data of a �xed number of (partial)

neighboring subproblems with respect to the one-dimensional ordering of the subproblems

induced by the space-�lling curve. This redundancy then allows to restore necessary data

if processors fail during the computation and to therefore restore convergence in the case

of faults. We showed theoretically and practically that the convergence rate of such a

linear iteration method for a moderate number of faults stays approximately the same in

expectation and only its order constant deteriorates slightly due to the faults. This was

also observed in practice for the associated preconditioned conjugate gradient method.
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Moreover weak scaling could be achieved in any situation. Altogether, we obtained a fault-

tolerant, parallel and e�cient domain decomposition method based on space-�lling curves,

which is especially suited for higher-dimensional elliptic problems.

Note here that we employed an exact subdomain solver in our domain decomposition

method. It can be replaced by a faster but iterative and thus somewhat inexact method,

like for example algebraic multigrid. This needs to be explored in more detail in the future.

Moreover our algorithmic approach possesses a range of parameters, which in�uence each

other and need to be chosen properly. The determination of an optimal set of parameters is

a di�cult task. Nevertheless some general guidelines could be derived: One key parameter

is the number of degrees of freedom for the coarse grid. Here it became clear that the

coarse grid size should be chosen relative to the �ne grid size. The distance between the

two levels controls the balance between the required number of iterations on the one hand

and the cost to solve the coarse system in each iteration on the other hand. Fortunately,

as the dimension increases, the size of the coarse grid can be decreased, which reduces

the cost for each iteration. Furthermore, as seen from Lemma 2.1, it is sensible to choose

another key parameter of our scheme, namely the overlap γ, as an integer multiple of 1
2 ,

i.e. γ = 1
2n, n ∈ N+. This way, the di�erent possible scalings via Di and ωi coincide and

boil down to a constant scaling with 1/(2γ + 1) and symmetry of the associated operator

is guaranteed, at least for the Laplacian and di�usion operators with constant coe�cients.

Furthermore the choice of γ as an integer multiple of 1
2 is also natural for a uniform

redundancy of stored data, which is advantageous for the recovery and reconstruction in

the case of faults. Moreover we learned from our convergence studies and from our fault

tolerance experiments that γ can be chosen to be quite small for any real world setting.

For example, Figures 21 and 26 showed that γ = 0.5 or γ = 1 still produce excellent

convergence for both considered types of solvers for fault rates of up to 2% and 5% per

iteration/cycle, respectively. These fault rates are indeed way beyond those of any existing

high performance compute system, where merely one or very few faults currently occur

on average each day. They are also beyond the expected fault rates for future exascale

compute systems. For practical purposes this means that we will see no deterioration of

the convergence rates at all, as long as the data recovery process is executed properly. This

is guaranteed due to the overlap and the redundant parallel storage of current data and

local parts of the iterate which allows the algorithm to recover after a fault occurs. In this

respect, iterative methods are fault-forgiving and the iteration can continue dynamically.

Moreover our aim was to derive a fault-tolerant parallel domain decomposition solver, which

can be later employed for the subproblems in the combination method. There we encounter

short run times, since the numbers of degrees of freedom of all the arising subproblems are

similar to the one-dimensional case, i.e. of size ≈ 2L only, compare (2.9). But this is good

news: The fault-repair mechanism is rarely needed for real-life fault probabilities within

the short run times of our solver for the small subproblems arising in the combination

method.
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We next intend to employ our domain decomposition method as the inner, parallel and

fault-tolerant solver for the subproblems arising in the sparse grid combination method.

Let us recall the sparse grid combination formula from (2.9), i.e.

(5.33) u(x) ≈ u(c)L (x) :=
d−1∑
i=0

(−1)i

(
d− 1

i

) ∑
|l|1=L+(d−1)−i

ul(x).

Here the di�erent subproblems can be computed in parallel independently of each other.

Moreover, for layer i, we have (
L+ d− 2− i

d− 1

)
di�erent subproblems, where each subproblem has approximately the same numberN(d, i) =∏d
j=1(2

lj + 1) = O(2L+d−1−i) of degrees of freedom. We now employ an additional step of

parallelization by means of the domain decomposition treatment of each of these subprob-

lems. To this end, we use

(5.34) P := P̂ · 2d−1−i

subdomains and thus processors for each subproblem on layer i. This choice of a d- and i-

dependent P via a universal P̂ in (5.34) results in a subdomain size of roughly N(d, i)/P =

2L+d−1−i/P = 2L+d−1−i/(P̂ ·2d−1−i) = 2L/P̂ , which is independent of d and i. Then, in our

elliptic situation and except for the coarse scale problems, only small subdomain problems

appear. But, depending on d, L and P̂ , there can be millions of these subdomains for the

combination method. To be precise, the amount of �ne level subdomains for the overall set

of subproblems in the combination method (2.9) is

P̂

(d− 1)!

d−1∑
k=0

(
2d−1−k

d−1∏
i=1

(L+ d− 1− k − i)

)
,

where each occurring subdomain problem has approximately equal size 2L/P̂ .

As an example, consider the goal of an overall discretization error of 10−12. Then h ≈ 10−6

and L = 20. Moreover we choose P̂ = 210. For this case, Table 1 gives the number of subdo-

main problems arising in the combination method if our domain decomposition approach

is employed with P given by (5.34) for each subproblem of layer i.

d = 1 2 3 4 5 6

1 · P̂ 59 · P̂ 1.391 · P̂ 20.889 · P̂ 237.706 · P̂ 1.754.744 · P̂

Table 1. Overall number of subdomain problems, each one of size 2L/P̂ ,

in the combination method with domain decomposition of each subproblem.

We see that we obtain a large number of subdomain problems to be solved in a doubly

parallel way (one level of parallelism stems from the combination formula itself, the other

stems from the domain decomposition of each subproblem of the combination method
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into subdomain problems). This will allow the use of extremely large parallel compute

systems, i.e. the larger d is the larger the parallel system is that can be employed in a

meaningful way. Furthermore the use of the fault-tolerant domain decomposition method

as the inner solver for the subproblems in the combination method results in a fault-

tolerant and parallel solver for the combination method in a natural way. There, the fault-

repair mechanism is provided on the �ne domain decomposition level and not just on

the coarse subproblem level of the combination method, as it was previously done in

[HHLS14, PBG14, ASHH16, OHHBP17, LOP20].

For our simple elliptic Poisson problem we encounter very short computing times in the 10

second range for each of the subproblems arising in the combination method, and therefore

a fault occurs extremely rarely during its run time. The true value of our fault-tolerant

approach will rather become apparent in time-dependent parabolic problems with long

time horizons and long computation times, where our elliptic DDM-solver is employed in

each time step of an implicit time-discretization method within the combination method.

This however is future work.
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