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Abstract

We introduce an approach for damage detection in gearboxes based on the analysis of sensor
data with the multi-resolution dynamic mode decomposition (mrDMD). The application focus is
the condition monitoring of wind turbine gearboxes under varying load conditions, in particular
irregular and stochastic wind fluctuations. We analyze data stemming from a simulated vibration
response of a simple nonlinear gearbox model in a healthy and damaged scenario and under different
wind conditions. With mrDMD applied on time-delay snapshots of the sensor data, we can extract
components in these vibration signals that highlight features related to damage and enable its
identification. A comparison with Fourier analysis and Empirical Mode Decomposition shows the
advantages of the proposed mrDMD-based data analysis approach for early damage detection.

1 Introduction

The condition monitoring of wind turbine gearboxes presents a challenging scenario that is often
not amenable to classical data analysis techniques due to the existing environmental conditions.
But, wind turbines are among the main sources of renewable energy (Redl et al., 2021) nowadays
and gearbox-related problems are among those issues with the highest amount of downtime hours
per failure (Dao et al., 2019). Therefore, damage detection in gearboxes is a significant aspect for
keeping wind energy production high. To cope with the difficulties in the sensor signals, arising due
to the prevailing wind fluctuations, we propose an approach for damage detection in gearboxes based
on the analysis of sensor data with the multi-resolution dynamic mode decomposition (mrDMD).

Sensor data analysis is widely used to determine the health condition of mechanical devices.
Analyzing the data generated by sensors installed on these devices, it is possible to continually
monitor their integrity and detect anomalous behaviours, damages, and faults when they arise.
Optimizing the monitoring process is of great interest because detecting damages in their early
stage empowers companies to prevent more severe problems that could lead to a significant loss in
terms of energy production and money.

Damage detection in gearbox vibration signals is a relatively easy task in steady environmental
conditions, as for example in a laboratory, see Doebling et al. (1996) for an overview of estab-
lished methods. Unfortunately, when we deal with wind turbines, steady environmental conditions
represent an unrealistic scenario that does not take into account weather condition, temperature
variation, and, most importantly, wind turbulence, all of which results in varying load conditions on
the blades of the wind turbine. These factors strongly affect gearbox vibration signals, introducing
a stochastic component that makes them non-deterministic and far from smooth. In this scenario
damage detection is a much more difficult task since the data analysis strategies have not only to
deal with signal anomalies induced by damage, but also by wind turbulence.

In this work, we consider the gearbox model and the scenario developed in Kahraman and Singh
(1991) and further refined in Antoniadou et al. (2015). The numerically produced signals include
a stochastic component simulating the varying load condition caused by wind turbulence. Several
kinds of damage can appear in gearboxes, here we focus on the crack of a gear’s tooth. The crack
of a tooth in a gearbox can lead to a chain reaction that can damage other teeth and cause the
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malfunctioning, or even the break down of the wind turbine (Wang, 2018). Thus, detecting the
crack of a tooth means detecting the damage in its early stage, which could prevent the development
of more severe problems.

Historically speaking, fault detection in gearboxes was first performed using methods that fo-
cus on analyzing the spectral properties of sensor signals (Kumar et al., 2021). However, in the
scenario we consider, these methods are strongly challenged by weather conditions, such as wind
turbulence and temperature variation, which induce a stochastic component to the signals stud-
ied, changing their spectra non-deterministically over time. This stochastic change of the signals’
spectral properties strongly affects the effectiveness and reliability of spectral methods (Kumar
et al., 2021). Empirical mode decomposition (EMD) (Huang et al., 1998) was proposed as an al-
ternative to overcome the issues arising when studying spectral characteristics of signals. In the
case of a damaged gearbox, EMD separates the time-domain signals in several modes that may
contain damage features and may be used to detect faults. Unfortunately, EMD is affected by the
so called ”mode mixing problem”. The problem consists of the fact that the modes produced by
EMD either contain information of the signal relative to widely disparate time-scales or similar
time-scale information resides in different modes (Wu and Huang, 2009; Xu et al., 2016). The main
implications are that the physical meaning of each mode is unclear and that a proper interpretation
of the information they contain is not a trivial task. This does not mean that such modes cannot
be studied or selected according to some specific strategy in order to extract meaningful insights
about the data, it rather means that there is no principled way to do that.

In this work we propose multi-resolution dynamic mode decomposition (mrDMD) (Kutz et al.,
2016), a variation of dynamic mode decomposition (DMD) (Schmid, 2010), as an alternative to
EMD that incorporates all its advantages and overcomes the mode mixing problem as well. mrDMD
is a data-driven algorithm that has been used to perform different tasks, such as: spatio-temporal
filtering of video or multi-scale separation of complex weather systems (Kutz et al., 2016). We
propose it as a novel approach to detect the crack of a tooth in a wind turbine gearbox by analyzing
gearbox vibration signals generated under varying load conditions. mrDMD is able to decompose
the signal in spatio-temporal modes that capture its geometrical characteristics in the time-domain
at different time-scales. The difference to EMD is that it associates to each of its modes a complex
number that could either represent a frequency or an energy content, according to the point of
view one wants to consider, and thanks to this additional information high/low-frequency or energy
content separation of the modes is possible. On the one hand, low-frequency modes represent those
structures that vary slowly over time, which therefore are not affected by the non-deterministic
variation caused by wind turbulence that mainly influences the signal at smaller time-scales. On
the other hand, high-frequency modes represent those structures that evolve at higher frequencies
and are strongly affected by wind turbulence and sudden changes in the gear stiffness caused by
the cracked tooth we want to identify. We will see that computing the instantaneous amplitude of
high-frequency modes, via the Hilbert Transform (HT), will enable us to easily identify anomalies
arising in vibration signals from the crack of a gear’s tooth.

We aim to show the potential of mrDMD as a fault detection method, in a context in which
the analyzed vibration signals are affected by stochastic perturbations. We study the proposed
approach on simulated signals representing the vibration response of a simple gearbox model with
two spur gears.

The next sections are organized as follows: Section 2 presents an overview of related work on the
topic of early damage detection in wind turbine gearboxes under varying load condition. Section
3 introduces our mrDMD based strategy for tooth damage identification. In Section 4 the gearbox
model is introduced and numerical simulations of acceleration signals representing the vibration
response of the modelled gearbox are considered. Finally, Section 5 demonstrates the performance
of our method and shows the issues experienced in this context by the fast Fourier transform as a
spectral method and by an EMD-based approach.

2 Related work

Generally speaking, condition monitoring methods consist of damage detection methods, with the
difference that one knows a priori about the frequency bands related to damage for the different
monitored components. Reviews of methods used for damage detection in wind turbines can be
found in Doebling et al. (1996); Kumar et al. (2021); Salameh et al. (2018); Sharma (2021). The
most classical techniques used for condition monitoring, and more in general for damage detection,
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mainly focus on analyzing the spectral characteristics of vibration signals, such as the spectral
kurtosis (Antoni, 2006), Fourier analysis and modulation sidebands (Inalpolat and Kahraman,
2010) and Cepstrum analysis (Badaoui et al., 2004). These methods have proven their capab-
ility to provide good results in identifying damages under simplified conditions, such as steady
loading of the gearboxes. However, when considering time-varying load conditions, the spectral
characteristics of gearbox vibration signals change non-deterministically with time. This stochastic
behaviour can not be handled using Fourier analysis as the Fourier transform expands a signal as
a linear combination of wave functions with constant frequency over time. To overcome this issue,
many time-frequency methods have been employed in damage detection, such as: the Wigner–Ville
distribution (Staszewski et al., 1997), the Vold–Kalman filter (Feng et al., 2019), wavelet ana-
lysis (Staszewski and Tomlinson, 1994) and cyclostationary analysis (Antoni and Randall, 2002;
Xin et al., 2020). Probably, the most popular and successful of these methods is wavelet ana-
lysis (Hu et al., 2018; Peng and Chu, 2004). Nonetheless, in the context we are considering, such a
method has the disadvantage of relying on a fixed set of basis functions. This fact has a detrimental
effect on its effectiveness and reliability in processing signals affected by perturbations of stochastic
nature and that have spectral properties that change randomly with time. An additional approach
to perform fault detection is given by entropy analysis (Sharma and Parey, 2016). However, many
entropy features are available for different types of faults, and it is not clear what are the right
features for a given fault. Moreover, under varying load condition, the stochastic behaviour of
the signal affects the performance of entropies which may show insignificant results, hence making
them non-reliable (Sharma, 2021; Sharma and Parey, 2016).

Other strategies for damage detection, which try to overcome the problems experienced with
entropy analysis and time-frequency methods, are based on the empirical mode decomposition
(EMD) (Huang et al., 1998). The main advantage of using EMD with respect to entropy analysis
and time-frequency methods is that it decomposes the signal into several components, or modes,
which may contain meaningful information related to damage. After decomposing the vibration
signal, the instantaneous frequency and amplitude of each component can be estimated, most
commonly by applying the Hilbert Transform (HT), in order to extract features of the signal that
allow a better determination of whether there is damage or not. The decomposition’s procedure is
based on local geometric characteristics of the signal in the time-domain, and it acts at different
time-scales. It is completely data driven and there is no need of an a priori choice of a set of functions
or a mother wavelet. Moreover, EMD-based methods for machinery damage identification do not
rely on any kind of a priori chosen window function or any assumption about the regularity of
the signal for any time-span (Antoniadou et al., 2013; Feng et al., 2012; Junsheng et al., 2007).
As a consequence of that, these methods lead, in some cases, to a better estimation of even small
variations in the signals. In general, EMD-based methods have the promise of high-quality results
at a low computational cost. In Antoniadou et al. (2015) an EMD-based strategy is developed to
identify the crack of a gear’s tooth in a scenario that, similar to this work, takes into account the
effects of the wind turbulence.

Unfortunately, EMD-based strategies have some limitations too. The major problem is the
mode mixing problem studied in Wu and Huang (2009) and further analyzed in the wind turbine
damage detection context in Antoniadou et al. (2015). The mode mixing problem consists in the
fact that each of the modes obtained after the signal’s decomposition, either contains information
of the signal relative to widely disparate time-scales, or similar time-scale information resides in
different modes (Wu and Huang, 2009; Xu et al., 2016). In recent years work has been carried
out to provide a primary theoretical framework for the development of EMD. Despite the steps
forward that give us a theoretical understanding of the algorithm when it is employed in a simplified
scenario, e.g., simple signals with only a pure oscillation component (Ge et al., 2018), there is still no
full mathematical justification for the general application of the EMD procedure, as it was already
pointed out in Antoniadou et al. (2015). This further affects the interpretability and reliability of
the method.

In this work we propose mrDMD as an alternative to EMD. An mrDMD-based procedure for
damage detection in wind turbines was already developed in Dang et al. (2018). However, in Dang
et al. (2018), the authors focused on the rolling bearing fault rather than the crack of a tooth, and
they did not consider turbulent wind conditions as we do here. Moreover, there is a fundamental
difference between the method we develop and the method they proposed: they analyze the spectral
characteristics of the signals’ structures associated with the slow modes computed via mrDMD,
while here, we focus on studying the information contained in high-frequency modes in their time-
domain, avoiding all the issues related to examining the spectra of signals generated under turbulent
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wind conditions. This difference between the two approaches can be related to the different nature
of the damages analyzed. On the one hand, we have the crack of a tooth that primarily affects gear
mesh frequency and high order harmonics of the signals (Antoniadou et al., 2015; del Rincon et al.,
2012). On the other hand, the rolling bearing fault affects different frequency bands, including the
low-frequencies (Hu et al., 2019).

3 Multi-resolution dynamic mode decomposition for dam-
age detection

The DMD algorithm was developed in the fluid dynamic community for the purpose of feature
extraction (Schmid, 2010). Since its creation numerous variants of the original algorithm have been
developed, and they have been applied in several contexts (Arbabi and Mezić, 2017; Clainche and
Vega, 2017; Erichson et al., 2016; Hemati et al., 2017; Matsumoto and Indinger, 2017). Furthermore,
DMD has a solid theoretical interpretation through Koopman operator theory (Korda and Mezić,
2017), which makes the method understandable and interpretable. We now introduce the basics of
DMD.

3.1 Dynamic mode decomposition

Let yi ∈ Rn be a column vector containing data from sensors, evaluated at n different points, at
time step i. Assuming we have vectors representing T + 1 consecutive time steps, we arrange them
in two matrices:

Y = [y0, y1, ..., yT−1] and Ȳ = [y1, y2, ..., yT ]. (1)

These matrices are the so called snapshots matrices and each one of their columns represents sensor
values at a certain time step. The columns are arranged chronologically and those of Ȳ are shifted
one time step forward in the future with respect to those of Y .

Dynamic mode decomposition relies on the assumption that there exists a matrix A ∈ Rn,n
such that

yi+1 = Ayi for i = 0, 1, ..., T − 1, (2)

which written in a matrix form yields
Ȳ = AY. (3)

The algorithm’s goal is to find the matrix A that best maps yi into yi+1, for i = 0, 1, ..., T − 1, by
solving the following minimization problem in the Frobenius norm

min
A
‖Ȳ −AY ‖F . (4)

Thus, the matrix A, solution of (4), is the matrix that best advances the sensor values in time,
therefore best maps Y into Ȳ . The solution of the minimization problem (4) is given by the matrix

A = Ȳ Y †, (5)

where Y † is the Moore-Penrose inverse of the matrix Y . However, for computational reasons connec-
ted to the data’s dimension, computing the matrix A using Formula (5) becomes computationally
difficult and unstable (Tu et al., 2014). Instead, a low-rank approximation Ã of A is computed.
The eigenvalues and eigenvectors of Ã are used to obtain an approximation of the eigenvalues and
eigenvectors of A, called DMD eigenvalues and DMD modes, respectively.

Algorithm 1 shows the main numerical steps of the DMD. The first important observation is that
the temporal evolution of the analyzed signal can be reconstructed through the linear combination
of the DMD modes, as it can be seen in (6). Thus, DMD modes encode meaningful spatio-
temporal information related to the signals. Furthermore, we can associate DMD modes with a
concept of speed by looking at the DMD eigenvalues associated with them. Given two DMD modes
φi, φj , i 6= j with associated DMD eigenvalues λi, λj , respectively, we say that φi is faster than φj
(or equivalently φj is slower than φi) if |exp(ωi)| > |exp(ωj)|. Defined in (7), the ωi are frequencies
associated with the DMD eigenvalues λi. The DMD eigenvalues and their associated frequencies
are complex numbers. From (6), it is clear that the real part of the DMD eigenvalues defines the
growth/decay rate in time of the DMD modes associated with them, while the imaginary part
determines the oscillation frequency for each mode (Tu et al., 2014). The physical interpretation
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Algorithm 1 Dynamic Mode Decomposition (DMD)

1: Arrange the data into matrices Ȳ and Y as in (1).
2: Compute the reduced singular value decomposition (SVD) of Y , i.e., Y ≈ UrΣrV

∗
r . Here Ur, Σr

and V ∗r are the rank-r truncation of the matrices U, Σ and V ∗ computed via SVD and such that
Y = UΣV ∗. Further, V ∗ is the conjugate transpose of V and r is a parameter to be chosen.

3: Construct the matrix Ã := U∗r Ȳ VrΣ
−1
r .

4: Compute eigenvalues and eigenvectors of Ã, solving ÃW = ΛW . With Λ a diagonal matrix of
DMD eigenvalues and W a matrix where the columns are eigenvectors of Ã.

5: The DMD modes corresponding to DMD eigenvalues Λ are given by Φ = Ȳ VrΣ
−1
r W .

6: The reconstruction of the dynamics is given by the linear evolution

ŷi = Φ diag(exp(ωi))b i = 0, ..., T, (6)

where b = Φ†y0 and ŷi is the reconstruction of the snapshot yi. Moreover, ω is the vector containing
the frequency values associated with each DMD mode and obtained via the DMD eigenvalues λk:

ωk = log(λk)/∆t. (7)

Here, ∆t represents the time difference between two consecutive measurements.

of slow and fast modes changes accordingly with the context. In our setting, slow modes represent
those structures that vary slowly over time, therefore are not affected by local variations of the
signal. On the other hand, fast modes represent those structures that travel at higher frequencies,
which are strongly affected by wind turbulence and sudden changes in mesh stiffness caused by the
damage we want to identify.

DMD has provided interesting results in a large variety of fields (Avila and Mezić, 2020; Mann
and Kutz, 2016; Proctor and Eckhoff, 2015; Schmid et al., 2010). However, it has its limitations,
where the one that affects our analysis goal the most is that it operates at a single time-resolution,
i.e., DMD modes and eigenvalues fully characterize the signal at all times, as shown in (6). Thus,
DMD modes incorporate the most relevant spatial properties that are present in the signal over the
entire time-span we consider. The problem is that we want to identify anomalies in signals that
are locally affected by stochastic perturbations, which implies that their spatial properties can be
very dissimilar at different time-ranges and vary non-deterministically with time. Thus, the single
time resolution of DMD algorithm is not sufficient in our scenario.

3.2 Multi-resolution dynamic mode decomposition

Multi-resolution dynamic mode decomposition (mrDMD) (Kutz et al., 2016) is a variation of DMD,
and it produces modes that extract spatial features at different time-scales. mrDMD basically
consists of iteratively applying the DMD algorithm at different time-ranges. To be more precise,
it starts by analyzing the largest sampling window, computes DMD modes, identifies the slow
ones and extracts them. After that, it reduces the duration of the observation window by half,
determines again slower modes in each half and extracts those modes from the residual signal.
mrDMD iterates this process until the desired resolution or level of decomposition is reached. The
final residual signal will be composed of fast modes representing spatial structures that characterize
the signal locally, with a time-resolution determined by the number of iterations performed in the
mrDMD algorithm. We now shortly recapture the formulation of mrDMD from Kutz et al. (2016),
where further details can be found.

In its first iteration, mrDMD reconstructs the time-domain signal as follows

ŷi =
M∑

k=1

bkφkexp(ωki) =

m1∑

k=1

bkφ
(1)
k exp(ωki)

︸ ︷︷ ︸
slow modes

+
M∑

k=m1+1

bkφ
(1)
k exp(ωki)

︸ ︷︷ ︸
fast modes

, (8)

where φ
(1)
k represent the modes computed using the entire set of T + 1 snapshots, M is the total

number of modes and m1 the number of slow modes at the first iteration level. The first sum in the
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Figure 1: Illustration of the mrDMD hierarchy. Represented are the modes φ
(l,j)
k and their position

in the decomposition structure. The triplet of integer values l, j, and k uniquely expresses the level,
bin, and mode of the decomposition

right-hand side of (8) represents the slow-modes dynamics, whereas the second sum is everything
else. At the second iteration level, DMD is now performed after a split of the second sum

Y(T+1)/2 = Y
(1)
(T+1)/2 + Y

(2)
(T+1)/2, (9)

where the columns of the matrices Y
(1)
(T+1)/2, Y

(2)
(T+1)/2 represent the fast modes reconstruction of

the first (T + 1)/2 and last (T + 1)/2 snapshots, respectively. The iteration process continues
by recursively removing slow frequency components computed separately on each half of the snap-
shots. One builds the new matrices Y(T+1)/2, Y(T+1)/4, Y(T+1)/8, ... until a suitable multi-resolution
decomposition has been achieved.

The representation (8) can be made more precise. Specifically, one must account for the number
of levels (L) of the decomposition, the number of time bins (J) for each level, and the number of
modes retained at each level (mL). Thus, the solution is parametrized by the following three indices

l = 1, 2, ..., L : number of decomposition levels, (10a)

j = 1, 2, ..., J : number of time bins per level(J = 2(l−1)), (10b)

k = 1, 2, ...,mL : number of modes extracted at level L. (10c)

To formally determine the reconstructed snapshots ŷi, the following indicator function is defined:

f l,j(i) :=

{
1, for i ∈ [tlj , t

l
j+1]

0, elsewhere

}
, with j = 1, 2, ..., J and J = 2(l−1), (11)

where tlj , t
l
j+1 ∈ {0, 1, ..., T+1} determine the interval of the j-th time bin at the l-th decomposition

level. The above indicator function is only nonzero in the interval, or time bin, associated with the
value of j. The three indices and the indicator function in (11) are used to formally write equation
(8) as

ŷi =

L∑

l=1

J∑

j=1

mL∑

k=1

f (l,j)(i)b
(l,j)
k φ

(l,j)
k exp

(
ω

(l,j)
k i

)
. (12)

This concise definition of the mrDMD solution includes the information on the level, time bin
location, and the number of modes extracted. Fig. 1 demonstrates mrDMD in terms of (12). In
particular, each mode is represented in its respective time bin and level.

Choice of parameters The parameters in (10) play a relevant role in determining the ef-
fectiveness of the mrDMD algorithm in a specific application. Notice that, only the number of
decomposition levels L and the slow modes to consider at each level must be chosen, because if L
is determined the number of time bins J is known.
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So far, no principled method for the choice of parameters has been formulated to our knowledge.
We follow Kutz et al. (2016) and define general guidelines. As a general rule of thumb to choose the
parameter L we have that the higher the number of decomposition levels, the higher the frequency
content represented in the modes computed at the last level. Thus, the number of decomposition
levels L must be chosen according to the frequency bands we are interested in. For example, to
only extract low-frequency structures, we will select a small L. On the contrary, we will compute
a higher number of decomposition levels to extract high-frequency structures in the signal. Notice
that, in condition monitoring, one typically knows a priori what the frequency bands affected by
damage are, and this information is exploited to choose the parameter L correctly. Observe also
that, the higher the number of available snapshots, the more decomposition levels we can compute.
Specifically, according to (10b), at the L-th decomposition level there are 2L−1 time bins. Each time
bin consists of at least one snapshot. Thus, to reach the L-th decomposition level, it is necessary
to have at least 2L−1 snapshots. Furthermore, the frequency content of the modes computed at
the last decomposition level strictly depends on the snapshots’ sampling rate. For instance, if the
snapshots sampling rate is ∆t, the information captured from the modes computed at the last
decomposition level can only encode information of the signals’ structures related to frequencies
with periods higher than ∆t. Intuitively, this is because we can not extract information about
frequencies that are not represented in the data.

Regarding the strategy to select the slow modes at each time bin we can consider a simple
threshold metric. Concretely, we define the threshold to choose eigenvalues (and associated DMD
modes) whose temporal behaviour allows for a single wavelength or less to fit into the sampling
window. As pointed out in Kutz et al. (2016), given a specific application there could be more
optimal threshold values that could be derived from the knowledge of the system analyzed. For a
more detailed analysis on how the choice of these parameters affects the analysis performed by the
mrDMD see Kutz et al. (2016).

3.3 mrDMD-based approach for damage detection

We now describe a mrDMD-based strategy to extract features that highlight the presence of a
cracked tooth in a gearbox by analyzing signals representing its vibration response.

First step

Given snapshots yi ∈ R1 for i = 0, ..., T , representing the temporal evolution of a sensor signal, the
first step consists of constructing time-delay snapshots as follows

ỹi = [yi, ..., yi+d], (13)

and arranging them into matrices

Ȳ = [ỹ1, ..., ỹm] and Y = [ỹ0, ..., ỹm−1]. (14)

Here d is the length of the delay, and it has to be chosen a priori, and m has to be chosen
consequently according to the data availability.

Two reasons explain why we consider the time-delay embedding. Both are connected to the
fact that the spatial resolution of the signals we study is much lower than the temporal resolution,
i.e., we have several one-dimensional snapshots yi ∈ R1. Firstly, this disparity in spatio-temporal
resolution, due to numerical implications, strongly affects the capability of DMD to characterize
the signal effectively. Secondly, we have seen and discussed that DMD modes capture spatial
properties, but we are considering signals that have only one dimension in space in this application.
Therefore, DMD modes can not provide us with any meaningful information about data geometry
over a certain time-span by simply considering the one-dimensional snapshots’ temporal evolution.
Thus, using time-delay embedding, we allow DMD modes to incorporate geometrical characteristics
of the signal in a specific time-range, with the length given by the length of the delay, providing us
with meaningful information that we can use to detect anomalies. Time-delay embedding is often
applied when DMD-based methods are used to process univariate signals (Brunton et al., 2017;
Clainche and Vega, 2018; Tirunagari et al., 2017).
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Second step

The second step consists of applying the mrDMD algorithm to the time-delay snapshots to obtain
the slow-modes reconstruction of the signal in the time-delay coordinates domain. The reconstruc-
tion of the time-delay snapshot ỹi at the i-th time step is given by (12) and is represented by ŷi.
Since the information related to damage is assumed to be in high-frequency structures, as we will
see in the next section, the general guideline is to choose the parameter L large enough to enable
the modes computed at the last decomposition level to represent the frequencies of interest.

Third step

In the third and final step, we want to obtain information about the signal’s geometrical structures
related to perturbations caused by the damage we are considering, which is assumed to affect high
frequencies of the signal. To do that, we first pick a time-range by selecting a time-delay snapshot,
i.e. the i-th snapshot contains the evolution of the signal from time step i to time step i + d.
After that, we subtract from the original time-delay snapshot, ỹi, the slow modes reconstruction,
ŷi, obtained using the mrDMD algorithm. After the subtraction, we are left with a residual, i.e.,

Ri = ỹi − ŷi. (15)

The residual Ri gives us the information contained in the fastest modes computed at the deepest
decomposition level for each time bin. In the residual, anomalies related to damage, which are in
the time-range we are considering, are highlighted making it possible to visually determine whether
there is a cracked tooth or not.

Algorithm 2 summarizes the main steps of the numerical procedure we just presented.

Algorithm 2 mrDMD-based approach for damage detection

Input snapshots yi ∈ R1 for i = 0, ..., T , delay’s length d, number of decomposition levels L.
Output Residuals Ri.

1: Construct time-delay snapshots (13) and arrange them into matrices (14)
2: Apply the mrDMD algorithm to the time-delay snapshots to obtain the slow-modes reconstruction

of the signal in the time-delay coordinates domain. The reconstruction of the time-delay snapshot
ỹi at the i-th time step is represented by ŷi.

3: Compute the residuals Ri = ỹi − ŷi.

3.4 Computational cost

Algorithm 2 clearly shows that the computational cost of the proposed procedure is determined by
the computational cost of the mrDMD algorithm performed in the second step, as the other steps
consist of storing data and subtracting vectors. From work carried out in Kutz et al. (2016), we
know that computational efforts required by the mrDMD are dominated by the SVD of the matrix
Y in the second step of Algorithm 1 and by the number of decomposition levels L. In particular,
if at a given decomposition level and time bin we have T time-delay snapshots with delay’s length
d, the computational cost of the SVD is Q = O(T 2d + d3) floating point operations. Since in the
mrDMD procedure the SVD is performed at each time bin of each decomposition level, we have
that the overall cost of the mrDMD is O(2LQ). See Kutz et al. (2016) for more details.

4 Gearbox model

Data representing the response of gearboxes in presence of damages, such as cracks, can be either
experimental using vibration measurements or numerical using simulation models. A lot of work has
been conducted to analyze experimentally measured vibration signals in order to identify damages
in vibrating structures (Antoniadou et al., 2015; Mohamed et al., 2018). The main advantage of
experimental data is that they reflect the behaviour of a real system. However, such data are
expensive to obtain in terms of time and money, especially when repeated measurements have
to be performed for different damage scenarios (Mohamed et al., 2018). Dynamic modelling and
simulation of gearbox vibration signals can overcome these issues and can be a good alternative for
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studying the dynamic behaviour of a gear system more simply and economically, in particular for
our goal of developing a data analysis approach for early damage detection. Dynamic modelling
and simulation also have the advantage of increasing the understanding of the system’s behaviour
before the initiation of a measurement campaign.

4.1 Theoretical setting and mathematical model

We consider a generic geared-rotor bearing system consisting of a rigid gearbox containing a spur
gear pair mounted on flexible shafts, supported by rolling element bearings. Such a model has
been previously used in other works (Antoniadou et al., 2015; Kahraman and Singh, 1991) and its
reliability has been shown in Kahraman and Singh (1991). We now introduce it briefly.

The vibration response of the gearbox model we consider can be modelled by the following
dimensionless equation of motion (Antoniadou et al., 2015):

ẍ(t) + 2zẋ(t) +K(t)B(x(t)) = Fm + Fte(t) + Fvar(t). (16)

The coordinate x(t) represents the difference between the dynamic transmission error and the
static transmission error. The quantity z is a dimensionless linear viscous dumping parameter. Fm
represents the mean force excitations, while Fte and Fvar pertain to internal excitations related to
the static transmission error and external excitations related to wind turbulence, respectively. The
quantity Fvar is derived from the fluctuating component of external input torque that simulates
the wind turbulence’s effect. The backlash is simulated by the function

B(x(t)) :=





x(t)− 1, for x(t) ≥ 1
0, for − 1 < x(t) < 1
x(t) + 1, for x(t) ≤ −1



 , (17)

while the time varying mesh stiffness is incorporated via the periodic function K(t). For a more
detailed explanation of the specific structure of the functions mentioned and, more in general,
for a deeper understanding of the gearbox model, see Appendix A and Antoniadou et al. (2015);
Kahraman and Singh (1991). Note that that this is a very simple wind turbine gearbox model, e.g.
it ignores the bearing vibrations and wind turbine gearboxes usually consist of three gear stages
with one or two being planetary stages. According to Antoniadou et al. (2015), it is sufficient
for studies such as ours, since ”more gear stages in a vibration signal would mean more frequency
components at different frequency bands. Damage at a specific gear stage would therefore be shown
in the vibration signal associated with the meshing frequency and its harmonics of the gear stage
examined.” What is important in Antoniadou et al. (2015) and in our study, is to investigate the
influence of the varying load conditions on the vibration signals, which can be achieved.

4.2 Including damage and wind turbulence.

Damage simulation The damage we consider in this work is the crack of a gear’s tooth that,
like other types of tooth damage, causes a reduction in the gear’s stiffness. This phenomenon can
be represented by a periodic magnitude change in the mesh stiffness function K(t) (Stander and
Heyns, 2005). Thus, an amplitude change is periodically applied to the mesh stiffness function to
simulate the cracked tooth. In the simulations used in this work, the crack of a gear’s tooth was
modelled by decreasing the dimensionless mesh stiffness function by 13% of its nominal stiffness
for 5 degrees of the shaft rotation, periodically, for every rotation of the damaged gear. Similar
modelling was used in previous studies, see Antoniadou et al. (2015); Mohamed et al. (2018) for
a more detailed explanation. Recapturing results reported in Antoniadou et al. (2015), we notice
that in the model we consider, one should expect damage features to be evident at high-frequency
components of the simulation signals because it is in the harmonics of the meshing frequency of
the damaged gear pair that damage features occur. This is a phenomenon that was also observed
in the experimental data used in Antoniadou et al. (2015).

Wind turbulence’s simulation The representation of the wind as a smooth flow is not
realistic because it does not take into account all its irregular and stochastic fluctuations. Due to
wind turbulence, wind turbines experience transient and time-varying load conditions. In order
to build a realistic model, we need to be able to consider and simulate these phenomena. To do
that, it is possible to use a series of wind turbine aerodynamics codes, developed by the National
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Figure 2: Acceleration signal of a simulation under a steady load condition
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Figure 3: Acceleration signal of a simulation under varying load condition with wind speed 5 m/s

Renewable Energy Laboratory (NREL, US) (Bir, 2005). Specifically, the FAST design code has
been used to simulate the turbulent wind conditions, associated with wind speed of 5 m/s and 13
m/s. See Appendix A for a deeper understanding of how the different wind conditions have been
simulated.

4.3 Numerical data

The vibration response’s simulation of the gearbox model we considered in the previous section
is given by numerical approximation of the function ẍ(t) obtained from the numerical solution of
the dimensionless equation of motion (16) (Antoniadou et al., 2015; Kahraman and Singh, 1991;
Mohamed et al., 2018). The numerical solution of equation (16) has been computed with the
MATLAB ode45 differential equation solver, with a fixed time step of 0.015. We originally intended
to reproduce and use the simulated scenario as given in Antoniadou et al. (2015). Unfortunately,
the data are not publicly available and could not be provided. Moreover, using their stated model’s
parameters we could not obtain similar signals to those illustrated in that work. Thus, we choose
the model parameters as to get data of at least qualitatively similar behavior. The details on how
the numerical model has been built are described in Appendix A, where also all the parameters
used for the simulations are reported in Table 1. The MATLAB code to perform the simulations
will be made available after acceptance of the article and is in the supplementary material of the
submission.

Simulations can represent different scenarios. On the one hand, we can produce numerical
signals where the fluctuations of the input torque, due to wind turbulence, are not taken into
account, i.e., Fvar(t) = 0 (Fig. 2). These simulations represent an improbable scenario in which
the load on the wind turbine blades is constant. Such signals can be helpful to test different
numerical strategies in a simplified context, and we will refer to them as signals in steady load
conditions. On the other hand, we can produce simulations representing the more realistic scenario
where the wind is not considered as a uniform constant flow and its stochastic behaviour is included
in the model. These simulations represent a situation in which the load on the wind turbine blades
fluctuates and has a stochastic behaviour that determines random variations in the input torque.
We will say that simulations generated in this scenario have varying load conditions. Fig. 3 and Fig.
4 show the acceleration signals of simulations with varying load conditions produced considering
two different wind speeds.

Independently of the scenario we consider, with steady or varying load conditions, we can
produce signals representing a situation in which a perfectly healthy gearbox is modelled (Fig.
2a, 3a, 4a) or we can simulate a situation in which one of the gears is damaged (Fig. 2b, 3b,
4b). The simulated damage consists of a cracked tooth in one of the two gears. Recapturing some
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Figure 4: Acceleration signal of a simulation under varying load condition with wind speed 13 m/s

results from Antoniadou et al. (2015), we notice the signals simulated taking into account the wind
turbulence are less smooth and show a more chaotic behaviour than the signals where the load
condition is steady. This is motivated by the fact that when wind turbulence is incorporated into
the model it introduces a stochastic component that perturbs the acceleration signals. The higher
the simulated wind condition, the noisier the signal. Note that, independently of the wind condition
considered, the damaged and healthy signals do not show any relevant difference and look almost
identical. This is because only high-frequency components are affected by damage and just for a
short time. This fact underlines that it would be very difficult to address the damage identification
task without relying on a method that can extract only the relevant information from the signals.

5 Results

In this section, we study the numerical strategy for early damage detection based on multi-resolution
dynamic mode decomposition proposed in Section 3. We compare our method with classical ap-
proaches used in this context, Fast Fourier transform as a frequency-domain approach, and EMD
as a time-domain approach.

Dataset We analyze the vibration response data of the gearbox from three gear revolutions.
We use the same two different health conditions of healthy and with cracked tooth and the same
two wind speeds of 5 m/s (Fig. 5) and 13 m/s (Fig. 6) from before. The simulated signals are
composed of 40201 one-dimensional snapshots. In the simulations that include the damage, the
presence of the cracked tooth affects the signals once per rotation at 67◦, 427◦ and 787◦. Note that
we will make the simulated data and the code for generating the data available after acceptance of
the article, it is part of the supplementary material of the submission.

5.1 Benchmark methods

5.1.1 Fast Fourier transform (FFT)

We now apply the FFT (Rao et al., 2011) to the vibration signals shown in Fig. 5 and Fig. 6. Fig.
7a and Fig. 7b show the Fourier spectra of the acceleration signals we have considered, representing
the damaged and undamaged scenarios in varying load conditions associated with wind speed 5 m/s
and 13 m/s, respectively. Independently of the wind condition considered, the differences between
the healthy and cracked cases are very hard to identify just looking at the signals’ spectra. To be
more specific, there is no significant or obvious change in the spectra that allows us to identify the
presence of damage. This shows us an arduous difficulty that frequency methods have to overcome
in this scenario: when the effects of the wind turbulence are included, it is very challenging to
distinguish between the spectral characteristics of the signals associated with damage and those
associated with wind turbulence. In addition to that, we have that due to wind turbulence, the
spectra of the signals change randomly with time, making the damage identification task even more
difficult.

5.1.2 Empirical mode decomposition (EMD) and Hilbert transform (HT)

The EMD-based strategy we present here, consists of applying EMD together with HT to detect
damages, and was introduced in the wind turbine damage detection context to overcome issues
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Figure 5: Acceleration signal of a simulation for three rotations under varying load condition with
wind speed 5 m/s
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Figure 6: Acceleration signal of a simulation for three rotations under varying load condition with
wind speed 13 m/s
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(a) wind speed 5 m/s (b) wind speed 13 m/s

Figure 7: Fourier spectra of the dimensionless acceleration signals of the healthy and cracked tooth
cases for varying load condition

experienced by studying the signals’ spectral characteristics. See Antoniadou et al. (2015) for a
more exhaustive analysis of the EMD-based fault detection method we are going to review.

Empirical mode decomposition (EMD) The essence of EMD is to decompose the sig-
nal into oscillatory functions, also called intrinsic mode functions (IMFs). Each IMF represents
characteristics of the signal associated with a certain frequency band and are such that

y(t) =
N∑

k=1

Ck(t) + rN (t), (18)

where y(t) ∈ R is a given sensor signal, Ck(t) is the k-th IMF and rN (t) is the rest of the approx-
imation performed by the IMFs. To identify the desired information in the IMFs there is not a
principled approach, but it is important to know that the first IMFs represent structures in the
signal associated with the highest frequencies, and the ones that come after depict lower frequency
components (Huang et al., 1998). Generally, the first IMFs contain damage indicators, because they
represent the highest frequency structures in the signal, which are those affected by the damage we
are considering. To have a deeper understanding of the EMD algorithm see Huang et al. (1998). For
the EMD analysis we use the PyEMD python package (https://github.com/laszukdawid/PyEMD).

Hilbert transform (HT) The HT of a signal y(t) is defined as

ŷ(t) := H[y(t)] =
1

π

∫ ∞

−∞

y(s)

t− sds = y(t) ∗ 1

πt
, (19)

where ∗ denotes the convolution operator. Given the HT of y(t) we can define the analytic signal

z(t) := y(t) + iŷ(t) = a(t)eiθ(t), (20)

where i :=
√
−1 is the imaginary unit, a(t) :=

√
y2(t) + ŷ2(t) is the instantaneous amplitude and

θ(t) = arctan
(
ŷ(t)
y(t)

)
is the instantaneous phase. The instantaneous frequency is defined as ω := θ

dt .

The HT does not change the domain of the variable. Indeed, the HT of a time-dependent signal is
also a function of time. Given a signal y(t), the combination of (18) and (20) yields

y(t) = Re

{
N∑

k=1

ak(t)eiθk(t)

}
+ rN (t), (21)

where ak(t) and θk(t) are the instantaneous amplitude and phase of the k-th IMF, respectively. We
compute the Hilbert Transform using the ”scipy.signal.function” in python.
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(a) undamaged case

(b) damaged case

Figure 8: Intrinsic mode functions of simulations under varying load condition with wind speed 5 m/s
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Figure 9: Instantaneous amplitude of IMF 1 computed in the damaged case with wind condition 5
m/s. The pulses related to the presence of damage are marked with red squares

Application of an EMD-based strategy Fig. 8 represents the IMFs obtained applying
EMD on the simulated vibration signals in Fig. 5. The signals in Fig. 5 represent the vibration
response of the modelled gearbox under varying load condition associated with a wind speed of 5
m/s.

Looking at the IMFs in Fig. 8 one can observe that in the damaged case EMD has produced
more IMFs than in the healthy case. This happens because EMD recognized the effects of damage
as more signal components, and therefore it added IMFs to represent them. Another explanation
is that the additional IMF is related to the mode mixing problem: some IMFs include damage
features that are probably already contained in another IMF.

Analyzing the IMFs in more detail, it can be seen that the IMF 1 in Fig. 8b contains damage
features. The damage features appear as increases in magnitude or pulses in the IMF, arising at
the angles in which the cracked tooth affects the signal. Looking at the instantaneous amplitude of
the first IMF (Fig. 9), it can be clearly seen that at the degrees where the cracked tooth interacts
with the other gear, there are sudden increases of magnitude. Such increases of magnitude allow us
to identify the presence of damage and, thereforeAnalyzing, to perform the damage identification
task. Unfortunately, from Fig. 9, it is also clear that together with those related to damage, there
are other pulses in the IMF 1, probably related to the varying wind condition, which make the
identification of damage features a very challenging task. In particular, without previous knowledge
about where the cracked tooth affected the signal, we would not have been able to identify it. A
possible explanation for such an event is that the mode mixing problem occurred. Thus, information
related to the frequency bands affected by damage and by wind turbulence is represented in the
same IMF and can not be distinguished trivially. As a consequence of the mode mixing problem,
we could also have that different IMFs contain the same frequency band information. For instance,
using acceleration signals representing a scenario related to those we consider in this work, we found
that sudden increases of magnitude caused by a cracked tooth could be identified in different IMFs.
Thus, information related to the frequency band affected by the damage was contained in different
IMFs. Such a problem was also experienced in Antoniadou et al. (2015), where they use EMD to
study signals similar to those analyzed here. Analyzing the simulated data produced considering
the higher wind speed of 13 m/s we could not successfully perform the damage identification task.
Specifically, applying EMD to signals in Fig. 6b, no IMFs could visually highlight the different
nature of the effects of the wind and of the damage on the signal.

After this brief analysis, it is clear that one of the disadvantages of EMD is that information
about the damage’s effects in the signal is not localized: EMD does not tell us which frequency-band
each IMF exactly represents. Thus, we do not know in which IMF damage features can be detected.
The second main weakness of EMD is the mode mixing problem, which affects the interpretability
of the method and its capability to perform the fault detection task effectively. As we will see,
the numerical procedure we propose overcomes these problems thanks to the characteristics of the
mrDMD algorithm.

5.2 mrDMD-based approach for damage detection

For our numerical experiments with mrDMD, we use the simulated gearbox vibration signals shown
in Fig. 5 and Fig. 6 that represent the vibration response of the modelled gearbox in the damaged
and undamaged scenarios under the two different wind conditions we are considering. The same
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Figure 10: Residual of a simulation under varying load conditions with wind speed 5 m/s, computed
calculating L = 11 decomposition levels
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Figure 11: Residual of a simulation under varying load conditions with wind speed 13 m/s, computed
calculating L = 11 decomposition levels

data was used to test the EMD-based method previously. The length of the delay d has been
fixed to d = 32000. Thus, looking at the residual R0 we are analysing a portion of the signal
representing its temporal evolution for 860◦ of the shaft rotation. The number of the decomposition
levels L in the mrDMD algorithm has been set to L = 11. We use the PyDMD python package
(https://mathlab.github.io/PyDMD/), where we use the previously mentioned threshold strategy
for the choice of parameters.

5.2.1 mrDMD-residuals for damage detection

Fig. 10 and Fig. 11 represent the results of the mrDMD-based approach that we proposed in Section
3. The first observation we make, comparing the residuals obtained from simulations produced
with different wind conditions in the undamaged case (Fig. 10a, 11a), is that when the wind speed
is higher the high-frequency signals’ structures represented by the residuals show a more irregular
behaviour. This is because high-frequency structures are affected by wind turbulence, which is more
relevant and volatile for higher wind speed conditions. The second observation concerns simulations
representing the damaged and undamaged cases in the different wind conditions. Considering only
the residual R0, the effects of the damaged tooth are clearly visible as sudden increases in magnitude
arising at the angles in which the cracked tooth affects the signal (Fig. 10b, 11b). The effects of the
cracked tooth on the residuals can be further analyzed by considering their instantaneous amplitudes
(Fig. 12 and Fig. 13) computed through the Hilbert transform. Independently of the wind condition
considered and the residuals’ mean breadth, looking at the instantaneous amplitudes, the different
characteristics of the residuals associated with the damaged and undamaged cases are even more
evident. The instantaneous amplitudes related to both the healthy and damaged scenarios present
a spiky structure. However, in the undamaged cases (Fig. 12a, 13a), the spikes are of similar
magnitude over the time-span analyzed, while in damaged scenarios (Fig. 12b, 13b), the magnitude
of the spikes is much higher at the angles in which the cracked tooth affects the signal, making the
damage identification even easier than it was considering only the residuals.

It can be clearly seen that the numerical procedure we propose can be effectively employed
to highlight the effects of the cracked tooth on the signal, distinguishing them from the effects
of the varying load condition, and enabling us to identify the damage independently of the wind
condition. Moreover, a consistent advantage of the proposed strategy with respect to EMD is that
the information related to damage is localized. With the proposed strategy, all the information
required is contained in the residual. Note that, due to the mode mixing problem, such a residual
strategy is not feasible with EMD. To effectively employ EMD to detect damages, a user search
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Figure 12: Instantaneous amplitude of residual R0 (L = 11), wind speed 5 m/s
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Figure 13: Instantaneous amplitude of residual R0 (L = 11), wind speed 13 m/s

among the produced IMFs is needed to identify those structures containing information related to
damage.

We remark that the choice of the number of decomposition levels L to compute strongly affects
the effectiveness of our analysis. Specifically, if the number of calculated decomposition levels is not
high enough, the residual would consist of structures associated with a frequency band that would
also include those low-frequencies not affected by the damage. As we will see shortly, the presence
of the cracked tooth has a negligible effect on the structures associated with lower frequencies.
Therefore, the residual would also consist of components that do not provide any meaningful insight
for the damage identification process, which would dilute the valuable information. Consequently,
the residual would not be able to highlight the presence of damage. To observe such a phenomenon,
see Fig. 14, which represents the residuals computed applying the proposed procedure on vibration
signals in Fig. 6 associated with wind speed 13 m/s, considering a delay d = 32000 and calculating
L = 7 decomposition levels. It can be clearly seen that, in this case, L = 7 decomposition levels
are not enough to encode in the residual only the relevant information associated with the highest
frequencies and related to damage. There is no obvious difference between the two residuals in Fig.
14. Thus, they can not be employed to perform damage detection.

To correctly choose the number of decomposition levels to compute and successfully apply the
proposed procedure for damage detection, we need information about the frequencies affected by
the damage we want to identify. Fortunately, in condition monitoring, the damage we want to
identify and the frequencies affected by it can often be assumed to be known (Antoniadou et al.,
2015).

0 100 200 300 400 500 600 700 800

Gear Rotation [deg]

-0.1

-0.05

0

0.05

0.1

R
0

(a) undamaged case

100 200 300 400 500 600 700 800

Gear Rotation [deg]

-0.1

-0.05

0

0.05

0.1

R
0

(b) damaged case

Figure 14: Residual of a simulation under varying load conditions with wind speed 13 m/s, computed
calculating L = 7 decomposition levels
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Figure 15: First modes computed at the first time bins of the decomposition levels l = 1, 5, 8 obtained
applying the proposed analysis on simulation under varying load conditions with wind speed 13 m/s
and calculating L = 11 decomposition levels

5.2.2 Modal analysis with mrDMD

We now investigate more closely the modes’ properties and how the proposed procedure works. To
this aim, we analyze the modes computed via mrDMD, calculating L = 11 decomposition levels,
and used to obtain the residuals R0 in Fig. 11. We mainly focus on the scenario associated with
the wind speed of 13 m/s because signals generated employing the same gearbox model we use and
considering a similar wind condition were already simulated and studied in Antoniadou et al. (2015).
Thus, we can exploit the knowledge developed there about the signals’ physical characteristics to
better interpret and understand the properties of the modes generated by mrDMD.

Recall that we can compute the residual R0 associated with a signal by subtracting from the
first time-delay snapshot, ỹ0, its mrDMD approximation ŷ0, i.e., R0 = ỹ0 − ŷ0. According to (12),
the mrDMD approximations of the first time-delay snapshots can be explicitly written as

ŷ0 =
L∑

l=1

mL∑

k=1

b
(l,1)
k φ

(l,1)
k . (22)

Specifically, the linear combination of the modes φ
(l,1)
k , computed at the first time bin of each

decomposition level, gives the mrDMD approximation of the first time-delay snapshot representing
the evolution of the analyzed signal for a time-span as large as the delay. It is important to notice
that to obtain the residuals R0 only the modes computed at the first time bin of each decomposition

level are needed, and that each one of the modes φ
(l,1)
k is associated with a frequency ω

(l,1)
k .

In the scenario associated with wind speed 13 m/s, we know that the wind turbulence mainly
affects the signal at its highest frequencies, as it was observed in Antoniadou et al. (2015) for the
similar wind speed of 12 m/s. Fig. 15 depicts 3 of those modes used to compute the reconstructed
time-delay snapshots ŷ0 required to obtain the residuals R0 in Fig. 11. The modes in Fig. 15 have
been computed applying the proposed analysis on vibration signal associated with wind speed 13
m/s in the healthy and damaged scenario (Fig. 6). Specifically, they are the first modes computed at
the first time bins of the decomposition levels l = 1, 5, 8. Looking at Fig. 15, we can make a number
of observations that give us a better understanding of the modes’ properties and that generally hold
for modes computed at different time bins and decomposition levels. Analyzing Fig. 15, it is clear
that the higher the decomposition level, the higher is the energy content |ω| associated with the
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modes computed in it. Here ω is the frequency defined in Algorithm 1. This fact is empirical
proof of what we already saw from a theoretical perspective in Section 3, where the mrDMD has
been explained and such a property of the modes was already introduced. Another consideration
is that modes computed at the highest decomposition level are much noisier than those calculated
at lower levels. This can be explained by the fact that high-energy modes incorporate the effects
of the wind turbulence on the signal, that as we know from Antoniadou et al. (2015) are more
evident at high-frequencies. Thus, it further confirms that high-energy modes contain structures
associated with high-frequencies, and that the residuals consist of those structures associated with
the highest frequencies. Finally, we observe that in Fig. 15 the modes computed in the healthy
scenario and their associated energies (|ω|) are qualitatively the same as those calculated from
signals that include the damage. This can be motivated by the fact that the modes depicted are
associated with frequencies not affected by the presence of the cracked tooth. More in general, we
found that in this scenario, the effects of damage can be effectively identified and discerned from
those related to wind turbulence only in those structures associated with the highest frequencies.

5.2.3 Automation

An advantage of the procedure we propose, compared to EMD, is that it may allow the automation
of the damage detection process. The main reason for that is that it localizes the information
related to damage.

Considering how EMD works, here, after a certain number of IMFs have been produced, a user
made choice has to be performed to pick out all those IMFs that may contain damage features, and
therefore need to be further analyzed. In general, we know that information related to the damage
we are considering should be in the first IMFs, which are those associated with higher frequencies
in the signal. However, this is only a rule of thumb, and because of the mode mixing problem,
there is no principled way to perform the IMFs’ choice. Therefore, using EMD, there is no obvious
method to automatize the damage identification process.

On the contrary, the procedure we propose localizes the information related to damage in the
residual. Thus, there is no need for a modes’ selection, and the cracked tooth detection task reduces
to identifying sudden increases of magnitude and anomalies within the residual. A broad spectrum
of peak detection methodologies is available and should be applicable to automatize the damage
identification process (Du et al., 2006; Harmer et al., 2008; Jordanov and Hall, 2002). Automatizing
the damage identification process would be very advantageous in practice because it would allow
to monitor the health condition of several gearboxes simultaneously and continuously, but it is out
of the scope of this paper.

6 Conclusion

In this work, we proposed a numerical procedure for cracked tooth identification, which exploits
DMD’s strengths of being equation-free and data-driven. We observed that performing damage
detection with Fourier analysis or EMD can be very challenging in a scenario that includes vary-
ing load conditions. We also saw that both, our mrDMD-based method and the EMD strategy,
decompose the original signal into modes that can be used to extract characteristics of the signal as-
sociated with different frequencies. In particular, both methods can highlight those high-frequency
structures affected by wind turbulence and change in stiffness caused by the cracked tooth and that
can be effectively used to identify damages. On the one hand, we saw that the IMFs, produced
by EMD, represent structures in the signal that are not associated with specific frequencies but
rather with frequency bands. Moreover, the information contained in an IMF can be related to a
too broad frequency band, or the same frequency information can be contained in different IMFs.
These facts affect the interpretability of the IMFs and the effectiveness of EMD to perform fault
detection because the information related to damage is not localized. On the other hand, mrDMD
associates each mode with a specific frequency. Exploiting this fact, the proposed numerical pro-
cedure was able to identify those structures in the signal where features related to damage were
highlighted. In particular, differences in the residuals’ magnitude (Fig. 10 and Fig. 11) as well as
in their instantaneous amplitude (Fig. 12 and Fig. 13), allowed the identification of the cracked
tooth visually, independently of the wind condition considered.

The first strength of the proposed analysis is that, as EMD, it does not consider the signals’
spectra, avoiding all the issues related to the non-deterministic time variation of the signals spectral
properties caused by the varying load condition. The other advantage is that the mrDMD algorithm
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is not affected by the mode mixing problem, as it is for EMD-based strategies. Moreover, with the
strategy here proposed, information related to the effects of the damage in the signal is localized
in the residual.

Note that, the strategy we propose can be further improved to perform an effective analysis
in more challenging scenarios. Specifically, several DMD improvements could be applied in the
second step of Algorithm 2 (Héas and Herzet, 2016; Hemati et al., 2017; Matsumoto and Indinger,
2017). A particularly beneficial DMD improvement in this context was developed in Hemati et al.
(2017). It consists of building unbiased and noise-aware DMD by explicitly accounting for noise in
the signal. Such modification could allow our method to distinguish between the noise introduced
by wind turbulence and damage effects more easily. Furthermore, additional improvements can be
introduced working on the indicator function in (11). In general, it is possible to introduce various
functional forms for the indicator function that can be used advantageously. For instance, one
could consider the indicator function to take the form of different wavelet bases i.e. Coiflet, Haar,
Fejér-Korovkin, etc.

In conclusion, this work shows the potentialities of a DMD-based strategy to perform anomaly
detection analyzing signals representing the vibration response of a gearbox under varying load
condition. We considered a simple gearbox model with only two spur gears. However, the results
we reported here tell us that this DMD-based strategy promises to provide high quality results
by overcoming spectral and mode mixing related problems in a scenario that includes the effects
of wind turbulence. Further research on mrDMD in the context of fault detection and condition
monitoring of wind turbines, and related machinery, is warranted.
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A Appendix

The aim is to build an equation of motion for the gearbox model considered in Section 4 that takes
into account the rotational movements of the two gears. To do that, such an equation needs to
include the two main factors that affect the gears’ movements, which are: the input torque that
acts on the driving gear and the effects of the interaction between the teeth of the two gears. The
area where the interaction between the two gears takes place is called gear mesh.

Figure 16: The backlash between gears

The Gear mesh To include the effects of the interaction between the teeth of the two gears
we include into the equation of motion we are going to build the backlash, the time-varying mesh
stiffness function K̄(t̄), the static transmission error ē(t̄), and a linear viscous dumping parameter
C̄. The backlash is a clearance or lost motion of the gears caused by gaps between the teeth (Fig.
16). This phenomenon is incorporated in the model via the backlash function B(x̄(t̄)), where x̄(t̄)
is displacement function that will be introduced shortly. The time-varying mesh stiffness function,
K̄(t̄), describes the varying stiffness of the teeth that are in the gear mesh, and is caused by the
transition from single to double and double to single of pairs of teeth in contact. Finally, the
static transmission error ē(t̄), is caused by geometrical errors of the teeth profile and represents the
difference between the actual position of the driven gear and the position it would occupy if the
gears’ edges were manufactured perfectly. The mesh stiffness and static transmission error functions
are assumed to be periodic functions of time and, in the theoretical setting we are considering, can
be expressed in the following Fourier form:

K̄(t̄) = K̄

(
t̄+

2π

Ω̄mesh

)
= K̄m −

∞∑

j=1

K̄j cos
(
jΩ̄mesht̄

)
, (23)
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ē(t̄) = ē

(
t̄+

2π

Ω̄mesh

)
=

∞∑

j=1

ēj cos
(
jΩ̄mesht̄

)
, (24)

where K̄m, K̄j and ēj are constant Fourier coefficients of the respective signals (Kahraman and
Singh, 1991). Ω̄mesh is the meshing frequency defined as Ω̄mesh = n1Ω̄1 = n2Ω̄2, where n1 and n2

stand for the number of teeth of the first (driving) and second (driven) gears and Ω̄i is the rotating
frequency of the i-th gear.

The torque. In the scenario we consider, the input torque T̄1(t̄) that ignites the movement
and keeps the gears moving, is not constant, but it rather fluctuates due to the fluctuations of the
wind. Thus, the input torque is given by a constant part T̄1m(t̄) and a fluctuating part T̄1var, i.e.,
T̄1(t̄) = T̄1m(t̄)+T̄1var(t̄). The output torque T̄2(t̄) is considered to be constant, i.e., T̄2(t̄) = T̄2m(t̄),
with T̄2m being the mean output torque. In the simulation, the component of the input torque
associated with the fluctuations of the wind, T̄1var, is derived from the torque computed via the
FAST (Bir, 2005) design code, i.e., T̄1var(t̄) = T̄FAST − T̄FASTmean. The torques generated with
FAST code, i.e. T̄FAST (t̄), that have been used in this work to simulate the effect of the wind
turbulence in different wind conditions, are shown in Fig. 17.
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(a) wind speed 5 m/s
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(b) wind speed 13 m/s

Figure 17: FAST simulation of the high speed shaft torque for different turbulent wind condition

A.1 Equation of motion

In order to describe the model with a single equation, we consider the following coordinate

x̄(t̄) = r1φ1(t̄)− r2φ2(t̄)− ē(t̄), (25)

where φi(t̄) stands for the torsional displacement of the i-th gear while ri is its radius.
The coordinate x̄(t̄) is given by the difference between the dynamic transmission error and

the static transmission error. Moreover, through x̄(t̄) the model’s equation of motion yields the
following formulation (Antoniadou et al., 2015; Kahraman and Singh, 1991)

mc ¨̄x(t̄) + C̄ ˙̄x(t̄) + K̄(t̄)B(x̄(t̄)) = F̄m + F̄te(t̄) + F̄var(t̄), (26)

where

mc =
I1I2

I1r2
2 + I2r2

1

, F̄m =
T̄1m

r1
=
T̄2m

r2
, (27)

F̄te(t̄) = −mc ¨̄e(t̄) = −
∞∑

j=1

Ftej(jΩ̄mesh)2 cos
(
jΩ̄mesht̄

)
, (28)

with Ii mass moment of inertia of the i-th gear and Ftej = ēj . Moreover, concerning the quantities
that involve the torque obtained via the FAST code:

F̄var(t̄) =
T̄1var(t̄)

Nr1
, (29)
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Table 1: Simulation parameters

Parameter Value Parameter Value

I1,2 0.00115(Kg m2) Fm 0.1
mc 0.23(Kg) Fte1 0.01
r1,2 0.0 5(m) Fte2 0.004
number of teeth 16 Fte3 0.002

K̄m 3.8 · 108
(
N
m

)
K1 0.2

bg 0.1 · 10−3(m) K2 0.1
z 0.05 K3 0.05
Ωmesh 0.5 N 10

where N is a normalization constant. The normalization constant is included because the FAST
simulations correspond to a different physical system. Thus, it is needed to adapt the magnitude of
the fluctuations to our setting. F̄m represents the mean force excitations while F̄te and F̄var pertain
to internal excitations related to the static transmission error and external excitations related to
wind turbulence, respectively. Lastly, the backlash function B(x̄(t̄)) is defined as

B(x̄(t̄)) =





x̄(t̄)− bg, for x̄(t̄) ≥ bg
0, for − bg < x̄(t̄) < bg
x̄(t̄) + bg, for x̄(t̄) ≤ −bg



 , (30)

where 2bg represents the total gear backlash. The backlash function controls the contact between
teeth and incorporates in the model the fact that occasionally contact is lost (Fig. 16).

A.1.1 Dimensionless equation of motion.

The equation of motion (26) can be written in a dimensionless form (Antoniadou et al., 2015;

Kahraman and Singh, 1991) by setting : x(t̄) = x̄(t̄)
bg

, wn =
√

K̄m

mc
, z = C̄

2
√
mcK̄m

, K(t̄) = K̄(t̄)
K̄m

,

Fte(t̄) = F̄te(t̄)
mcbgw2

n
= −mc

¨̄e(t̄)
mcbgw2

n
, Fvar(t̄) = F̄var(t̄)

mcbgw2
n

and t = wnt̄. The meshing frequency can be

written in a nondimensional form as well, i.e., Ωmesh = Ω̄mesh

wn
. The nondimensional form of the

equation of motion (26) is

ẍ(t) + 2zẋ(t) +K(t)B(x(t)) = Fm + Fte(t) + Fvar(t) (31)

where the dimensionless backlash function is defined in (17).
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