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Abstract. In this paper we present an algebraic dimension-oblivious two-level domain decompo-
sition solver for discretizations of elliptic partial differential equations. The proposed parallel solver
is based on a space-filling curve partitioning approach that is applicable to any discretization, i.e. it
directly operates on the assembled matrix equations. Moreover, it allows for the effective use of arbi-
trary processor numbers independent of the dimension of the underlying partial differential equation
while maintaining optimal convergence behavior. This is the core property required to attain a sparse
grid based combination method with extreme scalability which can utilize exascale parallel systems
efficiently. Moreover, this approach provides a basis for the development of a fault-tolerant solver
for the numerical treatment of high-dimensional problems. To achieve the required data redundancy
we are therefore concerned with large overlaps of our domain decomposition which we construct via
space-filling curves. In this paper, we propose our space-filling curve based domain decomposition
solver and present its convergence properties and scaling behavior. The results of numerical experi-
ments clearly show that our approach provides optimal convergence and scaling behavior in arbitrary
dimension utilizing arbitrary processor numbers.
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1. Introduction. Domain decomposition (DD) techniques provide a natural
way to the parallel solution of discretizations of partial differential equations (PDE).
Typically, the global domain is divided into (overlapping) subdomains which are con-
structed geometrically. On these subdomains a linear solver is applied (in parallel) and
the local independent solutions are then combined to define a global approximation.
Moreover, a coarse global problem must be incorporated to achieve optimal conver-
gence behavior. Typically, the focus in the development of DD solvers for PDEs is
concerned with a minimization of the overlap of the involved subdomains to reduce the
induced communication cost and to facilitate an asynchronous communication-hiding
implementation.

In this paper we however intentionally consider rather large overlaps of the in-
volved subdomains. Our future goal is the development of fault-tolerant parallel
solvers on exascale systems which require complete data redundancy to allow for data
recovery when faults occur. Thus, we consider the classical domain decomposition
technique in a somewhat non-standard setting of large overlap and focus on a rather
algebraic construction so that it is applicable to arbitrary dimension and anisotropic
meshes. The model problem considered is a single discrete subproblem arising from the
combination method discretization of a high-dimensional Poisson equation, compare
Section 2. Thus, our domain decomposition approach must be dimension-oblivous
and directly applicable to anisotropic meshes, i.e. conventional DD approaches based
on geometric information in a fixed dimension d cannot be employed straightforwardly
anymore. Instead, we utilize a space-filling curve method. Thereby, we introduce a
partitioning of the high-dimensional domain without dimension-dependent geometric
information and control the overlap of the respective subdomains via the overlap in
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the one-dimensional parameter space of the space-filling curve, compare Section 3.
We consider classical iterative schemes, like the damped Richardson iteration and the
correspondingly preconditioned conjugate gradient method, to define our dimension-
oblivous solver where we introduce the necessary coarse grid problem via an algebraic
approach. We study their respective convergence and scaling properties. It turns out
that we achieve optimal scaling and convergence behavior in arbitrary dimension with
the proposed solver.

The remainder of this paper is organized as follows: In section 2 we shortly
give the overall motivation for our particular DD solver construction. In section 3
we review some classical DD techniques and we introduce space-filling curves for the
partitioning of grids in arbitrary dimension. Then, we present our specific construction
of overlapping subdomains based on space-filling curves and introduce the resulting
solver. Moreover, we give a short outlook on fault-tolerance. In section 4 we present
the results of our numerical experiments with the proposed solver in dimensions d ≤
6 with a focus on its convergence properties and its scaling behavior. Finally, we
conclude with some remarks.

2. Overall Motivation: The combination technique for sparse grid dis-
cretizations. First, let us shortly summarize our overall future goal which is moti-
vated by the ever increasing number of processing cores in todays high performance
computing systems. Obviously, this impressive hardware development requires a soft-
ware stack that is built upon scalable parallel algorithms to allow the effective uti-
lization of all cores. Equally important is however that resilience against hardware
failures is also built into the software stack and the employed algorithms. A promis-
ing approach to the efficient and fault-tolerant utilization of supercomputers in the
context of solvers for PDE especially in high dimensions is the sparse grid combi-
nation technique, see e.g. [BG04, GSZ92, GH14, Z91], provided that certain mixed
smoothness prerequisites are satisfied by the problem under consideration. If used
in conjunction with the particular DD linear solver proposed in this paper, extreme
scalability, fault-tolerance and fine-grained load balance can be attained.

In the sparse grid discretization [BG04, Z91] of high-dimensional elliptic PDEs
via the combination method [GSZ92, GH14] we need to solve subproblems on grids
with in general anisotropic mesh sizes (h1, . . . hd), i.e. hj = 2−lj , j = 1, . . . , d, with
multivariate level parameters

l = (l1, . . . , ld) ∈ Nd, where |l|1 := l1+ . . .+ ld = L+(d−1)−i, i = 0, . . . , d−1, lj > 0.

The resulting (partial) solutions ul(x), x = (x1, . . . , xd), are then to be combined as

(2.1) u(x) ≈ u
(c)
L (x) :=

d−1∑
i=0

(−1)i
(

d− 1
i

) ∑
|l|1=L+(d−1)−i

ul(x)

to attain the final approximate solution u
(c)
L . Figure 1 illustrates the construction

of the combination method in two dimensions with L = 3. The (partial) solutions
ul are completely independent of each other and thus can be computed in parallel.
Moreover, for layer i, we encounter(

L+ d− 2− i
d− 1

)
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Figure 1: The combination method, two-dimensional case with L = 3.

different subproblems, where each subproblem has approximately the same number

(2.2) N(d, i) =
d∏

j=1

(2lj + 1) = O(2L+d−1−i)

of degrees of freedom. We now employ an additional level of parallelism by means
of the domain decomposition treatment of each of these subproblems for the partial
solutions ul. To this end, we use

(2.3) P := P̂ · 2d−1−i

subdomains and thus processors/cores for each subproblem on layer i. This choice of a
d- and i-dependent P via a universal P̂ in (2.3) results in a subdomain size of roughly
N(d, i)/P = 2L+d−1−i/P = 2L+d−1−i/(P̂ · 2d−1−i) = 2L/P̂ , which is independent
of d and i. Then, in our elliptic situation and except for the coarse scale problems,
only small subdomain problems of almost equal size appear. But, depending on d,
L and P̂ , there can be millions of these subdomains for the combination method.
To be precise, the number of subdomains for the overall set of subproblems in the
combination method (2.1) is

P̂

(d− 1)!

d−1∑
k=0

(
2d−1−k

d−1∏
i=1

(L+ d− 1− k − i)

)
,

where each occurring subdomain problem has approximately equal size 2L/P̂ .
As an example, consider the goal of an overall discretization error of 10−12 in

the L2-norm for a problem with solution u ∈ H2
mix(Ω). Then a-priori error analysis

implies that h ≈ 10−6 and L = 20 are required. Moreover let us choose P̂ = 210 in
this example. For this case, Table 1 gives the number of subdomain problems arising
in the combination method if our domain decomposition approach is employed with
P given by (2.3) for each subproblem of layer i.

Table 1: Overall number of subdomain problems, each one of size 2L/P̂ = 220/210 = 210, in the
combination method with domain decomposition of each subproblem.

d = 1 2 3 4 5 6

1 · P̂ 59 · P̂ 1.391 · P̂ 20.889 · P̂ 237.706 · P̂ 1.754.744 · P̂
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We see that we obtain a large number of subdomain problems to be solved in a
doubly parallel way (one level of parallelism stems from the combination formula itself,
the other level of parallelism stems from the domain decomposition of each subproblem
of the combination method into subdomain problems). This will allow the use of
extremely large parallel compute systems, i.e. the larger d is the larger the parallel
system is that can be employed in a meaningful way. Furthermore the use of any fault-
tolerant domain decomposition method as the inner solver for the subproblems in the
combination method results in an overall fault-tolerant and parallel solver for the
combination method in a natural way. There, the fault-repair mechanism is provided
on the fine domain decomposition level and not just on the coarse subproblem level
of the combination method, as it was previously done in [HHLS14,PBG14,ASHH16,
LOP20].

Thus, an efficient parallel solver is required for each of the subproblems in the
combination method. Ideally, such a linear solver needs to applicable to anisotropic
grids in arbitrary dimension while maintaining optimal convergence behavior. To this
end, we propose a domain decomposition approach which is based on an (almost) al-
gebraic construction of the overlapping subdomains via a space-filling curve approach,
where we focus on larger overlaps as they are necessary to achieve data redundancy.

3. Domain decomposition based on space-filling curves. In the following
we shortly review fundamental properties of some classical domain decomposition
approaches which we will evaluate in our particular setting of larger overlaps before
we focus on the specific construction of the involved overlapping subdomains based
on space-filling curves. Then, we combine these ingredients to introduce our proposed
solver and give a short outlook on its application in a fault-tolerant setting.

3.1. Domain decomposition techniques. The (overlapping) domain decom-
position approach is essentially a simple divide-et-impera approach to the solution
of (discretized) partial differential equations and its origin can be traced back to
Schwarz [S70]. In numerical simulations it is typically used as a preconditioner for
the conjugate gradient or other Krylov iterative methods. However, such simple do-
main decomposition methods can not attain fast convergence and thus, starting in
the mid 80s, various techniques have been developed to introduce an additional coarse
scale problem, which provides a certain amount of global transfer of information across
the whole domain and thus substantially speeds up the iteration. For instance, it was
shown in [DW87] that the condition number of the fine grid system preconditioned
by such a two-level additive Schwarz method is of the order

(3.1) O(1 +H/δ),

where δ denotes the size of the overlap and H denotes the coarse mesh size. This
bound also holds for small overlap [DW94] and can not be improved further [B00].
Thus, if the quotient of the coarse mesh size H and the overlap δ stays constant, the
method is indeed optimally preconditioned and weakly scalable. For further details on
domain decomposition methods see e.g. the books [SBWG96,QV99,TW04,DJN15].

We obtain a two-level additive Schwarz method as follows: Consider an elliptic
differential equation

(3.2) Lu = f in Ω ⊂ Rd,

e.g. the simple Poisson problem on a d-dimensional cube. Using a conforming finite
element method, a finite difference approach or a finite volume discretization involving
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N degrees of freedom and mesh size h ≈ N−1/d (for the ease of notation we consider
an isotropic mesh for the discussion of the fundamental properties of the domain
decomposition technique), we arrive at the system of linear equations

(3.3) Ax = b

with sparse stiffness matrix A ∈ RN×N , right hand side vector b ∈ RN and unknown
coefficient vector x ∈ RN , which needs to be solved. Now suppose that

Ω =

P⋃
i=1

Ωi

is covered by a finite number P of well-shaped subdomains Ωi of diameter ≈ H which
might locally overlap. It is silently assumed that h ≪ H and that the subdomains
are aligned with the fine mesh. Moreover denote by Ni the number of grid points
associated to each Ωi, i.e. the degrees of freedom associated to the subdomains Ωi, i =
1, . . . , P . Then denote by Ri : RN → RNi the restriction operators, which map the
entries of the coefficient vector x corresponding to the full grid on Ω to the coefficient
vectors xi corresponding to the local grids on the subdomains Ωi. Analogously denote
by RT

i : RNi → RN the extension operators, which map the coefficient vectors from
the local grid on the subdomains Ωi to that of the full grid on Ω via the natural
extension by zero. Then the local stiffness matrices associated to the subdomains
Ωi can be denoted as Ai ∈ RNi×Ni with Ai := RiART

i and the resulting one-level
additive Schwarz operator is defined as

(3.4) C−1
(1) :=

P∑
i=1

RT
i A

−1
i Ri.

Finally, we add an additional coarse space problem with dimension N0 as a second
level via the restriction operator R0 : RN → RN0 , which maps from the full grid on
Ω to a respective global coarse grid. Similarly as for the subdomain problems, the
associated coarse stiffness matrix A0 can be generated via the Galerkin approach as
A0 := R0AR

T
0 . Altogether, with the one-level additive Schwarz operator (3.4) we

obtain the two-level additive Schwarz operator

(3.5) C−1
(2) := RT

0 A
−1
0 R0 + C−1

(1) =

P∑
i=0

RT
i A

−1
i Ri.

These additive Schwarz operators (3.4) and (3.5) can then be used as preconditioners
in Krylov methods, like the conjugate gradient method, or with the help of an appro-
priate scaling parameter, they can be used directly to define Richardson-like linear
iterative solvers. A notational variant based on space splittings is given in [GO20].
Note here that there are more sophisticated space splittings which follow the Bank-
Holst technique [BH03], where the coarse problem is formally avoided by including a
redundant copy of it into each of the subdomain problems with i = 1, . . . , P . We will
indeed follow this approach later on.

Now, if the condition number κ(C−1
(2)A) = λmax(C

−1
(2)A)/λmin(C

−1
(2)A) of the pre-

conditioned system is independent of the number P of subproblems for fixed N , we
obtain strong scalability. If it is independent of P while the quotient N/P is fixed,
i.e. the problem size per subdomain and thus per processor stays fixed, we obtain weak
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scalability. Moreover, if it is independent of the number N of degrees of freedom, we
would have an optimally preconditioned method, which however still may depend on
P and might thus not be scalable. Note furthermore that we employ here for reasons
of simplicity a direct solver for A−1

i on all subdomains and for A−1
0 on the coarse scale,

which involves Gaussian elimination and comes with a certain cost. However, the cor-
responding matrix factorization needs to be performed just once at the beginning and,
in the plain linear iteration or in the preconditioned conjugate gradient iteration, only
the cheaper backward and forward steps need to be employed. Alternatively, approx-
imate iterative methods might be used as well, like the multigrid or BPX-multilevel
method, which would result in optimal linear cost for the subproblem solves. This
given, to achieve a mesh-independent condition number for the preconditioned sys-
tem C−1

(2)A with C(2) (3.5), one usually chooses for the coarse problem a suitable finite
element space on the mesh of domain partitions, where a linear FE space will do for
a second-order elliptic problem such as (3.2). Mild shape regularity assumptions on
the overlapping subdomains Ωi then guarantee robust condition number estimates of
the form κ ≤ c(1 + H

δ ), see [TW04, Theorem 3.13]. Dropping the coarse grid prob-
lem, i.e. considering a one-level preconditioner as in (3.4) without the coarse problem
RT

0 A
−1
0 R0, yields the worse bound κ ≤ cH−2(1+H/δ). Note that, even though these

estimates imply a deterioration of the condition number proportional to δ−1 if δ → h,
in practice good performance has been observed when only a few layers of fine mesh
cells form the overlap near the boundaries of the Ωi. With the use of an additional
coarse grid problem based on piecewise linears, an optimal order of the convergence
rate is then guaranteed for elliptic problems. The additional coarse grid problem re-
sults in a certain communication bottleneck, which however can by principle not be
avoided and is inherent in all elliptic problems. Similar issues arise for multigrid and
multilevel algorithms as well, but these methods are more complicated to parallelize
in an efficient way on large compute systems. Moreover their achieved convergence
rate and cost complexity is not better than for the domain decomposition approach
with coarse grid, at least in order, albeit the order constant might be.

Apart from a mesh-based geometric coarse grid problem, we can also derive a
coarse problem in a purely algebraic way. To this end, let VH be a coarse space with
N0 := dim(VH) and let Z be a basis for it, i.e. VH = spanZ. The restriction R0 :
RN → RN0 from the fine grid space Vh to the coarse space VH can be (algebraically)
defined as the matrix R0 := ZT ∈ RN0×N and the coarse space discretization is again
given via the Galerkin approach as A0 := R0ART

0 .
There are now different specific choices for Z or RT

0 , respectively. In [N87] it was
suggested to employ the kernel of the underlying differential operator as coarse space,
i.e. the constant space for the (weak) Laplace operator. Thus, with N0 = P ,

RT
0 := (RT

i DiRi1)1≤i≤P

with 1 = (1, . . . , 1)T and with diagonal matrices Di such that a partition of unity
results, i.e.

P∑
i=1

RT
i DiRi = I.

Indeed, it is observed that the associated two-level preconditioner gives good results
and weak scaling is achieved in practice. Note that this approach can be easily
generalized to the case N0 = qP such that q degrees of freedom are associated on
the coarse scale to each subdomain instead of just one. Improved variants, namely
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the balanced method [M93] and the deflation method [VN06], had been developed
subsequently. With the definitions

(3.6) F := RT
0 A

−1
0 R0 and G := I −AF

and the plain one-level additive Schwarz operator C−1
(1) from (3.4), we get the additively

corrected operator C−1
(1)+F due to Nicolaides [N87], the deflated approach GTC−1

(1)+F

[VN06] and the balanced version [M93]

(3.7) C−1
(2),bal := GTC−1

(1)G+ F.

Closely related are agglomeration techniques inspired by the algebraic multigrid meth-
od, volume agglomeration methods stemming from multigrid in the context of fi-
nite volume discretizations and so-called spectral coarse space constructions, see
e.g. [DJN15].

3.2. Space-filling curves. A main question for domain decomposition methods
is how to construct the partition {Ωi}Pi=1 in the first place. To this end, for a fixed
number P , one aim is surely to derive a set of subdomains which involves equal size
and thus equal computational load for each of the subdomains. If we just consider
uniform fine grid discretizations, a simple uniform and geometric decomposition of
the mesh would need P = P̄ d with P̄ being the amount of subdomain splittings in
each coordinate direction. This however prohibits the use of a slowly growing number
of processors P especially in higher dimensions d. Similar issues arise for anisotropic
mesh sizes h = (h1, . . . , hd) with hi ̸= hj as they arise in the combination method,
more general quasi-uniform finite element meshes (for which often mesh partitioners
like METIS or similar methods are employed) or adaptive meshes, where a well-
balanced domain decomposition can be complicated to derive.

In this paper, we follow the lead of [GZ00,GZ01] and rely on space-filling curves
to construct the partition {Ωi}Pi=1. This way, the overall number N of degrees of
freedom is partitioned for P processors into N/P -sized subproblems regardless of the
dimension d of the PDE and the number of available processors P . For further details
see also [GKZ07,Z03,B13].

An important aspect of any space-filling curve is its locality property, i.e. points
that are close to each other in [0, 1] should tend to be close after mapping into the
higher dimensional space. But how close or apart will they be? To this end, let
us consider the Hilbert curve. In [Z03] it was shown that the d-dimensional Hilbert
curve s(x) is Hölder continuous, but nowhere differentiable and that we have, for any
x, y ∈ [0, 1], the Hölder condition

|s(x)− s(y)|2 ≤ cs|x− y|1/d with cs = 2
√
d+ 3.

The exponent 1/d of the Hölder condition is optimal for space-filling curves and cannot
be improved.

Originally, the Hilbert curve and space-filling curves in general were defined in
two dimensions only. Their recursive construction, however, can be generalized to
higher space dimensions d, i.e. to curves s : [0, 1] → [0, 1]d. There exist codes for a
number of space-filling curves, and especially for the Hilbert curve e.g. on github
[C20]. A recursive pseudo-code for d dimensions is e.g. given in [Z03]. The approach
in [B71] was further developed in e.g. [M00, S04], we use [Sh20] as the basis for our
implementation.
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3.3. Proposed preconditioner. Now we discuss the main features of our do-
main decomposition method for d-dimensional elliptic problems Lu = f . For reasons
of simplicity, we consider here the unit domain Ω = [0, 1]d and employ Dirichlet
boundary conditions on δΩ. The discretization is done with a uniform but in general
anisotropic mesh size h = (h1, . . . , hd), where hj = 2−lj with multivariate level pa-
rameter l = (l1, . . . , ld), which gives the global mesh Ωh. The number of interior grid
points, and thus the number of degrees of freedom, is then

(3.8) N :=

d∏
j=1

(2lj − 1).

Now, for the discretization of Lu = f on the grid Ωh, we employ the simple finite
difference method (or the usual finite element method with piecewise d-linear basis
functions) on Ωh which results in the system of linear equations Ax = b with sparse
system matrix A ∈ RN×N and right hand side vector b ∈ RN .

Next, we consider the case of P subdomains. To generate an initial partition
of P disjoint subdomains {Ωi}Pi=1 of equal size, we employ the space-filling curve
approach and in principle just map our d-dimensional (interior) grid points xk ∈ Ωh

by means of the inverse discrete space-filling curve s−1
n with sufficiently large n to the

one-dimensional unit interval [0, 1]. Then we simply partition the one-dimensional,
totally ordered sequence of N points into a consecutive one-dimensional set of disjoint
subsets of approximate size N/P each. To this end, we first determine the remainder
r := N − P ⌊N/P ⌋. This gives us the number r of subdomains which have to possess
⌊N/P ⌋+ 1 grid points, whereas the remaining P − r subdomains possess just ⌊N/P ⌋
grid points. Thus, with

(3.9) Ñi := ⌊N/P ⌋+ 1, i = 1, . . . , r and Ñi = ⌊N/P ⌋, i = r + 1, . . . , P,

we assign the first Ñ1 points to the set Ω̃1, the second Ñ2 points to the set Ω̃2, and
so on. Since the Ñi differ at most by one, we obtain a perfectly balanced partition
{Ω̃i}Pi=1. The basic partitioning approach by means of the Hilbert curve is shown for
the two-dimensional case in Figures 2 and 3. Note here that the resolution of the
discrete isotropic space-filling curve is chosen as the one which belongs to the largest
value maxj=1,...,d lj of the entries of the level parameter l = (l1, . . . , ld), i.e. to the
finest resolution in case of an anisotropic grid.

In a next step, we enlarge the initial disjoint subdomains Ω̃i, i.e. the corresponding
subsets of grid point indices, in a specific way to create overlap. This is not done as in
conventional, geometry-based overlapping domain decomposition methods by adding
a d-dimensional mesh-stripe with diameter δ of grid cells at the boundary of the d-
dimensional subdomains that are associated to the sets Ω̃i. Instead, we deliberately
stick to the one-dimensional setting which is induced by the space-filling curve: We
choose an overlap parameter γ ∈ R, γ > 0, and enlarge the index sets Ω̃i as

(3.10) Ωi := Ω̃i ∪
⌊γ⌋⋃
k=1

(
Ω̃i−k ∪ Ω̃i+k

)
∪ Ω̃η,+

i−⌊γ⌋−1 ∪ Ω̃η,−
i+⌊γ⌋+1.

Here, with η := γ − ⌊γ⌋, the set Ω̃η,+
k is the subset of Ω̃k which contains its last

⌈ηNk⌉ indices with respect to the space-filling curve ordering, while the set Ω̃η,−
k is

the subset of Ω̃k which contains its first ⌊ηNk⌋ indices. For example, for γ = 1, we
add to Ω̃i exactly the two neighboring index sets Ω̃i+1 and Ω̃i−1, for γ = 2, we add
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Figure 2: Decomposition of an isotropic grid with l = (3, 3) by the Hilbert curve approach (left)
and corresponding disjoint subdomains (middle). Construction of two overlapping subdomains
(square/blue and triangle/green) by enlargement using the Hilbert space-filling curve (right).

Figure 3: Decomposition of an anisotropic grid with l = (2, 3) by the Hilbert curve approach
(left) and corresponding disjoint subdomains (middle). Construction of two overlapping subdomains
(square/blue and triangle/green) by enlargement using the Hilbert space-filling curve (right).

the four sets Ω̃i+1, Ω̃i+2 and Ω̃i−1, Ω̃i−2. For γ = 0.5 we would add those halves of
the indices of Ω̃i+1 and Ω̃i−1 which are the ones closer to Ω̃i, etc. Moreover, to avoid
any special treatment for the first and last few Ω̃i, i = 1, 2, .. and i = P, P − 1, .., we
cyclically close the enumeration of the subsets, i.e. the left neighbor of Ω̃1 is set as
Ω̃P and the right neighbor of Ω̃P is set as Ω̃1. Note that, besides γ, also the specific
values of the Ñi enter here. Examples of the enlargement of the index sets from Ω̃i

to Ωi with γ = 0.25 are given in Figures 2 and 3. Here we show the induced domains
Ω1 and Ω3 only.

This way, an overlapping partition {Ωi}Pi=1 is finally constructed. Note at this
point that, depending on N,P, γ and the respective space-filling curve type, each
subdomain of the associated decomposition is not necessarily fully connected, i.e. there
can exist some subdomains with point distributions that geometrically indicate some
further separation of the subdomain, see e.g. Ω4 (red) in Figure 2. But since we merely
deal with index sets and not with geometric subdomains, this causes no practical
issues. Note furthermore that there is not necessarily always a complete overlap but
sometimes just a partial overlap between two adjacent subdomains being created by
our space-filling curve approach. But this also causes no practical issues. Moreover,
in contrast to many other domain decomposition methods, where a goal is to make
the overlap as small as possible, our approach rather aims at larger overlaps along
the space-filling curve, which will yield the sufficient redundancy of stored data that
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is needed to attain fault tolerance.
Finally, we set up our coarse space problem. To this end, the size N0 of the

coarse problem is given via the number P of subdomains and the number of degrees
of freedom ni considered on the coarse scale per subdomain, i.e. N0 :=

∑P
i=1 ni. If we

let all ni be equal to a fixed integer q ∈ {1, . . . , ⌊N
P ⌋}, i.e. ni = q, then N0 = q ·P . The

mapping from the fine grid to the coarse space is now given by means of the restriction
matrix R0 ∈ RN0×N and its entries. Again, we avoid any geometric information here,
i.e. we do not follow the conventional approach of a coarse grid with associated coarse
piecewise linear basis functions. Instead we derive the coarse scale problem in a purely
algebraic way. For that, we resort to the non-overlapping partition {Ω̃i}Pi=1 and assign
the values of zero and one to the entries of the restriction matrix as follows: Let q
be the constant number of coarse level degrees of freedom per subdomain. With
Ñi = ⌊N/P ⌋ + 1 if i ≤ (N mod P ) and Ñi = ⌊N/P ⌋ otherwise, which denotes the
size of Ω̃i, we have the index sets Ω̃i =

{∑i−1
j=1 Ñj + 1, . . . ,

∑i
j=1 Ñj

}
. Now let Ω̃i,m

be the m-th subset of Ω̃i with respect to the size q in the space-filling curve ordering,
i.e.

Ω̃i,m =


i−1∑
j=1

Ñj +

m−1∑
n=1

Ñi,n + 1, ...,

i−1∑
j=1

Ñj +

m∑
n=1

Ñi,n

 ,

with associated size Ñi,m for which, with q coarse points per domain, we have

Ñi,m =

(
⌊Ñi/q⌋+ 1 if m ≤ (Ñi mod q),

⌊Ñi/q⌋ otherwise.

Then, for i = 1, ..., P,m = 1, ..., q, j = 1, ..., N , we have

(3.11) (R0)((i−1)q+m,j) =

(
1 if j ∈ Ω̃i,m,
0 otherwise.

In this way, a basis is implicitly generated on the coarse scale: Each basis function
is constant in the part of each subdomain of the non-overlapping partition which
belongs to the Ω̃i,m, where q piecewise constant basis functions with support on Ω̃i,m

are associated to each Ω̃i.
The coarse scale problem is then set up via the Galerkin approach as

(3.12) A0 = R0ART
0 .

Here we follow the Bank-Holst technique [BH03] and store a redundant copy of it on
each of the P processors together with the respective subdomain problem. This way,
the coarse problem is formally avoided. Moreover the coarse problem is redundantly
solved on each processor. It interacts with the respective subproblem solver in an
additive, parallel way, i.e. we solve the global coarse scale problem and the local fine
subdomain problem independently of each other on the processor.

Finally, we have to deal with the overcounting of unknowns due to the overlapping
of fine grid subdomains. To this end, we resort to the partition of unity on the fine
level

(3.13) I =

P∑
i=1

RT
i DiRi
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with properly chosen diagonal matrices Di ∈ RNi×Ni to define the weighted one-level
operator

(3.14) C−1
(1),D :=

P∑
i=1

RT
i DiA

−1
i Ri.

and the respective two-level domain decomposition operator

(3.15) C−1
(2),D := RT

0 A
−1
0 R0 + C−1

(1),D =

P∑
i=0

RT
i DiA

−1
i Ri

where D0 := I. In complete analogy to (3.7) we then introduce the balanced version

(3.16) C−1
(2),D,bal := GTC−1

(1),DG+ F.

There are different choices of the Di’s since the above condition (3.13) does not
have a unique solution. A natural choice is obviously

(3.17) (Di)j,j = 1/| {Ωi′ , i
′ = 1, . . . P : j ∈ Ωi′} |,

which locally takes for each index j ∈ Ωi the number of domains that overlap this
index into account. Note that, for such general diagonal matrices Di, the associated
C(2),D is not a symmetric operator. If however each Di is chosen as ωiIi with a
scalar positive weight ωi, then, on the one hand, the partition of unity property is
lost, but, on the other hand, symmetry is regained and we have a weighted, two-level
overlapping additive Schwarz operator, which can also be used as a preconditioner for
the conjugate gradient method. To this end, a sensible choice is

(3.18) ωi = max
j

(Di)(j,j)

with Di from (3.17). Note furthermore that due to our particular construction of the
overlapping partition via space-filling curves there is a much more natural choice of
Di, in particular ωi, for certain choices of the overlap parameter γ, see section 3.4
below.

In any case, we obtain the two-level Schwarz operator (3.15), with its application
given by Algorithm 3.2, where the setup phase, which is executed just once before the
iteration starts, is described in Algorithm 3.1. The application of C−1

(2),D,bal can be
described in a similar fashion. The convergence properties of the associated precondi-
tioned damped linear/Richardson-type iteration (Algorithm 3.3) are well known. In
fact it is a special case of the additive Schwarz iteration as studied in [GO95]. There,
in Theorem 2, it is stated that an additive method, e.g. induced by (3.15) and damped
by a scalar ξ, indeed converges in the energy norm for any damping 0 < ξ < 2/λmax

with the convergence rate

ρ = max{|1− ξλmin|, |1− ξλmax|},

where λmin and λmax are the smallest and largest eigenvalues of C−1
(2),DA, provided

that C−1
(2),D is a symmetric operator, which for example is the case for the choice
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(3.18). Moreover, the optimal damping ξ∗ and optimal convergence rate ρ∗ are given
by

(3.19) ρ∗ = 1− 2

1 + κ
with κ =

λmax

λmin
, ξ∗ =

2

λmin + λmax
.

The proof is exactly the same as for the conventional Richardson iteration. To this
end, the numbers λmax and λmin need to be explicitly known to have the optimal
damping parameter ξ∗, which is of course not the case in most practical applications.
Then good estimates, especially for λmax, are needed to still obtain a convergent
iteration scheme, albeit with a somewhat reduced convergence rate. Note at this
point that for the general non-symmetric case, i.e. for the general choice (3.17), this
convergence theory does not apply. In practice, however, convergence can still be
observed.

Algorithm 3.1 Overlapping two-level additive Schwarz iteration with space-filling
curve: Setup phase.
1: on every processor i = 1, . . . , P do
2: Set input parameters: d, l = (l1, . . . , ld), P , γ, q, type of space-filling curve.
3: Derive N from (3.8), set Ñi, i = 1, . . . , P as in (3.9) and set N0 = q · P .
4: Compute the index vector sfc_index of length N from the d-dimensional grid point

indices k = (k1, . . . , kd), kj = 1, . . . , 2lj − 1, j = 1, . . . d, according to the space-filling
curve by means of cmp((k1, ..., kd), (k′1, ..., k

′
d)).

5: Derive the disjoint subdomain index sets {Ω̃i}Pi=1 by splitting the overall index set into
P subsets Ω̃i of consecutive indices, each of size Ñi. This is simply done by storing two
integers t̃ai, t̃bi, which indicate where the local index sequence of Ω̃i starts and ends in
sfc_index.

6: Derive the overlapping subdomain index sets {Ωi}Pi=1 by enlarging the Ω̃i with γ as in
(3.10). Again, this is simply done by storing two integers tai, tbi, which indicate where
the local index sequence of Ωi starts and ends in sfc_index.

7: Set up a map to neighboring grid points that are not in Ωi, i.e. store their global indices,
to later determine the column entries of the stiffness matrix that are situated outside of
Ωi.

8: Set the rows of A that belong to Ωi, i.e. store the rows of A with indices j ∈ [tai, tbi] in
CRS format.

9: Initialize the part of the starting iterate x0 and the part of b that belong to Ωi.
10: Derive the rows of the matrix R0 from (3.11) with indices j ∈ [(i − 1)q + 1, . . . , iq] and

store them in CRS format.
11: Compute the rows of the coarse scale matrix A0 as in (3.12) that belong to Ωi,i.e. with

the indices j ∈ [(i− 1)q + 1, . . . , iq], and store them in CRS format.
12: end on

Algorithm 3.2 Overlapping two-level additive Schwarz iteration with space-filling
curve: Application of operator.

Input: Vector g
Output: Vector h := C−1

(2),D
g

1: on every processor i = 1, . . . , P do
2: Compute the part gi = Rig of the vector g that belongs to Ωi.
3: Solve the local subproblems Aidi = gi
4: Solve redundantly the coarse scale problem A0d0 = R0r.
5: Compute the part hi = Rih of the vector h =

∑P
i=0 R

T
i Didi that belongs to Ωi.

6: end on
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Algorithm 3.3 Preconditioned damped linear/Richardson iteration.
1: Set k=1.
2: while not converged do
3: Compute the residual rk = b−Axk

4: Compute hk by applying a preconditioner to rk (e.g. (3.15) via Algorithm 3.2 or (3.16)).
5: Update the iterate via xk+1 = xk + ξhk.
6: end while

This two-level additive Schwarz operator (even with ξ = 1) can also be used as
a preconditioner for the conjugate gradient method, which results in a substantial
improvement in convergence. In the symmetric case, an error reduction factor of
2(1 − 2/(1 +

√
κ)) per iteration step is then obtained in contrast to the reduction

factor of 1− 2/(1 + κ) from (3.19).
Note here again that, for general diagonal matrices Di, the associated precondi-

tioners are no longer symmetric, while they are in the case Di = ωiI. This can cause
both theoretical and practical problems for the conjugate gradient iteration. Then,
instead of the conventional conjugate gradient method, we could resort to the flexible
conjugate gradient method, which provably works also in the non-symmetric case,
see [BDK15] and the references cited therein. This issue, however, can be completely
avoided in our setting with the right choice of the overlap parameter γ.

3.4. Outlook to fault-tolerance. Now, let us shortly look ahead to our overall
goal of developing a fault-tolerant domain decomposition solver for the combination
method. In principle, we may of course choose any value for the overlap parameter
γ > 0 and we may select quite freely the Di or ωi. However, if we want to achieve
fault tolerance and thus need to employ a larger overlap of the subdomains, which are
created as described above via our space-filling curve construction to allow for proper
redundant storage and for data recovery, it is sensible to restrict ourselves to values of
γ that are integer multiples of 0.5. In this case, every fine grid point is overlapped by
exactly 2γ+1 subdomains, whereas, if γ is not an integer multiple of 0.5, the number of
subdomains that overlap a particular point can indeed be different for different points
of the same subdomain. Additionally, integer multiples of 0.5 for γ are the natural
redundancy thresholds of our fault-tolerant space-filling curve algorithm. In particular
for 1

2n ≤ γ < 1
2 (n + 1), n ∈ N, our fault-tolerant algorithm can recover from faults

occurring for at most n neighboring processors in the same iteration [GST]. Thus,
with these considerations, overlap parameter values of the form γ = 1

2n, n ∈ N, are
the ones that are most relevant for proper redundant storage, for data recovery and
thus for fault tolerance in practice. Additionally, such a specific choice of γ has a
direct consequence on the resulting ωi and Di. According to [GST] there holds the
following Lemma which is merely a consequence of our particular construction of the
overlaps and is valid for any space-filling curve.

Lemma 3.1. Let d ≥ 1 be arbitrary and let γ = 1
2n, where n ∈ N, n ≤ P − 1.

Then, with c := 2γ + 1, there holds

Di = ωiI =
1

c
I

for all i = 1, . . . , P and any type of space filling curve employed.

Thus the general weightings Di and ωi for the fine scale subdomains are the
same and even boil down to a simple constant global scaling with the factor 1/c =
1/(2γ + 1) = 1/(n + 1) uniformly for all subdomains i = 1, . . . , P , if the overlap
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parameter satisfies γ = 1
2n, n ∈ N. Thus, we obtain symmetry of the corresponding

operators even for the Di-choice. Note that this symmetry of the operator can not
be obtained easily for the general Di-weighting within the conventional geometric
domain decomposition approach for d > 1. Note also that the result of Lemma 3.1
holds analogously for more general geometries of Ω beyond the d-dimensional tensor
product domain. Note furthermore that, for the choice γ = 1

2n, n ∈ N, the weighted
one-level operator (3.14) becomes just a scaled version of the conventional one-level
operator (3.4), i.e.

C−1
(1),D =

1

2γ + 1
C−1

(1) .

Consequently, we obtain

C−1
(2),D = RT

0 A
−1
0 R0 + C−1

(1),D = RT
0 A

−1
0 R0 +

1

2γ + 1
C−1

(1) .

and

C−1
(2),D,bal = GTC−1

(1),DG+ F =
1

2γ + 1
GTC−1

(1)G+ F,

which now just resemble a fine-level-rescaled variant of the conventional two-level
operator and of its balanced version, respectively.

4. Numerical Results. We will consider the elliptic diffusion-type model prob-
lem

−∇α(x)∇u(x) = f(x) in Ω = [0, 1]d

with right hand side f(x) and appropriate boundary conditions on ∂Ω. Since we
are merely interested in the convergence behavior and the scaling properties of our
approach and not so much in the solution itself, we resort to the simple Laplace
problem, i.e. we set α = I, f = 0, and employ zero Dirichlet boundary conditions.
Consequently, the solution is zero as well. For the discretization we employ finite
differences on a grid with level parameter l = (l1, . . . , ld), which leads to N interior
grid points and thus N degrees of freedom, compare (3.8), and which results in the
associated matrix A. Now any approximation xk during an iterative process directly
gives the respective error in each iteration. We measure the error in the discrete energy
norm associated to the matrix A that stems from the finite difference discretization,
i.e. we track

∥xk∥A :=
√

(xk)TAxk

for each iteration of the considered methods. Note here that we run the iterative
algorithms for the symmetrically transformed linear system Âx̂ = b̂ with Â = TTAT ,
b̂ = TT b, x̂ = T−1x and T = diag(A)−1/2, whereas we measure the error in the un-
transformed representation, i.e. for x − xk. For the initial iterate x0 we uniformly
at random select the entries x̃0

i , i = 1 . . . , N, of x̃0 from [−1, 1] and rescale them via
x0
i := x̃0

i /∥x̃0∥A such that ∥x0∥A = 1 holds. To this end, we employed the routine
uniform_real_distribution of the C++ STL (Standard Template Library). We
then run our different domain decomposition solvers until the relative error in the
energy norm is reduced by at least a factor 10−8 and record the necessary number of
iterations K, i.e. ∥xK∥A ≤ 10−8.1

1We confirmed via further experiments that all provided iterations showed a rather short
preasymptotic phase so that the provided number of iterations are very much related to the as-
ymptotic convergence rate of the respective iterative solver.
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In the following, we present the results of our numerical experiments2 using the
additive and balanced two-level preconditioners given by (3.15) and (3.16), respec-
tively, each in their unscaled, ωi-scaled (3.18) and Di-scaled (3.17) variant. These
operators are used within a Richardson-type iteration as given by Algorithm 3.3 and
the correspondingly preconditioned conjugate gradient method. For the Richardson-
type iteration we employ the optimal damping parameter ξ∗ = 2/(λmin + λmax)
to obtain the best possible solver performance for comparison, even though such a
damping is typically infeasible as it requires to determine the two extremal eigenval-
ues of the respective preconditioned operator by some numerical method beforehand.
Furthermore, we present first scalability results within the context of a combination
technique simulation in dimensions d = 2, 3, 4, 5, 6 utilizing up to one million proces-
sors. Recall that the overall method comprises two levels of parallelism, the first level
being the independent subproblems of the combination technique and the second level
the domain decomposition of each of these subproblems. Moreover, the number of in-
dependent subproblems in the combination technqiue grows very fast with increasing
dimension, compare 1, so that it is sufficient to consider scalability in the second level
of parallelism, i.e. the number of subdomains in the solution of each subproblem, up
to a rather moderate number of processes while attaining very large scalability for the
overall method, see section 4.3.

4.1. Convergence properties. First, we consider the one-dimensional case in
our numerical experiments. Surely there is no need to employ a parallel iterative
domain decomposition solver and a direct sequential Gaussian elimination would be
sufficient. However, this is a good starting point to study the convergence and parallel
scaling properties of the various algorithmic variants. Moreover it will turn out that
the one-dimensional case is indeed the most difficult one for good convergence and
scaling results. This behavior stems from the relative ”distance” of the fine scale to the
coarse scale, H

h ≈ ( qPN )−1/d, since from conventional domain decomposition theory we
have (for geometric coarse grid problems) a condition number of the order O(1+H/h)
(see (3.1) with δ = ch), which is maximal for d = 1.

We set N := 2SP where S := 8. Thus the size of each subproblem stays fixed at
28 with growing P , whereas the overall number N of unknowns grows linearly with P .
Moreover we fix q = 16 and γ = 0.5. We compare the different methods for the three
scalings Di = I (no scaling at all), Di = ωiIdi with ωi according to (3.18), and Di

according to (3.17), i = 1, . . . , P . For our special choice of γ we know from Lemma
3.1 that the weighting with ωi and the weighting with Di are indeed the same and
differ from the unweighted case by just the constant scaling 1

c I with c = 2γ + 1. For
the coarse scale problem, we always set D0 = I.

Figure 4 gives the number of iterations necessary to reduce the initial error by
a factor of 10−8 for the Richardson-type approach (3.3) and the conjugate gradient
method, both preconditioned via the additive scheme (3.15) and the balanced variants
according to (3.16). We obtain weak scaling behavior in all cases, i.e. the necessary
number of iterations stays constant for growing values of P . This constant depends
on the respective splitting: For the linear/Richardson iteration (left) we see that a

2All calculations have been performed on the parallel system Drachenfels of the Fraunhofer
Institute for Algorithms and Scientific Computing (SCAI). It provides, among others, 1.824 Intel
Sandy Bridge cores on 114 compute nodes, each one with 2 Xeon E5-2660 processors (8 cores per
CPU, disabled SMT) at 2.20 GHz and 32 GB RAM, i.e. 2GB RAM per core, and 2.272 Ivy Bridge
(Xeon E5-2650 v2) cores on 142 compute nodes, each one with 2 Xeon E5-2650 processors (8 cores
per CPU, disabled SMT) at 2.60 GHz and 64 GB RAM, i.e. 4GB RAM per core. Drachenfels is
equipped with a Mellanox Technologies MT27500 Family [ConnectX-3] 4x (56Gbps) connection.
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Figure 4: Weak scaling: Number of iterations versus number of subdomains for the linear/Richardson
iteration (left) and the associated preconditioned conjugate gradient method (right), preconditioned
by the three differently weighted versions of the additive (top) and the balanced (bottom) scheme,
d = 1, q = 16, γ = 0.5.

scaling with ωi (and equally with Di) reduces this constant compared to the no-
scaling case, albeit a large number of iterations is still needed. Moreover the results
are substantially improved by the balanced variants: All three scalings now give the
same results and the weak scaleup constant is reduced by a factor of approximately
seven for the unweighted case and by a factor of approximately six for the other two
variants. For the associated preconditioned conjugate gradient methods (right) we
observe a further reduction of the necessary number of iterations. This reflects roughly
the κ-versus-

√
κ effect of the conjugate gradient method in its convergence rate. For

the balanced version, we additionally see a substantial improvement of the scaleup
constant compared to the additively preconditioned conjugate gradient method by a
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factor of nearly one half. Note here that for values of γ that are not integer multiples of
1/2, the Di-scaling does not lead to a symmetric operator, which renders a sound and
robust convergence theoretically questionable and it gave considerably worse iteration
numbers with oscillating behavior for the corresponding preconditioned conjugate
gradient method in further experiments.

We conclude that the Richardson iteration using the balanced preconditioner
and the corresponding preconditioned conjugate gradient method are substantially
faster compared to the additive version. We also see that, for our choice γ = 1/2,
balancing eliminates the difference of the unscaled and the ωi-scaled (and Di-scaled)
cases. Moreover the preconditioned conjugate gradient version is nearly quadratically
faster and gives good weak scaling constants. Therefore, we will from now on focus
on the optimally damped, balanced Schwarz/Richardson-type iteration as well as the
correspondingly preconditioned conjugate gradient method. The type of damping we
will choose, i.e. none at all, ωi according to (3.18) or Di according to (3.17) is still to
be determined. We refrain from employing the Di-weighting for arbitrary choices of
γ, since in general this results in a non-symmetric operator for which our theory is
not valid anymore. It now remains to study the behavior of the unweighted and the
ωi-weighted algorithms in more detail.

So far, we kept the value of the overlap parameter γ fixed. Now we vary γ
and consider its influence on the weak scaling behavior of our two algorithms in the
balanced case. First we consider the one-dimensional situation, where we set S = 8,
q = 16 and vary the number P of subdomains. The resulting number of iterations
for different values of γ ranging from 1/5 up to 5 are shown in Figure 5. Comparing
the ωi-weighted case to the unweighted case, there is not much visible difference at
all. We again clearly see weak scaling behavior. The scaling constant now depends
on the respective value of γ. In the Richardson case, it is interesting to observe that,
in any case, a constant number of iterations is quickly reached for rising values of
P . Moreover, for a small overlap value of γ = 1/5, it is quite bad. The number of
iterations is seen to be optimal for γ = 1/2 and then deteriorates for larger values of
γ. Note at this point that, starting with γ = 1/2, we observe a slight deterioration of
the convergence curves and of the weak scaling constant, where this deterioration is
monotone in n if we restrict ourselves to values of γ that are integer multiples of 0.5,
i.e. γ = 1

2n, n ∈ N+. The non-integer multiples give worse results. In the conjugate
gradient case, the scaling constant is reached increasingly later for rising values of P
(which is desirable). It is improved in a nearly monotonic way for rising values of γ.
Furthermore the absolute value of necessary iterations is again much smaller than in
the Richardson case.

Next, we consider the three-dimensional case and again vary the value of γ. Then,
in contrast to the one-dimensional situation, the Hilbert curve structure comes into
play. The resulting iteration numbers for different values of γ are given in Figure 6.

For the Richardson iteration we again see an analogous behavior for the weak
scaling constant but with a much lower number of iterations compared to the one-
dimensional case. Furthermore we observe that the ωi-scaling improves the conver-
gence: Except for γ = 1/5, all observed numbers of iterations are now close together
for both the values of γ that are integer multiples of 1/2 and the other values, and
their respective number of iterations are in any case reduced to around 50. This shows
that ωi-weighting is able to deal with the decomposition based on the Hilbert curve,
which appears for d > 1, in a proper way. In the unweighted conjugate gradient
case, the curves are approximately the same for all values of γ, except for γ = 1/5
which is too small again. They are successively improved for rising values of γ in the
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Figure 5: Weak scaling: Number of iterations versus number of subdomains for the unweighted
balanced (top) and for the ωi-weighted balanced (bottom) linear/Richardson iteration (left) and the
associated preconditioned conjugate gradient method (right) for different values of γ with varying
P , d = 1, q = 16, S = 8.

ωi-weighted case, as is expected intuitively. Again, the conjugate gradient method
is much faster than the Richardson scheme. Similar observations could be made for
other dimensions.

Altogether, ωi-weighting stabilizes the iteration numbers against variations of γ
and improves the convergence behavior. In light of the larger costs involved for higher
values of γ, a good choice for γ is given by the value 1/2 in both the Richardson and
the conjugate gradient case. However, larger values of γ may be needed to attain fault
tolerance due to redundancy later on. The ωi-weighted case then indeed results in
slightly better convergence results for larger values of γ and shows no deterioration,
which the unweighted case does. From now on we therefore will only consider the
ωi-weighting for both schemes. Moreover we will restrict ourselves in this work to the
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Figure 6: Weak scaling: Number of iterations versus number of subdomains for the unweighted
balanced (top) and for the ωi-weighted balanced (bottom) linear/Richardson iteration (left) and the
associated preconditioned conjugate gradient method (right) for different values of γ with varying
P , d = 3, q = 16, S = 8.

value γ = 1/2. In view of fault-tolerance this value might need to be increased.
So far, we kept the weak scaling parameter S, i.e. the size 2S of each subproblem,

fixed and only varied the number P of subdomains. But what happens if we also vary
the subproblem size? For fixed q = 16, the results are shown in Figure 7.

We again clearly see weak scaling behavior. However the weak scaling constant
now depends on the subproblem size, i.e. it grows with rising S. This holds for both
the Richardson-type iteration and the conjugate gradient approach. This behavior
stems from the fixed value of q and thus the fixed size of the coarse scale problem
for fixed P . In this case the difference between fine scale and coarse scale increases
with growing S and, consequently, the additive coarse scale correction is weakened
compared to the fine scale.
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Figure 7: Weak scaling: Number of iterations versus number of subdomains for the ωi-weighted
balanced linear/Richardson iteration (left) and the associated preconditioned conjugate gradient
method (right) for different values of S, d = 1 γ = 0.5, q = 16, (top) and q = 2S−4 (bottom).

We now let the coarse scale parameter q be dependent on S. To be precise, we set
q = 2S−4, which gives a coarse problem of size P · 2S−4, where we vary the parameter
S. This way, we double q while doubling the subdomain size 2S , i.e. N/P . The
obtained results are shown in Figure 7 (bottom).

In all cases, we obtain substantially improved results compared to the fixed choice
q = 16 from Figure 7 (top). This was to be expected since now the coarse scale correc-
tion is improved for rising S due to the constant relative “distance” between the coarse
and fine scale. We again observe an asymptotically constant number of iterations for
growing values of P and we obtain a weak scaling constant which is, compared to
the fixed choice q = 16, now only slightly growing with S for the Richardson iteration
and seems to approach a limit of about 145 for rising values of S. Moreover it is now
completely independent of S for the conjugate gradient approach, for which we need
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Figure 8: Weak scaling: Number of iterations versus number of subdomains for the ωi-weighted
balanced linear/Richardson iteration (left) and the associated preconditioned conjugate gradient
method (right) for different dimensions d, q = 2S−4, γ = 0.5.

at most 29 iterations in all cases. This shows that q should scale proportional to N/P .
In further experiments we quadrupled q while doubling N/P and found that the weak
scaling constant then even shrank with growing S.

Note at this point that the size of the coarse scale problem is now 2−4 ·P ·2S , while
the size of each subdomain problem is 2S (whereas the size of the overall problem is
N = P · 2S). Thus the cost of solving the coarse scale problem tends to dominate the
overall cost with rising P , which is the price to pay for a more uniform convergence
behavior. This calls for further parallelization of the coarse scale problem itself via our
P processors to remedy this issue. Thus, in contrast to the present implementation
via the Bank-Holst paradigm where we redundantly keep the coarse grid problem on
each processor (besides the associated subdomain problem), we should partition the
coarse scale matrix to the P processors and therefore solve the coarse scale problem
in a parallel way. This however will be future work.

4.2. Parallel performance properties: Scaling behavior. Next, we con-
sider the weak scaling behavior for varying dimensions d = 1, 2, 3, 4, 5, 6. For the
discretization we stick to the isotropic situation, i.e. we set

l = (⌊(S + log2(P ))/d⌋, . . . , ⌊(S + log2(P ))/d⌋).

Thus the overall number of degrees of freedom is independent of d, since

N ≈
d∏

j=1

2(S+log2(P ))/d = 2S+log2(P ) = P · 2S ,

and the size of each subdomain is again approximately 2S for all values of P . Fur-
thermore we choose γ = 0.5, S = 8 and q = 2S−4 and consider only the ωi-weighted
balanced methods. The resulting weak scaling behavior is shown in Figure 8.
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We always obtain weak scaling behavior, where now the constant depends on d.
But it improves for growing values of d and we see that the one-dimensional case is
indeed the most difficult one. This is due to the relative ”distance” of the fine scale to
the coarse scale in the two-level domain decomposition method, which is largest for
d = 1 and decreases for larger values of d. Furthermore a stable limit of 26 and 16
iterations, respectively, is reached for d ≥ 6. Such a behavior could be observed not
only for the isotropic discretizations in d dimensions but also for all the various aniso-
tropic discretizations, which arise from (2.1) in the sparse grid combination method.
This becomes clear when we consider the simple case of the anisotropic discretiza-
tion l = (⌊S + log2(P )⌋, 1, . . . , 1) in d dimensions: With our homogeneous Dirichlet
boundary conditions we obtain the same fine scale finite difference discretization as
for the case d = 1 with differential operator −∂2/∂2

x1
+ 8(d − 1) · Ix1

. We then have
an additional reaction term of size 8(d − 1), which merely improves the condition
number compared to the purely one-dimensional Laplacian. Consequently, the one-
dimensional convergence results impose an upper limit to the number of iterations
needed for all the subproblems arising in the combination method.

Now let us shortly consider the strong scaling situation as well. There we have
N = 2L, where the size of each subdomain is 2L/P , i.e. it decreases with growing
values of P . Moreover values of P larger than 2L are not feasible. We consider again
the one-dimensional situation, set q = 2L−12, γ = 0.5, and vary the number P of
subdomains. The resulting strong scaling behavior is shown for L = 16, 18, 20 in
Figure 9.

We see that the necessary number of iterations first grows with rising values
of P and then, after its peak, steadily declines, as is expected. This is due to the
fact that now the size of each subproblem shrinks with rising P , whereas the size
P · 2L−12 of the coarse scale problem grows linearly with P . There is not much of
a difference for the three curves L = 16, L = 18 and L = 20 since for each P the
coarse scale problem has the same relative distance to the fine grid for all values of
L, i.e. 216/(216−12 · P ) = 218/(218−12 · P ) = 220/(220−12 · P ). Note here that the
downward peaks of the curves in Figure 9 (top) correspond to the situation where
all subdomains are perfectly balanced, i.e. where N mod P = 0. Furthermore the
parameter q was chosen such that the case P = 256 for L = 16, 18, 20 in Figure 9
(top) results in exactly the same situation as the case P = 256 for S = 8, 10, 12 in
Figure 7, respectively.

We finally consider strong scaling for the situation where q = 2⌊log2(N/P )⌋−4,
i.e. where the choice of q is P -dependent and is chosen such that the relative distance
between the coarse and the fine grid is roughly four levels for all P , as was the case in
the weak scaling experiments in Figure 7. The results are given in Figure 9 (bottom).
Due to the involved round off there are now jumps at the points where log2(P ) is an
integer. However we observe the expected steady decline of the necessary number of
iterations in between these jump points. Note that, for this choice of q, the necessary
numbers of iterations for the end points of these intervals are approximately the same.

4.3. Application within the combination technique. In the last experiment
we demonstrate the use of our dimension-oblivious domain decomposition method
within the combination technique. To this end, we consider the Poisson model problem

(4.1) −∆u(x) = f(x) in Ω = [0, 1]d for d = 2, . . . , 6
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Figure 9: Strong scaling: Number of iterations versus number of subdomains for the ωi-weighted
balanced linear/Richardson iteration (left) and the associated preconditioned conjugate gradient
method (right), d = 1, L = 16, 18, 20, γ = 0.5, q = 2L−12 (top) and q = 2⌊log2(N/P )⌋−4 (bottom).

where we choose f and the employed Dirichlet boundary conditions such that the
exact solution is given by

u(x) = ∥x∥2
d∏

i=1

sin(πxi).

We solve this problem on different discretization levels for the full grid as well
as the combination technique using the conjugate gradient method preconditioned by
our ωi-weighted balanced domain decomposition method. The stopping criterion of
the solvers was chosen as the relative residual norm of 10−8, i.e. ∥rk∥

∥r0∥ < 10−8.
Figure 10 (top) shows the approximate total number of degrees of freedom for both

discretizations, where for the discretization parameter L the full grid contains 2L − 1
interior nodes in each coordinate direction and the combination technique is construc-
ted as described in section 2. Clearly, due to the curse of dimensionality, the full grid
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Figure 10: Approximate number of degrees of freedom for the combination technique and full grid
(top) and number of subproblems and utilized processors in the combination technique, P̂ = 2L−8

(bottom).

discretization quickly becomes infeasible since the number of degrees of freedom scales
as O(2Ld). On the other hand, the total number of degrees of freedom for the sparse
grid approach is approximately O(2L(log(2L))d−1) only. Moreover, the problem (4.1)
is never discretized explicitly employing the total number of degrees of freedom due
to the combination technique. The problem is rather discretized on a large number of
independent subproblems on significantly smaller and in general anisotropic classical
grids, compare Figure 1. The number of these combination technique subproblems
for different discretizations can be found in Figure 10 (bottom). Each subproblem
is fully independent of all other subproblems which results in a first level of paral-
lelism. The second level of parallelism is achieved by solving each subproblem using
our domain decomposition approach. Recalling the choice (2.3) of the number of sub-
domains/processors per subproblem via the speedup factor P̂ , the choice P̂ = 2L−8
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Figure 11: Absolute error of the solution for the full grid and combination technique (top) and
runtimes for the combination technique subproblems (bottom) for different dimensions d and dis-
cretization levels L.

results in every subdomain of each subproblem containing approximately 28 degrees
of freedom, independent of the dimension d and layer i in the combination technique.
The resulting equal amount of work is comparable to the weak scaling experiments of
the previous section with S = 8. Additionally, the finest level in dimension d was se-
lected such that it results in at most 256 processors used for each subproblem. Hence,
by definition (2.3), we therefore require 28 = 256 ≥ P = P̂ · 2d−1−i = 2L−8+d−1−i

for i = 0, . . . , d − 1 and all L. Therefore the largest possible discretization level in
dimension d is Lmax,d = 17 − d. Furthermore, the coarse grid parameter q for both
the full grid and combination technique subproblems was selected such that the re-
sulting coarse grid is four levels coarser then the fine grid, again in accordance to the
results of the previous section. One can clearly see that with this moderate parallel-
ism employed for the treatment of each subproblem the combination technique easily
utilizes more than one million processors for the efficient solution of the overall global
problem.

Figure 11 (top) shows the absolute error of both approaches. For the full grid we
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observe the theoretic quadratic convergence independent of the dimension. On the
other hand, for the combination technique the theoretic convergence rate is given by
O(N−2 log(N)d−1) with N = 2L− 1. The dimension-dependent logarithmic term can
clearly be observed. Note that only a small number of data points are available for the
full grid compared to the sparse grid approach, which is again due to the exponential
growth of the number of degrees of freedom and the consequent infeasibility of the
problem. For the same reason, the error of the solution of the combination technique
was only computed for a uniformly at random selected subset of the full grid nodes
for combinations of the parameters d and L where no full grid data is available.
Additionally, for d = 6 and L = 11 the error could not be computed since the
full grid space-filling curve indices are not storable in the built-in unsigned integers,
which are at most 64-bit. However this does not affect the actual computation in the
combination technique, which employs significantly smaller anisotropic grids, it only
affects the post-processing of the error, which has been performed on the full grid for
convenience. In fact, problems on much finer discretizations in higher dimensions than
the ones considered can be solved using the combination technique without running
into these issues.

The runtimes for each subproblem can be seen in Figure 11 (bottom). The plot
shows the minimal, maximal as well as the median runtime of the subproblems. We
can see that our choice of the parallelization parameter P̂ yields scalability of the
overall combination technique. Due to the robustness of the domain decomposition
solver with respect to the dimension as observed in the previous section, we obtain an
algorithm whose runtime depends on the number of degrees of freedom per processor
only. This can clearly be observed for the finest discretizations in each dimension,
where by construction each processor stores roughly 28 degrees of freedom which
yields very similar runtimes for the subproblems. The same can be observed for all
combinations of d and L which result in the same number of processors per subproblem
on the first layer, P = 2L+d−1, i.e. where L+d yields the same value. Note again that
the problem on the finest level for d = 6 employs over a million processors, compared
to approximately ten thousand processors for the finest level for d = 2, while mainting
similar runtimes for each subproblem, demonstrating the weak scalability of the overall
algorithm independent of the problem dimension.

5. Concluding Remarks. We presented an algebraic dimension-oblivous lin-
ear solver based on a space-filling curve domain decomposition approach with large
overlap. The proposed solver moreover allows for the efficient utilization of arbitrary
processor numbers while maintaining optimal convergence behavior.

The presented domain decomposition linear solver is an essential ingredient in
the design of an extremely scalable sparse grid combination technique solver for high-
dimensional PDE problems of elliptic and parabolic type. Besides scalability results
of the proposed solver we gave first results for the treatment of a simple diffusion
problem in dimension d = 2, 3, 4, 5, 6 via the combination technique and the proposed
domain decomposition solver utilizing up to one million proceessors. The extension
to fault-tolerance is currently under development and will be discussed in detail in a
forthcoming paper, see however [GST] for initial results.
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