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Abstract. We prove existence of optimal controls for sparse optimal control of a quasilinear
elliptic equation in measure spaces and derive first-order necessary optimality conditions.
Under additional assumptions also second-order necessary and sufficient optimality conditions
are obtained.

1. Introduction

This paper is concerned with sparse optimal control of a quasilinear elliptic partial dif-
ferential equation (PDE) in measure spaces. We prove well-posedness of the state equation,
and existence of optimal controls, and derive first- and (in space dimension 2) second-order
optimality conditions for the following prototypical model problem:

1
P min _ J(y,u) := =|ly — 2 + 7l|u =1y
(P) i () = 5l = vl + Yl
-V -&(y)pVy =u, in QUTy,
(Eq) s.t.
y=0, onlp.

For the notation and the detailed assumptions we refer the reader to Section below.
Our problem is of interest because it combines two challenging aspects in the field of PDE-
constrained optimization: sparse optimal control in measure spaces, and optimal control of
quasilinear PDEs. In particular, the consideration of nonlinear PDEs with measure data
is known to be delicate; see, e.g., [3/13}/38]. Nevertheless, utilizing the so-called Kirchhoff
transform as the main tool of our investigation, we are able to obtain results for (]ED as they
may be expected from a similar analysis of problems with semilinear elliptic equations in
[13].

In the last years there have been many contributions to both fields, sparse optimal
control and optimal control of quasilinear PDEs. In case of control-constrained optimal
control of quasilinear elliptic PDEs we refer, e.g., to |[11,/16] for first- and second-order
optimality conditions, to [17}/18] for finite element discretization error estimates, or to |20,
21| for a nonsmooth nonlinearity. Optimality conditions in the quasilinear parabolic setting
have been derived, e.g., in [4}8] for control- and in [33] for state-constraints, respectively.
As typical for problems governed by any nonlinear PDE, first-order necessary optimality
conditions for optimal control problems with quasilinear PDEs are in general not sufficient
for optimality, due to nonconvexity of the problem. Consequently, second-order optimality
conditions need to be addressed. Here, a careful analysis of existence and regularity of
solutions to the underlying PDE and its linearizations typically poses the main difficulty.

Sparse optimal control is a highly active area of research, see, e.g., [7] for a concise
overview, but to the best of our knowledge the case of sparse optimal control of quasilinear
PDEs has not been addressed so far. The general idea of sparsity in PDE-constrained opti-
mization is to enforce small support of the optimal control in an optimal control problem.
This may be favorable in practical applications, e.g., if actuators that implement such an
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optimal control cannot act on the whole spatial or spatio-temporal-domain. Beside other
approaches, as, e.g., L!-penalization [41], directional sparsity [12,[32], mixed approaches
[10}35], or LP-penalization with p € [0,1) [19,34], choosing controls from a measure space
is a prominent approach in sparse optimal control. We refer, e.g., to [9] for problems with
linear elliptic, to [14] for problems with linear parabolic, and to [13,]38] for problems with
semilinear elliptic PDEs. Compared to distributed control with L!-penalization this has
the advantage that point- or certain surface-sources are included in the control space. Since
the space L' embedds isometrically into the space of Borel measures, this approach can
be seen as generalization of L'-penalization. However, there are three typical difficulties:
First, one has to prove well-posendness of the optimal control problem by ensuring exis-
tence, uniqueness, and sufficient regularity of solutions to the state equation for controls
of very low regulartiy. Second, in the case of a nonlinear state equation the investiga-
tion of differentiability properties of the control-to-state becomes particulary challenging.
This is due to the fact that differentiability of the nonlinear terms has to be addressed
in appropriate, sufficiently regular function spaces, while solutions to PDEs with measure
right-hand sides tend to have low regularity. The third difficulty arises from the presence
of the ||~||MD(§)—norm in the functional, which makes (P) a nonsmooth problem. In the
present paper, the first two problems form the main challenge, and we deal with them by
transforming into a linear elliptic equation utilizing the so-called Kirchhoff transform;
see Section The two aforementioned problems basically reduce to checking invertibility
and differentiability, respectively, of the Kirchhoff transform between the respective function
spaces that are determined by the regularity of solutions of the linear elliptic equation with
measure right-hand side. Since second-order differentiability of the Kirchhoff transform is
needed this limits our second-order analysis to space dimension 2. Regarding the analysis
of the state equation, let us also point out that the nonlinearity in is of non-monotone
type in general, see, e.g., the counterexample in [26], and hence not covered by, e.g., [3].
Having obtained the required properties of the control-to-state map, optimality conditions
for the nonsmooth and nonconvex problem (]E[) can be discussed following in principal the
techniques applied to the semilinear setting in [13].

The structure of the the paper is the following: First, we state and discuss our minimal
assumptions in Section below. After that, we analyze well-posedness of the state equa-
tion and the optimal control problem in Section[2] Moreover, we derive first-order necessary
optimality conditions in Section [3] Under appropriate additional assumptions and restric-
tion to space dimension 2 we also prove second-order necessary and sufficient optimality
conditions in Section [ In Section [£.4] we indicate how the restriction to dimension 2 can
be avoided.

1.1. Notation and Assumptions. We introduce some notation and conventions, and
state our minimal assumptions that hold troughout the rest of the paper. First, we clarify
some basic notation: Given real Banach spaces X and Y, we denote by X — Y that
X is continuosly embedded into Y, by £(X,Y) the space of bounded linear maps X —
Y, equipped with the operator norm, and by X* := L£(X,R) the topological dual of X.
Moreover, BX (z) C X denotes the open ball of radius r > 0 around some z € X. By
“left-hand side < right-hand side” we indicate that “left-hand side < ¢ right-hand side”
with some constant ¢ > 0 whose exact value is not relevant in the respective context.

With respect to the domain, its boundary, and the boundary conditions we will rely on
the following conditions:

Assumption 1.1. Q C R¢, d € {1,2,3}, is a bounded, open, and connected set. Its
boundary 99 is divided into two disjoint subsets I'y and I'p := 8Q \ I'y of which I'y is
relatively open. We assume that Q UT'y is regular in the sense of Groger [28] and that I'p
has nonzero surface measure within 9Q2.

For an explanation why I'p needs to have nonzero surface measure, which excludes
pure Neumann boundary conditions, we refer the reader to the end of Section Note
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that regularity of QUI'y in the sense of Groger implies that €2 is a Lipschitz-domain in the
sense of [27, Definition 1.2.1.2]. Moreover, Assumption is in particular fulfilled for any
domain with a Lipschitz boundary (“strong Lipschitz domain”, in the sense of |27} Definition
1.2.1.1]) in the case I'p = 0Q; cf. |31, Remark 3.3]. Nevertheless, there are also domains
without Lipschitz boundary fulfilling Assumption e.g., a pair of crossing beams in 3D
with pure homogeneous Dirichlet boundary conditions; cf. |31}, Section 7.3]. For a geometric
characterization of regularity in the sense of Groger in space dimension 2 and 3 we refer the
reader to [29] for instance.

By a subscript D we indicate from now on that spaces of functions defined on Q carry
homogeneous Dirichlet boundary conditions on I'p. By Wllj’q(Q), g € [1, 00), for instance, we
denote the Sobolev space with vanishing trace on I'p, and define W, "%(Q) := (WE’qI(Q))*
with ¢! + (¢') ! = 1. Let us point out that the regularity assumptions on the domain, its
boundary, and the boundary conditions ensure in particular that (W, l’q(Q))qe(l)oo) forms
an interpolation scale, cf. [2], which will be used and explained in more detail in Section
below. Moreover, the classical Sobolev spaces Wj—_l)’q(Q), consisting of L? functions on
Q with weak derivatives in L9(§2) and vanishing trace on I'p, coincide with Sobolev spaces
obtained by restriction of Wé’q(]Rd); cf. |2, Proposition B.3]. In particular, the classical
Sobolev embeddings into Lebesgue and Holder spaces stay valid. Finally, we will use the
notation C¥(Q) := {pla: ¢ € CX(R?), supp(p) NT'p = 0}.

By Cp(Q) we denote the space of continuous functions Q@ — R vanishing on I'p. The
space of regular Borel measures Mp(Q) := M(QUTy) on QU 'y is identified with the

dual of Cp(R), cf. [40, Theorem 6.19], and equipped with the norm

lellpp@ = sup (4, @)mpcp = sup <1/Q<Pd/£-

I‘Pch(ﬁ)Sl H‘PHCD(E),

The space M p(Q) can be viewed as space of Borel measures on  with homogeneous bound-
ary condition on I'p; cf., e.g., [5, Appendix C].

Next, we state our assumptions on the coefficients of the state equation, the desired
state and the regularization parameter:

Assumption 1.2. 1. The function & R — (0,00) is continuous, and bounded
from below and above, i.e.

0<&<é(s) <€, VseR,
and p: Q — R%*? is measurable, uniformly bounded, and elliptic, i.e.

T
0 < pe :=essinfzeq  inf M, p° i=esssup,cq Sup |pi;(z)| < co.

zeR\{o} 2Tz 1<i,j<d
2. We assume that there is some ¢ > d such that
(1.1) V- o'V: Wy wyte
is a topological isomorphism, and fix this choice of g.
Assumption 1.3. Let v > 0 and y; € L?(Q).

The assumptions on £ ensure that the Kirchhoff transform and its inverse, introduced
in Section [2] below, are well defined maps between the respective function spaces. The
isomorphism property for the elliptic operator —V - p”'V for some § > d, that is crucial
for the well-posedness of , cf. Section |2} is certainly nontrivial, in particular in space
dimension 3. However, there are several interesting constellations in which our assumptions
are satisfied:

Example 1.4. 1. If Q is a bounded domain with Lipschitz boundary, I'p = 09,
and p is symmetric-valued and uniformly continuous, then is an isomophism for
some g > 3; see |25}, Theorem 3.12]. This means that Assumptionsandcover
in particular the classical “regular” setting of domains with Lipschitz boundary
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in dimensions d = 2,3 with pure Dirichlet boundary conditions and symmetric,
uniformly continuous p.

2. It is a well known result of Groger [28] that is a topological isomorphism for
some g > 2, possibly arbitrarily close to 2, if Assumptions[I.I]and[I.2]1 are satisfied.
In fact, this is even true under more general assumptions; cf. [30]. Therefore,
Assumption [1.2]2 does not pose an additional restriction in space dimension d = 2.

3. In [23], for instance, several real-world constellations in dimension d = 3 have been
described that fulfill Assumptions and Two crossing beams, e.g., with
constant p and I'p = 89, fulfill our requirements.

2. Well-posedness of the state equation and the optimal control problem

First, we define the notion of a solution to , and verify that is well-posed in
this sense. This is done in Section by application of the so-called Kirchhoff transform,
l.e. a nonlinear superposition operator that allows to transfer into a linear elliptic
equation. The well known existence, uniqueness, continuity, and regularity theory of the
latter, summarized in Section can be transferred back to . The crucial point is
to discuss the mapping properties of the nonlinear superposition operator of the Kirchhoff
transform between the respective spaces. Having shown well-posedness of the state equation
and appropriate continuity properties of the control-to-state map, we prove existence of a
solution to (]ED in Section

First, let us state precisely what a solution of means in the following. Unlike in
the case of the linear elliptic equation we cannot introduce a very weak formulation of
because shifting all derivatives to the test-function via integration by parts would also
require us to take derivatives of £(y).

Definition 2.1 (Solutions of (Eq)). We call y a solution to (Eq) if
21)  yewp'(Q), st / £(y)pVyVe dz = /Ja du, VpeCF(Q).
Q Q

The reason for defining a solution of a priori to be an element of Wllj’ql(ﬂ), instead
of, e.g., Wé’l(Q), is to ensure uniqueness of solutions. We will explain this in more detail
below Proposition Note that if y is a solution to with additional regularity y €
W5%(Q) with some g € [7, 22-), it will even hold that

(2.2) / £(y)pVyVe dz = /gp du, Vo € W5 (),
Q Q

because C%(2) is dense in WB’qI(Q). Here, the right-hand side of (2.2) is well defined,

because WE’qI(Q) < Cp(Q) due to ¢’ > d. Moreover, let us point out that the left-hand side
in ([2.2) is well defined because boundedness and measurability of £ ensure {(y) € L™ (Q).

2.1. Linear elliptic equations in measure spaces. Before addressing the analysis of
, we recall some well known theory concerning the existence, uniqueness, and regularity
of solutions to linear elliptic PDEs for convenience of the reader. More precisely, for some
g € [7',2] we consider the equation

-V .-pVw=u onQUTly,
(2.3)
w=0 onlp,
with u € W, 1’q(Q). We follow a duality-based concept going back to Stampacchia [42], cf.
also [36), Section 2], and call w a solution of (2.3) if

(24)  weWH(®) st [ pVuTpde= (el e Vo ECF@)

As in Definition a priori W14-regularity of the solution is part of this solution concept.
This is necessary to ensure uniqueness of solutions, because it is well known that there may
be several @ € W5"(R) that solve the varitional formulation in (2.4); see, e.g., [36] and the
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references therein. Note that once ([2.4)) is fulfilled for all ¢ € CF(Q), it is also fulfilled for
all p € W57 (Q) by a density argument.

Proposition 2.2. Let Assumptions and hold.

1. Letq € [q,2]. Foranyu € ng’q(Q) there ezists a unique solution w € Wé’q(ﬂ)
of in the sense . Moreover, the solution map (—V - pV)™1: u s w is
a bounded linear map W5™9(Q) — W5 (Q).

2. Letq € (7, %). For anyu € Mp(Q) there exists a unique solution w € W5(Q)
of in the sense

/ pVuwVe dz = Lw du, Yo € C3 (),
Q Q

and the solution map (—V - pV)~1: u = w is a bounded linear and weak--to-
strong continuous map Mp(Q) = WE(Q).

Proof. 1. The elliptic operator —V-p” V provides an isomorphism Wé’q, Q) — ng’q, (Q)
for ¢’ = g by Assumption 2, and for ¢’ = 2 by Lax-Milgram and the Poincaré-Friedrich
inequality, because I'p has non-zero surface measure. Since Assumption [1.I]implies the re-
quirements of [2|, see, e.g., [4, Appendix A] for the verification, (Wllj’ql (£2))ge(1,00) forms an
interpolation scale according to |2, Theorem 1.2]. Consequently, we obtain by interpolation
that —V - pTV provides a topolocial isomorphism Wé’ql(Q) - WEl’qI(Q) for all ¢’ € [7,2].
Hence, the claim follows by a standard duality argument as, e.g., in [36, Section 2].

2. For g € [1, 7%7) it holds Mp(Q) <= Wp%(Q), which follows from W57 (Q) < Cp(Q)
for ¢’ > d. Consequently, measure right-hand sides u € Mp(Q) in are included in the
formulation for these ¢ via (u, w)WEl,q’W}D,qI = f§g0 du. Weak-x-to-strong continuity

follows from compactness of Wlly’ql (Q) = Cp(Q). O

In the above duality argument we have crucially made use of the isomophism property
in Assumption 2 when obtaining unique solutions to , to be understood in the sense
of . For an overview of different solution concepts of linear elliptic PDEs with measures
on the right-hand side without such an isomorphism-property we refer the reader to, e.g.,

[36].

2.2. Well-posedness of the state equation. We now address existence, uniqueness,
and additional regularity of solutions to . These results will be obtained from those
of Section by application of the so-callend Kirchhoff (or enthalpy) transform; see, e.g.,
[39, Example 2.74], [44, Chapter V]. Note that this has already been used in the context of
optimal control of quasilinear elliptic equations in [20,21] for instance. We define

S
= R — R, sr—>/ £(¢) dt,
0

and observe that, at least on a formal level, y € Wé’q(Q), satisfies if and only if w =
E(y) € Wé’q(ﬂ) satisfies (2.4), i.e. w is a solution to ([2.3). To make this idea mathematically
precise in the following, we have to investigate the properties of the superposition operators
associated with = and Z~1 first:

Lemma 2.3. 1. Z: R — R s stricly increasing, Lipschitz continuous, surjec-
tive, and hence bijective with continuous inverse 2~ % R — R, and the following
linear growth-estimates hold:

GlsI SIE(I s, ) TsISIET(I<& s, VseR.

-1

Moreover, 271 is continuously differentiable with bounded derivative (E71) =

1/(€oE71).

2. The superposition operators associated with = and = * are well defined as maps
WEUQ) = WS (Q) for 1 < r < g < oo. Forr = q they are inverse to each
other; for r < q they are continuous.

-1
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3. The superposition operators associated with = and Z~ ' are well defined and
continuous as maps L*(Q) — L"(Q) for 1 <r < s < 0. Moreover, if r < s they
are continuously Fréchet differentiable.

Proof. 1. is a direct consequence of the definition of £ and Assumption [T.2]1. Well-
definedness in 2. follows from the chain rule, see, e.g., |39, Proposition 1.28], and continuity
for 7 < g can be shown by a short calculation. 3. follows from [43) Chapter 4.3.3]. |

Note that a positive lower bound for ¢ is necessary to ensure surjectivity of = and the
linear growth bound for Z—!. Boundedness of ¢ ensures the linear growth bound for = and
therefore well definedness of the superposition operator associated with =. Moreover, we
already have used boundedness of £ when considering the weak formulation . Therefore,
the conditions on ¢ from Assumption [I.2]1 are necessary for our further analysis.

We are now able to analyze the state equation :

Proposition 2.4. Let Assumptions and hold. For any u € Mp(Q) there
exists a unique solution y to in the sense of Definition . The solution exhibits
additional regularity y € Wllj’q(Q), q €7, %). Moreover, the solution map S: u — y
of 18 continuous and weak-x-to-strong continuous as map

- ~ _ L, d
S=E"10o(=V-pV)™" Mp(Q) - W5 (), ge(q, ﬁ)

In the following we will also refer to S as the control-to-state map.

Proof. According to Lemma [2.3|2 and the chain rule some y € Wllj’ql (Q2) satisfies ([2.1))
if and only if w = E(w) € WS? (Q) satisfies (2.4). Therefore, existence, uniqueness and

regularity of solutions y = = 1(w) to (2.1) follows directly from the respective theory for
solutions w of ([2.3) obtained in Proposition [2.2}2. O

Since 27! acts as a bijective map on Wé’q(ﬂ) for any g € [1, o0}, it is clear that solutions
of are unique in WB’qI(Q), but not in W' () in general. This is due to the fact that,
as pointed out above in Section solutions to are in general not unique in Wé,’l(Q).
Moreover, we note that in terms of Sobolev-regularity solutions of are neither more
nor less regular than the solutions of the —V - pV-problem with measures on the right-hand
side.

Finally, let us briefly explain why I'p is required to have nonzero surface measure in
Assumption In the case of pure Neumann boundary conditions it is well known that
would not even be well-posed with right-hand sides from HBl(Q) due to the lack
of H}(S2)-coercivity of the elliptic operator in the case I'p = 0. Therefore, it would be
necessary to add a zero-order linear term to the elliptic operator, e.g., by considering the
modified equation

’ -V - €é(y)pVy +y =u, in QUTy,
(Eq’)

y =0, onI'p.

Now, (Eq)) is well-posed also in the case I'p = 0, at least if u € H5'(Q2). When considering
u € Mp(Q), however, the Kirchhoff transform of (Eq’) leads to

—V - -pVw + (doZ7 ) (w) = u, in QU Ty,
(2.5) { P ( )(w) N

w =0, onI'p,

which is a semzilinear elliptic equation with a measure right-hand side although the original
equation was linear. Similarly as before, the solution map S of would be given
by S = Z ! oG, where G denotes the solution map of (associated with an appropriate
solution concept and spaces); see, e.g., [13] for the analysis of an equation of type under
certain additional assumptions. Since the consideration of semilinear terms in infers
specific new difficulties, we exclude pure Neumann boundary conditions in Assumption (1.1
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2.3. Existence of solutions to @ Having at hand the previously shown properties of
the control-to-state map, we can apply standard techniques to prove wellposedness of the
optimal control problem. We introduce the abbreviations

1 . 5 .
Fu):=2[15(w) —valliz@y 3w = ullpy@y  JW) = Fu) + (),
Proposition 2.5. Under Assumptions there exists a solution to ().

Proof. F is weak-x continuous due to Proposition [2.4] and j is weak-x sequentially lower
semicontinuous |6, Theorem 3.13iii] and coercive due to v > 0. Consequently, J is bounded
from below, weak-x-sequentially lower semicontinuous, and coercive. Therefore, standard
arguments that ensure existence of a minimizer apply. |

For the necessity of ¥ > 0, which ensures coercivity of J, to guarantee existence of
solutions to @ we refer the reader to Remark below.

Remark 2.6. Under the same assumptions as in Proposition [2.5]also the problem with
the additional control-constraint “u € U,q” with a weak-x sequentially closed set U.,q C
Mp(Q), is well-posed. For instance, consider U,q to be the subset of nonnegative measures
in Mp(Q). The condition 7 > 0 can be dropped, if U,q is weak-x-compact, which is the
case, e.g., if U,q is weak-x-sequentially closed and bounded |6, Theorem 3.16]. For instance,
given pg, py € Mp(§Q) such that p, < pp, the choice Ung = {u € Mp(Q): pa < p < s},
is possible. Here, “<” denotes the ordering on Mp(Q) induced by the natural ordering on
C’D(ﬁ). One may think of such U,q as analogon of classical box-constraints in the space of
Borel-measures.

3. First-order optimality conditions

In this section we derive first-order necessary optimality conditions for local solutions
of @ Since the analysis of the nonsmooth part of J can be adapted from [13] without any
changes, we concentrate on the analysis of the smooth part which differs from this setting.
As a first step, we analyze differentiability properties of the control-to-state map in Section
As in the previous section, our results are based on the Kirchhoff transform. Now,
the crucial point is to analyze differentiability of the nonlinear superposition operator of
the Kirchhoff transform. After these preliminaries we derive first-order conditions for @D
using in principal the same ideas as in [13]. Surprisingly, the Kirchhoff transform allows to
address first-order differentiability of the control-to-state map as well as first-order necessary
optimality conditions without requiring a derivative of £.

3.1. Differentiability of the control-to-state map. A direct computation of the deriv-
ative of S by application of the implicit function theorem seems to be difficult. It would
require to discuss in particular invertibility of —V - £(y)pV — V - '(y) - pVy on the low-
regularity space Mp(Q), which is particularly difficult due to the low regularity of ¢(y) and
&'(y). Therefore we follow the same approach as in the last section and utilize the Kirchhoff
transform:

Proposition 3.1.  The control-to-state map S s continuously Fréchet differentiable
as map Mp(Q) = L"(Q) for each 1 <r < ;4. It holds

(3.1) S'(wv =£(y) H=V-pV) tv,  uwve Mp@), y=S().

Proof. Recall from Proposition [2.2| that (=V - pV) 1 € L(Mp(Q), W5?(Q)) for each
q €[1,5%). By Sobolev embedding it follows that (—V - pV)~! € L(Mp(Q), L*(Q)) for all

a1
s €1, d%dz)' Hence the claim follows from the chain rule, applied to S = E10(-V-pV)~1,
and the differentiability properties of 27 1: L(Q) — L"(Q); cf. Lemma [2.3/4. O

A purely formal computation shows that the formula for the derivative is the same we
could expect from the implicit function theorem.
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3.2. First-order necessary optimality conditions. From Section [2.3|recall the definition
of J, F and j. For a discussion of directional derivatives and properties of the subdifferential
of 7 we refer the reader to [13, Propositions 3.2, 3.3] for instance. Due to Proposition
and d < 3 the functional F' is continuously Fréchet differentiable. The derivative of F' for

u,v € Mp(Q2) is computed as follows:

F'(u)v = (S(u) — ya, S'(w)v) 12(0) = (¥ — ¥a, £(¥) 7 (=V - pV) " ) 12
= <P;U>CD(§),MD(§)a
where we have introduced the so-called adjoint state p = (=V - p7 V) " 1(£(y) '(y — ya)) €
Wé’q(_Q) — Cp(Q). Here, recall Assumption 2 and that £(y)(y — va) € L3(Q) <
ng’q(ﬂ) due to d < 3 and § < 6. Consequently, the linear form F’(u) is not only an
element of the highly abstract dual space Mp(Q)* but can be represented by some p in
the predual Cp(Q2). Therefore the same arguments as in [13] can be utilized to derive first-
order necessary optimality conditions. In fact, these first-order conditions even hold at a
local solution of (]ED for a notion of local optimality that is weaker than local optimality in

the M p(2)-topology.

Theorem 3.2. Let Assumptions hold and u € Mp(Q) be a local solution
of (]ED with respect to the WD_l’q(Q)—topology for some g € (1, d%). Then there exists

1
a so-called adjoint state p € W5¥(2) such that

-V -&(9)pVYy = u, on QUI'y,
(3.2) _
y =0, on I'p,
~Vp'VE=£@) (T -va)  onQ,
(3.3) _
p=0, on FD)
_ _ _ =7 fa#o,
3.4 7 g —|—/ du =0, and =
(34) Wity + [ 2 Bl e { DU

Moreover, if 4 # 0 1t holds
(3.5) supp(a’) C {z € Q: p(z) = —v}, and supp(d ) C {z € Q: p(z) = +7}.

Condition (|3.5) means that the optimal control % only acts on a certain, possibly small,
compact subset of Q U 'y, which we call “sparse” optimal control.

Proof. The proof works completely analogous to the proof of |13, Theorem 3.4] in the
semilinear elliptic case. We utilize ||-||W51,q(9) S Il pmp @y differentiability of F', and con-

a - —14q
vexity of j to conclude from J(u) > J(@) for all u € By ® (Q)(a) that
0 < lim J(a+t(u—1a)—J(a)

< lim t < P(@)(u-a) +5(w) - j(8),  Vue Mp(@),

and hence

—/ﬁﬁ d(u —a) < j(u) —j(@), VYue Mp(Q).

By definition, this means —p € 85(u). Due to p € Cp(R), the characterization of §7(u) N

Cp(Q) from |13} Proposition 3.2] implies (3.4) and (3.5). O

Utilizing a purely formal computation, the adjoint equation (3.3)) could be rewritten as
—V - £(@)p"VE+ £ (§)pVIVE=F—ya onQ,

which coincides with the result that would be obtained by —also purely formal- application

of the implicit function theorem.

Remark 3.3. The approach used in the proof of Theorem [3.2)is no longer applicable if
minimization does not take place over the whole space M p(Q), e.g., in the setting described
in Remark In case of certain linear-quadratic problems with the nonnegative measures
as admissible set, first-order necessary optimality conditions have been derived with the
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help of Fenchel duality [22]. Whether a similar result may be obtained also for nonconvex
problems is to our knowledge an open problem.

Remark 3.4. Actually, we do not need the assumption v > 0 in Theorem For
v = 0, however, it follows p = 0, and hence § = y4 a.e. on . Consequently, if 4 is a local
solution to (]ED for v = 0, then the associated state y has to satisfy § = y4. We conclude
that there are functions y4 € L?(2) such that (]ED does not have a local solution for v = 0.

4. Second-order optimality conditions in 2D

In general, (]ED is nonconvex, and hence the first-order conditions derived in the last
section are not necessarily sufficient for optimality. Therefore, we address second-order
optimality conditions in the present section. First, we discuss second-order derivatives of
the control-to-state map and the objective functional in Section This works analogous
to the first-order analysis in Section However, as it will become clear in Section |4.1
below we have to restrict our second-order analysis of (]ED to space dimension d < 2 at
the moment. We follow roughly the techniques of [13], and derive necessary and sufficient
second-order conditions in Sections and respectively. For a modified version of (]E[)
that allows to avoid the restriction to d < 2 we refer the reader to Section |4.4

4.1. Second derivative of the control-to-state map. In order to discuss second-order
derivatives of the objective functional, we require an additional assumption on the coefficient
function ¢ that ensures second-order differentiability of the control-to-state map.

Assumption 4.1. Let ¢ be continuously differentiable, and suppose that there are
a,b € R such that [£'(s)] < a+ b|s|, for all s € R.

Under this additional assumption, the map Z~! is twice continuously differentiable with

second derivative (E71)" = —g—; o Z~! satisfying a linear growth bound.

Proposition 4.2. Under Assumptions|[1.1 and [{.1] the control-to-state map S
is twice continuously Fréchet differentiable as map Mp(Q) — L"(Q) for r € [1, %)
with second deriwvative

€, _ €W

)77 €
with y = S(u), z; = S'(u)v;, for each u,v1,v2 € Mp(Q).

Proof. As in the proof of Proposition [3.1]it holds (—V - pV)~! € L(Mp(Q), L™ (Q)) for
r €1, %2). Moreover, due to the linear growth bound on (£ 1)” the superposition operator
=~! is now C2-differentiable as map L"(Q) — L°(Q) for r > 2s; cf. [43, Chapter 4.3.3].
Therefore, second-order differentiability and the formula for the derivative of S follows from

the chain rule applied to S = Z71 0 (—-V . pV)~1. O

§"(w)vr, vs] = - (=V - pV) o (=V - pV) oy,

Since the objective functional is only well defined for at least L?-integrable states, the
above result excludes discussion of second-order optimality conditions in space dimension
d = 3. For an approach to avoid this restriction by introducing a modified variant of (]ED we
refer the reader to Section[4.4] Nevertheless, at the moment we have obtained the following
property for F: For d < 2, F' is twice continuously differentiable with second derivative
given by

(¥ — Ya)| 2122 dz, y=S(u),z = Sl(u)’Uz‘,

(4.1) F'"(u)[vy,vs] = /

Q

'(y)
{1 )

for each u,v;,vs € Mp(Q). Interestingly we do not require second derivatives of ¢ for the
second-order analysis of (]ED This is again due to the special structure of (Eq) and the
Kirchhoff transform.
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4.2. Second-order necessary optimality conditions. To prove second-order necessary
optimality conditions, we follow the technique of the proof of [13, Theorem 3.7]. Given a
local solution @ € Mp(Q) to (P) we introduce the critical cone

Cyu = {v € Mp(Q): F'(a)v +v5'(@,v) = 0}.

From [13 Proposition 3.5] we recall that Cj; is a closed convex cone that can equivalently
be expressed as Cz = {v € Mp(Q): [54 dus + Vsl pp@ = 03 Hereby, for some
v € Mp(Q) we denote by v,,vs € Mp(Q) the uniquely determined absolutely continuous
and singular parts, respectively, with respect to |u|, i.e. v = v, + vs; with v, = g, d|u| and
Gy = dc‘lf_il € LY(Q, d|u|); cf. |40, Theorem 6.10]. Using this, the critical cone also may
be written as Cyz = {v € Mp(Q): supp(vy) C Q_,, supp(vy) C 44}, with Qi :={z €
QUTnN: p(z) = £7}; cf. [13, Remark 3.6]. Asin |13, Remark 3.8] the following second-order
necessary conditions even hold for local solutions with respect to a weaker notion of local
optimality.

Theorem 4.3. Let Assumptions and and d < 2 hold. Assume that
%@ € Mp(Q) is a local solution to (P) w.r.t. the W5 4(Q)-topology for some q € (1,2).
Then 1t holds F"(@)v? > 0 for all v € Cy.

Proof. This works in completely the same way as the proof of |13, Theorem 3.7],
since ||-[|yy-1.4.g) S ey @) and we can show that uy — @, vy — v in Mp(Q) implies
D
F'"(ug)vi — F"(@)v?: Employing formulas (4.1)) and (3.1) we have to show

§I(yk) -1 . 1,32 dg
M2)‘L[1—£ww(w—wd]@ww (—V - p¥)10y)? d

V-
-+ [1- S0 @) @99y e,
with y, = S(uy). First, note that u, — @ in Mp(Q) implies u, — @ in Wy"9(Q),
q € (1,2), and therefore yy — 7 in Wllj’q(Q), g €(q,2) by Proposition In particular, we
obtain convergence yi — ¢ in L"(Q) for any r € (1,00), and it also follows Egl((y—y:)) — 55/((—5))
and £(yx)~! — €(g)7! in L7(Q). Similarly, v — v in Mp(Q) implies (=V - pV) "o —
(=V - pV)~lv in L™(Q) for any r € (1,00). Therefore, follows from an application of
Holder’s inequality. |

4.3. Second-order sufficient optimality conditions. Having established second-order
necessary optimality conditions, we now turn towards sufficient conditions. As in many
other situations, we cannot prove a sufficient second-order condition with minimal gap, i.e.
a sufficient condition that is imposed on the same cone of directions as the corresponding
second-order necessary condition. Instead, given some 7 > 0 we have to introduce the
exended cone of critical directions as follows:

C3 = {v € Mp(Q): F'(@)v +75'(%,v) < 7l|z0[|72(q)},

where z, = S'(@)v. With respect to this larger cone we prove two different second-order suf-
ficient conditions in the following. The first one is of the same type and can also be proven
in exactly the same way as |13, Theorem 4.2]. The lack of regularity of the second deriv-
ative of F' arising from dealing with low-regularity controls is compensated by demanding
coercivity of F” not only at %, but also in an appropriate neighbourhood of 4. Exploiting
the particular structure of our optimal control problem we are able to obtain also a result
that only requires coercivity of F"/(u). The price to pay is that this condition is no longer
sufficient for a local solution in the classical sense, but only for a certain weaker implication.

Before stating and proving our results, let us briefly comment on a further issue that is
specific for sufficient second-order conditions in the context of optimal control by measures:
Local optimality in the following results is always meant with respect to the W 1’q(Q)—

topology instead of the Mp(Q)-topology. For the reason why this is the clearly more
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appropriate choice we refer the reader to [13, Remark 4.1] that applies vice-versa to the
present case.

Theorem 4.4. Let Assumptions and and d < 2 hold. Let 4 € Mp(Q)
satisfy the first-order necessary optimality conditions (3.2))-(3.4) and

,l,q(Q) (a)

(4.3) F'(u)v? > kllz|2ag) Y0 €CE, ueB,®
with some T,p,k > 0 and g € [max(q’,%),2). Moreover, let y4 € L°(Q) with s >
(g —1)"'. Then there are €,6 >0 such that

5 (®)

X o 6 w _
(4.4) J(u) > J(a) + §|lzu—allizm), Vu € Be ().

In particular, @ is a strict W "?(Q)-local solution to @®).

The proof works in completely the same way as the proof of |13 Theorem 4.2] in the
semilinear elliptic case. For convenience, we nevertheless provide the details.

Proof. Assume that the contrary of (4.4) holds: There is a sequence (ug)x C Mp(Q)
such that u — @ in W5 %(Q) and

R . 1
(4.5) J(ur) < J(@) + ﬁquk,aH%z(m, Vk € N.
We want to prove that ui — 4 € C7 for k sufficiently large: Taylor expansion yields
1 2 .
(46)  rllzu-allza(e) > J(w) - J(@)
_ _ 1 _ s _
= F'(@)(ux — @) + 5 F"(u}) (ws — @)* + 75"(@ us — ),

with u§ = (1 — 6x)u + Orug and 6 € [0,1]. In particular, it holds

_ _ e _ 1 1 _
(4.7) F'(@)(ug — @) + 7' (@,ux — 0) < ﬁllzuk—alliz(m +3 |F"(ug) (ux — 1)?|.
The first summand is estimated as follows:
(4.8) l2wn-allF2(q) S lluk — @llw-1all2u,—all 2,

where we have used that ||(—V - pV)_1||£(W—1,q 12y < 0o due to ¢ < g < 2. Regarding the
second summand, recall formulas (4.1) and (3.1), and apply Holder’s inequality to obtain:

. €'(vi) £(9) _ _
P - o) < | (1- S8 02 - ) 89 p9) 2 - )
| | £(v7) £(yi)? 12
Mzu—allze-
Fix r~! 1= ¢~' — 1. From v — @ in W,"¥(Q) it follows that y? := S(uf) — § and
1¢,,6 1f=
), £ gy L™(Q). Together with y; € L*(Q) — L"(Q) we conclude that there is

€(w?) £@)

17,6
a constant C' > 0 such that ||1 — £ (y;c)
£(v3)

—~

y? — ya)||zr2 < C for all k. Moreover, it holds

[[(=V - pV)_1||£(WE1,q’LT) < 00. Due to 2 < 1 we can apply Holder’s inequality to obtain:
_ €' (vz) - _
49) [P e - o7 S [1- S8 - v | 1T 090 - Dl ol
g(yk) Lr/2

Sl — llyy-1.al| 2w, —allz2-
Combining our estimates for and with we find that
F'(@)(ur — @) + 75" (@ ur — ) S p(K)|2us-allzo), VA
with p(k) — 0 as k — co. Hence, for any fixed 7 > 0 there is kg € N such that uy — @ € CJ

o1,
for all & > ko. W.lo.g. we can assume that u} € IBBZVD q(ﬁ) for these k. Therefore,
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combining (4.3)) and (4.6)) we obtain

K 1 g _
Euzuk*ﬂH%Q < EF”(UZ)(W —a)® < SF"(u})(wr — 0)° + F'(@)(uk — @) + 77 (3, up — @)

N =

. |
= J(u) = J(@) < llzu-alliz, Yk 2 ko,
which yields the desired contradiction. O

Coercivity of the second derivative in (4.3) has not only to hold at @, but also in a
neighbourhood of 4, which is a rather untypical condition. Therefore, we analyze which
kind of conclusion can be drawn from imposing coercivity of the second derivative at 4,
only:

Theorem 4.5. Let Assumptions d <2, and yg € L*(Q) hold. Let
@ € Mp(Q) satisfy (3.2)-(3.4) with § € L®(Q). If

(4.10) F'(@)v > &l|z]12(q), Vv e CF,
holds with some T,k > 0, then there are €,6 > 0 such that
(4.11) J(u) > J(@) + gqu_ﬁH%Z(Q), Vu € Mp(Q) s.t. ||S(u) — llr=(a) <e.
The quadratic growth condition implies that
Ju) > J@), VYueMp(@)\{a} st [IS(w)—Fllre@ <e.

Consequently, 4 is a strong local minimum of (]ED in the sense of |1, Definition 2.6]. However,
in our case this property is weaker than being a local minimum in the “classical” sense (weak
local minimum in |1} Definition 2.6]), since only refers to those u € Mp(Q) such that
S(u) € L*°(2). We give a more detailed explanation in Section[4.4] Before proving Theorem
4.5 we state an auxiliary result that has some similarity to |15 Lemma 2.4]:

Lemma 4.6. Let (ux)r C Mp(Q), @ € Mp(Q) such that yr = S(ux) € L*®(Q),
g=25(2) € L®(Q) and yx — § in L>®(Q). Then it holds zy,—z = S'(4)(ur — @) € L*(Q)
for all k and there 1s a constant C > 0 such that

|zu—allz=(@) < Cllye — Yllr=(a)-
Again, the Kirchhoff transform plays a central role in the argument.
Proof of Lemma By Propositions [3.1] and [2.4] it holds
Zu—a = E@) =V V) T Hug — @) = £(5) 7 (E(we) — E(9)) € L™(9),

because = acts as continuous superposition operator on L*°(Q2). Taylor expansion and
Proposition [4.2] yield

= _ || €5 -1 —\12

(4.12) lys =9 — zup-alle= = || 7515 [(=V - pV) 7 (ug — @)
€(vk) Lee
€' (vi) 1 T €' (vi) = a2
< (=V - pV) H(uk — )| oo = 12(yx) — E(@)|7 »

' £WR)? |l peo | . £(R)? Il oo 3
with uf = (1 — 6¢)@ + Oxuk, yo = S(ul), and some 6 € [0, 1]. Finally, note that
(4.13) 12(ye) = E(@)llpe < E°llyr — Yllo, and
(4.14) ¥ =E (1 - 6x)E(9) + 64E(w)) = §, in L®(Q),
due to the continuity of Z and Z~! on L*°(Q2). Combinig (4.14) and (4.13) with (4.12)) yields
the claim. O

Proof of Theorem L5l Assuming the contrary of (4.11)), we find a sequence (ug)r C
Mp(Q) such that yi € L®(Q), yx — ¥ in L*®(Q) and

~, 1
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Note that, unlike in the proof of Theorem [4.4] we do not have information on the behaviour
of (ug)g. Nevertheless, we can proof uy — u € C7 for sufficiently large k£ by a similar
technique as before: Using Taylor expansion as in we obtain . The delicate point
is to avoid the usage of uxy — u when estimating the two summands of . This can be
done with the help of Lemma Instead of we obtain by Lemma

(4-8) zur—allZz(@y S l2ue—all=@llzun—allz2@) S [1vx — Tl 2 —allz2@),
and, similarly, we find instead of (4.9):

12w, —allZ2
Lo

1) (e — 7)2 _ £'(y2), o _ £(9)°
[F () s — 2% < H (1 £(y) (v )) £(yp)?

S vk — Gllpeoll2u—alln2(a)-

As in the proof of Theorem combination of (4.7), , and (4.9]) yields uy — 4 € CZ
for all sufficiently large k. It remains to modify the last step of the proof of Theorem in

which the contradiction was obtained: Now, we obtain

(ZX5)

~luyallls < S (@) — 8 < Fa) — @) + 5 [F(8) ~ F(ud)] (s — 7

2
1 1
< prllzualls + S1F(3) - P/ — B2, VE > o
To obtain a contradiction, we will show
(4.16) (@) = F"(u))(ue — %] = o (lzu,allBz) a5 k— oo,

in the remaining part of the proof: Employing formulas (4.1) and (3.1 yields

[F" (@) — F"(ug))(ur, — 2)°

- L5 0-w) - g (-

and, consequently, in order to prove (4.16]) it suffices to show

(v — yd)ﬂ z7, 4 da,

£, - £(9)? §'(v) o0
(4.17) ‘ (1 - 2= (FJ—va) ) — 1-— (Y — Ya) — 0, as k — oo.

£@©) £(y))? ) " Lo
The latter, however, is clear due to y{ — ¥ in L>(RQ), which is obtained as in (4.14)), and
continuity of the superposition operators associated to £ and ¢’ on L*°(Q). O

The proof of Theorem crucially relies on the structural properties of the solution
map of when concluding yz — ¢ in L*°(Q) from convergence of yi toward §. This
behaviour of the control-to-state map is again due to the Kirchhoff transform. Moreover, to
prove the continuity condition by Holder’s inequality, it is necessary to show .
Hence, we need convergence of yi in L*(Q) and the respective assumptions in Theorem
cannot be weakened.

4.4. The case d = 3. To conclude the paper, we sketch how the restriction to dimension
d = 2 in the second-order analysis can be avoided by restricting (]ED to a certain subspace of

Mp(R2) that we may imagine to consist of more regular measures. Similarly to |13} Section
6], we introduce the Banach space

ME(@) = {u € Mp(@): (~V - p¥)p € L()},
equipped with the norm ||ul[acse := [|ullmp + [[(=V - V) 7' pl| 1, and consider:
. 1
(P) min_J(y,4) = oy - valllo@) + Mellupmy st ED.
ueMF(Q)

Let us briefly explain why is of interest: First, we will be able to prove that the
control-to-state map is twice continuously Fréchet differentiable as map M (Q) — L*(Q)
without restriction on the space dimension. This allows to overcome the restriction to
space dimension d < 2 in Sections and Second, the statement of Theorem [4.5
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becomes more natural for : Recall, that in Theorem we have obtained a second-
order sufficient condition of a quite unusual type: We required the additional assumption
gy = S(u) € L*(Q), and showed optimality of u for (]ED only among those controls u €
Mp(Q) that satisfy y = S(u) € L*®(Q) and ||y — ||z~ < . We will see below that this
means local optimality (in the classical sense) for . However, there are specific new
difficulties associated with , in particular concerning the well-posedness of the problem.

In the following we give a short summary on results and open problems related to .
First, note that M (Q) < Mp(Q), and that differs from (P) only by the fact that
minimization in now takes place over M% () instead of the whole space Mp(Q).
Moreover, it follows by same argument as for [13, Lemma 5.5] that M%(Q) — H;'(Q); in
this sense M%(Q) contains more regular measures.

Existence of optimal controls in M%(Q). Since M (Q) is not weak-% sequentially closed
in Mp(Q), the proof of Proposition does not apply to . For semilinear elliptic
counterparts of (]E[) and , it has been proven in [13| Theorem 5.1] that given y4 €
L>(Q) the (global) solution @ of (P) is also a solution to (P™). This result is based on
an observation, that is also well known for linear elliptic equations; cf. [37]: The state
g associated with @ satisfies § € L®°(Q) and ||§||re < ||y4l|ze. For the setting of [13],
i.e. Q being a Lipschitz domain, pure homogeneous Dirichlet boundary conditions, and
p = id, the argument can be easily adapted to our problem utilizing the Kirchhoff transform.
Consequently, existence of optimal controls for can be guaranteed at least for the
setting just described. We omit the respective details.

First- and second-order analysis for . Let us now briefly describe the main steps of the
first- and second-order analysis of (P%)). Due to MF(Q) — Mp(Q), existence and unique-
ness of solutions to obtained in Proposition and the formula S = Z 10 (-V.pV)1
stay valid. Now, it holds (—V - pV) ! € LIME(Q), L®(Q)) and the superposition operator
=71 L®(Q) — L*®(Q) is twice continuously Fréchet differentiable if ¢ is continuously differ-
entiable. Consequently, S: M¥(Q) — L*®°(Q) and F: M (Q) — R are twice continuously
Fréchet differentiable; the formulas for the respective derivatives from Sections and
remain valid. Moreover, by the chain rule, see, e.g., [24, Proposition 5.7], the subdif-
ferential of j on M (Q) is given be the restriction of the elements of the subdifferential of
J on Mp(Q). Therefore, we obtain first-order necessary conditions for by the same
proof as for Theorem [3.2

Theorem 4.7. Under Assumptions let 4 € MB(Q) be a local solution
to with respect to the ng’q(ﬂ)—topology with some q € (1,%1). Then, there
exists an adjoint state p € Wé’q(Q) such that — hold true. Moreover, we have
7 € H5(Q) N L®(Q).

Here, the additional regularity of the state is obtained along the lines of the proof of
[13, Lemma 5.5]. Following the proof of Theorem we obtain second-order sufficient
conditions for (P°°):

Theorem 4.8. Let Assumptions|1.1)1.2, and yq € L*(Q) hold, and suppose that
¢ is continuously differentiable. If u € M (Q) satisfies (3.2)-(3.4) and

F'(a)o® > kllzullza@), Vv € CENMB(Q),

with some T,k > 0, there are €,6 > 0 such that
- o ) — _
J(w) > J(@) + Sllzu-alliay,  Yue MBQ) st IS(u) = Fluz@ <e

In particular, 4 ts a strict local solution to w.r.t. the M (Q)-topology.

Proving second-order necessary optimality conditions for seems to be a bit more
delicate and is possible at least in the setting of [13|: For Q being a Lipschitz domain,
I'p = 09, and p = id, the same argument as in the proof of |13, Theorem 6.3] allows to

generalize the proof of Theorem to .
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