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Abstract. We prove existence of optimal controls for sparse optimal control of a quasilinear
elliptic equation in measure spaces and derive first-order necessary optimality conditions.
Under additional assumptions also second-order necessary and sufficient optimality conditions
are obtained.

1. Introduction

This paper is concerned with sparse optimal control of a quasilinear elliptic partial dif-

ferential equation (PDE) in measure spaces. We prove well-posedness of the state equation,

and existence of optimal controls, and derive �rst- and (in space dimension 2) second-order

optimality conditions for the following prototypical model problem:

min
u2MD(
)

J(y; u) :=
1

2
ky � ydk

2
L2(
) + 
kukMD(
)

;(P)

s.t.

(
�r � �(y)�ry = u; in 
 [ �N ;

y = 0; on �D:
(Eq)

For the notation and the detailed assumptions we refer the reader to Section 1.1 below.

Our problem is of interest because it combines two challenging aspects in the �eld of PDE-

constrained optimization: sparse optimal control in measure spaces, and optimal control of

quasilinear PDEs. In particular, the consideration of nonlinear PDEs with measure data

is known to be delicate; see, e.g., [3,13,38]. Nevertheless, utilizing the so-called Kirchho�

transform as the main tool of our investigation, we are able to obtain results for (P) as they

may be expected from a similar analysis of problems with semilinear elliptic equations in

[13].

In the last years there have been many contributions to both �elds, sparse optimal

control and optimal control of quasilinear PDEs. In case of control-constrained optimal

control of quasilinear elliptic PDEs we refer, e.g., to [11, 16] for �rst- and second-order

optimality conditions, to [17,18] for �nite element discretization error estimates, or to [20,

21] for a nonsmooth nonlinearity. Optimality conditions in the quasilinear parabolic setting

have been derived, e.g., in [4,8] for control- and in [33] for state-constraints, respectively.

As typical for problems governed by any nonlinear PDE, �rst-order necessary optimality

conditions for optimal control problems with quasilinear PDEs are in general not su�cient

for optimality, due to nonconvexity of the problem. Consequently, second-order optimality

conditions need to be addressed. Here, a careful analysis of existence and regularity of

solutions to the underlying PDE and its linearizations typically poses the main di�culty.

Sparse optimal control is a highly active area of research, see, e.g., [7] for a concise

overview, but to the best of our knowledge the case of sparse optimal control of quasilinear

PDEs has not been addressed so far. The general idea of sparsity in PDE-constrained opti-

mization is to enforce small support of the optimal control in an optimal control problem.

This may be favorable in practical applications, e.g., if actuators that implement such an
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optimal control cannot act on the whole spatial or spatio-temporal-domain. Beside other

approaches, as, e.g., L1-penalization [41], directional sparsity [12, 32], mixed approaches

[10,35], or Lp-penalization with p 2 [0; 1) [19,34], choosing controls from a measure space

is a prominent approach in sparse optimal control. We refer, e.g., to [9] for problems with

linear elliptic, to [14] for problems with linear parabolic, and to [13,38] for problems with

semilinear elliptic PDEs. Compared to distributed control with L1-penalization this has

the advantage that point- or certain surface-sources are included in the control space. Since

the space L1 embedds isometrically into the space of Borel measures, this approach can

be seen as generalization of L1-penalization. However, there are three typical di�culties:

First, one has to prove well-posendness of the optimal control problem by ensuring exis-

tence, uniqueness, and su�cient regularity of solutions to the state equation for controls

of very low regulartiy. Second, in the case of a nonlinear state equation the investiga-

tion of di�erentiability properties of the control-to-state becomes particulary challenging.

This is due to the fact that di�erentiability of the nonlinear terms has to be addressed

in appropriate, su�ciently regular function spaces, while solutions to PDEs with measure

right-hand sides tend to have low regularity. The third di�culty arises from the presence

of the k�kMD(
)
-norm in the functional, which makes (P) a nonsmooth problem. In the

present paper, the �rst two problems form the main challenge, and we deal with them by

transforming (Eq) into a linear elliptic equation utilizing the so-called Kirchho� transform;

see Section 2.2. The two aforementioned problems basically reduce to checking invertibility

and di�erentiability, respectively, of the Kirchho� transform between the respective function

spaces that are determined by the regularity of solutions of the linear elliptic equation with

measure right-hand side. Since second-order di�erentiability of the Kirchho� transform is

needed this limits our second-order analysis to space dimension 2. Regarding the analysis

of the state equation, let us also point out that the nonlinearity in (Eq) is of non-monotone

type in general, see, e.g., the counterexample in [26], and hence not covered by, e.g., [3].

Having obtained the required properties of the control-to-state map, optimality conditions

for the nonsmooth and nonconvex problem (P) can be discussed following in principal the

techniques applied to the semilinear setting in [13].

The structure of the the paper is the following: First, we state and discuss our minimal

assumptions in Section 1.1 below. After that, we analyze well-posedness of the state equa-

tion and the optimal control problem in Section 2. Moreover, we derive �rst-order necessary

optimality conditions in Section 3. Under appropriate additional assumptions and restric-

tion to space dimension 2 we also prove second-order necessary and su�cient optimality

conditions in Section 4. In Section 4.4 we indicate how the restriction to dimension 2 can

be avoided.

1.1. Notation and Assumptions. We introduce some notation and conventions, and

state our minimal assumptions that hold troughout the rest of the paper. First, we clarify

some basic notation: Given real Banach spaces X and Y , we denote by X ,! Y that

X is continuosly embedded into Y , by L(X;Y ) the space of bounded linear maps X !

Y , equipped with the operator norm, and by X� := L(X;R) the topological dual of X.

Moreover, BXr (x) � X denotes the open ball of radius r > 0 around some x 2 X. By

\left-hand side . right-hand side" we indicate that \left-hand side � c right-hand side"

with some constant c > 0 whose exact value is not relevant in the respective context.

With respect to the domain, its boundary, and the boundary conditions we will rely on

the following conditions:

Assumption 1.1. 
 � R
d, d 2 f1; 2; 3g, is a bounded, open, and connected set. Its

boundary @
 is divided into two disjoint subsets �N and �D := @
 n �N of which �N is

relatively open. We assume that 
 [ �N is regular in the sense of Gr�oger [28] and that �D
has nonzero surface measure within @
.

For an explanation why �D needs to have nonzero surface measure, which excludes

pure Neumann boundary conditions, we refer the reader to the end of Section 2.2. Note
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that regularity of 
[�N in the sense of Gr�oger implies that 
 is a Lipschitz-domain in the

sense of [27, De�nition 1.2.1.2]. Moreover, Assumption 1.1 is in particular ful�lled for any

domain with a Lipschitz boundary (\strong Lipschitz domain", in the sense of [27, De�nition

1.2.1.1]) in the case �D = @
; cf. [31, Remark 3.3]. Nevertheless, there are also domains

without Lipschitz boundary ful�lling Assumption 1.1, e.g., a pair of crossing beams in 3D

with pure homogeneous Dirichlet boundary conditions; cf. [31, Section 7.3]. For a geometric

characterization of regularity in the sense of Gr�oger in space dimension 2 and 3 we refer the

reader to [29] for instance.

By a subscript D we indicate from now on that spaces of functions de�ned on 
 carry

homogeneous Dirichlet boundary conditions on �D. ByW
1;q
D (
), q 2 [1;1), for instance, we

denote the Sobolev space with vanishing trace on �D, and de�ne W
�1;q
D (
) := (W

1;q0

D (
))�

with q�1 + (q0)�1 = 1. Let us point out that the regularity assumptions on the domain, its

boundary, and the boundary conditions ensure in particular that (W
�1;q
D (
))q2(1;1) forms

an interpolation scale, cf. [2], which will be used and explained in more detail in Section

2.1 below. Moreover, the classical Sobolev spaces W
1;q
D (
), consisting of Lq functions on


 with weak derivatives in Lq(
) and vanishing trace on �D, coincide with Sobolev spaces

obtained by restriction of W
1;q
D (Rd); cf. [2, Proposition B.3]. In particular, the classical

Sobolev embeddings into Lebesgue and H�older spaces stay valid. Finally, we will use the

notation C1D (
) := f'j
: ' 2 C1c (Rd); supp(') \ �D = ;g.

By CD(
) we denote the space of continuous functions 
 ! R vanishing on �D. The

space of regular Borel measures MD(
) := M(
 [ �N ) on 
 [ �N is identi�ed with the

dual of CD(
), cf. [40, Theorem 6.19], and equipped with the norm

k�kMD(
)
= sup

k'k
CD(
)

�1
h�; 'iMD;CD

:= sup
k'k

CD(
)
�1

Z



' d�:

The spaceMD(
) can be viewed as space of Borel measures on 
 with homogeneous bound-

ary condition on �D; cf., e.g., [5, Appendix C].

Next, we state our assumptions on the coe�cients of the state equation, the desired

state and the regularization parameter:

Assumption 1.2. 1. The function �: R ! (0;1) is continuous, and bounded

from below and above, i.e.

0 < �� � �(s) � ��; 8s 2 R;

and �: 
! R
d�d is measurable, uniformly bounded, and elliptic, i.e.

0 < �� := essinfx2
 inf
z2Rdnf0g

zT �(x)z

zT z
; �� := esssupx2
 sup

1�i;j�d
j�i;j(x)j <1:

2. We assume that there is some �q > d such that

�r � �Tr: W
1;�q
D !W

�1;�q
D(1.1)

is a topological isomorphism, and �x this choice of �q.

Assumption 1.3. Let 
 > 0 and yd 2 L2(
).

The assumptions on � ensure that the Kirchho� transform and its inverse, introduced

in Section 2 below, are well de�ned maps between the respective function spaces. The

isomorphism property for the elliptic operator �r � �Tr for some �q > d, that is crucial

for the well-posedness of (Eq), cf. Section 2, is certainly nontrivial, in particular in space

dimension 3. However, there are several interesting constellations in which our assumptions

are satis�ed:

Example 1.4. 1. If 
 is a bounded domain with Lipschitz boundary, �D = @
,

and � is symmetric-valued and uniformly continuous, then (1.1) is an isomophism for

some �q > 3; see [25, Theorem 3.12]. This means that Assumptions 1.1 and 1.2 cover

in particular the classical \regular" setting of domains with Lipschitz boundary
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in dimensions d = 2; 3 with pure Dirichlet boundary conditions and symmetric,

uniformly continuous �.

2. It is a well known result of Gr�oger [28] that (1.1) is a topological isomorphism for

some �q > 2, possibly arbitrarily close to 2, if Assumptions 1.1 and 1.2.1 are satis�ed.

In fact, this is even true under more general assumptions; cf. [30]. Therefore,

Assumption 1.2.2 does not pose an additional restriction in space dimension d = 2.

3. In [23], for instance, several real-world constellations in dimension d = 3 have been

described that ful�ll Assumptions 1.1 and 1.2. Two crossing beams, e.g., with

constant � and �D = @
, ful�ll our requirements.

2. Well-posedness of the state equation and the optimal control problem

First, we de�ne the notion of a solution to (Eq), and verify that (Eq) is well-posed in

this sense. This is done in Section 2.2 by application of the so-called Kirchho� transform,

i.e. a nonlinear superposition operator that allows to transfer (Eq) into a linear elliptic

equation. The well known existence, uniqueness, continuity, and regularity theory of the

latter, summarized in Section 2.1, can be transferred back to (Eq). The crucial point is

to discuss the mapping properties of the nonlinear superposition operator of the Kirchho�

transform between the respective spaces. Having shown well-posedness of the state equation

and appropriate continuity properties of the control-to-state map, we prove existence of a

solution to (P) in Section 2.3.

First, let us state precisely what a solution of (Eq) means in the following. Unlike in

the case of the linear elliptic equation (2.3) we cannot introduce a very weak formulation of

(Eq) because shifting all derivatives to the test-function via integration by parts would also

require us to take derivatives of �(y).

Definition 2.1 (Solutions of (Eq)). We call y a solution to (Eq) if

y 2W
1;�q0

D (
); s.t.

Z



�(y)�ryr' dx =

Z



' du; 8' 2 C1D (
):(2.1)

The reason for de�ning a solution of (Eq) a priori to be an element of W
1;�q0

D (
), instead

of, e.g., W
1;1
D (
), is to ensure uniqueness of solutions. We will explain this in more detail

below Proposition 2.4. Note that if y is a solution to (Eq) with additional regularity y 2

W
1;q
D (
) with some q 2 [�q0; d

d�1 ), it will even hold thatZ



�(y)�ryr' dx =

Z



' du; 8' 2W
1;q0

D (
);(2.2)

because C1D (
) is dense in W
1;q0

D (
). Here, the right-hand side of (2.2) is well de�ned,

becauseW
1;q0

D (
) ,! CD(
) due to q
0 > d. Moreover, let us point out that the left-hand side

in (2.2) is well de�ned because boundedness and measurability of � ensure �(y) 2 L1(
).

2.1. Linear elliptic equations in measure spaces. Before addressing the analysis of

(Eq), we recall some well known theory concerning the existence, uniqueness, and regularity

of solutions to linear elliptic PDEs for convenience of the reader. More precisely, for some

q 2 [�q0; 2] we consider the equation

�r � �rw = u on 
 [ �N ;

w = 0 on �D;
(2.3)

with u 2 W
�1;q
D (
). We follow a duality-based concept going back to Stampacchia [42], cf.

also [36, Section 2], and call w a solution of (2.3) if

w 2W
1;q
D (
) s.t.

Z



�rwr' dx = hu; 'i
W
�1;q
D ;W

1;q0

D

; 8' 2 C1D (
):(2.4)

As in De�nition 2.1, a priori W 1;q-regularity of the solution is part of this solution concept.

This is necessary to ensure uniqueness of solutions, because it is well known that there may

be several ~w 2W
1;1
D (
) that solve the varitional formulation in (2.4); see, e.g., [36] and the
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references therein. Note that once (2.4) is ful�lled for all ' 2 C1D (
), it is also ful�lled for

all ' 2W
1;q0

D (
) by a density argument.

Proposition 2.2. Let Assumptions 1.1 and 1.2 hold.

1. Let q 2 [�q0; 2]. For any u 2W
�1;q
D (
) there exists a unique solution w 2W

1;q
D (
)

of (2.3) in the sense (2.4). Moreover, the solution map (�r � �r)�1: u 7! w is

a bounded linear map W
�1;q
D (
)!W

1;q
D (
).

2. Let q 2 [�q0; d
d�1 ). For any u 2MD(
) there exists a unique solution w 2W

1;q
D (
)

of (2.3) in the senseZ



�rwr' dx =

Z



' du; 8' 2 C1D (
);

and the solution map (�r � �r)�1: u 7! w is a bounded linear and weak-?-to-

strong continuous map MD(
)!W
1;q
D (
).

Proof. 1. The elliptic operator�r��Tr provides an isomorphismW
1;q0

D (
)!W
�1;q0

D (
)

for q0 = �q by Assumption 1.2.2, and for q0 = 2 by Lax-Milgram and the Poincar�e-Friedrich

inequality, because �D has non-zero surface measure. Since Assumption 1.1 implies the re-

quirements of [2], see, e.g., [4, Appendix A] for the veri�cation, (W
1;q0

D (
))q02(1;1) forms an

interpolation scale according to [2, Theorem 1.2]. Consequently, we obtain by interpolation

that �r � �Tr provides a topolocial isomorphism W
1;q0

D (
)! W
�1;q0

D (
) for all q0 2 [�q0; 2].

Hence, the claim follows by a standard duality argument as, e.g., in [36, Section 2].

2. For q 2 [1; d
d�1 ) it holdsMD(
) ,!W

�1;q
D (
), which follows fromW

1;q0

D (
) ,! CD(
)

for q0 > d. Consequently, measure right-hand sides u 2MD(
) in (2.3) are included in the

formulation (2.4) for these q via hu; 'i
W
�1;q
D ;W

1;q0

D

:=
R


' du. Weak-?-to-strong continuity

follows from compactness of W
1;q0

D (
) ,! CD(
). �

In the above duality argument we have crucially made use of the isomophism property

in Assumption 1.2.2 when obtaining unique solutions to (2.3), to be understood in the sense

of (2.4). For an overview of di�erent solution concepts of linear elliptic PDEs with measures

on the right-hand side without such an isomorphism-property we refer the reader to, e.g.,

[36].

2.2. Well-posedness of the state equation. We now address existence, uniqueness,

and additional regularity of solutions to (2.1). These results will be obtained from those

of Section 2.1 by application of the so-callend Kirchho� (or enthalpy) transform; see, e.g.,

[39, Example 2.74], [44, Chapter V]. Note that this has already been used in the context of

optimal control of quasilinear elliptic equations in [20,21] for instance. We de�ne

�: R! R; s 7!

Z s

0

�(t) dt;

and observe that, at least on a formal level, y 2 W
1;q
D (
), satis�es (2.2) if and only if w =

�(y) 2W
1;q
D (
) satis�es (2.4), i.e. w is a solution to (2.3). To make this idea mathematically

precise in the following, we have to investigate the properties of the superposition operators

associated with � and ��1 �rst:

Lemma 2.3. 1. �: R! R is stricly increasing, Lipschitz continuous, surjec-

tive, and hence bijective with continuous inverse ��1: R! R, and the following

linear growth-estimates hold:

��jsj � j�(s)j � ��jsj; (��)�1jsj � j��1(s)j � ��1� jsj; 8s 2 R:

Moreover, ��1 is continuously di�erentiable with bounded derivative (��1)0 =

1=(� � ��1).

2. The superposition operators associated with � and ��1 are well de�ned as maps

W
1;q
D (
) ! W

1;r
D (
) for 1 � r � q � 1. For r = q they are inverse to each

other; for r < q they are continuous.
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3. The superposition operators associated with � and ��1 are well de�ned and

continuous as maps Ls(
)! Lr(
) for 1 � r � s � 1. Moreover, if r < s they

are continuously Fr�echet di�erentiable.

Proof. 1. is a direct consequence of the de�nition of � and Assumption 1.2.1. Well-

de�nedness in 2. follows from the chain rule, see, e.g., [39, Proposition 1.28], and continuity

for r < q can be shown by a short calculation. 3. follows from [43, Chapter 4.3.3]. �

Note that a positive lower bound for � is necessary to ensure surjectivity of � and the

linear growth bound for ��1. Boundedness of � ensures the linear growth bound for � and

therefore well de�nedness of the superposition operator associated with �. Moreover, we

already have used boundedness of � when considering the weak formulation (2.2). Therefore,

the conditions on � from Assumption 1.2.1 are necessary for our further analysis.

We are now able to analyze the state equation (Eq):

Proposition 2.4. Let Assumptions 1.1 and 1.2 hold. For any u 2 MD(
) there

exists a unique solution y to (Eq) in the sense of De�nition 2.1. The solution exhibits

additional regularity y 2 W
1;q
D (
), q 2 [�q0; d

d�1 ). Moreover, the solution map S: u 7! y

of (Eq) is continuous and weak-?-to-strong continuous as map

S = ��1 � (�r � �r)�1: MD(
)!W
1;q
D (
); q 2 [�q0;

d

d� 1
):

In the following we will also refer to S as the control-to-state map.

Proof. According to Lemma 2.3.2 and the chain rule some y 2 W
1;�q0

D (
) satis�es (2.1)

if and only if w = �(w) 2 W
1;�q0

D (
) satis�es (2.4). Therefore, existence, uniqueness and

regularity of solutions y = ��1(w) to (2.1) follows directly from the respective theory for

solutions w of (2.3) obtained in Proposition 2.2.2. �

Since ��1 acts as a bijective map onW
1;q
D (
) for any q 2 [1;1], it is clear that solutions

of (Eq) are unique in W
1;�q0

D (
), but not in W
1;1
D (
) in general. This is due to the fact that,

as pointed out above in Section 2.1, solutions to (2.3) are in general not unique in W
1;1
D (
).

Moreover, we note that in terms of Sobolev-regularity solutions of (Eq) are neither more

nor less regular than the solutions of the �r��r-problem with measures on the right-hand

side.

Finally, let us brie
y explain why �D is required to have nonzero surface measure in

Assumption 1.1. In the case of pure Neumann boundary conditions it is well known that

(Eq) would not even be well-posed with right-hand sides from H�1
D (
) due to the lack

of H1
D(
)-coercivity of the elliptic operator in the case �D = ;. Therefore, it would be

necessary to add a zero-order linear term to the elliptic operator, e.g., by considering the

modi�ed equation (
�r � �(y)�ry + y = u; in 
 [ �N ;

y = 0; on �D:
(Eq')

Now, (Eq') is well-posed also in the case �D = ;, at least if u 2 H�1
D (
). When considering

u 2MD(
), however, the Kirchho� transform of (Eq') leads to(
�r � �rw + (d � ��1)(w) = u; in 
 [ �N ;

w = 0; on �D;
(2.5)

which is a semilinear elliptic equation with a measure right-hand side although the original

equation (Eq') was linear. Similarly as before, the solution map S of (Eq') would be given

by S = ��1 �G, where G denotes the solution map of (2.5) (associated with an appropriate

solution concept and spaces); see, e.g., [13] for the analysis of an equation of type (2.5) under

certain additional assumptions. Since the consideration of semilinear terms in (2.5) infers

speci�c new di�culties, we exclude pure Neumann boundary conditions in Assumption 1.1.
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2.3. Existence of solutions to (P). Having at hand the previously shown properties of

the control-to-state map, we can apply standard techniques to prove wellposedness of the

optimal control problem. We introduce the abbreviations

F (u) :=
1

2
kS(u)� ydk

2
L2(
); j(u) := 
kukMD(
)

; Ĵ(u) := F (u) + j(u):

Proposition 2.5. Under Assumptions 1.1-1.3 there exists a solution to (P).

Proof. F is weak-? continuous due to Proposition 2.4, and j is weak-? sequentially lower

semicontinuous [6, Theorem 3.13iii] and coercive due to 
 > 0. Consequently, Ĵ is bounded

from below, weak-?-sequentially lower semicontinuous, and coercive. Therefore, standard

arguments that ensure existence of a minimizer apply. �

For the necessity of 
 > 0, which ensures coercivity of Ĵ , to guarantee existence of

solutions to (P) we refer the reader to Remark 3.4 below.

Remark 2.6. Under the same assumptions as in Proposition 2.5 also the problem with

the additional control-constraint \u 2 Uad" with a weak-? sequentially closed set Uad �

MD(
), is well-posed. For instance, consider Uad to be the subset of nonnegative measures

in MD(
). The condition 
 > 0 can be dropped, if Uad is weak-?-compact, which is the

case, e.g., if Uad is weak-?-sequentially closed and bounded [6, Theorem 3.16]. For instance,

given �a; �b 2 MD(
) such that �a � �b, the choice Uad := f� 2 MD(
): �a � � � �bg;

is possible. Here, \�" denotes the ordering on MD(
) induced by the natural ordering on

CD(
). One may think of such Uad as analogon of classical box-constraints in the space of

Borel-measures.

3. First-order optimality conditions

In this section we derive �rst-order necessary optimality conditions for local solutions

of (P). Since the analysis of the nonsmooth part of J can be adapted from [13] without any

changes, we concentrate on the analysis of the smooth part which di�ers from this setting.

As a �rst step, we analyze di�erentiability properties of the control-to-state map in Section

3.1. As in the previous section, our results are based on the Kirchho� transform. Now,

the crucial point is to analyze di�erentiability of the nonlinear superposition operator of

the Kirchho� transform. After these preliminaries we derive �rst-order conditions for (P)

using in principal the same ideas as in [13]. Surprisingly, the Kirchho� transform allows to

address �rst-order di�erentiability of the control-to-state map as well as �rst-order necessary

optimality conditions without requiring a derivative of �.

3.1. Differentiability of the control-to-state map. A direct computation of the deriv-

ative of S by application of the implicit function theorem seems to be di�cult. It would

require to discuss in particular invertibility of �r � �(y)�r � r � �0(y) � �ry on the low-

regularity spaceMD(
), which is particularly di�cult due to the low regularity of �(y) and

�0(y). Therefore we follow the same approach as in the last section and utilize the Kirchho�

transform:

Proposition 3.1. The control-to-state map S is continuously Fr�echet di�erentiable

as map MD(
)! Lr(
) for each 1 � r < d
d�2 . It holds

S0(u)v = �(y)�1(�r � �r)�1v; u; v 2MD(
); y = S(u):(3.1)

Proof. Recall from Proposition 2.2 that (�r � �r)�1 2 L(MD(
);W
1;q
D (
)) for each

q 2 [1; d
d�1 ). By Sobolev embedding it follows that (�r � �r)�1 2 L(MD(
); L

s(
)) for all

s 2 [1; d
d�2 ). Hence the claim follows from the chain rule, applied to S = ��1 � (�r��r)�1,

and the di�erentiability properties of ��1: Ls(
)! Lr(
); cf. Lemma 2.3.4. �

A purely formal computation shows that the formula for the derivative is the same we

could expect from the implicit function theorem.
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3.2. First-order necessary optimality conditions. From Section 2.3 recall the de�nition

of Ĵ , F and j. For a discussion of directional derivatives and properties of the subdi�erential

of j we refer the reader to [13, Propositions 3.2, 3.3] for instance. Due to Proposition 3.1

and d � 3 the functional F is continuously Fr�echet di�erentiable. The derivative of F for

u; v 2MD(
) is computed as follows:

F 0(u)v = hS(u)� yd; S
0(u)viL2(
) = hy � yd; �(y)

�1(�r � �r)�1viL2(
)

= hp; viCD(
);MD(
)
;

where we have introduced the so-called adjoint state p = (�r � �Tr)�1(�(y)�1(y � yd)) 2

W
1;�q
D (
) ,! CD(
): Here, recall Assumption 1.2.2 and that �(y)�1(y � yd) 2 L2(
) ,!

W
�1;�q
D (
) due to d � 3 and �q � 6. Consequently, the linear form F 0(u) is not only an

element of the highly abstract dual space MD(
)
� but can be represented by some p in

the predual CD(
). Therefore the same arguments as in [13] can be utilized to derive �rst-

order necessary optimality conditions. In fact, these �rst-order conditions even hold at a

local solution of (P) for a notion of local optimality that is weaker than local optimality in

the MD(
)-topology.

Theorem 3.2. Let Assumptions 1.1-1.3 hold and �u 2 MD(
) be a local solution

of (P) with respect to the W
�1;q
D (
)-topology for some q 2 (1; d

d�1 ). Then there exists

a so-called adjoint state �p 2W
1;�q
D (
) such that(

�r � �(�y)�r�y = u; on 
 [ �N ;

�y = 0; on �D;
(3.2)

(
�r � �Tr�p = �(�y)�1(�y � yd) on 
;

�p = 0; on �D;
(3.3)


k�ukMD(
)
+

Z



�p d�u = 0; and k�pkCD(
)

(
= 
 if �u 6= 0;

� 
 if �u = 0:
(3.4)

Moreover, if �u 6= 0 it holds

supp(�u+) � fx 2 
: �p(x) = �
g; and supp(�u�) � fx 2 
: �p(x) = +
g:(3.5)

Condition (3.5) means that the optimal control �u only acts on a certain, possibly small,

compact subset of 
 [ �N , which we call \sparse" optimal control.

Proof. The proof works completely analogous to the proof of [13, Theorem 3.4] in the

semilinear elliptic case. We utilize k�k
W
�1;q
D (
) . k�kMD(
)

, di�erentiability of F , and con-

vexity of j to conclude from Ĵ(u) � Ĵ(�u) for all u 2 B
W
�1;q
D (
)

" (�u) that

0 � lim
t!0

Ĵ(�u+ t(u� �u))� Ĵ(�u)

t
� F 0(�u)(u� �u) + j(u)� j(�u); 8u 2MD(
);

and hence

�

Z



�p d(u� �u) � j(u)� j(�u); 8u 2MD(
):

By de�nition, this means ��p 2 @j(�u). Due to �p 2 CD(
), the characterization of @j(u) \

CD(
) from [13, Proposition 3.2] implies (3.4) and (3.5). �

Utilizing a purely formal computation, the adjoint equation (3.3) could be rewritten as

�r � �(�y)�Tr�p+ �0(�y)�r�yr�p = �y � yd on 
;

which coincides with the result that would be obtained by {also purely formal{ application

of the implicit function theorem.

Remark 3.3. The approach used in the proof of Theorem 3.2 is no longer applicable if

minimization does not take place over the whole spaceMD(
), e.g., in the setting described

in Remark 2.6. In case of certain linear-quadratic problems with the nonnegative measures

as admissible set, �rst-order necessary optimality conditions have been derived with the
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help of Fenchel duality [22]. Whether a similar result may be obtained also for nonconvex

problems is to our knowledge an open problem.

Remark 3.4. Actually, we do not need the assumption 
 > 0 in Theorem 3.2. For


 = 0, however, it follows �p = 0, and hence �y = yd a.e. on 
. Consequently, if �u is a local

solution to (P) for 
 = 0, then the associated state �y has to satisfy �y = yd. We conclude

that there are functions yd 2 L2(
) such that (P) does not have a local solution for 
 = 0.

4. Second-order optimality conditions in 2D

In general, (P) is nonconvex, and hence the �rst-order conditions derived in the last

section are not necessarily su�cient for optimality. Therefore, we address second-order

optimality conditions in the present section. First, we discuss second-order derivatives of

the control-to-state map and the objective functional in Section 4.1. This works analogous

to the �rst-order analysis in Section 3.1. However, as it will become clear in Section 4.1

below we have to restrict our second-order analysis of (P) to space dimension d � 2 at

the moment. We follow roughly the techniques of [13], and derive necessary and su�cient

second-order conditions in Sections 4.2 and 4.3, respectively. For a modi�ed version of (P)

that allows to avoid the restriction to d � 2 we refer the reader to Section 4.4.

4.1. Second derivative of the control-to-state map. In order to discuss second-order

derivatives of the objective functional, we require an additional assumption on the coe�cient

function � that ensures second-order di�erentiability of the control-to-state map.

Assumption 4.1. Let � be continuously di�erentiable, and suppose that there are

a; b 2 R such that j�0(s)j � a+ bjsj, for all s 2 R.

Under this additional assumption, the map ��1 is twice continuously di�erentiable with

second derivative (��1)00 = � �0

�3
� ��1 satisfying a linear growth bound.

Proposition 4.2. Under Assumptions 1.1-1.3 and 4.1 the control-to-state map S

is twice continuously Fr�echet di�erentiable as map MD(
)! Lr(
) for r 2 [1; d
2(d�2) )

with second derivative

S00(u)[v1; v2] = �
�0(y)

�(y)
z1z2 = �

�0(y)

�(y)3
(�r � �r)�1v1(�r � �r)�1v2;

with y = S(u), zi = S0(u)vi, for each u; v1; v2 2MD(
).

Proof. As in the proof of Proposition 3.1 it holds (�r � �r)�1 2 L(MD(
); L
r(
)) for

r 2 [1; d
d�2 ). Moreover, due to the linear growth bound on (��1)00 the superposition operator

��1 is now C2-di�erentiable as map Lr(
) ! Ls(
) for r > 2s; cf. [43, Chapter 4.3.3].

Therefore, second-order di�erentiability and the formula for the derivative of S follows from

the chain rule applied to S = ��1 � (�r � �r)�1. �

Since the objective functional is only well de�ned for at least L2-integrable states, the

above result excludes discussion of second-order optimality conditions in space dimension

d = 3. For an approach to avoid this restriction by introducing a modi�ed variant of (P) we

refer the reader to Section 4.4. Nevertheless, at the moment we have obtained the following

property for F : For d � 2, F is twice continuously di�erentiable with second derivative

given by

F 00(u)[v1; v2] =

Z



�
1�

�0(y)

�(y)
(y � yd)

�
z1z2 dx; y = S(u); zi = S0(u)vi;(4.1)

for each u; v1; v2 2 MD(
). Interestingly we do not require second derivatives of � for the

second-order analysis of (P). This is again due to the special structure of (Eq) and the

Kirchho� transform.
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4.2. Second-order necessary optimality conditions. To prove second-order necessary

optimality conditions, we follow the technique of the proof of [13, Theorem 3.7]. Given a

local solution �u 2MD(
) to (P) we introduce the critical cone

C�u := fv 2MD(
): F
0(�u)v + 
j0(�u; v) = 0g:

From [13, Proposition 3.5] we recall that C�u is a closed convex cone that can equivalently

be expressed as C�u = fv 2 MD(
):
R


�u dvs + 
kvskMD(
)

= 0g. Hereby, for some

v 2 MD(
) we denote by va; vs 2 MD(
) the uniquely determined absolutely continuous

and singular parts, respectively, with respect to j�uj, i.e. v = va + vs with va = gv dj�uj and

gv := dv
dj�uj 2 L1(
; dj�uj); cf. [40, Theorem 6.10]. Using this, the critical cone also may

be written as C�u = fv 2 MD(
): supp(v
+
s ) � 
�
 ; supp(v

�
s ) � 
+
g; with 
�
 := fx 2


[�N: �p(x) = �
g; cf. [13, Remark 3.6]. As in [13, Remark 3.8] the following second-order

necessary conditions even hold for local solutions with respect to a weaker notion of local

optimality.

Theorem 4.3. Let Assumptions 1.1-1.3 and 4.1, and d � 2 hold. Assume that

�u 2 MD(
) is a local solution to (P) w.r.t. the W
�1;q
D (
)-topology for some q 2 (1; 2).

Then it holds F 00(�u)v2 � 0 for all v 2 C�u.

Proof. This works in completely the same way as the proof of [13, Theorem 3.7],

since k�k
W
�1;q
D (
) . k�kMD(
)

and we can show that uk ! �u, vk ! v in MD(
) implies

F 00(uk)v
2
k ! F 00(�u)v2: Employing formulas (4.1) and (3.1) we have to show

(4.2)

Z



�
1�

�0(yk)

�(yk)
(yk � yd)

�
(�(yk)

�1(�r � �r)�1vk)
2 dx

!

Z



�
1�

�0(�y)

�(�y)
(�y � yd)

�
(�(�y)�1(�r � �r)�1v)2 dx;

with yk = S(uk). First, note that uk ! �u in MD(
) implies uk ! �u in W
�1;q
D (
),

q 2 (1; 2), and therefore yk ! �y in W
1;q
D (
), q 2 (�q; 2) by Proposition 2.4. In particular, we

obtain convergence yk ! �y in Lr(
) for any r 2 (1;1), and it also follows �0(yk)
�(yk)

! �0(�y)
�(�y)

and �(yk)
�1 ! �(�y)�1 in Lr(
). Similarly, vk ! v in MD(
) implies (�r � �r)�1vk !

(�r � �r)�1v in Lr(
) for any r 2 (1;1). Therefore, (4.2) follows from an application of

H�older's inequality. �

4.3. Second-order sufficient optimality conditions. Having established second-order

necessary optimality conditions, we now turn towards su�cient conditions. As in many

other situations, we cannot prove a su�cient second-order condition with minimal gap, i.e.

a su�cient condition that is imposed on the same cone of directions as the corresponding

second-order necessary condition. Instead, given some � > 0 we have to introduce the

exended cone of critical directions as follows:

C�
�u := fv 2MD(
): F

0(�u)v + 
j0(�u; v) � �kzvk
2
L2(
)g;

where zv = S0(�u)v. With respect to this larger cone we prove two di�erent second-order suf-

�cient conditions in the following. The �rst one is of the same type and can also be proven

in exactly the same way as [13, Theorem 4.2]. The lack of regularity of the second deriv-

ative of F arising from dealing with low-regularity controls is compensated by demanding

coercivity of F 00 not only at �u, but also in an appropriate neighbourhood of �u. Exploiting

the particular structure of our optimal control problem we are able to obtain also a result

that only requires coercivity of F 00(�u). The price to pay is that this condition is no longer

su�cient for a local solution in the classical sense, but only for a certain weaker implication.

Before stating and proving our results, let us brie
y comment on a further issue that is

speci�c for su�cient second-order conditions in the context of optimal control by measures:

Local optimality in the following results is always meant with respect to the W
�1;q
D (
)-

topology instead of the MD(
)-topology. For the reason why this is the clearly more
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appropriate choice we refer the reader to [13, Remark 4.1] that applies vice-versa to the

present case.

Theorem 4.4. Let Assumptions 1.1-1.3 and 4.1, and d � 2 hold. Let �u 2MD(
)

satisfy the �rst-order necessary optimality conditions (3.2)-(3.4) and

F 00(u)v2 � �kzvk
2
L2(
); 8v 2 C�

�u ; u 2 B
W
�1;q
D (
)

� (�u);(4.3)

with some �; �; � > 0 and q 2 [max(�q0; 32 ); 2). Moreover, let yd 2 Ls(
) with s �

(q�1 � 1
2 )
�1. Then there are "; � > 0 such that

Ĵ(u) � Ĵ(�u) +
�

2
kzu��uk

2
L2(
); 8u 2 B

W
�1;q
D (
)

" (�u):(4.4)

In particular, �u is a strict W
�1;q
D (
)-local solution to (P).

The proof works in completely the same way as the proof of [13, Theorem 4.2] in the

semilinear elliptic case. For convenience, we nevertheless provide the details.

Proof. Assume that the contrary of (4.4) holds: There is a sequence (uk)k � MD(
)

such that uk ! �u in W
�1;q
D (
) and

Ĵ(uk) < Ĵ(�u) +
1

2k
kzuk��uk

2
L2(
); 8k 2 N:(4.5)

We want to prove that uk � �u 2 C�
�u for k su�ciently large: Taylor expansion yields

(4.6)
1

2k
kzuk��uk

2
L2(
) > Ĵ(uk)� Ĵ(�u)

= F 0(�u)(uk � �u) +
1

2
F 00(u�k)(uk � �u)2 + 
j0(�u; uk � �u);

with u�k = (1� �k)�u+ �kuk and �k 2 [0; 1]. In particular, it holds

F 0(�u)(uk � �u) + 
j0(�u; uk � �u) �
1

2k
kzuk��uk

2
L2(
) +

1

2

��F 00(u�k)(uk � �u)2
�� :(4.7)

The �rst summand is estimated as follows:

kzuk��uk
2
L2(
) . kuk � �ukW�1;qkzuk��ukL2 ;(4.8)

where we have used that k(�r � �r)�1kL(W�1;q
D ;L2) < 1 due to �q0 � q < 2. Regarding the

second summand, recall formulas (4.1) and (3.1), and apply H�older's inequality to obtain:

��F 00(u�k)(uk � �u)2
�� � 





�
1�

�0(y�k)

�(y�k)
(y�k � yd)

�
�(�y)

�(y�k)
2
[(�r � �r)�1(uk � �u)]






L2

� kzuk��ukL2 :

Fix r�1 := q�1 � 1
2 . From u�k ! �u in W

�1;q
D (
) it follows that y�k := S(u�k) ! �y and

�0(y�k)

�(y�
k
)
! �0(�y)

�(�y) in Lr(
). Together with yd 2 Ls(
) ,! Lr(
) we conclude that there is

a constant C > 0 such that k1 �
�0(y�k)

�(y�
k
)
(y�k � yd)kLr=2 � C for all k. Moreover, it holds

k(�r � �r)�1kL(W�1;q
D ;Lr) <1. Due to 3

r
� 1

2 we can apply H�older's inequality to obtain:

(4.9)
��F 00(u�k)(uk � �u)2

�� . 



1� �0(y�k)

�(y�k)
(y�k � yd)






Lr=2

k(�r � �r)�1(uk � �u)kLrkzuk��ukL2

. kuk � �uk
W
�1;q
D

kzuk��ukL2 :

Combining our estimates for (4.8) and (4.9) with (4.7) we �nd that

F 0(�u)(uk � �u) + 
j0(�u; uk � �u) . �(k)kzuk��ukL2(
); 8k;

with �(k)! 0 as k!1. Hence, for any �xed � > 0 there is k0 2 N such that uk � �u 2 C�
�u

for all k � k0. W.l.o.g. we can assume that u�k 2 B
W
�1;q
D

" (�u) for these k. Therefore,
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combining (4.3) and (4.6) we obtain

�

2
kzuk��uk

2
L2 �

1

2
F 00(u�k)(uk � �u)2 �

1

2
F 00(u�k)(uk � �u)2 + F 0(�u)(uk � �u) + 
j0(�u; uk � �u)

= Ĵ(uk)� Ĵ(�u) <
1

2k
kzuk��uk

2
L2 ; 8k � k0;

which yields the desired contradiction. �

Coercivity of the second derivative in (4.3) has not only to hold at �u, but also in a

neighbourhood of �u, which is a rather untypical condition. Therefore, we analyze which

kind of conclusion can be drawn from imposing coercivity of the second derivative at �u,

only:

Theorem 4.5. Let Assumptions 1.1-1.3, 4.1, d � 2, and yd 2 L1(
) hold. Let

�u 2MD(
) satisfy (3.2)-(3.4) with �y 2 L1(
). If

F 00(�u)v2 � �kzvk
2
L2(
); 8v 2 C�

�u ;(4.10)

holds with some �; � > 0, then there are "; � > 0 such that

Ĵ(u) � Ĵ(�u) +
�

2
kzu��uk

2
L2(
); 8u 2MD(
) s.t. kS(u)� �ykL1(
) < ":(4.11)

The quadratic growth condition (4.11) implies that

Ĵ(u) > Ĵ(�u); 8u 2MD(
) n f�ug s.t. kS(u)� �ykL1(
) < ":

Consequently, �u is a strong local minimum of (P) in the sense of [1, De�nition 2.6]. However,

in our case this property is weaker than being a local minimum in the \classical" sense (weak

local minimum in [1, De�nition 2.6]), since (4.11) only refers to those u 2MD(
) such that

S(u) 2 L1(
). We give a more detailed explanation in Section 4.4. Before proving Theorem

4.5 we state an auxiliary result that has some similarity to [15, Lemma 2.4]:

Lemma 4.6. Let (uk)k � MD(
), �u 2 MD(
) such that yk = S(uk) 2 L1(
),

�y = S(�u) 2 L1(
) and yk ! �y in L1(
). Then it holds zuk��u = S0(�u)(uk � �u) 2 L1(
)

for all k and there is a constant C > 0 such that

kzuk��ukL1(
) � Ckyk � �ykL1(
):

Again, the Kirchho� transform plays a central role in the argument.

Proof of Lemma 4.6. By Propositions 3.1 and 2.4 it holds

zuk��u = �(�y)�1(�r � �r)�1(uk � �u) = �(�y)�1 (�(yk)� �(�y)) 2 L1(
);

because � acts as continuous superposition operator on L1(
). Taylor expansion and

Proposition 4.2 yield

(4.12) kyk � �y � zuk��ukL1 =





 �0(y�k)�(y�k)
3
[(�r � �r)�1(uk � �u)]2






L1

�





 �0(y�k)�(y�k)
3






L1



(�r � �r)�1(uk � �u)


2
L1

=





 �0(y�k)�(y�k)
3






L1

k�(yk)� �(�y)k2L1 ;

with u�k = (1� �k)�u+ �kuk, y
�
k = S(u�k), and some �k 2 [0; 1]. Finally, note that

k�(yk)� �(�y)kL1 � ��kyk � �ykL1 ; and(4.13)

y�k = ��1((1� �k)�(�y) + �k�(yk))! �y; in L1(
);(4.14)

due to the continuity of � and ��1 on L1(
). Combinig (4.14) and (4.13) with (4.12) yields

the claim. �

Proof of Theorem 4.5. Assuming the contrary of (4.11), we �nd a sequence (uk)k �

MD(
) such that yk 2 L1(
), yk ! �y in L1(
) and

Ĵ(uk) < Ĵ(�u) +
1

2k
kzuk��uk

2
L2(
); 8k 2 N:(4.15)
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Note that, unlike in the proof of Theorem 4.4, we do not have information on the behaviour

of (uk)k. Nevertheless, we can proof uk � �u 2 C�
�u for su�ciently large k by a similar

technique as before: Using Taylor expansion as in (4.6) we obtain (4.7). The delicate point

is to avoid the usage of uk � �u when estimating the two summands of (4.7). This can be

done with the help of Lemma 4.6. Instead of (4.8) we obtain by Lemma 4.6:

kzuk��uk
2
L2(
) . kzuk��ukL1(
)kzuk��ukL2(
) . kyk � �ykL1kzuk��ukL2(
);(4.8')

and, similarly, we �nd instead of (4.9):

��F 00(u�k)(uk � �u)2
�� � 





�
1�

�0(y�k)

�(y�k)
(y�k � yd)

�
�(�y)2

�(y�k)
2






L1

kzuk��uk
2
L2

. kyk � �ykL1kzuk��ukL2(
):

(4.9')

As in the proof of Theorem 4.4 combination of (4.7), (4.8'), and (4.9') yields uk � �u 2 C�
�u

for all su�ciently large k. It remains to modify the last step of the proof of Theorem 4.4 in

which the contradiction was obtained: Now, we obtain

�

2
kzuk��uk

2
L2 �

1

2
F 00(�u)(uk � �u)2 � Ĵ(uk)� Ĵ(�u) +

1

2
[F 00(�u)� F 00(u�k)](uk � �u)2

<
1

2k
kzuk��uk

2
L2 +

1

2
[F 00(�u)� F 00(u�k)](uk � �u)2; 8k � k0:

To obtain a contradiction, we will show

j[F 00(�u)� F 00(u�k)](uk � �u)2j = o
�
kzuk��uk

2
L2

�
as k!1;(4.16)

in the remaining part of the proof: Employing formulas (4.1) and (3.1) yields

[F 00(�u)� F 00(u�k)](uk � �u)2

=

Z



��
1�

�0(�y)

�(�y)
(�y � yd)

�
�

�(�y)2

�(y�k)
2

�
1�

�0(y�k)

�(y�k)
(y�k � yd)

��
z2uk��u dx;

and, consequently, in order to prove (4.16) it su�ces to show




�
1�

�0(�y)

�(�y)
(�y � yd)

�
�

�(�y)2

�(y�k)
2

�
1�

�0(y�k)

�(y�k)
(y�k � yd)

�




L1

! 0; as k!1:(4.17)

The latter, however, is clear due to y�k ! �y in L1(
), which is obtained as in (4.14), and

continuity of the superposition operators associated to � and �0 on L1(
). �

The proof of Theorem 4.5 crucially relies on the structural properties of the solution

map of (Eq) when concluding y�k ! �y in L1(
) from convergence of yk toward �y. This

behaviour of the control-to-state map is again due to the Kirchho� transform. Moreover, to

prove the continuity condition (4.16) by H�older's inequality, it is necessary to show (4.17).

Hence, we need convergence of yk in L1(
) and the respective assumptions in Theorem 4.5

cannot be weakened.

4.4. The case d = 3. To conclude the paper, we sketch how the restriction to dimension

d = 2 in the second-order analysis can be avoided by restricting (P) to a certain subspace of

MD(
) that we may imagine to consist of more regular measures. Similarly to [13, Section

6], we introduce the Banach space

M1
D (
) :=

�
� 2MD(
): (�r � �r)�1� 2 L1(
)

	
;

equipped with the norm k�kM1

D
:= k�kMD

+ k(�r � �r)�1�kL1 , and consider:

min
u2M1

D (
)
J(y; u) :=

1

2
ky � ydk

2
L2(
) + 
kukMD(
)

; s.t. (Eq):(P1)

Let us brie
y explain why (P1) is of interest: First, we will be able to prove that the

control-to-state map is twice continuously Fr�echet di�erentiable as map M1
D (
)! L1(
)

without restriction on the space dimension. This allows to overcome the restriction to

space dimension d � 2 in Sections 4.2 and 4.3. Second, the statement of Theorem 4.5
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becomes more natural for (P1): Recall, that in Theorem 4.5 we have obtained a second-

order su�cient condition of a quite unusual type: We required the additional assumption

�y = S(�u) 2 L1(
), and showed optimality of �u for (P) only among those controls u 2

MD(
) that satisfy y = S(u) 2 L1(
) and ky � �ykL1 < ". We will see below that this

means local optimality (in the classical sense) for (P1). However, there are speci�c new

di�culties associated with (P1), in particular concerning the well-posedness of the problem.

In the following we give a short summary on results and open problems related to (P1).

First, note that M1
D (
) ,! MD(
), and that (P1) di�ers from (P) only by the fact that

minimization in (P1) now takes place over M1
D (
) instead of the whole space MD(
).

Moreover, it follows by same argument as for [13, Lemma 5.5] that M1
D (
) ,! H�1

D (
); in

this sense M1
D (
) contains more regular measures.

Existence of optimal controls inM1
D (
). SinceM1

D (
) is not weak-? sequentially closed

in MD(
), the proof of Proposition 2.5 does not apply to (P1). For semilinear elliptic

counterparts of (P) and (P1), it has been proven in [13, Theorem 5.1] that given yd 2

L1(
) the (global) solution �u of (P) is also a solution to (P1). This result is based on

an observation, that is also well known for linear elliptic equations; cf. [37]: The state

�y associated with �u satis�es �y 2 L1(
) and k�ykL1 � kydkL1 . For the setting of [13],

i.e. 
 being a Lipschitz domain, pure homogeneous Dirichlet boundary conditions, and

� = id, the argument can be easily adapted to our problem utilizing the Kirchho� transform.

Consequently, existence of optimal controls for (P1) can be guaranteed at least for the

setting just described. We omit the respective details.

First- and second-order analysis for (P1). Let us now brie
y describe the main steps of the

�rst- and second-order analysis of (P1). Due toM1
D (
) ,!MD(
), existence and unique-

ness of solutions to (Eq) obtained in Proposition 2.4 and the formula S = ��1 � (�r��r)�1

stay valid. Now, it holds (�r� �r)�1 2 L(M1
D (
); L1(
)) and the superposition operator

��1: L1(
)! L1(
) is twice continuously Fr�echet di�erentiable if � is continuously di�er-

entiable. Consequently, S: M1
D (
) ! L1(
) and F : M1

D (
) ! R are twice continuously

Fr�echet di�erentiable; the formulas for the respective derivatives from Sections 3.1, 3.2 and

4.1 remain valid. Moreover, by the chain rule, see, e.g., [24, Proposition 5.7], the subdif-

ferential of j on M1
D (
) is given be the restriction of the elements of the subdi�erential of

j on MD(
). Therefore, we obtain �rst-order necessary conditions for (P1) by the same

proof as for Theorem 3.2:

Theorem 4.7. Under Assumptions 1.1-1.3 let �u 2 M1
D (
) be a local solution

to (P1) with respect to the W
�1;q
D (
)-topology with some q 2 (1; d

d�1 ). Then, there

exists an adjoint state �p 2 W
1;�q
D (
) such that (3.2)-(3.5) hold true. Moreover, we have

�y 2 H1
D(
) \ L1(
).

Here, the additional regularity of the state is obtained along the lines of the proof of

[13, Lemma 5.5]. Following the proof of Theorem 4.5 we obtain second-order su�cient

conditions for (P1):

Theorem 4.8. Let Assumptions 1.1,1.2, and yd 2 L1(
) hold, and suppose that

�0 is continuously di�erentiable. If �u 2M1
D (
) satis�es (3.2)-(3.4) and

F 00(�u)v2 � �kzvk
2
L2(
); 8v 2 C�

�u \M
1
D (
);

with some �; � > 0, there are "; � > 0 such that

Ĵ(u) � Ĵ(�u) +
�

2
kzu��uk

2
L2(
); 8u 2M1

D (
) s.t. kS(u)� �ykM1

D (
) < ":

In particular, �u is a strict local solution to (P1) w.r.t. the M1
D (
)-topology.

Proving second-order necessary optimality conditions for (P1) seems to be a bit more

delicate and is possible at least in the setting of [13]: For 
 being a Lipschitz domain,

�D = @
, and � = id, the same argument as in the proof of [13, Theorem 6.3] allows to

generalize the proof of Theorem 4.3 to (P1).
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