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LOW-RANK APPROXIMATION OF CONTINUOUS FUNCTIONS IN
SOBOLEV SPACES WITH DOMINATING MIXED SMOOTHNESS

MICHAEL GRIEBEL, HELMUT HARBRECHT, AND REINHOLD SCHNEIDER

Abstract. Let Ωi ⊂ Rni , i = 1, . . . ,m, be given domains. In this article, we study the

low-rank approximation with respect to L2(Ω1 × · · · × Ωm) of functions from Sobolev

spaces with dominating mixed smoothness. To this end, we first estimate the rank of a

bivariate approximation, i.e., the rank of the continuous singular value decomposition.

In comparison to the case of functions from Sobolev spaces with isotropic smoothness,

compare [13, 14], we obtain improved results due to the additional mixed smoothness.

This convergence result is then used to study the tensor train decomposition as a method

to construct multivariate low-rank approximations of functions from Sobolev spaces with

dominating mixed smoothness. We show that this approach is able to beat the curse of

dimension.

1. Introduction

Many problems in science and engineering lead to problems which are defined on the

tensor product of two domains Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 . Examples arise from the second

moment analysis of partial differential domains with stochastic input parameters [20, 21,

30], two-scale homogenization [2, 7, 22], radiosity models and radiative transfer [35], or

space-time discretizations of parabolic problems [16]. All these problems are directly given

on the product of two domains. Furthermore, many problems are posed on higher-order

product domains Ω1 × · · · × Ωm with Ωi ⊂ Rni , i = 1, . . . ,m. Prominent examples are

non-Newtonian flows. These can be modelled by a coupled system which consists of the

Navier Stokes equation for the flow in a three-dimensional geometry described by Ω1 and

of the Fokker-Planck equation in a configuration space Ω2 × · · · × Ωm consisting of m− 1

spheres. Here, m denotes the number of atoms in a chain-like molecule which constitutes the

non-Newtonian behaviour of the flow, for details see [6, 23, 24]. Another class of examples

arises from uncertainty quantification, where one has the product of a physical domain Ω1

with a high-dimensional cube Ω2 × · · · × Ωm = [−1, 1]m−1 for the stochastic parameter,
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compare e.g. [10]. A third example stems from multiscale homogenization. Then, each scale

i involves a corresponding physical domain Ωi and we encounter a problem on the product

domain Ω1 × · · · × Ωm for multiscale homogenization with m well-separated scales.

In this article, we therefore study the low-rank approximation for problems posed on

product domains. We start our investigations first with the convergence of the bivariate

approximation

(1.1) fR(x1,x2) =
R∑
r=1

g(1)
r (x1)g(2)

r (x2)

with respect to L2(Ω1 × Ω2). While it is well known that the optimal rank R can be

determined by the truncated singular value decomposition, the convergence with respect

to the rank R is not so easy to determine. In [13, 14], the question of the optimal rank R has

been answered in case of functions from isotropic Sobolev spaces. But the technique used

there yields no gain if additional smoothness is provided by Sobolev spaces with dominant

mixed smoothness. In order to exploit such extra regularity, we construct in this article

specific low-rank approximations with known convergence properties by means of sparse

tensor product approximations. These are known to exploit dominating mixed smoothness

in an optimal way. As a consequence, we are able to improve the results from [13, 14]

considerably. Indeed, the decay of the singular values is up to a factor two faster than in

case of functions with isotropic Sobolev smoothness.

We then consider the situation of bivariate approximation if also mixed Sobolev smooth-

ness is provided on each subdomain. This means that we study the low-rank approximation

(1.2) fR(x1, . . . ,x`,x`+1, . . . ,xm) =
R∑
r=1

g(1)
r (x1, . . . ,x`)g

(2)
r (x`+1, . . . ,xm)

if mixed Sobolev smoothness is provided not only between the two subdomains Ω1×· · ·×Ω`

and Ω`+1 × · · · × Ωm, but additionally within each of these subdomains as well. Thus, we

have mixed smoothness for the full m-variate situation. We like to mention that our findings

generalize the results from [31, 32, 33] for periodic functions on the m-cube to arbitrary

product domains. We allow moreover arbitrary product domains with possibly different

smoothness indices on each subdomain. Our results, however, coincide with [31, 32, 33] in

the simple setting of Ω1 = · · · = Ωm = [0, 1] and periodic functions from Sobolev spaces of

dominating mixed smoothness.

After studying the convergence of the approximation (1.2), we are ready to consider

the tensor train approximation. The tensor train is a tensor format which can be used to

efficiently approximate multivariate functions, compare [18, 27]. As we will see, this format
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is able to essentially beat the curse of dimension in case of functions with dominating

mixed derivatives. Note that the tensor train (TT) format is a particular architecture

of the hierarchical Tucker (HT) format [19]. Such tensor representations are known in

computational quantum physics and quantum information theory as tensor networks or

more precisely, as tree-based tensor networks [1]. All these names are used in the literature

[3]. The present investigations can be extended to the hierarchical Tucker format by using

the same or similar ideas, cf. [29]. This generalization is obvious, but requires an extended

machinery of notations, definitions, etc. For the sake of simplicity of presentation, we refrain

from a detailed consideration here and merely focus on the tensor train format.

The remainder of this article is organized as follows. In Section 2, we specify the re-

quirements of multiscale hierarchies on each subdomain. They will be used to construct

appropriate sparse tensor approximations in case of multivariate functions in Section 3. In

Section 4, we compute bounds on the truncation error of the singular value decomposition

(1.1) in the case of functions f ∈ L2(Ω1×Ω2). In Section 5, we then consider bounds of the

truncated singular value decomposition (1.2) in the case of functions f ∈ L2(Ω1×· · ·×Ωm).

Then, in Section 6, we use the results of the previous sections to establish bounds for the

tensor train format in the continuous setting. Finally, we state concluding remarks in Sec-

tion 7.

Throughout this article, the notion “essential” in the context of complexity estimates

means “up to logarithmic terms”. Moreover, to avoid the repeated use of generic but

unspecified constants, we denote by C . D that C is bounded by a multiple of D inde-

pendently of parameters on which C and D may depend. Obviously, C & D is defined as

D . C, and C ∼ D as C . D and C & D.

2. Approximation on the subdomains

Let Ω ∈ Rn be a sufficiently smooth, bounded domain.1 We consider a nested sequence

of finite dimensional subspaces

(2.3) V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ L2(Ω), Vj = span{Φj},

which consists of piecewise polynomial ansatz functions Φj := {ϕj,k : k ∈ ∆j}, where ∆j

denotes a suitable index set, such that dimVj ∼ 2jn and

(2.4) L2(Ω) =
⋃
j∈N0

Vj.

1An n-dimensional, smooth, compact, and orientable manifold in Rn+1 can also be considered

here and in the following.
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Since we intend to approximate functions in these spaces Vj, we assume that the ap-

proximation property

(2.5) inf
vj∈Vj

‖u− vj‖L2(Ω) . hsj‖u‖Hs(Ω), u ∈ Hs(Ω),

holds for 0 ≤ s ≤ r uniformly in j. Here we set hj := 2−j, i.e., hj corresponds to the

width of the mesh associated with the subspace Vj on Ω. The norm in Hs(Ω) is defined as

usual, see [36] for example, while the integer r refers to the polynomial exactness, that is

the maximal order of polynomials which are locally contained in the space Vj.

We now introduce a wavelet basis associated with the multiscale analysis (2.3) and (2.4)

as follows: The wavelets Ψj := {ψj,k : k ∈ ∇j}, where ∇j := ∆j \ ∆j−1, are the bases of

the complementary spaces Wj of Vj−1 in Vj, i.e.,

Vj = Vj−1 ⊕Wj, Vj−1 ∩Wj = {0}, Wj = span{Ψj}.

Recursively we obtain

VJ =
J⊕
j=0

Wj, W0 := V0,

and thus, with

ΨJ :=
J⋃
j=0

Ψj, Ψ0 := Φ0,

we get a wavelet basis in VJ . A final requirement is that the infinite collection Ψ :=
⋃
j≥0 Ψj

forms a Riesz basis of L2(Ω). Then, there exists also a biorthogonal, or dual, wavelet

basis Ψ̃ =
⋃
j≥0 Ψ̃j = {ψ̃j,k : k ∈ ∇j, j ≥ 0} which defines a dual multiscale analysis,

compare e.g. [8] for further details. In particular, each function f ∈ L2(Ω) admits the

unique representation

(2.6) f =
∞∑
j=0

∑
k∈∇j

(f, ψ̃j,k)L2(Ω)ψj,k.

With the definition of the projections

Qj : L2(Ω)→ Wj, Qjf =
∑
k∈∇j

(f, ψ̃j,k)L2(Ω)ψj,k

the atomic decomposition (2.6) gives rise to the multilevel decomposition

f =
∞∑
j=0

Qjf.
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Then, for any f ∈ Hs(Ω), the approximation property (2.5) induces the estimate

(2.7) ‖Qjf‖L2(Ω) . 2−js‖f‖Hs(Ω), 0 ≤ s ≤ r.

3. Sparse tensor product spaces

Consider now two domains Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 with n1, n2 ∈ N. We aim at the

approximation of functions in L2(Ω1 × Ω2). To this end, we assume individually for each

subdomain Ωi, i = 1, 2, the multiscale analyses

V
(i)

0 ⊂ V
(i)

1 ⊂ V
(i)

2 ⊂ · · · ⊂ L2(Ωi), V
(i)
j = span{Φ(i)

j }, i = 1, 2,

with associated complementary spaces

V
(i)
j = V

(i)
j−1 ⊕W

(i)
j , V

(i)
j−1 ∩W

(i)
j = {0}, W

(i)
j = span{Ψ(i)

j }.

Furthermore, let us denote the polynomial exactnesses of the spaces V
(1)
j and V

(2)
j by r1

and r2, respectively.

In this article, we employ the special sparse tensor product space2

(3.8) V̂ σ
J :=

⊕
j1σ+

j2
σ
≤J

W
(1)
j1
⊗W (2)

j2
=

⊕
j1σ+

j2
σ

=J

V
(1)
j1
⊗W (2)

j2

for an arbitrary parameter σ > 0. In particular, the index pairs (j1, j2) ∈ N0 × N0 of the

included tensor product spaces W
(1)
j1
⊗W (2)

j2
satisfy the relations

0 ≤ j1 ≤
1

σ
J − 1

σ2
j2, 0 ≤ j2 ≤ σJ − σ2j1.

Reasonable choices of the parameter σ could be as follows:

• We may equilibrate the degrees of freedom in all tensor product spaces W
(1)
j1
⊗W (2)

j2
,

that is the dimension dim(W
(1)
j1
⊗W

(2)
j2

) = dim(W
(1)
j1

) · dim(W
(2)
j2

), whose indices

(j1, j2) satisfy j1σ + j2/σ = J . This choice leads to σ =
√
n1/n2.

• The sparse tensor product space V̂ σ
J (3.8) can be rewritten as

V̂ σ
J =

∑
j1σ+j2/σ=J

V
(1)
j1
⊗ V (2)

j2
.

Then, it can be seen easily that the choice σ :=
√
r1/r2 equilibrates the approxi-

mation power of the contained tensor product spaces V
(1)
j1
⊗ V (2)

j2
.

2Here and in the following, the summation limits are in general no natural numbers and must of

course be rounded properly. We leave this to the reader to avoid cumbersome floor/ceil-notations.
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• Following the idea of an equilibrated cost-benefit rate (see [5]), we get the condition

2j1(n1+r1) · 2j2(n2+r2) !
= 2J ·const.

Then, by choosing const =
√

(n1 + r1)(n2 + r2), we arrive at σ =
√

n1+r1
n2+r2

.

We now repeat the following results from [11] as they will be essential for our analysis

of low-rank approximations in Sobolev spaces of dominating mixed smoothness.

Theorem 3.1 (see [11]). The dimension of the sparse tensor product space

(3.9) V̂ σ
J =

⊕
σj1+j2/σ≤J

W
(1)
j1
⊗W (2)

j2

is essentially O(2J max{n1/σ,n2σ}). More precisely, it holds

(3.10) dim V̂ σ
J .

2J max{n1/σ,n2σ}, if n1/σ 6= n2σ,

2Jn2σJ, if n1/σ = n2σ.

The constant in the estimate (3.10) depends on the particular choice of σ. Note that the

sparse tensor product spaces V̂ σ
J contains essentially less degrees of freedom than the full

tensor product space V
(1)
J/σ⊗V

(2)
Jσ , which possesses, up to a constant, 2J(n1/σ+n2σ) degrees of

freedom.

In order to determine the best choice of σ later on, we need to know the rate of ap-

proximation in the sparse tensor spaces V̂ σ
J . To this end, for s1, s2 ≥ 0, we introduce the

anisotropic Sobolev spaces

Hs1,s2
mix (Ω1 × Ω2) := Hs1(Ω1)⊗Hs2(Ω2),

which are defined as tensor product Hilbert spaces with respect to the usual cross norm.

Obviously, the highest possible rate of convergence is attained in the space Hr1,r2
mix (Ω1×Ω2).

Therefore, in the following, we restrict ourselves without loss of generality to s1 ≤ r1 and

s2 ≤ r2.

Theorem 3.2 (see [11]). Let 0 < s1 ≤ r1, 0 < s2 ≤ r2 and f ∈ Hs1,s2
mix (Ω1×Ω2). Then, the

approximation

(3.11) f̂J =
∑

j1σ+
j2
σ
≤J

(
Q

(1)
j1
⊗Q(2)

j2

)
f ∈ V̂ σ

J

satisfies

(3.12) ‖f − f̂J‖L2(Ω1×Ω2) .

2−J min{s1/σ,s2σ}‖f‖Hs1,s2
mix (Ω1×Ω2), if s1/σ 6= s2σ,

2−Js1/σ
√
J‖f‖Hs1,s2

mix (Ω1×Ω2), if s1/σ = s2σ.
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The constant in estimate (3.12) depends again on the particular choice of σ. Moreover,

if s1 < r1 and s2 < r2, the factor
√
J for the case s1/σ = s2σ in (3.12) can be removed by

using more sophisticated estimates, compare [17, 28].

Note that the combination of Theorems 3.1 and 3.2 implies that, for any σ which satisfies

the inequalities

min

{
r1

r2

,
n1

n2

}
≤ σ2 ≤ max

{
r1

r2

,
n1

n2

}
,

the sparse tensor product spaces V̂ σ
J offer essentially the same rate of convergence with

respect to the degrees of freedom, compare [11]. In the following, we are looking for the

low-rank approximation of functions. The key idea is to use the sparse tensor product space

V̂ σ
J as a tool to bound the rank properly.

4. Bivariate mixed Sobolev smoothness

We first like to estimate the rank which is required to represent functions in V̂ σ
J . To this

end, we make use of the fact that the sparse tensor product space is given as a direct sum

of tensor products of single-scale spaces V
(1)
j1

and complement spaces W
(2)
j2

in accordance

with

(4.13) V̂ σ
J =

Jσ⊕
j2=0

J/σ−j2/σ2⊕
j1=0

W
(1)
j1
⊗W (2)

j2
=

⊕
σj1+j2/σ=J

V
(1)
j1
⊗W (2)

j2
,

compare (3.9). To this end, we make use of the bases Φ
(1)
j and Ψ

(2)
j and exploit that any

function

f̂J(x1,x2) =
∑

σj1+j2/σ=J

∑
k1∈∆j1

∑
k2∈∇j2

c(j1,k1),(j2,k2)ϕ
(1)
j1,k1

(x1)ψ
(2)
j2,k2

(x2) ∈ V̂ σ
J

can be rewritten as a tensor product function of finite rank in accordance with

(4.14)

f̂J(x1,x2) =
∑

σj1+j2/σ=J

∑
k2∈∇j2

g
(1)
j1,j2,k2

(x1)ψ
(2)
j2,k2

(x2)

=
∑

σj1+j2/σ=J

∑
k1∈∆j1

ϕ
(1)
j1,k1

(x1)g
(2)
j1,j2,k1

(x2),

where

g
(1)
j1,j2,k2

=
∑

k1∈∆j1

c(j1,k1),(j2,k2)ϕj1,k1 ∈ V
(1)
j1
,

g
(2)
j1,j2,k1

=
∑

k2∈∇j2

c(j1,k1),(j2,k2)ψj2,k2 ∈ W
(2)
j2
.
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By switching between both representations in (4.14) for particular combinations of

(j1, j2), we are able to derive the following result.

Theorem 4.1. Any function in the sparse tensor product space V̂ σ
J can be represented as

a tensor product function

f̂J(x1,x2) =
R∑
r=0

g(1)
r (x1)g(2)

r (x2)

of rank R, where the rank is bounded by

R . Rσ
J := 2

Jn1n2
n1/σ+σn2 .

Proof. We start with the identity (4.13). Since the rank of functions in the space V
(1)
j1
⊗W (2)

j2

is bounded by

min
{

dimV
(1)
j1
, dimW

(2)
j2

}
∼ min{2j1n1 , 2j2n2},

it holds

R .
∑

j1σ+j2/σ=J

min{2j1n1 , 2j2n2}.

Assume that the equilibrium in the bracket is obtained for j?1n1 = j?2n2, then we can split

the index set {(j1, j2) : j1σ + j2/σ = J} into the two index sets I1 := {(j1, j2) : 0 ≤
j1 ≤ j?1 , j2 = Jσ − j1σ

2} and I2 := {(j1, j2) : 0 ≤ j2 ≤ j?2 , j1 = J/σ − j2/σ
2}. In

view of min{2j1n1 , 2j2n2} = 2j1n1 for all (j1, j2) ∈ I1 and min{2j1n1 , 2j2n2} = 2j2n2 for all

(j1, j2) ∈ I2, we obtain

(4.15) R .
j?1∑
j1=0

2j1n1 +

j?2∑
j2=0

2j2n2 .

Since it always holds j1σ + j2/σ = J , we can determine j?1 from the equation

j?1n1 = (Jσ − j?1σ2)n2,

i.e.,

j?1 =
Jn2

n1/σ + σn2

and j?2 =
Jn1

n1/σ + σn2

.

Inserting this into (4.15) implies the assertion

R . 2
Jn1n2

n1/σ+σn2 .

�
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Now, by combining Theorem 3.2 with Theorem 4.1, we can express the convergence rate

in terms of the rank R. This gives us an upper bound of the truncation error of the singular

value decomposition for functions in spaces with dominating mixed smoothness.

Corollary 4.2. Let 0 < s1 ≤ r1, 0 < s2 ≤ r2 and f ∈ Hs1,s2
mix (Ω1 × Ω2). Choose σ > 0

arbitrarily and set

(4.16) β :=
n1/σ + σn2

n1n2

min{s1/σ, s2σ} =
1

n1n2

min

{
s1n1

σ2
+ s1n2, s2n1 + s2n2σ

2

}
,

Then, there exists a rank-R approximation

fR(x1,x2) =
R∑
r=1

g(1)
r (x1)g(2)

r (x2) ∈ L2(Ω1 × Ω2)

which approximates f as

‖f − fR‖L2(Ω1×Ω2) .

R−β‖f‖Hs1,s2
mix (Ω1×Ω2), if s1/σ 6= s2σ,

R−β
√

logR‖f‖Hs1,s2
mix (Ω1×Ω2), if s1/σ = s2σ.

The constants in these estimates do depend on s1, s2, n1, n2, and σ, but not on the rank

R.

Proof. Let s1/σ 6= s2σ and observe that R . Rσ
J = 2

Jn1n2
n1/σ+σn2 due to Theorem 4.1. In order

to estimate the convergence with respect to the rank, we assume R = Rσ
J , which implies

R−β = R
−n1/σ+σn2

n1n2
min{s1/σ,s2σ} ∼ 2−J min{s1/σ,s2σ}.

This yields the first error estimate in view of (3.12).

In case of s1/σ = s2σ, the additional factor
√
J .

√
logR needs to be inserted as a

multiplicative factor. This completes the proof. �

The optimal rate of convergence with respect to the rank is given if the expressions in

the minimum in (4.16) are balanced, i.e., if

s1n1

σ2
+ s1n2 = s2n1 + s2n2σ

2.

Straighforward calculation yields

σ =

√
s1

s2

,

which means we should equilibrate the approximation power in the underlying sparse tensor

product space. This would yield the rank estimate

(4.17) ‖f − fR‖L2(Ω1×Ω2) . R−β
√

logR‖f‖Hs1,s2
mix (Ω1×Ω2)
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with

(4.18) β =
s1n2 + s2n1

n1n2

=
s1

n1

+
s2

n2

.

In contrast, in [14], we were able to prove only the rate

β = max

{
s1

n1

,
s2

n2

}
.

Especially, the latter rate is already achieved for functions in the related isotropic Sobolev

space

Hs1,s2
iso (Ω1 × Ω2) := Hs1,0

mix(Ω1 × Ω2) ∩H0,s2
mix(Ω1 × Ω2).

As a consequence, the singular values of a function from Hs1,s2
mix (Ω1 × Ω2) converge by a

factor up to two faster than the singular values of a function from Hs1,s2
iso (Ω1 × Ω2).

To conclude our study on the bivariate situation, we state the following result for the

fully discrete singular value decomposition (where the eigenfunctions are approximated

with respect to single-scale spaces of fixed level of resolution as introduced in Section 2):

Corollary 4.3. The number of degrees of freedom, which is needed to approximate a func-

tion f ∈ Hs1,s2
mix (Ω1 × Ω2) by the truncated singular value decomposition to a prescribed

accuracy ε, is

(4.19) dofsvd(ε) ∼ ε
− n1n2
s1n2+s2n1 ε

−max{ n1
min{s1,r1}

,
n2

min{s2,r2}
}
.

In contrast, the sparse tensor product approximation requires essentially

(4.20) dofsg(ε) ∼ ε
−max

{
n1

min{s1,r1}
,

n2
min{s2,r2}

}

degrees of freedom to approximate functions from the anisotropic Sobolev space Hs1,s2
mix (Ω1×

Ω2), compare [11]. We emphasize, however, that the multiscale representation (4.14) of

the singular value decomposition has the same complexity as the sparse tensor product

approximation (4.20). This implies that the eigenfunctions can be stored in a compressed

format to further improve the complexity (4.19) towards that of the respective sparse tensor

product approximation.

Remark 4.4. We should comment on the sharpness of our findings. At least in the simple

bivariate situation with Ω := Ω1 = Ω2 ⊂ Rn, the rank estimate given by (4.17), (4.18) is

sharp. This is seen by considering Matèrn kernels kν(x1,x2), also called Sobolev splines,

where ν ≥ 1/2 is the smoothness parameter, compare [9, 25]. They are known to be the

reproducing kernels of the Sobolev spaces Hν+n/2(Ω), hence they are themselves elements

of H2ν+n(Ω×Ω) and consequently also elements of Hs1,s2
mix (Ω×Ω) for any s1 + s2 = 2ν+n.

The rank estimate given by (4.17), (4.18) coincides then essentially with Weyl’s law [34].
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5. Multivariate mixed Sobolev smoothness

We shall generalize the results from the previous section to the bivariate approximation

of functions which provide multivariate dominating mixed derivatives. This means that we

consider m domains Ωi ⊂ Rni with ni ∈ N for all i = 1, 2, . . . ,m and aim at the bivariate

approximation of functions in the anisotropic Sobolev spaces

Hs(Ω) := Hs1(Ω1)⊗Hs2(Ω2)⊗ · · · ⊗Hsm(Ωm),

which are defined on the m-fold product domain Ω := Ω1 × Ω2 × · · · × Ωm. To this end,

we introduce the generalized m-fold sparse tensor product space

V̂ αJ :=
⊕
αT j≤J

W
(1)
j1
⊗W (2)

j2
⊗ · · · ⊗W (m)

jm

for an arbitrary vector α = (α1, α2, . . . , αm) > 0 and j = (j1, j2, . . . , jm) ∈ Nm
0 .

In accordance with [12], we have the following approximation results with respect to the

sparse tensor product space V̂ αJ .

Theorem 5.1 (see [12]). Let 0 ≤ s ≤ r and f ∈ Hs(Ω). Then, the projector

(5.21) Q̂αJ : Hs(Ω)→ V̂α
J , Q̂αJ f =

∑
αT j≤J

(
Q

(1)
j1
⊗Q(2)

j2
⊗ · · · ⊗Q(m)

jm

)
f

on the sparse tensor product space V̂α
J satisfies

(5.22) ‖(I − Q̂αJ )f‖L2(Ω) . 2
−J min{ s1

α1
,
s2
α2
,..., sm

αm
}
J (P−1)/2‖f‖Hs(Ω).

Here, P counts how often the minimum is attained in the exponent.

After having identified the approximation power of the m-fold sparse tensor product

space V̂ αJ when representing a given function f ∈ Hs(Ω), we shall next estimate the rank

of this sparse tensor product approximation like in the bivariate situation. Therefore, we

again make use of the bases Φ
(1)
j and Ψ

(i)
j , i = 2, 3, . . . ,m, and consider a given function

f̂J(x1, . . . ,xm) =
∑
αT j=J

∑
k1∈∆j1

∑
k2∈∇j2

. . .
∑

km∈∇jm

cj,kϕ
(1)
j1,k1

(x1)ψ
(2)
j2,k2

(x2) · · ·ψ(2)
jm,km

(xm) ∈ V̂ αJ .

We intend to estimate the rank when separating the variables (x1, . . . ,x`) and (x`+1, . . . ,xm),

where 1 ≤ ` < m can be chosen arbitrary, but is fixed throughout this section. To this end,

we have to bound the rank in each of the tensor product spaces V
(1)
j1
⊗W (2)

j2
⊗ · · · ⊗W (m)

jm

when splitting the first ` variables from the last m− ` variables. The rank is given by the

minimum of the dimensions of the particular subspaces, i.e.,

rank(V
(1)
j1
⊗W (2)

j2
⊗ · · · ⊗W (m)

jm
) = min

{
2j1n1+···+j`n` , 2j`+1n`+1+···+jmnm

}
.
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We now have to sum up over all admissible j1, j2, . . . , jm, i.e., we have to compute the sum

∑
αT j=J

min
{

2j1n1+···+j`n` , 2j`+1n`+1+···+jmnm
}
.

In order to bound this sum, we abbreviate

(5.23) m := max
i≤`

{
ni
αi

}
, m := max

i>`

{
ni
αi

}

and note that for given level J̃ with 0 ≤ J̃ ≤ J there holds

max∑
i≤` αiji=J̃

j1n1 + · · ·+ j`n` ≤ J̃m,

max∑
i>` αiji=J̃

j`+1n`+1 + · · ·+ jmnm ≤ J̃m.

We conclude

∑
∑
i≤` αiji=J̃∑

i>` αiji=J−J̃

min
{

2j1n1+···+j`n` , 2j`+1n`+1+···+jmnm
}
≤ Jmax{P1,P2}−1 min

{
2J̃m, 2(J−J̃)m

}
,

where P1 ≤ ` and P2 ≤ m − ` count how often the maxima m and m, respectively, are

attained in (5.23). Thus, we derive

∑
αT j=J

min
{

2j1n1+···+j`n` , 2j`+1n`+1+···+jmnm
}

=
J∑
J̃=0

∑
∑
i≤` αiji=J̃∑

i>` αiji=J−J̃

min
{

2j1n1+···+j`n` , 2j`+1n`+1+···+jmnm
}

≤ Jmax{P1,P2}−1

J∑
J̃=0

min
{

2J̃m, 2(J−J̃)m
}
.
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The minimum switches for the level Jm/(m+m), which leads to∑
αT j=J

min
{

2j1n1+···+j`n` , 2j`+1n`+1+···+jmnm
}

≤ Jmax{P1,P2}−1

[
Jm/(m+m)∑

J̃=0

min
{

2J̃m, 2(J−J̃)m
}

+
J∑

J̃=Jm/(m+m)

min
{

2J̃m, 2(J−J̃)m
}]

≤ Jmax{P1,P2}−1

[
Jm/(m+m)∑

J̃=0

2J̃m +

Jm/(m+m)∑
J̃=0

2J̃m

]
. Jmax{P1,P2}−12Jmm/(m+m).

This determines the rank of the sparse tensor product approximation, which we exploit in

the following theorem.

Theorem 5.2. Let 0 ≤ s ≤ r and f ∈ Hs(Ω). Then, there exists a rank-R approximation

fR(x1, . . . ,xm) =
R∑
r=0

g(1)
r (x1, . . . ,x`)g

(2)
r (x`+1, . . . ,xm) ∈ L2(Ω)

which approximates f as

(5.24) ‖f − fR‖L2(Ω) . R−β(logR)(m−1)/2+β(max{P1,P2}−1)‖f‖Hs(Ω).

Here, the rate β is given by

(5.25) β = min
i≤`

{
si
ni

}
+ min

i>`

{
si
ni

}
and P1 and P2 count how often the first and second minimum is attained. Moreover, the

constants in this error estimate do depend on si and ni, i = 1, 2, . . . ,m, but not on the

rank R.

Proof. As in the bivariate situation, we shall equilibrate the approximation power of the

extremal spaces in the sparse tensor product construction, which means that we choose

αi = si. Thus, the rank RJ of

Q̂sJf(x1, . . . ,xm) =
∑

sT j=J

∑
k1∈∆j1

∑
k2∈∇j2

. . .
∑

km∈∇jm

cj,kϕ
(1)
j1,k1

(x1)ψ
(2)
j2,k2

(x2) · · ·ψ(2)
jm,km

(xm) ∈ V̂ s
J

is essentially bounded by

RJ . 2Jmm/(m+m)Jmax{P1,P2}−1, m := max
i≤`

{
ni
si

}
, m := max

i>`

{
ni
si

}
.
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This is equivalent to RJ . 2J/βJmax{P1,P2}−1 with β as defined in (5.25). Hence, we have

(5.26) 2−J .

(
RJ

Jmax{P1,P2}−1

)−β
= R−βJ Jβ(max{P1,P2}−1).

As the convergence rate in (5.22) becomes essentially 2−J log J (m−1)/2 due to the specific

choice of α = s, we can insert (5.26) to get the convergence rate R−βJ J (m−1)/2+βmax{P1,P2}−1.

By using finally J . logRJ , we conclude the desired error estimate (5.24). �

Remark 5.3. (i) As we have seen, in case of multivariate mixed Sobolev smoothness, the

decay of the singular values is essentially the same independent of the dimension of the

two domains Ω1 × · · · × Ω` and Ω`+1 × · · · × Ωm with which the bivariate approximation

is performed. Nonetheless, for the approximation of the left and right eigenfunctions, this

holds only true if they are represented in the respective sparse tensor product spaces instead

of the full tensor product spaces.

(ii) In order to optimally estimate the decay of the eigenvalues, one has to choose ansatz

spaces which provide sufficient polynomial exactness, i.e., given f ∈ Hs(Ω), one chooses

ansatz spaces such that it holds r ≥ s in Theorem 5.2.

6. Tensor train format

We shall next apply the previous results for estimating the cost of the tensor train

approximation in the continuous case. We basically proceed as in [15] and successively

apply the singular value decomposition as studied in the previous section. This corresponds

to the algorithmic procedure in practical computations. Related results, obtained by other

proof techniques, can be found in [1, 3, 18, 29].

6.1. Tensor train decomposition. Given a function f ∈ Hs(Ω), we separate in the

first step of the tensor train decomposition the variables x1 ∈ Ω1 and (x2, . . . ,xm) ∈
Ω2 × · · · × Ωm by the singular value decomposition

f(x1,x2, . . . ,xn) =
∞∑

α1=1

√
λ1(α1)ϕ1(x1, α1)ψ1(α1,x2, . . . ,xm).

Herein, {ϕ1(α1)}α1∈N is an orthonormal basis of L2(Ω1), {ψ1(α1)}α1∈N is an orthonormal

basis of L2(Ω2×· · ·×Ωm), and
{√

λ1(α1)
}
α1∈N

is a square summable sequence of singular

values.

Next, since [√
λ1(α1)ψ1(α1)

]∞
α1=1

∈ `2(N)⊗ L2(Ω2 × · · · × Ωm),
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we can separate in the second step of the tensor train decomposition (α1,x2) ∈ N × Ω2

from (x3, . . . ,xm) ∈ Ω3 × · · · × Ωm by means of a second singular value decomposition.

This leads to

(6.27)

[√
λ1(α1)ψ1(α1,x2, . . . ,xm)

]∞
α1=1

=
∞∑

α2=1

√
λ2(α2)

[
ϕ2(α1,x2, α2)

]∞
α1=1

ψ2(α2,x3, . . . ,xm).

Herein,
{

[ϕ2(α1, α2)]α1∈N
}
α2∈N

is an orthonormal basis of `2(N)⊗ L2(Ω2), {ψ2(α2)}α1∈N is

an orthonormal basis of L2(Ω3 × · · · × Ωm), and
{√

λ2(α2)
}
α2∈N

is a square summable

sequence of singular values.

By repeating the second step and successively separating (αj−1,xj) ∈ N × Ωj from

(xj+1, . . . ,xm) ∈ Ωj+1×· · ·×Ωm for j = 3, . . . ,m−1, we finally arrive at the representation

f(x1, . . . ,xm) =
∞∑

α1=1

· · ·
∞∑

αm−1=1

ϕ1(α1,x1)ϕ2(α1,x2, α2)

· · ·ϕm−1(αm−2,xm−1, αm−1)ϕm(αm−1,xm),

where

ϕm(αm−1,xm) =
√
λm−1(αm−1)ψm−1(αm−1,xm).

In practice, we truncate the singular value decomposition in step j after rj terms, thus

arriving at the finite dimensional representation

fTT
r1,...,rm−1

(x1, . . . ,xm) =

r1∑
α1=1

· · ·
rm−1∑

αm−1=1

ϕ1(α1,x1)ϕ2(α1,x2, α2)

· · ·ϕm−1(αm−2,xm−1, αm−1)ϕm(αm−1,xm).

One readily infers by using Pythagoras’ theorem that the truncation error is then given by

‖f − fTT
r1,...,rm−1

‖L2(Ω1×···×Ωm) ≤

√√√√m−1∑
j=1

∞∑
αj=rj+1

λj(αj),

compare [4, Proposition 9]. Note that, for j ≥ 2, the singular values {λj(α)}α∈N in this

estimate do not coincide with the singular values from the untruncated tensor train de-

composition due to the truncation after the ranks rj.
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6.2. Regularity. We shall next give bounds on the input data for the singular value

decomposition and the truncation rank in each step of the tensor train decomposition. We

mention that our analysis covers the computational practice: We compute successively the

truncated singular value decomposition with prescribed accuracy ε > 0 as it is done in

practice.

In the first step of the tensor train decomposition, we compute the function

g1(x2, . . . ,xm) :=

[√
λ1(α1)ψ1(α1,x2, . . . ,xm)

]r1
α1=1

.

It satisfies

‖g1‖2
[Ht1 (Υ1)]r1 =

r1∑
α1=1

λ1(α1)‖ψ1(α1)‖2
Ht1 (Υ1)

=

r1∑
α1=1

λ1(α1)‖ϕ1(α1)⊗ ψ1(α1)‖2
L2(Ω1)⊗Ht1 (Υ1)

=

∥∥∥∥∥
r1∑

α1=1

√
λ1(α1)ϕ1(α1)⊗ ψ1(α1)

∥∥∥∥∥
2

L2(Ω1)⊗Ht1 (Υ1)

,

where we used the notation Ht1(Υ1) := Hs2(Ω2)⊗ · · · ⊗Hsm(Ωm). Vice versa, we have by

using Pythagoras’ theorem

‖f‖2
L2(Ω1)⊗Ht1 (Υ1) =

∥∥∥∥∥
∞∑

α1=1

√
λ1(α1)ϕ1(α1)⊗ ψ1(α1)

∥∥∥∥∥
2

L2(Ω1)⊗Ht1 (Υ1)

=

∥∥∥∥∥
r1∑

α1=1

√
λ1(α1)ϕ1(α1)⊗ ψ1(α1)

∥∥∥∥∥
2

L2(Ω1)⊗Ht1 (Υ1)

+

∥∥∥∥∥
∞∑

α1=r1+1

√
λ1(α1)ϕ1(α1)⊗ ψ1(α1)

∥∥∥∥∥
2

L2(Ω1)⊗Ht1 (Υ1)

.

Putting both estimates together yields

‖g1‖[Ht1 (Υ1)]r1 ≤ ‖f‖Hs(Ω).

In the j-th step of the tensor train decomposition, j = 2, 3, . . . ,m− 1, one computes the

singular value decomposition for the vector-valued function

gj−1(xj, . . . ,xm) :=

[√
λj−1(αj−1)ψj−1(αj−1,xj, . . . ,xm)

]rj−1

αj−1=1

.
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This leads to the representation

(6.28) gj−1(xj, . . . ,xm) =

[
∞∑

αj=1

√
λj(αj)ϕj(αj−1,xj, αj)ψj(αj,xj+1, . . . ,xm)

]rj−1

αj−1=1

which separates (αj−1,xj) from (xj+1, . . . ,xm), coupled only by αj.

We truncate (6.28) after rj terms and derive the new function

gj(xj+1, . . . ,xm) :=

[√
λj(αj)ψj(αj,xj+1, . . . ,xm)

]rj
αj=1

.

For tj := (sj+1, . . . , sm), we find that

‖gj‖2
[Htj (Υj)]

rj =

rj∑
αj=1

λj(αj)‖ψj(αj)‖2
Htj (Υj)

=

rj−1∑
αj−1=1

rj∑
αj=1

λj(αj)‖ϕj(αj−1, αj)⊗ ψj(αj)‖2
L2(Ωj)⊗Htj (Υj)

=

∥∥∥∥∥
rj−1∑

αj−1=1

rj∑
αj=1

√
λj(αj)ϕj(αj−1, αj)⊗ ψj(αj)

∥∥∥∥∥
2

L2(Ωj)⊗Htj (Υj)

.

by exploiting the orthonormality of the vector-valued functions [ϕj(αj−1, αj)]
rj−1

αj−1=1, αj =

1, . . . , rj. Analogously to above, we infer that

‖gj‖[Htj (Υj)]
rj ≤ ‖gj−1‖[L2(Ωj)⊗Htj (Υj)]

rj−1 ,

hence, we conclude

(6.29) ‖gj‖[Htj (Υj)]
rj ≤ ‖f‖Hs(Ω) for all j = 1, 2, . . . ,m− 1.

6.3. Truncation ranks. After having proven the regularity of the functions gj for all

j = 1, . . . ,m − 1, we shall next determine the truncation ranks. To this end, consider a

prescribed approximation accuracy ε > 0.

In the first step of the tensor train decomposition, i.e., for j = 1, we can immediately

apply Theorem 5.2 to get essentially the decay r−β11 in the truncation error, where the rate

β1 is given by

(6.30) β1 =

{
s1

n1

}
+

m

min
i=2

{
si
ni

}
.

Hence, we have to choose r1 := ε−1/β1 to essentially get the truncation error ε in the first

step.
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In the j-th step of the tensor train decomposition, we set yj := (xj+1, . . . ,xm) ∈ Υj :=

Ωj+1 × · · · × Ωm and compute the kernel function κj ∈ L2(Υj,Υj) given by

κj(yj,y
′
j) :=

rj−1∑
αj−1=1

λj−1(αj−1)

∫
Ωj

ψj−1(αj−1,xj,yj)ψj−1(αj−1,xj,y
′
j) dxj.

This gives rise to the spectral decomposition

(6.31) κj(yj,y
′
j) =

∞∑
αj=1

λj(αj)ψj(αj,yj)ψj(αj,y
′
j).

By setting

ϕj(αj−1,xj, αj) :=

√
λj−1(αj−1)√
λj(αj)

∫
Υj

ψj−1(αj−1,xj,yj)ψj(αj,yj) dyj,

we arrive at the desired singular value decomposition (6.28).

From

∂αy ∂
β
y′κj(yj,y

′
j) =

rj−1∑
αj−1=1

λj−1(αj−1)

∫
Ωj

∂αy ψj−1(αj−1,xj,yj)∂
β
y′ψj−1(αj−1,xj,y

′
j) dxj

for any pair of multi-indices α,β ∈ Nm−j
0 , we conclude

‖κj‖Htj (Υj)⊗Htj (Υj)
≤

rj−1∑
αj−1=1

λj−1(αj−1)‖ψj−1(αj−1)‖2
L2(Ωj)⊗Htj (Υj)

= ‖gj−1‖2
[L2(Ωj)⊗Htj (Υj)]

rj−1 .

Therefore, it holds κj ∈ Htj(Υj)⊗Htj(Υj) which essentially implies the rate of convergence

r
−2βj−1/2
j with

(6.32) βj =
m

min
i=j+1

{
si
ni

}
− 1

4

in the spectral decomposition (6.31). This in turn leads to the choice rj := ε−1/βj to

essentially derive3 the truncation error ε.

3The estimate
√∑

j>rj
λ2
j . r

−2βj−1/2
j implies λ2

j . r
−4βj−2
j and hence λj . r

−2βj−1
j . This in

turn gives
∑

j>rj
λj . r

−2βj
j and

√∑
j>rj

λj . r
−βj
j , respectively.
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6.4. Complexity. We summarize our findings for the continuous tensor train decomposi-

tion in the following theorem, in which we estimate the ranks required.

Theorem 6.1. Let f ∈ Hs(Ω) for some fixed s > 0 and 0 < ε < 1. Choose the truncation

ranks rj := ε−1/βj for j = 1, . . . ,m− 1, where βj is given in (6.30) for j = 1 and in (6.32)

for j > 1. Then, the overall truncation error of the tensor train decomposition is essentially

bounded by

‖f − fTT
r1,...,rm−1

‖L2(Ω) .
√
mε.

The storage cost for fTT
r1,...,rm−1

are given by

(6.33) r1 +
m−1∑
j=2

rj−1rj = ε−1/β1 + ε−1/β1−1/β2 + · · ·+ ε−1/βm−2−1/βm−1

and hence are bounded by O
(
mε−2/minm−1

j=1 {βj}
)
.

Remark 6.2. In case of n := n1 = · · · = nm and s := s1 = · · · = sm, the cost of the tensor

train decomposition is O(mε−2/β) with β = s
n
− 1

4
. Thus, the cost is essentially independent

of the number m of subdomains.

7. Concluding remarks

In this article, we have studied the convergence of the truncated singular value decom-

position for functions from Sobolev spaces with dominating mixed smoothness. With these

convergence results at hand, we proved that the particular ranks of the tensor train approx-

imation are essentially independent of the overall dimension of the product domain. This is

in contrast to the situation of approximating functions from the isotropic Sobolev spaces,

where the maximum rank grows exponentially with the overall dimension, compare [15].

We also like also to comment on the relationship of the tensor train representation

and deep neural networks (DNN). Indeed, it has been shown that one-dimensional basis

functions, e.g. polynomials or wavelets, can be approximated up to an error ε by DNNs

with ReLU activation functions at cost ∼ | log ε|. Moreover, the multiplication

(x, y) 7→ x · y =
1

4

{
(x+ y)2 − (x− y)2

}
can easily be expressed by an additional layer and the x 7→ x2 activation function, which

in turn can be approximated by a ReLU network with O(| log ε|) layers, compare [37].

Vice versa, the tensor train representation corresponds to a network with m layers and the

bivariate activation function (x, y) 7→ x · y, which itself can be represented by a multilayer
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ReLU network as described above. This implies that upper bounds for the DNN complexity

can easily be derived from our presented results.

We finally want to highlight that the major progress of DNNs relies on the use of compo-

sitions of nonlinear functions as a tool for approximation. In [26], the authors introduced a

class of (m-variate) functions which can be expressed by the composition of bivariate func-

tions. Furthermore, it was shown that the overall complexity of a DNN for such functions

is bounded by the number of compositions (i.e. layers) times the approximation complexity

of the bivariate functions. The tensor train representation is obviously contained in this

class and the nonlinearity is simply the bilinear map. In the recent work [3], the authors

have made the remarkable observation that the converse holds also true to a certain extent:

The approximation rate of a corresponding tree based tensor network provides the same

convergence rate as DNNs in the case of typical activation functions, as for example the

ReLU activation function.
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[34] H. Weyl. Über die asymptotische Verteilung der Eigenwerte. Nachrichten der Königlichen

Gesellschaft der Wissenschaften zu Göttingen (1911), 110–117.

[35] G. Widmer, R. Hiptmair and C. Schwab. Sparse adaptive finite elements for radiative trans-

fer. J. Comp. Phys. 227 (2008), 6071–6105.

[36] J. Wloka. Partial differential equations. Cambridge University Press, Cambridge, 1987.

[37] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Netw. 94

(2017), 103–114.

Michael Griebel, Institut für Numerische Simulation, Universität Bonn, Friedrich-

Hirzebruch-Allee 7, 53115 Bonn, Germany and Fraunhofer Institute for Algo-

rithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Au-

gustin, Germany

Email address: griebel@ins.uni-bonn.de

Helmut Harbrecht, Departement Mathematik und Informatik, Universität Basel,

Spiegelgasse 1, 4051 Basel, Switzerland

Email address: helmut.harbrecht@unibas.ch

Reinhold Schneider, Institute of Mathematics, Technical University of Berlin,

Straße des 17. Juni 136, 10623 Berlin, Germany

Email address: schneidr@math.tu-berlin.de


